JP6781562B2 - Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices - Google Patents
Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Download PDFInfo
- Publication number
- JP6781562B2 JP6781562B2 JP2016063235A JP2016063235A JP6781562B2 JP 6781562 B2 JP6781562 B2 JP 6781562B2 JP 2016063235 A JP2016063235 A JP 2016063235A JP 2016063235 A JP2016063235 A JP 2016063235A JP 6781562 B2 JP6781562 B2 JP 6781562B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- copper
- flexible printed
- printed circuit
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 129
- 239000011889 copper foil Substances 0.000 title claims description 116
- 239000011347 resin Substances 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 36
- 239000013078 crystal Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 24
- 239000010949 copper Substances 0.000 claims description 15
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 238000010030 laminating Methods 0.000 claims description 9
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000000654 additive Substances 0.000 claims description 8
- 230000000996 additive effect Effects 0.000 claims description 8
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 claims description 4
- 229910052790 beryllium Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000005530 etching Methods 0.000 description 60
- 238000005097 cold rolling Methods 0.000 description 13
- 239000010408 film Substances 0.000 description 13
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001953 recrystallisation Methods 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012787 coverlay film Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
Description
本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.
フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、ソフトエッチングを行う場合もある。
Since a flexible printed circuit board (flexible wiring board, hereinafter referred to as "FPC") has flexibility, it is widely used for bent parts and movable parts of electronic circuits. For example, FPCs are used for moving parts of disc-related devices such as HDDs, DVDs, and CD-ROMs, and bent parts of foldable mobile phones.
FPC is formed by etching Copper Clad Laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated to form wiring, and coating the wiring with a resin layer called a coverlay. Before laminating the coverlay, the surface of the copper foil is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay. Further, in order to reduce the thickness of the copper foil and improve the flexibility, soft etching may be performed.
FPCに用いられる銅箔のうち、回路をエッチング形成するためのレジストを形成する面には、レジストとの密着性を付与するためにソフトエッチングが行われる。ソフトエッチングは、銅箔表面の酸化膜を除去するとともに表面を平坦化する表面処理である。ところが、ソフトエッチングの際に、圧延銅箔の表面に凹部が生じる、dishdownと呼ばれる不具合が発生する。このdishdownは、圧延銅箔の厚み方向にエッチング速度が異なることに起因して表面が凹凸になり、レジスト密着性を低下させるものである。そして、エッチング速度の相違は、圧延銅箔の表面の結晶方位によってエッチング速度が相違することによって生じるとされている。
そこで、他の結晶面と比較してエッチング速度が遅い(200)面の割合を少なくし、ソフトエッチング性を改善した圧延銅箔が開発されている(特許文献1)。
Of the copper foil used for FPC, the surface on which the resist for etching and forming the circuit is formed is soft-etched in order to impart adhesion to the resist. Soft etching is a surface treatment that removes the oxide film on the surface of the copper foil and flattens the surface. However, during soft etching, a defect called dishdown occurs in which recesses are formed on the surface of the rolled copper foil. In this dish down, the surface becomes uneven due to the difference in etching rate in the thickness direction of the rolled copper foil, and the resist adhesion is lowered. It is said that the difference in etching rate is caused by the difference in etching rate depending on the crystal orientation of the surface of the rolled copper foil.
Therefore, a rolled copper foil has been developed in which the proportion of (200) planes having a slow etching rate as compared with other crystal planes is reduced and the soft etching property is improved (Patent Document 1).
ところで、電子機器の小型、薄型、高性能化に伴い、これら機器の内部にFPCを高密度で実装することが要求されているが、高密度実装を行うためには、回路をより微細化すると共に、小型化した機器の内部に厚みの小さいFPCを折り曲げて収容することが必要となる。そして、回路の微細化を図るためには、回路をエッチング形成するレジストと銅箔との密着性がより一層要求される。つまり、銅箔とレジストとの密着性が低いと、銅箔とフォトレジストとの間にエッチング液が侵入し、微細な配線を形成することが困難となる。 By the way, as electronic devices become smaller, thinner, and have higher performance, it is required to mount FPCs at high density inside these devices. However, in order to perform high-density mounting, the circuit is made finer. At the same time, it is necessary to bend and accommodate a small-thickness FPC inside the miniaturized device. Then, in order to miniaturize the circuit, the adhesion between the resist forming the circuit by etching and the copper foil is further required. That is, if the adhesion between the copper foil and the resist is low, the etching solution penetrates between the copper foil and the photoresist, making it difficult to form fine wiring.
しかしながら、従来の銅箔の場合、ソフトエッチング後の表面の平坦化が十分とはいえず、回路の微細化が困難であった。
又、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅も20〜30μm程度に微細化しており、エッチングにより回路を形成する時にエッチングファクタや回路直線性が劣化し易くなるという問題があり、この解決も要求されている。
本発明は上記の課題を解決するためになされたものであり、エッチング性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in the case of the conventional copper foil, the surface flattening after soft etching is not sufficient, and it is difficult to miniaturize the circuit.
In addition, as electronic devices become smaller, thinner, and have higher performance, the circuit width and space width of FPCs have become finer to about 20 to 30 μm, and the etching factor and circuit linearity tend to deteriorate when forming circuits by etching. There is a problem of becoming, and this solution is also required.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a copper foil for a flexible printed circuit board having excellent etching properties, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.
本発明者らは種々検討した結果、銅箔の結晶粒を微細化し、かつエッチング後の銅箔のスキューネスRskを規定することで、エッチング性を向上できることを見出した。但し、結晶粒を微細化し過ぎると強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。従って、結晶粒径及び引張強度の範囲を規定した。
又、結晶粒径を、近年のFPCの20〜30μm程度の回路幅のおよそ1/10程度に微細化することにより、エッチングにより回路を形成する時のエッチングファクタや回路直線性をも改善することができる。
As a result of various studies, the present inventors have found that the etching property can be improved by making the crystal grains of the copper foil finer and defining the skewness Rsk of the copper foil after etching. However, if the crystal grains are made too fine, the strength becomes too high and the bending rigidity becomes large, and the springback becomes large, which is not suitable for flexible printed circuit board applications. Therefore, the range of grain size and tensile strength is defined.
Further, by reducing the crystal grain size to about 1/10 of the circuit width of about 20 to 30 μm of recent FPCs, the etching factor and circuit linearity when forming a circuit by etching can be improved. Can be done.
すなわち、本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅に対し、Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなり、平均結晶粒径が0.6〜4.3μm、かつMD方向の引張強度が230〜287MPaであり、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒浸漬した後の表面のJIS B 0601−2001に基づくスキューネスRskを、MD方向およびCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値が0.05以下である。 That is, the copper foil for a flexible printed substrate of the present invention has an Ag content of 0.001 to 0.05% by mass and P, Ti with respect to the tough pitch copper specified in JIS-H3100 (C1100) or the oxygen-free copper of JIS-H3100 (C1011). , Sn, Ni, Be, Zn, In and Mg, containing one or more additive elements in total of 0.003 to 0.825% by mass, with an average crystal particle size of 0.6 to 4.3 μm and in the MD direction. Skewness Rsk based on JIS B 0601-2001 on the surface after being immersed in an aqueous solution (liquid temperature 25 ° C) with a tensile strength of 230 to 287 MPa, a sodium persulfate concentration of 100 g / L, and a hydrogen peroxide concentration of 35 g / L for 420 seconds. Is measured 16 times in each of the MD direction and the CD direction, and the average value of the absolute values of the measured values of each time is 0.05 or less.
前記銅箔が圧延銅箔であり、300℃で30分間の熱処理後の前記平均結晶粒径が0.6〜4.3μm、前記引張強度が230〜287MPaであり、かつ該熱処理後の前記スキューネスRskが0.05以下であることが好ましい。 The copper foil is a rolled copper foil, the average crystal grain size after heat treatment at 300 ° C. for 30 minutes is 0.6 to 4.3 μm, the tensile strength is 230 to 287 MPa, and the skewness Rsk after the heat treatment is 0.05. The following is preferable.
本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。 The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit board and a resin layer.
本発明のフレキシブルプリント基板は、前記銅張積層体を用い、前記銅箔に回路を形成してなる。
前記回路のL/Sが35/35〜10/10(μm/μm)であることが好ましい。なお、回路のL/S(ラインアンドスペース)とは、回路を構成する配線の幅(L:ライン)と、隣り合う配線の間隔(S:スペース)の比である。Lは回路中のLの最小値を採用し、Sは回路中のSの最小値を採用する。
なお、L及びSは10〜35μmであればよく、両者が同一の値である必要はない。例えば、L/S=20.5/35、35/17などの値をとることもできる。
The flexible printed circuit board of the present invention uses the copper-clad laminate to form a circuit on the copper foil.
The L / S of the circuit is preferably 35/35 to 10/10 (μm / μm). The L / S (line and space) of the circuit is the ratio of the width (L: line) of the wiring constituting the circuit and the interval (S: space) of the adjacent wiring. L adopts the minimum value of L in the circuit, and S adopts the minimum value of S in the circuit.
L and S may be 10 to 35 μm, and they do not have to be the same value. For example, values such as L / S = 20.5 / 35 and 35/17 can be taken.
本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。 The electronic device of the present invention uses the flexible printed circuit board.
本発明によれば、エッチング性に優れたフレキシブルプリント基板用銅箔が得られる。 According to the present invention, a copper foil for a flexible printed circuit board having excellent etching properties can be obtained.
以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。 Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.
<組成>
本発明に係る銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅に対し、Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなる。
上述のように、本発明においては銅箔の再結晶後の結晶粒を微細化することにより、強度を高めて、かつエッチング性を向上させている。
但し、上記した純銅系の組成の場合、結晶粒の微細化が困難であるため、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないことで、冷間圧延により加工ひずみを大量に導入して動的再結晶を生じさせて結晶粒の微細化を実現できる。
<Composition>
The copper foil according to the present invention contains 0.001 to 0.05% by mass of Ag and P, Ti, Sn, Ni, with respect to the tough pitch copper specified in JIS-H3100 (C1100) or the oxygen-free copper of JIS-H3100 (C1011). It contains 0.003 to 0.825% by mass of one or more additive elements selected from the group of Be, Zn, In and Mg in total.
As described above, in the present invention, the crystal grains after recrystallization of the copper foil are made finer to increase the strength and the etchability.
However, in the case of the above-mentioned pure copper-based composition, it is difficult to refine the crystal grains. Therefore, the recrystallization annealing is performed only once at the initial stage of cold rolling, and the recrystallization annealing is not performed thereafter. A large amount of machining strain can be introduced by inter-rolling to cause dynamic recrystallization, and grain refinement can be realized.
又、冷間圧延における加工ひずみを大きくするには、最終冷間圧延(焼鈍と圧延を繰り返す工程全体の中で、最後の焼鈍後に行う仕上げ圧延)での加工度として、η=ln(最終冷間圧延前の板厚/最終冷間圧延後の板厚)=7.51〜8.00とすると好ましい。
ηが7.51未満の場合、加工ひずみが均一に蓄積されない、つまり局所的にひずみが蓄積されるため、ひずみの蓄積された部位と他の部位でエッチング速度が異なる。このため、ソフトエッチング後のRskの絶対値が大きくなり、エッチング性が劣化する。ηが8.00より大きい場合、ひずみが過剰に蓄積されて結晶粒成長の駆動力となり、結晶粒が粗大になる傾向にある。η=7.75〜8.00とするとさらに好ましい。
To increase the machining strain in cold rolling, the degree of machining in final cold rolling (finish rolling performed after the final annealing in the entire process of repeating annealing and rolling) is η = ln (final cold). Plate thickness before inter-rolling / plate thickness after final cold rolling) = 7.51 to 8.00.
When η is less than 7.51, the machining strain is not uniformly accumulated, that is, the strain is locally accumulated, so that the etching rate differs between the strain-accumulated portion and the other portion. Therefore, the absolute value of Rsk after soft etching becomes large, and the etching property deteriorates. When η is larger than 8.00, strain is excessively accumulated and becomes a driving force for crystal grain growth, and the crystal grains tend to be coarse. It is more preferable that η = 7.75 to 8.00.
又、結晶粒を微細化させる添加元素として、Ag及び上記添加元素を含有すると、冷間圧延時に転位密度を増加させ、結晶粒の微細化を確実に実現できる。
このうち、Agは、再結晶焼鈍条件に対する再結晶粒径の感受性を低くさせる。つまり、後述するように、CCL積層時に樹脂を硬化させるための熱処理を行うが、実際には熱処理の温度、時間が変動し、昇温速度も製造装置や製造者等によって異なる。このため、熱処理によっては銅箔の再結晶粒の粒径が大きくなるおそれがある。そこで、Agを含有させることで、CCL積層時の熱処条件が変化しても結晶粒を安定して微細化できる。
Further, when Ag and the above-mentioned additive element are contained as the additive element for refining the crystal grains, the dislocation density can be increased during cold rolling, and the refining of the crystal grains can be surely realized.
Of these, Ag reduces the sensitivity of the recrystallization particle size to the recrystallization annealing conditions. That is, as will be described later, heat treatment is performed to cure the resin during CCL lamination, but the temperature and time of the heat treatment actually fluctuate, and the rate of temperature rise also differs depending on the manufacturing apparatus, the manufacturer, and the like. Therefore, the grain size of the recrystallized grains of the copper foil may increase depending on the heat treatment. Therefore, by containing Ag, the crystal grains can be stably refined even if the heat treatment conditions at the time of CCL lamination change.
Agの含有量が0.001質量%未満であると結晶粒の微細化が困難になる。また、Agの含有量が0.05質量%を超えると再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
上記添加元素の合計含有量が0.003質量%未満であると結晶粒の微細化が困難になり、0.825質量%を超えると導電率が低下することがある。又、再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
If the Ag content is less than 0.001% by mass, it becomes difficult to refine the crystal grains. Further, if the Ag content exceeds 0.05% by mass, the recrystallization temperature rises and does not recrystallize when laminated with the resin, and the strength may become too high to deteriorate the bendability of the copper foil and CCL. ..
If the total content of the added elements is less than 0.003% by mass, it becomes difficult to refine the crystal grains, and if it exceeds 0.825% by mass, the conductivity may decrease. Further, when the recrystallization temperature rises and the resin is laminated, the recrystallization may not occur, and the strength may become too high to deteriorate the bendability of the copper foil and CCL.
<平均結晶粒径>
銅箔の平均結晶粒径が0.6〜4.3μmである。平均結晶粒径が0.6μm未満であると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。平均結晶粒径が4.3μmを超えると、結晶粒の微細化が実現されず、強度を高めて折り曲げ性を向上させることが困難になると共に、ソフトエッチング性、エッチングファクタや回路直線性が劣化してエッチング性が低下する。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μm×100μmの視野で3視野以上を観察して行う。箔表面の観察は、SIM(Scanning Ion Microscope)またはSEM(Scanning Electron Microscope)を用い、JIS H 0501に基づいて平均結晶粒径を求めることができる。
ただし、双晶は、別々の結晶粒とみなして測定する。
<Average grain size>
The average crystal grain size of the copper foil is 0.6 to 4.3 μm. If the average crystal grain size is less than 0.6 μm, the strength becomes too high, the bending rigidity becomes large, and the springback becomes large, which is not suitable for flexible printed circuit board applications. If the average crystal grain size exceeds 4.3 μm, the crystal grains cannot be refined, it becomes difficult to increase the strength and improve the bendability, and the soft etching property, etching factor, and circuit linearity deteriorate. The etchability is reduced.
The average crystal grain size is measured by observing the foil surface in a field of view of 100 μm × 100 μm in three or more fields of view in order to avoid errors. For the observation of the foil surface, a SIM (Scanning Ion Microscope) or an SEM (Scanning Electron Microscope) can be used, and the average crystal grain size can be determined based on JIS H 0501.
However, twins are measured as separate crystal grains.
<引張強度(TS)>
銅箔の引張強度が230〜287MPaである。上述のように、結晶粒を微細化することにより引張強度が向上する。引張強度が230MPa未満であると、強度を高めることが困難になる。引張強度が287MPaを超えると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。
引張強度は、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向(又はMD方向)と平行な方向に引張試験した。
<Tensile strength (TS)>
The tensile strength of the copper foil is 230-287 MPa. As described above, the tensile strength is improved by refining the crystal grains. If the tensile strength is less than 230 MPa, it becomes difficult to increase the strength. If the tensile strength exceeds 287 MPa, the strength becomes too high and the flexural rigidity becomes large, and the springback becomes large, which is not suitable for flexible printed circuit board applications.
Tensile strength was measured by a tensile test based on IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C), tensile speed of 50.8 mm / min, gauge length of 50 mm, and copper foil rolling direction (or MD direction). ), And a tensile test was performed in the direction parallel to).
<スキューネスRsk>
ソフトエッチング性を評価する指標として、エッチング後の銅箔表面のJIS B 0601−2001に基づくスキューネスRskを規定する。エッチング条件としては、銅箔とレジストとの密着性を付与するためのソフトエッチングを模擬し、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒銅箔を浸漬するものとする。
<Skewness Rsk>
As an index for evaluating the soft etching property, the skewness Rsk based on JIS B 0601-2001 of the copper foil surface after etching is defined. As the etching conditions, soft etching for imparting adhesion between the copper foil and the resist was simulated, and the solution was placed in an aqueous solution (liquid temperature 25 ° C) with a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L for 420 seconds. The copper foil shall be immersed.
スキューネスRskは、二乗平均平方根高さRqの三乗によって無次元化した基準長さにおけるZ(x)三乗平均を表したものである。
二乗平均平方根高さRqは、JIS B 0601(2001)に準拠した非接触式粗さ計による表面粗さ測定における、凹凸の程度を示す指標であり、下記(A)式で表され、表面粗さのZ軸方向の凹凸(山の)高さであって、基準長さlrにおける山の高さZ(x)の二乗平均平方根である。
基準長さlrにおける山の高さの二乗平均平方根高さRq:
The root mean square height Rq is an index indicating the degree of unevenness in the surface roughness measurement by a non-contact roughness meter conforming to JIS B 0601 (2001), and is represented by the following equation (A), and the surface roughness is expressed by the following equation (A). It is the height of the unevenness (mountain) in the Z-axis direction, and is the root mean square of the height Z (x) of the mountain at the reference length ll.
Root mean square height Rq of mountain height at reference length rl:
銅箔表面のスキューネスRskは、銅箔表面の凹凸面の平均面を中心としたときの、銅箔表面の凹凸の対称性を示す指標である。従って、Rskの絶対値が0に近いほど、凹凸の山と谷が対称であり、ピール強度(IPC−TM−650に準拠したピール強度(接着強度))が高くなって樹脂と良好に接着するため、ソフトエッチング性にすぐれる。また、また、Rsk<0であれば高さ分布が平均面に対して上側に偏っており、Rsk>0であれば高さ分布が平均面に対して下側に偏っているといえる。上側への偏りが大きいときは銅箔表面が凸形態となっているため銅箔内部での乱反射が大きくなり、レジストを銅箔に貼り付けた後に露光してエッチング除去した場合、回路直線性やエッチングファクタの精度が悪化する。下側への偏りが大きいとき、銅箔表面が凹形態となっており、光源から光を照射すると銅箔表面での乱反射が大きくなり、レジストを銅箔に貼り付けた後に露光してエッチング除去した場合、回路直線性やエッチングファクタの精度が悪化する。また、Rskの絶対値が0に近いほど、凹凸の山と谷が対称であるため、電磁力線の乱れが高さ方向で生じないため高周波伝送特性が良い。 Skewness Rsk on the surface of the copper foil is an index showing the symmetry of the unevenness of the copper foil surface when the average surface of the uneven surface of the copper foil surface is the center. Therefore, the closer the absolute value of Rsk is to 0, the more symmetrical the peaks and valleys of the unevenness, and the higher the peel strength (peeling strength (adhesive strength) based on IPC-TM-650), and the better the adhesion with the resin. Therefore, it has excellent soft etching properties. Further, if Rsk <0, the height distribution is biased upward with respect to the average plane, and if Rsk> 0, the height distribution is biased downward with respect to the average plane. When the bias to the upper side is large, the surface of the copper foil is convex, so the diffused reflection inside the copper foil becomes large, and when the resist is attached to the copper foil and then exposed and removed by etching, the circuit linearity and The accuracy of the etching factor deteriorates. When the downward bias is large, the copper foil surface has a concave shape, and when light is applied from a light source, diffused reflection on the copper foil surface increases, and after the resist is attached to the copper foil, it is exposed and etched. If this happens, the circuit linearity and the accuracy of the etching factor deteriorate. Further, the closer the absolute value of Rsk is to 0, the more symmetrical the peaks and valleys of the unevenness, so that the disturbance of the electromagnetic force line does not occur in the height direction, so that the high frequency transmission characteristic is good.
このようなことから、本発明の銅箔は、スキューネスRskを、MD方向及びCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値をRskとして採用する。
MD(Machine1 Direction)方向は、圧延銅箔の場合は圧延平行方向であり、電解銅箔では製造時のストリップの流れ方向である。CD(Cross Machine Direction)方向は、圧延銅箔の場合は圧延直角方向であり、電解銅箔では流れ方向に垂直な方向である。
実際の銅箔は、MD方向及びCD方向に切り出されてCCLに使用されるので、MD方向及びCD方向のRskを測定する。
Therefore, in the copper foil of the present invention, the skewness Rsk is measured 16 times in each of the MD direction and the CD direction, and the value obtained by averaging the absolute values of the measured values of each time is adopted as the Rsk.
The MD (Machine1 Direction) direction is the rolling parallel direction in the case of rolled copper foil, and the flow direction of the strip at the time of manufacture in the case of electrolytic copper foil. The CD (Cross Machine Direction) direction is the direction perpendicular to rolling in the case of rolled copper foil, and the direction perpendicular to the flow direction in the case of electrolytic copper foil.
Since the actual copper foil is cut out in the MD direction and the CD direction and used for CCL, the Rsk in the MD direction and the CD direction is measured.
銅箔表面のRskの絶対値を0.05以下に規定することにより、ピール強度が高くなって樹脂との密着性に優れ、かつレジストで銅箔をエッチング除去した後の回路の直線性やエッチングファクタの精度が高くなるため、ソフトエッチング性が向上する。
Rskの絶対値が0.050を超えると樹脂との密着性は向上するが、表面の凹凸が顕著になってレジストで銅箔をエッチング除去した後の回路の直線性の精度が低下し、ソフトエッチング性が劣る。
Rskの絶対値の下限は特に限定されないが、通常、0.001である。Rskの絶対値を0.001未満とすることは工業的に困難である。
By specifying the absolute value of Rsk on the copper foil surface to 0.05 or less, the peel strength becomes high and the adhesion with the resin is excellent, and the linearity and etching factor of the circuit after etching and removing the copper foil with a resist Since the accuracy is high, the soft etching property is improved.
If the absolute value of Rsk exceeds 0.050, the adhesion to the resin will improve, but the surface irregularities will become noticeable, and the accuracy of the linearity of the circuit after etching and removing the copper foil with the resist will decrease, resulting in soft etching properties. Is inferior.
The lower limit of the absolute value of Rsk is not particularly limited, but is usually 0.001. It is industrially difficult to make the absolute value of Rsk less than 0.001.
<300℃で30分間の熱処理>
銅箔を300℃で30分間の熱処理後の平均結晶粒径が0.6〜4.3μm、MD方向の引張強度が230〜287MPaかつ該熱処理後のスキューネスRskが0.05以下であってもよい。
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
又、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行う。つまり、実際のソフトエッチングは、この熱処理を行った銅箔に対して行われる。
<Heat treatment at 300 ° C for 30 minutes>
The average crystal grain size of the copper foil after heat treatment at 300 ° C. for 30 minutes may be 0.6 to 4.3 μm, the tensile strength in the MD direction may be 230 to 287 MPa, and the skewness Rsk after the heat treatment may be 0.05 or less.
The copper foil according to the present invention is used for a flexible printed circuit board, and at that time, the CCL in which the copper foil and the resin are laminated is subjected to a heat treatment for curing the resin at 200 to 400 ° C., so that crystal grains are formed by recrystallization. It may be oversized.
Further, the CCL in which the copper foil and the resin are laminated is subjected to a heat treatment for curing the resin at 200 to 400 ° C. That is, the actual soft etching is performed on the copper foil subjected to this heat treatment.
従って、樹脂と積層する前後で、銅箔の平均結晶粒径及び引張強度が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅箔を規定している。+
一方、本願の請求項2に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。
なお、熱処理の雰囲気は特に限定されず、大気下でもよく、Ar、窒素等の不活性ガス雰囲気でもよい。
Therefore, the average crystal grain size and tensile strength of the copper foil change before and after laminating with the resin. Therefore, the copper foil for a flexible printed substrate according to claim 1 of the present application defines a copper foil in a state of being subjected to a curing heat treatment of the resin after being formed into a copper-clad laminate after being laminated with the resin. +
On the other hand, the copper foil for a flexible printed circuit board according to claim 2 of the present application defines a state when the copper foil before being laminated with a resin is subjected to the above heat treatment. This heat treatment at 300 ° C. for 30 minutes imitates the temperature conditions for curing and heat-treating the resin during lamination of CCL.
The atmosphere of the heat treatment is not particularly limited, and may be an atmosphere or an atmosphere of an inert gas such as Ar or nitrogen.
本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、上述の最終冷間圧延を行うことにより箔を製造することができる。 The copper foil of the present invention can be produced, for example, as follows. First, the above additive is added to a copper ingot, melted and cast, then hot rolled, cold rolled and annealed, and the final cold rolling described above is carried out to produce a foil.
<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Further, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) using a thermoplastic adhesive of the same type as the base film. By laminating the base film on the copper foil of the present invention, a copper-clad laminate (CCL) composed of two layers of the copper foil and a resin base material can be obtained. Further, by laminating a base film coated with an adhesive on the copper foil of the present invention, a copper-clad laminate (CCL) composed of three layers of a copper foil, a resin base material, and an adhesive layer between them can be obtained. During the production of these CCLs, the copper foil is heat treated and recrystallized.
A flexible printed circuit board (flexible wiring board) can be obtained by forming a circuit on these using photolithography technology, plating the circuit as necessary, and laminating a coverlay film.
従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。
Therefore, the copper-clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Further, the flexible printed circuit board of the present invention is formed by forming a circuit on a copper foil of a copper-clad laminate.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material to be a resin layer may be applied to the surface of the copper foil to form a heat film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be heat-bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying extra heat to the resin film.
When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same composition as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive as the adhesive layer. The polyimide adhesive referred to here refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.
なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
The present invention is not limited to the above embodiment. Further, the copper alloy in the above-described embodiment may contain other components as long as the effects of the present invention are exhibited.
For example, the surface of the copper foil may be roughened, rust-proofed, heat-resistant, or surface-treated by a combination thereof.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。純度99.9%以上の電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延および冷間圧延を行い厚さ31〜51mmとした後、1回の焼鈍を行った後に表面を面削して、表1に示す加工度ηで最終冷間圧延をして最終厚さ17μmの銅箔サンプルを得た。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The elements shown in Table 1 were added to electrolytic copper having a purity of 99.9% or more, and casting was performed in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot was homogenized and annealed at 900 ° C., then hot-rolled and cold-rolled to a thickness of 31 to 51 mm, and after one annealing, the surface was surface-cut and processed as shown in Table 1. The final cold rolling was performed at η degrees to obtain a copper foil sample having a final thickness of 17 μm.
<A.銅箔サンプルの評価>
1.導電率
上記の各銅箔サンプルについて、大気下、300℃で30分間の熱処理(CCLの積層時に樹脂を硬化熱処理させる温度条件を模擬)を行った後、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が75%IACS以上であれば導電性が良好である。
2.粒径
上記熱処理後の各銅箔サンプル表面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、表面の100μm ×100μmとした。
<A. Evaluation of copper foil sample >
1. 1. Conductivity Each of the above copper foil samples is heat-treated at 300 ° C for 30 minutes in the atmosphere (simulating the temperature conditions for curing and heat-treating the resin during CCL lamination), and then by the 4-terminal method based on JIS H 0505. , 25 ° C conductivity (% IACS) was measured.
If the conductivity is 75% IACS or more, the conductivity is good.
2. Particle size The surface of each copper foil sample after the heat treatment was observed using a SEM (Scanning Electron Microscope), and the average particle size was determined based on JIS H 0501. However, twins were measured as separate crystal grains. The measurement area was 100 μm × 100 μm on the surface.
3.銅箔の引張強度
上記熱処理後の各銅箔サンプルについて、IPC-TM650に準拠した引張試験により上記条件で引張強度を測定した。
3. 3. Tensile Strength of Copper Foil The tensile strength of each copper foil sample after the above heat treatment was measured under the above conditions by a tensile test based on IPC-TM650.
<B.CCLの評価>
4.CCL(銅張積層板)の作製
最終冷間圧延後で上記熱処理を行わない銅箔サンプル(熱処理前の銅箔)の片面に銅粗化めっきを行った。銅粗化めっき浴としてCu:10-25g/L,硫酸:20-100g/Lの組成を用い、浴温20-40℃、電流密度30-70A/dm2で1-5秒電気めっきし、銅付着量を20g/dm2とした。
銅箔サンプルの粗化めっき面を、両面接着剤付きのポリイミドフィルム(宇部興産株式会社製の製品名「ユーピレックスVT」、厚み25μm)の各接着面にそれぞれ積層し、加熱プレス(4MPa)で300℃×30分の熱処理を加えて貼り合せ、ポリイミドフィルムの両面にそれぞれ銅箔が積層されたCCLサンプルを得た。
<B. Evaluation of CCL>
4. Preparation of CCL (Copper Clad Laminated Plate) Copper rough plating was performed on one side of a copper foil sample (copper foil before heat treatment) that was not subjected to the above heat treatment after the final cold rolling. Using a composition of Cu: 10-25g / L, sulfuric acid: 20-100g / L as a copper roughening plating bath, electroplating at a bath temperature of 20-40 ° C and a current density of 30-70A / dm2 for 1-5 seconds, copper The amount of adhesion was 20 g / dm2.
The roughened plated surface of the copper foil sample is laminated on each adhesive surface of a polyimide film with double-sided adhesive (product name "UPIREX VT" manufactured by Ube Kosan Co., Ltd., thickness 25 μm), and 300 by heating press (4MPa). After heat treatment at ° C. for 30 minutes, they were bonded together to obtain a CCL sample in which copper foils were laminated on both sides of the polyimide film.
5.スキューネスRsk
過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に、上記CCLを420秒浸漬してソフトエッチングを行った。ソフトエッチング後の銅箔表面のIS B 0601−2001に基づくスキューネスRskを、圧延平行方向および圧延直角方向に、それぞれ測定場所を変えて16回(合計32回)測定し、各回の測定値の絶対値を平均した値を求めた。
5. Skunes Rsk
The CCL was immersed in an aqueous solution (liquid temperature 25 ° C.) having a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L for 420 seconds for soft etching. The skewness Rsk based on IS B 0601-2001 of the copper foil surface after soft etching was measured 16 times (32 times in total) at different measurement locations in the rolling parallel direction and the rolling perpendicular direction, respectively, and the absolute value of each measurement value was measured. The value obtained by averaging the values was calculated.
6.エッチング性
上記CCLサンプルの銅箔部分にL/S(ライン/スペース)=35/35μm、35/35μm、25/25μm、 20/20μm、および10/10μmの短冊状の回路を形成した。比較として、市販の圧延銅箔(タフピッチ銅箔、17μm厚み)と同様に回路を形成した。そして、エッチングファクタ(回路の(エッチング深さ/上下の平均エッチング幅)で表される比)、及び回路の直線性をマイクロスコープで目視判定し、以下の基準で評価した。評価が○であれば良い。
○:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が良好
△:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が同等
×:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が劣る
6. Etching property A strip-shaped circuit of L / S (line / space) = 35/35 μm, 35/35 μm, 25/25 μm, 20/20 μm, and 10/10 μm was formed on the copper foil portion of the above CCL sample. For comparison, a circuit was formed in the same manner as a commercially available rolled copper foil (tough pitch copper foil, 17 μm thickness). Then, the etching factor (ratio expressed by (etching depth / average etching width above and below) of the circuit) and the linearity of the circuit were visually judged with a microscope and evaluated according to the following criteria. It is good if the evaluation is ○.
◯: Good etching factor and circuit linearity compared to commercially available rolled copper foil Δ: Equivalent etching factor and circuit linearity compared to commercially available rolled copper foil ×: Etching factor compared to commercially available rolled copper foil And the linearity of the circuit is inferior
7.高周波伝送特性
上記したCCLの片面の銅箔部分に、インピーダンス50Ω、長さ100mmのマイクロストリップラインをエッチング形成し、実施例とした。なお、CCLの反対側の銅箔はエッチングせず、GNDとなる。
比較例として、市販の圧延銅箔(タフピッチ銅箔、17μm厚み)から同様にCCLを作製し、CCLの片側の銅箔部分に上記マイクロストリップラインを形成した。
そして、ネットワークアナライザを用いて、マイクロストリップラインのSパラメータ(Scattering Parameter)であるS21を60GHzで測定した。S21は、ポート1に入射した信号Aと、ポート2へ伝送した信号Bを用いて、以下の(C)式で示される。
7. High-frequency transmission characteristics A microstrip line with an impedance of 50 Ω and a length of 100 mm was formed by etching on the copper foil portion on one side of the CCL described above, and used as an example. The copper foil on the opposite side of the CCL is not etched and becomes GND.
As a comparative example, a CCL was similarly prepared from a commercially available rolled copper foil (tough pitch copper foil, 17 μm thickness), and the microstrip line was formed on a copper foil portion on one side of the CCL.
Then, using a network analyzer, S21, which is the S parameter (Scattering Parameter) of the microstrip line, was measured at 60 GHz. S21 is represented by the following equation (C) using the signal A incident on the port 1 and the signal B transmitted to the port 2.
○:{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}≧5dB/mm以上
△:5dB/mm>{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}>-5dB/mm
×:-5dB/mm≧{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}
◯: {(Absolute value of S21 of commercially available rolled copper foil) − (Absolute value of S21 of the example)} ≧ 5 dB / mm or more Δ: 5 dB / mm > {(Absolute value of S21 of commercially available rolled copper foil) -(Absolute value of S21 in the example)}> -5dB / mm
×: -5 dB / mm ≧ {(absolute value of S21 of commercially available rolled copper foil)-(absolute value of S21 in Examples)}
得られた結果を表1に示す。 The results obtained are shown in Table 1.
表1から明らかなように、銅箔の平均結晶粒径が0.6〜4.3μm、かつ引張強度が230〜287Mpa、スキューネスRskの絶対値が0.05以下である各実施例の場合、ソフトエッチング性を含むエッチング性に優れ、高周波伝送特性にも優れていた。 As is clear from Table 1, in the case of each example in which the average crystal grain size of the copper foil is 0.6 to 4.3 μm, the tensile strength is 230 to 287 Mpa, and the absolute value of skewness Rsk is 0.05 or less, soft etching property is included. It had excellent etching properties and high-frequency transmission characteristics.
一方、Agを含有するが添加元素を含まない比較例1の場合、及び添加元素の合計含有量が下限値未満である比較例6の場合、銅箔の平均結晶粒径が4.3μmを大幅に超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。 On the other hand, in the case of Comparative Example 1 containing Ag but not containing the additive element, and in the case of Comparative Example 6 in which the total content of the additive elements is less than the lower limit, the average crystal grain size of the copper foil is significantly 4.3 μm. It became coarser than that, the tensile strength became less than 230 MPa, and the absolute value of skewness Rsk became larger than 0.05. As a result, the etching property including the soft etching property was inferior, and the high frequency transmission characteristic was also inferior.
最終冷間圧延での加工度ηが7.51未満である比較例3,4,7の場合、銅箔の平均結晶粒径が4.3μmを超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
また、最終冷間圧延での加工度ηが7.51未満であるが、3.5以上である比較例4の場合、スキューネスRskが0.05より大きく、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
但し、比較例4の場合、銅箔の平均結晶粒径は4.3μm以下であり、引張強度も230MPa以上となった。この理由は以下のように考えられる。つまり、ηが3.5未満の比較例3,7の場合、最終冷間圧延加工時のひずみの蓄積が小さく、再結晶粒の核が少なくなるため、再結晶粒が粗大になった。一方、ηが3.5以上である比較例4の場合、最終冷間圧延加工時に適度にひずみが蓄積され、再結晶粒が微細になったものの、ひずみが局所的に存在するためRskが大きくなった。そして、ηが7.51以上になると、蓄積されるひずみ量がさらに多くなり、ひずみが均一に存在するため、Rskが小さくなると考えられる。
In the case of Comparative Examples 3, 4 and 7 in which the workability η in the final cold rolling was less than 7.51, the average crystal grain size of the copper foil was coarsened by more than 4.3 μm, the tensile strength was less than 230 MPa, and the skewness Rsk The absolute value was greater than 0.05. As a result, the etching property including the soft etching property was inferior, and the high frequency transmission characteristic was also inferior.
Further, in the case of Comparative Example 4 in which the workability η in the final cold rolling is less than 7.51 but is 3.5 or more, the skewness Rsk is larger than 0.05, the etching property including soft etching property is inferior, and the high frequency transmission characteristic is also improved. inferior.
However, in the case of Comparative Example 4, the average crystal grain size of the copper foil was 4.3 μm or less, and the tensile strength was 230 MPa or more. The reason for this is considered as follows. That is, in the cases of Comparative Examples 3 and 7 in which η was less than 3.5, the accumulation of strain during the final cold rolling process was small, and the number of recrystallized grains was reduced, so that the recrystallized grains became coarse. On the other hand, in the case of Comparative Example 4 in which η was 3.5 or more, strain was appropriately accumulated during the final cold rolling process, and the recrystallized grains became fine, but the strain was locally present and the Rsk became large. .. When η is 7.51 or more, the amount of accumulated strain is further increased, and the strain is uniformly present, so that Rsk is considered to be small.
また、最終冷間圧延での加工度ηが8.00より大きい比較例5の場合も、銅箔の平均結晶粒径が4.3μmを超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
添加元素の合計含有量が上限値を超えた比較例2の場合、導電率が劣った。
Also, in the case of Comparative Example 5 in which the workability η in the final cold rolling is larger than 8.00, the average crystal grain size of the copper foil is coarsened by more than 4.3 μm, the tensile strength is less than 230 MPa, and the absolute value of skewness Rsk. Was greater than 0.05. As a result, the etching property including the soft etching property was inferior, and the high frequency transmission characteristic was also inferior.
In Comparative Example 2 in which the total content of the added elements exceeded the upper limit, the conductivity was inferior.
Claims (6)
Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなり、
平均結晶粒径が0.6〜4.3μm、かつMD方向の引張強度が230〜287MPaであり、
過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒浸漬した後の表面のJIS B 0601−2001に基づくスキューネスRskを、MD方向およびCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値が0.05以下であるフレキシブルプリント基板用銅箔。 For tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper specified in JIS-H3100 (C1011)
It contains 0.001 to 0.05% by mass of Ag and 0.003 to 0.825% by mass in total of one or more additive elements selected from the group of P, Ti, Sn, Ni, Be, Zn, In and Mg.
The average crystal grain size is 0.6 to 4.3 μm, and the tensile strength in the MD direction is 230 to 287 MPa.
The skewness Rsk based on JIS B 0601-2001 on the surface after being immersed in an aqueous solution (liquid temperature 25 ° C.) having a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L for 420 seconds was applied in the MD direction and the CD direction, respectively. A copper foil for a flexible printed substrate, which is measured 16 times and the average value of the absolute values measured each time is 0.05 or less.
300℃で30分間の熱処理後の前記平均結晶粒径が0.6〜4.3μm、前記引張強度が230〜287MPaであり、かつ該熱処理後の前記スキューネスRskが0.05以下である請求項1に記載のフレキシブルプリント基板用銅箔。 The copper foil is a rolled copper foil.
The flexible according to claim 1, wherein the average crystal grain size after heat treatment at 300 ° C. for 30 minutes is 0.6 to 4.3 μm, the tensile strength is 230 to 287 MPa, and the skewness Rsk after the heat treatment is 0.05 or less. Copper foil for printed circuit boards.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063235A JP6781562B2 (en) | 2016-03-28 | 2016-03-28 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063235A JP6781562B2 (en) | 2016-03-28 | 2016-03-28 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019118177A Division JP2019194360A (en) | 2019-06-26 | 2019-06-26 | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017179391A JP2017179391A (en) | 2017-10-05 |
JP6781562B2 true JP6781562B2 (en) | 2020-11-04 |
Family
ID=60005512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063235A Active JP6781562B2 (en) | 2016-03-28 | 2016-03-28 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6781562B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019194360A (en) * | 2019-06-26 | 2019-11-07 | Jx金属株式会社 | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6648088B2 (en) * | 2017-10-19 | 2020-02-14 | Jx金属株式会社 | Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery |
JP6774457B2 (en) * | 2018-05-16 | 2020-10-21 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
JP7164752B1 (en) * | 2022-07-14 | 2022-11-01 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
JP7194857B1 (en) | 2022-07-14 | 2022-12-22 | Jx金属株式会社 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5752536B2 (en) * | 2011-08-23 | 2015-07-22 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP6377329B2 (en) * | 2012-09-11 | 2018-08-22 | Jx金属株式会社 | Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board |
JP6497881B2 (en) * | 2013-10-04 | 2019-04-10 | Jx金属株式会社 | Rolled copper foil, copper-clad laminate using the same, printed wiring board, electronic equipment, circuit connecting member manufacturing method, and circuit connecting member |
JP6104200B2 (en) * | 2014-03-13 | 2017-03-29 | Jx金属株式会社 | Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device |
-
2016
- 2016-03-28 JP JP2016063235A patent/JP6781562B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019194360A (en) * | 2019-06-26 | 2019-11-07 | Jx金属株式会社 | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2017179391A (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6781562B2 (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices | |
KR101935128B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
KR101935129B1 (en) | Copper foil for flexible printed wiring board, and copper-clad laminate, flexible printed wiring board and electronic device using the same | |
KR102470725B1 (en) | Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil | |
TWI637071B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards, and electronic devices | |
JP2007107038A (en) | Copper or copper alloy foil for circuit | |
JP6294257B2 (en) | Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
KR102098479B1 (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
CN107046763B (en) | Copper foil for flexible printed board and copper-clad laminate using same | |
JP5933943B2 (en) | Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment | |
CN107046768B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP2019194360A (en) | Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same | |
TWI718025B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same | |
KR102136096B1 (en) | Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment | |
KR20190015108A (en) | Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device | |
KR20170037750A (en) | Surface-treated Copper Foil and Method of manufacturing of the same | |
JP6030325B2 (en) | Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180831 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190626 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20190626 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190703 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20190708 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20190830 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20190910 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200310 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20200907 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20201012 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20201012 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201016 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6781562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |