JP2019194360A - Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same - Google Patents

Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same Download PDF

Info

Publication number
JP2019194360A
JP2019194360A JP2019118177A JP2019118177A JP2019194360A JP 2019194360 A JP2019194360 A JP 2019194360A JP 2019118177 A JP2019118177 A JP 2019118177A JP 2019118177 A JP2019118177 A JP 2019118177A JP 2019194360 A JP2019194360 A JP 2019194360A
Authority
JP
Japan
Prior art keywords
copper foil
flexible printed
copper
jis
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019118177A
Other languages
Japanese (ja)
Inventor
慎介 坂東
Shinsuke Bando
慎介 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019118177A priority Critical patent/JP2019194360A/en
Publication of JP2019194360A publication Critical patent/JP2019194360A/en
Pending legal-status Critical Current

Links

Abstract

To provide a copper foil for flexible printed wiring board excellent in etching property.SOLUTION: There is provided a copper foil for flexible printed wiring board consisting of Ag of 0.001 to 0.05 mass% and one or more addition element selected from a group of P, Ti, Sn, Ni, Be, Zn, In and Mg of total 0.003 to 0.825 mass% based on a tough pitch copper specified in JIS-H3100 (C1100) and oxygen free copper of JIS-H3100 (C1011) and having average crystal particle diameter of 0.6 to 4.3 μm, tensile strength in a MD direction of 230 to 287 MPa and a value by measuring skewness Rsk based on JIS B 0601-2001 of a surface in the MD direction and a CD direction 16 times respectively after impregnating the copper foil in a solution with sodium persulfate concentration of 100 g/L and hydrogen peroxide concentration of 35 g/L (liquid temperature of 25°C) for 420 sec. and averaging absolute values of each time measurement values of 0.05 or less.SELECTED DRAWING: None

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。   The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、ソフトエッチングを行う場合もある。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. The copper foil surface is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay before the coverlay is laminated. In addition, soft etching may be performed in order to improve the flexibility by reducing the thickness of the copper foil.

FPCに用いられる銅箔のうち、回路をエッチング形成するためのレジストを形成する面には、レジストとの密着性を付与するためにソフトエッチングが行われる。ソフトエッチングは、銅箔表面の酸化膜を除去するとともに表面を平坦化する表面処理である。ところが、ソフトエッチングの際に、圧延銅箔の表面に凹部が生じる、dishdownと呼ばれる不具合が発生する。このdishdownは、圧延銅箔の厚み方向にエッチング速度が異なることに起因して表面が凹凸になり、レジスト密着性を低下させるものである。そして、エッチング速度の相違は、圧延銅箔の表面の結晶方位によってエッチング速度が相違することによって生じるとされている。
そこで、他の結晶面と比較してエッチング速度が遅い(200)面の割合を少なくし、ソフトエッチング性を改善した圧延銅箔が開発されている(特許文献1)。
Of the copper foil used for FPC, soft etching is performed on a surface on which a resist for etching a circuit is formed in order to provide adhesion to the resist. Soft etching is a surface treatment that removes the oxide film on the surface of the copper foil and flattens the surface. However, during soft etching, a defect called dishdown occurs in which a recess is formed on the surface of the rolled copper foil. This dishdown is caused by the etching rate being different in the thickness direction of the rolled copper foil, resulting in irregularities on the surface and lowering the resist adhesion. The difference in etching rate is said to be caused by the difference in etching rate depending on the crystal orientation of the surface of the rolled copper foil.
Then, the rolled copper foil which reduced the ratio of the (200) plane whose etching rate is slow compared with another crystal plane, and improved soft etching property is developed (patent document 1).

特開2014-77182号公報JP 2014-77182 A

ところで、電子機器の小型、薄型、高性能化に伴い、これら機器の内部にFPCを高密度で実装することが要求されているが、高密度実装を行うためには、回路をより微細化すると共に、小型化した機器の内部に厚みの小さいFPCを折り曲げて収容することが必要となる。そして、回路の微細化を図るためには、回路をエッチング形成するレジストと銅箔との密着性がより一層要求される。つまり、銅箔とレジストとの密着性が低いと、銅箔とフォトレジストとの間にエッチング液が侵入し、微細な配線を形成することが困難となる。   By the way, along with the downsizing, thinning, and high performance of electronic devices, it is required to mount FPCs in these devices at a high density. To achieve high density mounting, the circuit is made finer. At the same time, it is necessary to fold and store the FPC having a small thickness inside the downsized device. And in order to miniaturize a circuit, the adhesiveness of the resist and copper foil which etch-form a circuit is requested | required further. That is, if the adhesion between the copper foil and the resist is low, the etchant enters between the copper foil and the photoresist, and it becomes difficult to form fine wiring.

しかしながら、従来の銅箔の場合、ソフトエッチング後の表面の平坦化が十分とはいえず、回路の微細化が困難であった。
又、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅も20〜30μm程度に微細化しており、エッチングにより回路を形成する時にエッチングファクタや回路直線性が劣化し易くなるという問題があり、この解決も要求されている。
本発明は上記の課題を解決するためになされたものであり、エッチング性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in the case of the conventional copper foil, it cannot be said that the surface after soft etching is sufficiently flattened, and it is difficult to miniaturize the circuit.
In addition, as electronic devices become smaller, thinner, and higher in performance, the circuit width and space width of FPC are also reduced to about 20-30 μm, and etching factors and circuit linearity are likely to deteriorate when forming circuits by etching. There is a problem that this is solved, and this solution is also required.
The present invention has been made to solve the above-mentioned problems, and aims to provide a copper foil for a flexible printed circuit board excellent in etching property, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.

本発明者らは種々検討した結果、銅箔の結晶粒を微細化し、かつエッチング後の銅箔のスキューネスRskを規定することで、エッチング性を向上できることを見出した。但し、結晶粒を微細化し過ぎると強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。従って、結晶粒径及び引張強度の範囲を規定した。
又、結晶粒径を、近年のFPCの20〜30μm程度の回路幅のおよそ1/10程度に微細化することにより、エッチングにより回路を形成する時のエッチングファクタや回路直線性をも改善することができる。
As a result of various studies, the present inventors have found that the etching property can be improved by refining the crystal grains of the copper foil and defining the skewness Rsk of the copper foil after etching. However, if the crystal grains are made too fine, the strength becomes too high and the bending rigidity increases, and the spring back becomes large, which is not suitable for flexible printed circuit board applications. Therefore, the range of crystal grain size and tensile strength was defined.
Also, by reducing the crystal grain size to about 1/10 of the circuit width of about 20-30 μm of recent FPC, the etching factor and circuit linearity when forming a circuit by etching are also improved. Can do.

すなわち、本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅に対し、Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなり、平均結晶粒径が0.6〜4.3μm、かつMD方向の引張強度が230〜287MPaであり、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒浸漬した後の表面のJIS B 0601−2001に基づくスキューネスRskを、MD方向およびCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値が0.05以下である。   That is, the copper foil for a flexible printed circuit board of the present invention is based on JIS-H3100 (C1100) tough pitch copper or JIS-H3100 (C1011) oxygen-free copper. , Sn, Ni, Be, Zn, In and Mg are contained in a total amount of one or more additive elements selected from the group of 0.003 to 0.825 mass%, the average crystal grain size is 0.6 to 4.3 μm, and MD direction Skewness Rsk based on JIS B 0601-2001 on the surface after immersion for 420 seconds in an aqueous solution (liquid temperature 25 ° C.) having a tensile strength of 230 to 287 MPa and a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L Is measured 16 times in the MD direction and CD direction, respectively, and the average value of the measured values of each time is 0.05 or less.

前記銅箔が圧延銅箔であり、300℃で30分間の熱処理後の前記平均結晶粒径が0.6〜4.3μm、前記引張強度が230〜287MPaであり、かつ該熱処理後の前記スキューネスRskが0.05以下であることが好ましい。   The copper foil is a rolled copper foil, the average grain size after heat treatment at 300 ° C. for 30 minutes is 0.6 to 4.3 μm, the tensile strength is 230 to 287 MPa, and the skewness Rsk after the heat treatment is 0.05. The following is preferable.

本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。   The copper clad laminate of the present invention is formed by laminating the flexible printed circuit board copper foil and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体を用い、前記銅箔に回路を形成してなる。
前記回路のL/Sが35/35〜10/10(μm/μm)であることが好ましい。なお、回路のL/S(ラインアンドスペース)とは、回路を構成する配線の幅(L:ライン)と、隣り合う配線の間隔(S:スペース)の比である。Lは回路中のLの最小値を採用し、Sは回路中のSの最小値を採用する。
なお、L及びSは10〜35μmであればよく、両者が同一の値である必要はない。例えば、L/S=20.5/35、35/17などの値をとることもできる。
The flexible printed board of the present invention is formed by using the copper-clad laminate and forming a circuit on the copper foil.
The L / S of the circuit is preferably 35/35 to 10/10 (μm / μm). Note that the L / S (line and space) of a circuit is the ratio of the width (L: line) of the wiring constituting the circuit and the interval (S: space) between adjacent wirings. L adopts the minimum value of L in the circuit, and S adopts the minimum value of S in the circuit.
In addition, L and S should just be 10-35 micrometers, and both do not need to be the same value. For example, values such as L / S = 20.5 / 35 and 35/17 can be taken.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、エッチング性に優れたフレキシブルプリント基板用銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in etching property is obtained.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅に対し、Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなる。
上述のように、本発明においては銅箔の再結晶後の結晶粒を微細化することにより、強度を高めて、かつエッチング性を向上させている。
但し、上記した純銅系の組成の場合、結晶粒の微細化が困難であるため、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないことで、冷間圧延により加工ひずみを大量に導入して動的再結晶を生じさせて結晶粒の微細化を実現できる。
<Composition>
The copper foil according to the present invention is based on JIS-H3100 (C1100) tough pitch copper or JIS-H3100 (C1011) oxygen-free copper. Ag is 0.001 to 0.05 mass%, and P, Ti, Sn, Ni, One or more additive elements selected from the group of Be, Zn, In and Mg are contained in a total amount of 0.003 to 0.825 mass%.
As described above, in the present invention, by refining crystal grains after recrystallization of the copper foil, the strength is enhanced and the etching property is improved.
However, in the case of the pure copper-based composition described above, since it is difficult to refine crystal grains, recrystallization annealing is performed only once in the initial stage of cold rolling, and thereafter recrystallization annealing is not performed. A large amount of processing strain can be introduced by hot rolling to cause dynamic recrystallization, thereby achieving refinement of crystal grains.

又、冷間圧延における加工ひずみを大きくするには、最終冷間圧延(焼鈍と圧延を繰り返す工程全体の中で、最後の焼鈍後に行う仕上げ圧延)での加工度として、η=ln(最終冷間圧延前の板厚/最終冷間圧延後の板厚)=7.51〜8.00とすると好ましい。
ηが7.51未満の場合、加工ひずみが均一に蓄積されない、つまり局所的にひずみが蓄積されるため、ひずみの蓄積された部位と他の部位でエッチング速度が異なる。このため、ソフトエッチング後のRskの絶対値が大きくなり、エッチング性が劣化する。ηが8.00より大きい場合、ひずみが過剰に蓄積されて結晶粒成長の駆動力となり、結晶粒が粗大になる傾向にある。η=7.75〜8.00とするとさらに好ましい。
In order to increase the work strain in cold rolling, the degree of work in final cold rolling (finish rolling performed after the last annealing in the entire process of annealing and rolling) is η = ln (final cold rolling). (Thickness before cold rolling / thickness after final cold rolling) = 7.51 to 8.00.
When η is less than 7.51, the processing strain is not accumulated uniformly, that is, the strain is accumulated locally, so that the etching rate is different between the accumulated portion and other portions. For this reason, the absolute value of Rsk after soft etching increases, and the etching property deteriorates. When η is greater than 8.00, excessive strain is accumulated to serve as a driving force for crystal grain growth, and the crystal grains tend to be coarse. It is more preferable that η = 7.75 to 8.00.

又、結晶粒を微細化させる添加元素として、Ag及び上記添加元素を含有すると、冷間圧延時に転位密度を増加させ、結晶粒の微細化を確実に実現できる。
このうち、Agは、再結晶焼鈍条件に対する再結晶粒径の感受性を低くさせる。つまり、後述するように、CCL積層時に樹脂を硬化させるための熱処理を行うが、実際には熱処理の温度、時間が変動し、昇温速度も製造装置や製造者等によって異なる。このため、熱処理によっては銅箔の再結晶粒の粒径が大きくなるおそれがある。そこで、Agを含有させることで、CCL積層時の熱処条件が変化しても結晶粒を安定して微細化できる。
Further, when Ag and the above additive elements are contained as additive elements for refining crystal grains, the dislocation density is increased during cold rolling, and the crystal grains can be reliably refined.
Among these, Ag makes the recrystallized grain size less sensitive to recrystallization annealing conditions. That is, as will be described later, heat treatment for curing the resin is performed at the time of CCL lamination. Actually, the temperature and time of the heat treatment vary, and the rate of temperature rise varies depending on the manufacturing apparatus, manufacturer, and the like. For this reason, there exists a possibility that the particle size of the recrystallized grain of copper foil may become large depending on heat processing. Thus, by containing Ag, the crystal grains can be stably refined even if the heat treatment conditions during CCL lamination change.

Agの含有量が0.001質量%未満であると結晶粒の微細化が困難になる。また、Agの含有量が0.05質量%を超えると再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
上記添加元素の合計含有量が0.003質量%未満であると結晶粒の微細化が困難になり、0.825質量%を超えると導電率が低下することがある。又、再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
If the Ag content is less than 0.001% by mass, it is difficult to refine crystal grains. Further, if the Ag content exceeds 0.05% by mass, the recrystallization temperature rises and does not recrystallize when laminated with the resin, and the strength becomes too high and the bending properties of the copper foil and CCL may deteriorate. .
When the total content of the additive elements is less than 0.003 mass%, it is difficult to refine the crystal grains, and when it exceeds 0.825 mass%, the conductivity may be lowered. In addition, when the recrystallization temperature rises and is laminated with the resin, it does not recrystallize, and the strength becomes too high, and the bendability of the copper foil and CCL may deteriorate.

<平均結晶粒径>
銅箔の平均結晶粒径が0.6〜4.3μmである。平均結晶粒径が0.6μm未満であると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。平均結晶粒径が4.3μmを超えると、結晶粒の微細化が実現されず、強度を高めて折り曲げ性を向上させることが困難になると共に、ソフトエッチング性、エッチングファクタや回路直線性が劣化してエッチング性が低下する。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μm×100μmの視野で3視野以上を観察して行う。箔表面の観察は、SIM(Scanning Ion Microscope)またはSEM(Scanning Electron Microscope)を用い、JIS H 0501に基づいて平均結晶粒径を求めることができる。
ただし、双晶は、別々の結晶粒とみなして測定する。
<Average crystal grain size>
The average crystal grain size of the copper foil is 0.6 to 4.3 μm. If the average crystal grain size is less than 0.6 μm, the strength becomes too high, the bending rigidity becomes large, the spring back becomes large, and it is not suitable for flexible printed circuit board applications. If the average crystal grain size exceeds 4.3 μm, crystal grain refinement will not be realized, and it will be difficult to increase strength and improve bendability, and soft etchability, etching factor and circuit linearity will deteriorate. As a result, the etching property decreases.
The average crystal grain size is measured by observing at least 3 fields of view on the surface of the foil in a 100 μm × 100 μm field in order to avoid errors. For observation of the foil surface, the average crystal grain size can be determined based on JIS H 0501 using a SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope).
However, twins are measured as being considered as separate crystal grains.

<引張強度(TS)>
銅箔の引張強度が230〜287MPaである。上述のように、結晶粒を微細化することにより引張強度が向上する。引張強度が230MPa未満であると、強度を高めることが困難になる。引張強度が287MPaを超えると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。
引張強度は、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向(又はMD方向)と平行な方向に引張試験した。
<Tensile strength (TS)>
The tensile strength of the copper foil is 230 to 287 MPa. As described above, the tensile strength is improved by refining the crystal grains. If the tensile strength is less than 230 MPa, it is difficult to increase the strength. If the tensile strength exceeds 287 MPa, the strength becomes too high and the bending rigidity becomes large, and the spring back becomes large, which is not suitable for flexible printed circuit board applications.
Tensile strength is determined by a tensile test according to IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), tensile speed of 50.8 mm / min, gauge length of 50 mm, and the rolling direction of copper foil (or MD direction) ) In the direction parallel to.

<スキューネスRsk>
ソフトエッチング性を評価する指標として、エッチング後の銅箔表面のJIS B 0601−2001に基づくスキューネスRskを規定する。エッチング条件としては、銅箔とレジストとの密着性を付与するためのソフトエッチングを模擬し、過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒銅箔を浸漬するものとする。
<Skness Rsk>
As an index for evaluating the soft etching property, the skewness Rsk based on JIS B 0601-2001 on the surface of the copper foil after etching is defined. Etching conditions are simulated for soft etching to provide adhesion between copper foil and resist, and are placed in an aqueous solution with a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L (liquid temperature 25 ° C) for 420 seconds. The copper foil shall be immersed.

スキューネスRskは、二乗平均平方根高さRqの三乗によって無次元化した基準長さにおけるZ(x)三乗平均を表したものである。
二乗平均平方根高さRqは、JIS B 0601(2001)に準拠した非接触式粗さ計による表面粗さ測定における、凹凸の程度を示す指標であり、下記(A)式で表され、表面粗さのZ軸方向の凹凸(山の)高さであって、基準長さlrにおける山の高さZ(x)の二乗平均平方根である。
基準長さlrにおける山の高さの二乗平均平方根高さRq:

Figure 2019194360
スキューネスRskは、二乗平均平方根高さRqを用いて、以下の(B)式で示される。
Figure 2019194360
The skewness Rsk represents the Z (x) cube average at the reference length made dimensionless by the cube of the root mean square height Rq.
The root mean square height Rq is an index indicating the degree of unevenness in surface roughness measurement with a non-contact type roughness meter in accordance with JIS B 0601 (2001), and is expressed by the following equation (A). The height of the unevenness (mountain) in the Z-axis direction is the root mean square of the height Z (x) of the mountain at the reference length lr.
The root mean square height Rq of the height of the mountain at the reference length lr:
Figure 2019194360
The skewness Rsk is expressed by the following equation (B) using the root mean square height Rq.
Figure 2019194360

銅箔表面のスキューネスRskは、銅箔表面の凹凸面の平均面を中心としたときの、銅箔表面の凹凸の対称性を示す指標である。従って、Rskの絶対値が0に近いほど、凹凸の山と谷が対称であり、ピール強度(IPC−TM−650に準拠したピール強度(接着強度))が高くなって樹脂と良好に接着するため、ソフトエッチング性にすぐれる。また、また、Rsk<0であれば高さ分布が平均面に対して上側に偏っており、Rsk>0であれば高さ分布が平均面に対して下側に偏っているといえる。上側への偏りが大きいときは銅箔表面が凸形態となっているため銅箔内部での乱反射が大きくなり、レジストを銅箔に貼り付けた後に露光してエッチング除去した場合、回路直線性やエッチングファクタの精度が悪化する。下側への偏りが大きいとき、銅箔表面が凹形態となっており、光源から光を照射すると銅箔表面での乱反射が大きくなり、レジストを銅箔に貼り付けた後に露光してエッチング除去した場合、回路直線性やエッチングファクタの精度が悪化する。また、Rskの絶対値が0に近いほど、凹凸の山と谷が対称であるため、電磁力線の乱れが高さ方向で生じないため高周波伝送特性が良い。   The skewness Rsk on the surface of the copper foil is an index indicating the symmetry of the unevenness on the surface of the copper foil when the average surface of the uneven surface on the surface of the copper foil is the center. Accordingly, the closer the absolute value of Rsk is to 0, the more symmetrical the ridges and valleys are, and the higher the peel strength (peel strength (adhesion strength) according to IPC-TM-650), the better the adhesion to the resin. Therefore, it has excellent soft etching properties. Further, if Rsk <0, the height distribution is biased upward with respect to the average plane, and if Rsk> 0, the height distribution is biased downward with respect to the average plane. When the bias to the upper side is large, the copper foil surface has a convex shape, so the irregular reflection inside the copper foil increases, and if the resist is attached to the copper foil and then exposed and etched away, circuit linearity and The accuracy of the etching factor is deteriorated. When the bias to the lower side is large, the copper foil surface has a concave shape, and when light is irradiated from the light source, irregular reflection on the copper foil surface increases, and after applying the resist to the copper foil, it is exposed to light and etched away In this case, the accuracy of the circuit linearity and the etching factor deteriorates. Further, the closer the absolute value of Rsk is to 0, the more symmetrical the peaks and valleys of the unevenness are, so that the disturbance of electromagnetic field lines does not occur in the height direction, and the high frequency transmission characteristics are better.

このようなことから、本発明の銅箔は、スキューネスRskを、MD方向及びCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値をRskとして採用する。
MD(Machine1 Direction)方向は、圧延銅箔の場合は圧延平行方向であり、電解銅箔では製造時のストリップの流れ方向である。CD(Cross Machine Direction)方向は、圧延銅箔の場合は圧延直角方向であり、電解銅箔では流れ方向に垂直な方向である。
実際の銅箔は、MD方向及びCD方向に切り出されてCCLに使用されるので、MD方向及びCD方向のRskを測定する。
For this reason, the copper foil of the present invention measures the skewness Rsk 16 times in the MD direction and the CD direction, respectively, and adopts the value obtained by averaging the absolute values of the measured values for each time as Rsk.
The MD (Machine 1 Direction) direction is a rolling parallel direction in the case of a rolled copper foil, and is a flow direction of a strip during production in the case of an electrolytic copper foil. The CD (Cross Machine Direction) direction is a direction perpendicular to rolling in the case of rolled copper foil, and is a direction perpendicular to the flow direction in electrolytic copper foil.
Since the actual copper foil is cut out in the MD direction and the CD direction and used for CCL, the Rsk in the MD direction and the CD direction is measured.

銅箔表面のRskの絶対値を0.05以下に規定することにより、ピール強度が高くなって樹脂との密着性に優れ、かつレジストで銅箔をエッチング除去した後の回路の直線性やエッチングファクタの精度が高くなるため、ソフトエッチング性が向上する。
Rskの絶対値が0.050を超えると樹脂との密着性は向上するが、表面の凹凸が顕著になってレジストで銅箔をエッチング除去した後の回路の直線性の精度が低下し、ソフトエッチング性が劣る。
Rskの絶対値の下限は特に限定されないが、通常、0.001である。Rskの絶対値を0.001未満とすることは工業的に困難である。
By defining the absolute value of Rsk on the copper foil surface to be 0.05 or less, the peel strength is high and the adhesion to the resin is excellent, and the linearity and etching factor of the circuit after the copper foil is removed by etching with the resist Since the accuracy is increased, the soft etching property is improved.
When the absolute value of Rsk exceeds 0.050, the adhesion to the resin is improved, but the surface irregularities become prominent and the accuracy of the linearity of the circuit after etching away the copper foil with the resist decreases, and the soft etching property Is inferior.
The lower limit of the absolute value of Rsk is not particularly limited, but is usually 0.001. It is industrially difficult to make the absolute value of Rsk less than 0.001.

<300℃で30分間の熱処理>
銅箔を300℃で30分間の熱処理後の平均結晶粒径が0.6〜4.3μm、MD方向の引張強度が230〜287MPaかつ該熱処理後のスキューネスRskが0.05以下であってもよい。
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
又、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行う。つまり、実際のソフトエッチングは、この熱処理を行った銅箔に対して行われる。
<Heat treatment at 300 ° C for 30 minutes>
The copper foil may have an average crystal grain size of 0.6 to 4.3 μm after heat treatment at 300 ° C. for 30 minutes, a tensile strength in the MD direction of 230 to 287 MPa, and a skewness Rsk after the heat treatment of 0.05 or less.
The copper foil which concerns on this invention is used for a flexible printed circuit board, In that case, since CCL which laminated | stacked copper foil and resin performs the heat processing for hardening resin at 200-400 degreeC, a crystal grain is formed by recrystallization. There is a possibility of coarsening.
Moreover, CCL which laminated | stacked copper foil and resin performs the heat processing for hardening resin at 200-400 degreeC. That is, the actual soft etching is performed on the copper foil subjected to the heat treatment.

従って、樹脂と積層する前後で、銅箔の平均結晶粒径及び引張強度が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅箔を規定している。+
一方、本願の請求項4に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。
なお、熱処理の雰囲気は特に限定されず、大気下でもよく、Ar、窒素等の不活性ガス雰囲気でもよい。
Therefore, the average crystal grain size and tensile strength of the copper foil change before and after lamination with the resin. Then, the copper foil for flexible printed circuit boards concerning Claim 1 of this application has prescribed | regulated the copper foil of the state which received the hardening heat processing of resin after it became a copper clad laminated body laminated | stacked with resin. +
On the other hand, the copper foil for flexible printed circuit boards according to claim 4 of the present application defines a state when the heat treatment is performed on the copper foil before being laminated with the resin. This heat treatment at 300 ° C. for 30 minutes simulates the temperature condition for curing and heat-treating the resin during CCL lamination.
The atmosphere for the heat treatment is not particularly limited, and may be in the air or an inert gas atmosphere such as Ar or nitrogen.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、上述の最終冷間圧延を行うことにより箔を製造することができる。   The copper foil of this invention can be manufactured as follows, for example. First, after adding the said additive to a copper ingot and melt | dissolving and casting, it hot-rolls, performs cold rolling and annealing, and can manufacture foil by performing the above-mentioned final cold rolling.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) a thermoplastic adhesive of the same type as the base film is used. By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) composed of two layers of the copper foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper foil of the present invention, a copper clad laminate (CCL) comprising three layers of a copper foil, a resin base material, and an adhesive layer therebetween is obtained. During the production of these CCLs, the copper foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.
When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。純度99.9%以上の電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延および冷間圧延を行い厚さ31〜51mmとした後、1回の焼鈍を行った後に表面を面削して、表1に示す加工度ηで最終冷間圧延をして最終厚さ17μmの銅箔サンプルを得た。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. Each element shown in Table 1 was added to electrolytic copper with a purity of 99.9% or more, and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. The ingot is homogenized and annealed at 900 ° C., hot rolled and cold rolled to a thickness of 31 to 51 mm, and then subjected to one annealing, and then the surface is chamfered. A final cold rolling was performed at a degree η to obtain a copper foil sample having a final thickness of 17 μm.

<A.銅箔サンプルの評価>
1.導電率
上記の各銅箔サンプルについて、大気下、300℃で30分間の熱処理(CCLの積層時に樹脂を硬化熱処理させる温度条件を模擬)を行った後、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が75%IACS以上であれば導電性が良好である。
2.粒径
上記熱処理後の各銅箔サンプル表面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、表面の100μm ×100μmとした。
<A. Evaluation of copper foil sample>
1. Conductivity Each of the copper foil samples described above was subjected to a heat treatment at 300 ° C. for 30 minutes in the atmosphere (simulating the temperature condition for curing the resin during CCL lamination), and then in accordance with JIS H 0505 by a four-terminal method. The electrical conductivity (% IACS) at 25 ° C. was measured.
If the conductivity is 75% IACS or more, the conductivity is good.
2. Particle Size The surface of each copper foil sample after the heat treatment was observed using a SEM (Scanning Electron Microscope), and the average particle size was determined based on JIS H 0501. However, the twins were measured as if they were separate crystal grains. The measurement area was 100 μm × 100 μm on the surface.

3.銅箔の引張強度
上記熱処理後の各銅箔サンプルについて、IPC-TM650に準拠した引張試験により上記条件で引張強度を測定した。
3. Tensile strength of copper foil About each copper foil sample after the said heat processing, the tensile strength was measured on the said conditions by the tensile test based on IPC-TM650.

<B.CCLの評価>
4.CCL(銅張積層板)の作製
最終冷間圧延後で上記熱処理を行わない銅箔サンプル(熱処理前の銅箔)の片面に銅粗化めっきを行った。銅粗化めっき浴としてCu:10-25g/L,硫酸:20-100g/Lの組成を用い、浴温20-40℃、電流密度30-70A/dm2で1-5秒電気めっきし、銅付着量を20g/dm2とした。
銅箔サンプルの粗化めっき面を、両面接着剤付きのポリイミドフィルム(宇部興産株式会社製の製品名「ユーピレックスVT」、厚み25μm)の各接着面にそれぞれ積層し、加熱プレス(4MPa)で300℃×30分の熱処理を加えて貼り合せ、ポリイミドフィルムの両面にそれぞれ銅箔が積層されたCCLサンプルを得た。
<B. Evaluation of CCL>
4). Preparation of CCL (copper-clad laminate) Copper roughening plating was performed on one side of a copper foil sample (copper foil before heat treatment) that was not subjected to the heat treatment after the final cold rolling. Using copper: 10-25g / L, sulfuric acid: 20-100g / L as the copper roughening plating bath, electroplating at a bath temperature of 20-40 ° C and a current density of 30-70A / dm2 for 1-5 seconds, copper The adhesion amount was 20 g / dm2.
The roughened plating surface of the copper foil sample was laminated on each adhesive surface of a polyimide film with a double-sided adhesive (product name “Upilex VT” manufactured by Ube Industries, Ltd., thickness 25 μm), and heated with a heating press (4 MPa). A CCL sample in which a copper foil was laminated on each side of the polyimide film was obtained by applying heat treatment at 30 ° C. for 30 minutes and bonding.

5.スキューネスRsk
過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に、上記CCLを420秒浸漬してソフトエッチングを行った。ソフトエッチング後の銅箔表面のIS B 0601−2001に基づくスキューネスRskを、圧延平行方向および圧延直角方向に、それぞれ測定場所を変えて16回(合計32回)測定し、各回の測定値の絶対値を平均した値を求めた。
5). Skness Rsk
Soft etching was performed by immersing the CCL in an aqueous solution having a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L (liquid temperature: 25 ° C.) for 420 seconds. The skewness Rsk based on IS B 0601-2001 on the copper foil surface after soft etching was measured 16 times (32 times in total) at different measurement locations in the rolling parallel direction and the perpendicular direction of rolling, and the absolute value of each measurement value was measured. The average value was obtained.

6.エッチング性
上記CCLサンプルの銅箔部分にL/S(ライン/スペース)=35/35μm、35/35μm、25/25μm、 20/20μm、および10/10μmの短冊状の回路を形成した。比較として、市販の圧延銅箔(タフピッチ銅箔、17μm厚み)と同様に回路を形成した。そして、エッチングファクタ(回路の(エッチング深さ/上下の平均エッチング幅)で表される比)、及び回路の直線性をマイクロスコープで目視判定し、以下の基準で評価した。評価が○であれば良い。
○:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が良好
△:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が同等
×:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が劣る
6). Etchability Strip-like circuits of L / S (line / space) = 35/35 μm, 35/35 μm, 25/25 μm, 20/20 μm, and 10/10 μm were formed on the copper foil portion of the CCL sample. For comparison, a circuit was formed in the same manner as a commercially available rolled copper foil (tough pitch copper foil, 17 μm thickness). Then, the etching factor (ratio represented by (etching depth / average upper and lower average etching width) of the circuit) and the linearity of the circuit were visually determined with a microscope and evaluated according to the following criteria. If evaluation is (circle), it is good.
○: Etching factor and circuit linearity are better than commercially available rolled copper foils △: Etching factor and circuit linearity are comparable to commercially available rolled copper foils ×: Etching factor compared to commercially available rolled copper foils And circuit linearity is poor

7.高周波伝送特性
上記したCCLの片面の銅箔部分に、インピーダンス50Ω、長さ100mmのマイクロストリップラインをエッチング形成し、実施例とした。なお、CCLの反対側の銅箔はエッチングせず、GNDとなる。
比較例として、市販の圧延銅箔(タフピッチ銅箔、17μm厚み)から同様にCCLを作製し、CCLの片側の銅箔部分に上記マイクロストリップラインを形成した。
そして、ネットワークアナライザを用いて、マイクロストリップラインのSパラメータ(Scattering Parameter)であるS21を60GHzで測定した。S21は、ポート1に入射した信号Aと、ポート2へ伝送した信号Bを用いて、以下の(C)式で示される。
7). High-frequency transmission characteristics A microstrip line having an impedance of 50Ω and a length of 100 mm was formed by etching on the copper foil portion on one side of the above-mentioned CCL. Note that the copper foil on the opposite side of the CCL is not etched and becomes GND.
As a comparative example, a CCL was similarly produced from a commercially available rolled copper foil (tough pitch copper foil, 17 μm thickness), and the microstrip line was formed on the copper foil portion on one side of the CCL.
Then, using a network analyzer, S21 which is an S parameter (Scattering Parameter) of the microstrip line was measured at 60 GHz. S21 is expressed by the following equation (C) using the signal A incident on the port 1 and the signal B transmitted to the port 2.

Figure 2019194360
S21の絶対値が小さいほど(S21は必ずマイナスになる)、伝送損失が小さく伝送特性に優れていることを示す。従って、以下の基準で回路の伝送特性(伝送損失)を評価した。評価が○であれば伝送特性が優れている。
○:{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}≧5dB/mm以上
△:5dB/mm>{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}>-5dB/mm
×:-5dB/mm≧{(市販の圧延銅箔のS21の絶対値)−(実施例のS21の絶対値)}
Figure 2019194360
The smaller the absolute value of S21 (S21 is always negative), the smaller the transmission loss and the better the transmission characteristics. Therefore, the transmission characteristics (transmission loss) of the circuit were evaluated according to the following criteria. If the evaluation is ○, the transmission characteristics are excellent.
○: {(Absolute value of S21 of commercially available rolled copper foil) − (Absolute value of S21 of Example)} ≧ 5 dB / mm or more Δ: 5 dB / mm> {(Absolute value of S21 of commercially available rolled copper foil) -(Absolute value of S21 in the example)}>-5 dB / mm
×: −5 dB / mm ≧ {(Absolute value of S21 of commercially available rolled copper foil) − (Absolute value of S21 of Example)}

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2019194360
Figure 2019194360

表1から明らかなように、銅箔の平均結晶粒径が0.6〜4.3μm、かつ引張強度が230〜287Mpa、スキューネスRskの絶対値が0.05以下である各実施例の場合、ソフトエッチング性を含むエッチング性に優れ、高周波伝送特性にも優れていた。   As is clear from Table 1, in the case of each example in which the average crystal grain size of the copper foil is 0.6 to 4.3 μm, the tensile strength is 230 to 287 MPa, and the absolute value of the skewness Rsk is 0.05 or less, soft etching properties are included. Excellent etching properties and excellent high-frequency transmission characteristics.

一方、Agを含有するが添加元素を含まない比較例1の場合、及び添加元素の合計含有量が下限値未満である比較例6の場合、銅箔の平均結晶粒径が4.3μmを大幅に超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。   On the other hand, in the case of Comparative Example 1 containing Ag but no additive element, and in Comparative Example 6 in which the total content of additive elements is less than the lower limit, the average crystal grain size of the copper foil is significantly increased to 4.3 μm. The coarseness was exceeded, the tensile strength was less than 230 MPa, and the absolute value of skewness Rsk was larger than 0.05. As a result, the etching property including soft etching property was inferior, and the high frequency transmission property was also inferior.

最終冷間圧延での加工度ηが7.51未満である比較例3,4,7の場合、銅箔の平均結晶粒径が4.3μmを超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
また、最終冷間圧延での加工度ηが7.51未満であるが、3.5以上である比較例4の場合、スキューネスRskが0.05より大きく、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
但し、比較例4の場合、銅箔の平均結晶粒径は4.3μm以下であり、引張強度も230MPa以上となった。この理由は以下のように考えられる。つまり、ηが3.5未満の比較例3,7の場合、最終冷間圧延加工時のひずみの蓄積が小さく、再結晶粒の核が少なくなるため、再結晶粒が粗大になった。一方、ηが3.5以上である比較例4の場合、最終冷間圧延加工時に適度にひずみが蓄積され、再結晶粒が微細になったものの、ひずみが局所的に存在するためRskが大きくなった。そして、ηが7.51以上になると、蓄積されるひずみ量がさらに多くなり、ひずみが均一に存在するため、Rskが小さくなると考えられる。
In the case of Comparative Examples 3, 4, and 7 in which the degree of work η in the final cold rolling is less than 7.51, the average crystal grain size of the copper foil becomes coarser than 4.3 μm, the tensile strength becomes less than 230 MPa, and the skewness Rsk The absolute value was greater than 0.05. As a result, the etching property including soft etching property was inferior, and the high frequency transmission property was also inferior.
Further, in the case of Comparative Example 4 in which the degree of work η in the final cold rolling is less than 7.51, but in the case of Comparative Example 4 which is 3.5 or more, the skewness Rsk is larger than 0.05, the etching property including the soft etching property is inferior, and the high frequency transmission property is also achieved. inferior.
However, in the case of Comparative Example 4, the average crystal grain size of the copper foil was 4.3 μm or less, and the tensile strength was 230 MPa or more. The reason is considered as follows. That is, in Comparative Examples 3 and 7 in which η is less than 3.5, the accumulation of strain during the final cold rolling process is small, and the nuclei of the recrystallized grains are reduced, so that the recrystallized grains are coarse. On the other hand, in the case of Comparative Example 4 in which η is 3.5 or more, although the strain was moderately accumulated during the final cold rolling process and the recrystallized grains became fine, the Rsk increased because the strain was locally present. . When η is 7.51 or more, the accumulated strain amount is further increased, and the strain exists uniformly, so that Rsk is considered to be small.

また、最終冷間圧延での加工度ηが8.00より大きい比較例5の場合も、銅箔の平均結晶粒径が4.3μmを超えて粗大化し、引張強度が230MPa未満となり、スキューネスRskの絶対値が0.05より大きくなった。その結果、ソフトエッチング性を含むエッチング性に劣り、高周波伝送特性にも劣った。
添加元素の合計含有量が上限値を超えた比較例2の場合、導電率が劣った。
Also, in the case of Comparative Example 5 in which the degree of work η in the final cold rolling is greater than 8.00, the average crystal grain size of the copper foil becomes coarser than 4.3 μm, the tensile strength becomes less than 230 MPa, and the absolute value of the skewness Rsk Was greater than 0.05. As a result, the etching property including soft etching property was inferior, and the high frequency transmission property was also inferior.
In the case of Comparative Example 2 in which the total content of additive elements exceeded the upper limit value, the conductivity was inferior.

Claims (6)

JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅に対し、
Agを0.001〜0.05質量%、かつP、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなり、
平均結晶粒径が0.6〜4.3μm、かつMD方向の引張強度が230〜287MPaであり、
過硫酸ナトリウム濃度100g/L、過酸化水素濃度35g/Lの水溶液(液温25℃)に420秒浸漬した後の表面のJIS B 0601−2001に基づくスキューネスRskを、MD方向およびCD方向にそれぞれ16回測定し、各回の測定値の絶対値を平均した値が0.05以下であるフレキシブルプリント基板用銅箔。
For tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1011),
0.001 to 0.05 mass% of Ag and 0.003 to 0.825 mass% in total of one or more additive elements selected from the group of P, Ti, Sn, Ni, Be, Zn, In and Mg,
The average crystal grain size is 0.6 to 4.3 μm, and the tensile strength in the MD direction is 230 to 287 MPa,
The skewness Rsk based on JIS B 0601-2001 on the surface after immersion for 420 seconds in an aqueous solution with a sodium persulfate concentration of 100 g / L and a hydrogen peroxide concentration of 35 g / L (liquid temperature 25 ° C.) The copper foil for flexible printed circuit boards which measured 16 times and averaged the absolute value of the measured value of each time is 0.05 or less.
前記銅箔が圧延銅箔であり、
300℃で30分間の熱処理後の前記平均結晶粒径が0.6〜4.3μm、前記引張強度が230〜287MPaであり、かつ該熱処理後の前記スキューネスRskが0.05以下である請求項1に記載のフレキシブルプリント基板用銅箔。
The copper foil is a rolled copper foil,
2. The flexible according to claim 1, wherein the average crystal grain size after heat treatment at 300 ° C. for 30 minutes is 0.6 to 4.3 μm, the tensile strength is 230 to 287 MPa, and the skewness Rsk after the heat treatment is 0.05 or less. Copper foil for printed circuit boards.
請求項1又は2に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。   The copper clad laminated body formed by laminating | stacking the copper foil for flexible printed circuit boards of Claim 1 or 2, and a resin layer. 請求項3に記載の銅張積層体を用い、前記銅箔に回路を形成してなるフレキシブルプリント基板。   The flexible printed board formed by forming a circuit in the said copper foil using the copper clad laminated body of Claim 3. 前記回路のL/Sが35/35〜10/10(μm/μm)である請求項4に記載のフレキシブルプリント基板。   The flexible printed circuit board according to claim 4, wherein L / S of the circuit is 35/35 to 10/10 (μm / μm). 請求項4又は5に記載のフレキシブルプリント基板を用いた電子機器。   The electronic device using the flexible printed circuit board of Claim 4 or 5.
JP2019118177A 2019-06-26 2019-06-26 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same Pending JP2019194360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019118177A JP2019194360A (en) 2019-06-26 2019-06-26 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019118177A JP2019194360A (en) 2019-06-26 2019-06-26 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016063235A Division JP6781562B2 (en) 2016-03-28 2016-03-28 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Publications (1)

Publication Number Publication Date
JP2019194360A true JP2019194360A (en) 2019-11-07

Family

ID=68469547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019118177A Pending JP2019194360A (en) 2019-06-26 2019-06-26 Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2019194360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060651A (en) * 2011-08-23 2013-04-04 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2014194068A (en) * 2012-09-11 2014-10-09 Jx Nippon Mining & Metals Corp Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP2015092014A (en) * 2013-10-04 2015-05-14 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate board using the same, printed circuited board, electronic apparatus, method for producing circuit connection member, and circuit connection member
JP2015175005A (en) * 2014-03-13 2015-10-05 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate sheet and flexible printed wiring board and electronic equipment
JP2017143233A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board, and electronic device
JP6781562B2 (en) * 2016-03-28 2020-11-04 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060651A (en) * 2011-08-23 2013-04-04 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2014194068A (en) * 2012-09-11 2014-10-09 Jx Nippon Mining & Metals Corp Carrier-fitted copper foil, method for manufacturing carrier-fitted copper foil, printed wiring board, printed circuit board, copper-clad laminate sheet, and method for manufacturing printed wiring board
JP2015092014A (en) * 2013-10-04 2015-05-14 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate board using the same, printed circuited board, electronic apparatus, method for producing circuit connection member, and circuit connection member
JP2015175005A (en) * 2014-03-13 2015-10-05 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate sheet and flexible printed wiring board and electronic equipment
JP2017143233A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board, and electronic device
JP6781562B2 (en) * 2016-03-28 2020-11-04 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6328679B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102470725B1 (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2019194360A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
KR20190015108A (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2018154888A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20210104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210802