JP2018154888A - Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same - Google Patents

Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same Download PDF

Info

Publication number
JP2018154888A
JP2018154888A JP2017054049A JP2017054049A JP2018154888A JP 2018154888 A JP2018154888 A JP 2018154888A JP 2017054049 A JP2017054049 A JP 2017054049A JP 2017054049 A JP2017054049 A JP 2017054049A JP 2018154888 A JP2018154888 A JP 2018154888A
Authority
JP
Japan
Prior art keywords
mass
copper foil
less
flexible printed
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017054049A
Other languages
Japanese (ja)
Other versions
JP6712561B2 (en
Inventor
慎介 坂東
Shinsuke Bando
慎介 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017054049A priority Critical patent/JP6712561B2/en
Publication of JP2018154888A publication Critical patent/JP2018154888A/en
Application granted granted Critical
Publication of JP6712561B2 publication Critical patent/JP6712561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil for flexible printed circuit boards having excellent bendability.SOLUTION: A copper foil for flexible printed circuit board contains, in the tough pitch copper specified in JIS-H3100 (C1100) or the oxygen-free copper specified in JIS-H3100 (C1020), Ag of 0.001-0.05 mass%; contains P of 0.03 mass% or less, Sb of 0.14 mass% or less, Sn of 0.163 mass% or less, Ni of 0.288 mass% or less, Be of 0.058 mass% or less, Zn of 0.812 mass% or less, In of 0.429 mass% or less, and Mg of 0.149 mass% or less, respectively alone or in combination of two or more kinds; and when its plate thickness is x[μm], the breaking elongation y[%] is formula 1: [y=-0.0365x+2.1352x-5.7219] or more.SELECTED DRAWING: Figure 1

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。   The present invention relates to a copper foil suitable for a wiring member such as a flexible printed circuit board, a copper clad laminate using the copper foil, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. The copper foil surface is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay before the coverlay is laminated. Further, in order to improve the flexibility by reducing the thickness of the copper foil, thinning etching may be performed.

ところで、電子機器の小型、薄型、高性能化に伴い、これら機器の内部にFPCを高密度で実装することが要求されているが、高密度実装を行うためには、小型化した機器の内部にFPCを折り曲げて収容する、つまり高い折り曲げ性が必要となる。
一方、IPC屈曲性に代表される高サイクル屈曲性を改善した銅箔が開発されている(特許文献1、2)。
By the way, along with the downsizing, thinning, and high performance of electronic devices, it is required to mount FPCs in these devices at a high density. The FPC needs to be folded and accommodated, that is, high bendability is required.
On the other hand, copper foils with improved high-cycle flexibility represented by IPC flexibility have been developed (Patent Documents 1 and 2).

特開2010-100887号公報JP 2010-100877 A 特開2009-111203号公報JP 2009-111203 A

しかしながら、上述のようにFPCを高密度で実装するためには、MIT耐折性に代表される折り曲げ性の向上が必要であり、従来の銅箔では折り曲げ性の改善が十分とはいえないという問題がある。
本発明は上記の課題を解決するためになされたものであり、折り曲げ性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in order to mount the FPC at a high density as described above, it is necessary to improve the bendability represented by MIT fold resistance, and the conventional copper foil cannot be said to have sufficient improvement in bendability. There's a problem.
The present invention has been made to solve the above-mentioned problems, and aims to provide a copper foil for a flexible printed circuit board excellent in bendability, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. To do.

本発明者らは種々検討した結果、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、再結晶後の破断伸びを高めて折り曲げ性を向上できることを見出した。これは、coffin-manson則により破断伸びを大きくするほど、破断までの折り曲げ回数も大きくなるからである。   As a result of various studies, the present inventors have found that by reducing the crystal grain size before the final cold rolling of the copper foil, the elongation at break after recrystallization can be increased and the bendability can be improved. This is because as the elongation at break is increased according to the coffin-manson rule, the number of bendings until the break increases.

すなわち、本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅に対し、Agを0.001〜0.05質量%含有すると共に;Pを0.03質量%以下、Sbを0.14質量%以下、Snを0.163質量%以下、Niを0.288質量%以下、Beを0.058質量%以下、Znを0.812質量%以下、Inを0.429質量%以下、およびMgを0.149質量%以下、それぞれ単独又は2種以上を含有してなり;板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365x2+2.1352x-5.7219]以上である。 That is, the copper foil for flexible printed circuit boards of the present invention contains 0.001 to 0.05 mass% of Ag with respect to tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020); P 0.03% by mass, Sb 0.14% by mass, Sn 0.163% by mass, Ni 0.288% by mass, Be 0.058% by mass, Zn 0.812% by mass, In 0.429% by mass and Mg Is 0.149% by mass or less, each containing one or more of them; when the plate thickness is x [μm], the elongation at break y [%] is expressed by the formula 1: [y = −0.0365x 2 + 2.1352x− 5.7219] or more.

前記銅箔が圧延銅箔であり、300℃×30min焼鈍(但し、昇温速度100〜300℃/min)後の破断伸びy[%]が前記式1以上であるであることが好ましい。   It is preferable that the copper foil is a rolled copper foil, and the elongation at break y [%] after annealing at 300 ° C. for 30 minutes (however, the rate of temperature increase is 100 to 300 ° C./min) is equal to or greater than Formula 1.

本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。   The copper clad laminate of the present invention is formed by laminating the flexible printed circuit board copper foil and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。   The flexible printed board of the present invention is formed by forming a circuit on the copper foil in the copper clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、折り曲げ性に優れたフレキシブルプリント基板用銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in the bendability is obtained.

実施例及び比較例の銅箔厚みと破断伸びとの関係を示す図である。It is a figure which shows the relationship between the copper foil thickness of an Example and a comparative example, and breaking elongation.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅に対し、Agを0.001〜0.05質量%含有すると共に;Pを0.03質量%以下、Sbを0.14質量%以下、Snを0.163質量%以下、Niを0.288質量%以下、Beを0.058質量%以下、Znを0.812質量%以下、Inを0.429質量%以下、およびMgを0.149質量%以下、それぞれ単独又は2種以上を含有してなる。
上述のように、銅箔の最終冷間圧延前の結晶粒径を微細化することにより、再結晶後の破断伸びを高めて折り曲げ性を向上させることができる。
但し、上記した純銅系の組成の場合、銅箔の再結晶後に破断伸びを高めることが困難であるため、冷間圧延時の初期(焼鈍と冷間圧延を繰り返す際の初期の冷間圧延時)に再結晶焼鈍を行うことで、冷間圧延により加工ひずみを大量に導入することができ、再結晶後に破断伸びを高めることを実現できる。
<Composition>
The copper foil according to the present invention contains 0.001 to 0.05 mass% of Ag with respect to tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020); and 0.03 mass% or less of P. , Sb 0.14 mass% or less, Sn 0.163 mass% or less, Ni 0.288 mass% or less, Be 0.058 mass% or less, Zn 0.80.8 mass% or less, In 0.429 mass% or less, and Mg 0.149 mass% or less. Singly or in combination of two or more.
As described above, by refining the crystal grain size of the copper foil before the final cold rolling, the elongation at break after recrystallization can be increased and the bendability can be improved.
However, in the case of the above-described pure copper-based composition, it is difficult to increase the elongation at break after recrystallization of the copper foil, so the initial stage during cold rolling (at the time of initial cold rolling when annealing and cold rolling are repeated) ), It is possible to introduce a large amount of processing strain by cold rolling and to increase the elongation at break after recrystallization.

又、銅箔の再結晶後に破断伸びを高めるためには、最終冷間圧延前(焼鈍と圧延を繰り返す工程全体の中で、最終焼鈍後に行う仕上げ圧延前)の結晶粒径を20〜15μmとすると好ましい。
最終冷間圧延前の結晶粒径が20μmより大きい場合、加工時の転位の絡み合いの頻度が小さくなり、ひずみの蓄積が少なくなるため、再結晶後の破断伸びが小さくなる傾向にある。最終冷間圧延前の結晶粒径が15μmより小さい場合は、加工時の転位の絡み合いが飽和して圧延荷重が高くなるだけで、破断伸びを高める効果が飽和する。したがって最終冷間圧延前の結晶粒径の下限を15μmとした。
Also, in order to increase the elongation at break after recrystallization of the copper foil, the crystal grain size before final cold rolling (before the final rolling performed after final annealing in the entire process of repeating annealing and rolling) is set to 20 to 15 μm. It is preferable.
When the crystal grain size before the final cold rolling is larger than 20 μm, the frequency of dislocation entanglement during processing decreases and the accumulation of strain decreases, so that the elongation at break after recrystallization tends to decrease. When the crystal grain size before the final cold rolling is smaller than 15 μm, the effect of increasing the elongation at break is saturated only by the entanglement of dislocations during processing being saturated and the rolling load being increased. Therefore, the lower limit of the crystal grain size before the final cold rolling is set to 15 μm.

又、結晶粒を微細化させる添加元素として、Agを0.001〜0.05質量%含有する。
Agは、再結晶焼鈍条件に対する再結晶粒径の感受性を低くさせる。つまり、後述するように、CCL積層時に樹脂を硬化させるための熱処理を行うが、実際には熱処理の温度、時間が変動し、昇温速度も製造装置や製造者等によって異なる。このため、熱処理によっては銅箔の再結晶粒の粒径が大きくなるおそれがある。そこで、Agを含有させることで、CCL積層時の熱処条件が変化しても結晶粒を安定して微細化できる。
Moreover, 0.001-0.05 mass% Ag is contained as an additional element which refines | miniaturizes a crystal grain.
Ag makes the recrystallized grain size less sensitive to recrystallization annealing conditions. That is, as will be described later, heat treatment for curing the resin is performed at the time of CCL lamination. Actually, the temperature and time of the heat treatment vary, and the rate of temperature rise varies depending on the manufacturing apparatus, manufacturer, and the like. For this reason, there exists a possibility that the particle size of the recrystallized grain of copper foil may become large depending on heat processing. Thus, by containing Ag, the crystal grains can be stably refined even if the heat treatment conditions during CCL lamination change.

さらに、Pを0.0005質量%以上0.03質量%以下、Sbを0.0005質量%以上0.14質量%以下、Snを0.0005質量%以上0.163質量%以下、Niを0.0005質量%以上0.288質量%以下、Beを0.0005質量%以上0.058質量%以下、Znを0.0005質量%以上0.812質量%以下、Inを0.0005質量%以上0.429質量%以下、およびMgを0.0005質量%以上0.149質量%以下、それぞれ単独又は2種以上を含有すると、再結晶後に破断伸びを高めることができる。
P、Sb、Sn、Ni、Be、Zn、In、およびMgは、冷間圧延時に転位の絡み合いの頻度を増加させるので、再結晶後に破断伸びをより容易に高めることができる。又、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないようにすれば、冷間圧延により転位の絡み合いを増加させることにより、加工ひずみを大量に導入して再結晶後に破断伸びを容易に高めることができる。
Furthermore, P is 0.0005 mass% to 0.03 mass%, Sb is 0.0005 mass% to 0.14 mass%, Sn is 0.0005 mass% to 0.163 mass%, Ni is 0.0005 mass% to 0.288 mass%, and Be is 0.0005 mass% % Containing 0.055 mass% or more, Zn containing 0.0005 mass% or more and 0.812 mass% or less, In containing 0.0005 mass% or more and 0.429 mass% or less, and Mg containing 0.0005 mass% or more and 0.149 mass% or less, each alone or in combination. The elongation at break can be increased after recrystallization.
P, Sb, Sn, Ni, Be, Zn, In, and Mg increase the frequency of dislocation entanglement during cold rolling, so that the elongation at break can be more easily increased after recrystallization. In addition, if recrystallization annealing is performed only once in the initial stage of cold rolling and no subsequent recrystallization annealing is performed, a large amount of processing strain is introduced by increasing the entanglement of dislocations by cold rolling. Thus, the elongation at break can be easily increased after recrystallization.

Agの含有量が0.001質量%より小さく制御することは工業的に難しいので、Agの含有量の下限を0.001質量%とした。また、Agの含有量が0.05質量%を超えると再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
Pを0.03質量%を超え、Sbを0.14質量%を超え、Snを0.163質量%を超え、Niを0.288質量%を超え、Beを0.058質量%を超え、Znを0.812質量%を超え、Inを0.429質量%を超え、又はMgを0.149質量%を超えて含有させると、導電率が低下し、フレキシブル基板用銅箔として適さない場合があるので、上述の範囲を上限とした。
P、Sb、Sn、Ni、Be、Zn、In、およびMgの含有量の下限は特に制限されないが、例えば各元素につき0.0005質量%より小さく制御することは工業的に難しいので、各元素の含有量の下限を0.0005質量%とするとよい。
Since it is industrially difficult to control the Ag content to be smaller than 0.001% by mass, the lower limit of the Ag content is set to 0.001% by mass. Further, if the Ag content exceeds 0.05% by mass, the recrystallization temperature rises and does not recrystallize when laminated with the resin, and the strength becomes too high and the bending properties of the copper foil and CCL may deteriorate. .
P exceeds 0.03 mass%, Sb exceeds 0.14 mass%, Sn exceeds 0.163 mass%, Ni exceeds 0.288 mass%, Be exceeds 0.058 mass%, Zn exceeds 0.812 mass%, In If the content exceeds 0.429% by mass or Mg exceeds 0.149% by mass, the electrical conductivity is lowered and may not be suitable as a copper foil for flexible substrates. Therefore, the above range is set as the upper limit.
The lower limit of the content of P, Sb, Sn, Ni, Be, Zn, In, and Mg is not particularly limited. For example, it is industrially difficult to control less than 0.0005% by mass for each element. The lower limit of the amount is preferably 0.0005% by mass.

なお、銅箔の再結晶後の再結晶後に破断伸びを高める方法としては上述の本発明の銅箔組成とするほかに、重合圧延をする方法、電解銅箔にて電析をする際にパルス電流を用いる方法、または電解銅箔にて電解液にチオ尿素やニカワなどを適量添加する方法が挙げられる。   In addition to the copper foil composition of the present invention described above as a method for increasing the elongation at break after recrystallization after recrystallization of copper foil, a method of polymerization rolling, a pulse when electrodepositing on electrolytic copper foil Examples thereof include a method using an electric current or a method of adding an appropriate amount of thiourea, glue or the like to the electrolytic solution using an electrolytic copper foil.

<破断伸び>
板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365x2+2.1352x-5.7219]以上である。
銅箔の伸びは厚みによって変化し、厚みが厚いほど伸びは大きくなる。従って、折り曲げ性は、銅箔の厚みに応じた伸びに依存する。このため、折り曲げ性を向上させるためには、銅箔の伸びの絶対値だけでなく、伸びと厚みとの関係を規定する必要がある。本発明は、このように伸びと厚みとの関係に着目したものである。
図1は、後述する実施例1〜15、及び比較例の厚みと破断伸びとの関係を示す。図1に示すように、実施例1〜6の群よりも実施例7〜11の群の方が同じ厚みでも破断伸びが小さい。又、同じ厚みで見たとき、すべての実施例1〜15の破断伸びは比較例(比較例1〜7)の群の破断伸びよりも大きい。
<Elongation at break>
When the plate thickness is x [μm], the breaking elongation y [%] is equal to or greater than Formula 1: [y = −0.0365x 2 + 2.1352x−5.7219].
The elongation of the copper foil varies depending on the thickness, and the greater the thickness, the greater the elongation. Therefore, the bendability depends on the elongation corresponding to the thickness of the copper foil. For this reason, in order to improve the bendability, it is necessary to define not only the absolute value of the elongation of the copper foil but also the relationship between the elongation and the thickness. The present invention thus focuses on the relationship between elongation and thickness.
FIG. 1 shows the relationship between the thickness and breaking elongation of Examples 1 to 15 and Comparative Examples described later. As shown in FIG. 1, even when the groups of Examples 7 to 11 have the same thickness, the breaking elongation is smaller than the groups of Examples 1 to 6. Further, when viewed at the same thickness, the breaking elongation of all Examples 1 to 15 is larger than the breaking elongation of the group of Comparative Examples (Comparative Examples 1 to 7).

このことから、比較例よりも破断伸びが大きくなる領域であれば、折り曲げ性(MIT耐折回数)にも優れると考え、比較例よりも破断伸びが大きくなる最低限の値(下限)として、実施例1〜6の群よりも破断伸びが小さい実施例7〜11の群の各プロットを通る近似2次曲線を最小二乗法で求めた。その結果、図1の破線に示す式1:[y=-0.0365x2+2.1352x-5.7219]が得られた。なお、実施例5と6が重なるので、実施例1〜6のプロット数は6個ではなく5個となった。
以上から、破断伸びy[%]が式1以上の領域S(図1参照)であれば、折り曲げ性に優れる。
例えば、銅箔厚みが12μmの場合、破断伸び(%)および折り曲げ性(回)はそれぞれ、実施例3(:35 %:347回)、実施例9(:15 %:247回)、比較例4(:12 %:188回)となり、実施例3、9共に比較例4に比べ折り曲げ性が優れ、実施例4が最も優れる。
From this, if it is a region where the elongation at break is larger than that of the comparative example, it is considered that the bending property (the number of MIT foldings) is excellent, and the minimum value (lower limit) at which the elongation at break becomes larger than the comparative example, An approximate quadratic curve passing through each plot of the groups of Examples 7 to 11 having a smaller elongation at break than the groups of Examples 1 to 6 was obtained by the method of least squares. As a result, Formula 1: [y = −0.0365x 2 + 2.1352x−5.7219] indicated by a broken line in FIG. 1 was obtained. In addition, since Example 5 and 6 overlap, the number of plots of Examples 1-6 became five instead of six.
From the above, if the elongation at break y [%] is the region S (see FIG. 1) equal to or greater than Formula 1, the bendability is excellent.
For example, when the copper foil thickness is 12 μm, the elongation at break (%) and the bendability (times) are Example 3 (: 35%: 347 times), Example 9 (: 15%: 247 times), and Comparative Example, respectively. 4 (: 12%: 188 times), both Examples 3 and 9 are superior to Comparative Example 4 in bendability, and Example 4 is most excellent.

なお、式2:[y=-0.0762x2+4.4090x-7.5054]は、実施例7〜11の群よりも同じ厚みで破断伸びが大きい群である実施例1〜6の各プロットを通る近似2次曲線を最小二乗法で求めた結果である。
もとより、破断伸びは高ければ高い方が好ましいので、式2の値を超えるものも、本願発明の範囲に含まれることは言うまでもないが、同じ銅箔厚みでも破断伸びの向上には限界があるので、その限界の例示として式2を求めた。従って、本発明をより確実に実現する範囲として、式1以上、かつ式2以下の領域S1(図1参照)とすることも可能であるが、本発明は式2以下の領域に限定されるものではない。
Formula 2: [y = −0.0762x 2 + 4.4090x-7.5054] is an approximation that passes through the plots of Examples 1 to 6, which are groups having the same thickness and larger elongation at break than those of Examples 7 to 11. It is the result of having calculated | required the quadratic curve by the least squares method.
Of course, if the elongation at break is higher, it is preferable to have a higher elongation. Therefore, it goes without saying that those exceeding the value of Formula 2 are also included in the scope of the present invention, but there is a limit to improving the elongation at break even with the same copper foil thickness. As an example of the limit, Equation 2 was obtained. Accordingly, the range S1 (see FIG. 1) of the formula 1 or more and the formula 2 or less can be set as a range for realizing the present invention more reliably, but the present invention is limited to the range of the formula 2 or less. It is not a thing.

破断伸びが[y=-0.0365x2+2.1352x-5.7219]未満であると、フレキシブルプリント基板を曲げた時の樹脂の伸びに銅箔が追従できず、折り曲げ性が劣るため、フレキシブルプリント基板用途に適さない。
又、銅箔を300℃×30min焼鈍(昇温速度100〜300℃/min)後の破断伸びy[%]についても、上述の範囲内であることが好ましい。
If the elongation at break is less than [y = -0.0365x 2 + 2.1352x-5.7219], the copper foil cannot follow the elongation of the resin when the flexible printed circuit board is bent, and the bendability is poor. Not suitable for.
The breaking elongation y [%] after annealing the copper foil at 300 ° C. for 30 minutes (temperature increase rate: 100 to 300 ° C./min) is also preferably within the above range.

<引張強度(TS)、破断伸び>
引張強度および破断伸びは、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向と平行な方向に引張試験した。
<Tensile strength (TS), elongation at break>
Tensile strength and elongation at break were determined by a tensile test in accordance with IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), a tensile speed of 50.8 mm / min, and a gauge length of 50 mm. Tensile tests were performed in parallel directions.

<300℃で30分間の熱処理>
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
従って、樹脂と積層する前後で、銅箔の引張強度および破断伸びが変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅箔を規定している。
一方、本願の請求項3に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。なお、昇温速度は100〜300℃/minの間であればよい。
<Heat treatment at 300 ° C for 30 minutes>
The copper foil which concerns on this invention is used for a flexible printed circuit board, In that case, since CCL which laminated | stacked copper foil and resin performs the heat processing for hardening resin at 200-400 degreeC, a crystal grain is formed by recrystallization. There is a possibility of coarsening.
Accordingly, the tensile strength and breaking elongation of the copper foil change before and after lamination with the resin. Then, the copper foil for flexible printed circuit boards concerning Claim 1 of this application has prescribed | regulated the copper foil of the state which received the hardening heat processing of resin after it became a copper clad laminated body laminated | stacked with resin.
On the other hand, the copper foil for flexible printed circuit boards according to claim 3 of the present application defines a state when the above heat treatment is performed on the copper foil before being laminated with the resin. This heat treatment at 300 ° C. for 30 minutes simulates the temperature condition for curing and heat-treating the resin during CCL lamination. In addition, the temperature increase rate should just be between 100-300 degreeC / min.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットにPを添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、冷間圧延時の初期に再結晶焼鈍を行うと共に、上述の最終冷間圧延を行うことにより箔を製造することができる。   The copper foil of this invention can be manufactured as follows, for example. First, P is added to a copper ingot to be melted and cast, and then hot rolled, cold rolled and annealed, recrystallized annealed at the initial stage of cold rolling, and the above-mentioned final cold rolling is performed. By doing so, a foil can be produced.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) a thermoplastic adhesive of the same type as the base film is used. By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) composed of two layers of the copper foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper foil of the present invention, a copper clad laminate (CCL) comprising three layers of a copper foil, a resin base material, and an adhesive layer therebetween is obtained. During the production of these CCLs, the copper foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.

樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。   When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。JIS−H3100(C1100)に規格する電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後に冷間圧延を行い、焼鈍温度が低温でも再結晶するように焼鈍条件を最適化して1回焼鈍を行い15〜20μmに結晶粒径を調整した。その後、表面に発生した酸化スケールを除去して、表1に示す加工度ηで最終冷間圧延をして目的とする最終厚さの箔を得た。得られた箔に300℃×30分の熱処理を加え、銅箔サンプルを得た。
次に、比較例を挙げて本発明をさらに詳細に説明するが、比較例はこれらに限定されるものではない。JIS−H3100(C1100)に規格する電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後に冷間圧延を行い、高温で1回の焼鈍を行った場合は20μmより大きな結晶粒径、焼鈍温度が低温でも再結晶するように焼鈍条件を最適化して1回の焼鈍を行った場合は、20μmの結晶粒径を得た。その後、表面に発生した酸化スケールを除去して、表1に示す加工度ηで最終冷間圧延をして目的とする最終厚さの箔を得た。得られた箔に300℃×30分の熱処理を加え、銅箔サンプルを得た。
EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. Each element shown in Table 1 was added to electrolytic copper standardized to JIS-H3100 (C1100), and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot is homogenized and annealed at 900 ° C, then hot-rolled and then cold-rolled, and the annealing conditions are optimized so that recrystallization occurs even at a low annealing temperature. The diameter was adjusted. Thereafter, the oxide scale generated on the surface was removed, and final cold rolling was performed at a working degree η shown in Table 1 to obtain a foil having a desired final thickness. A heat treatment at 300 ° C. for 30 minutes was added to the obtained foil to obtain a copper foil sample.
Next, although a comparative example is given and this invention is demonstrated further in detail, a comparative example is not limited to these. Each element shown in Table 1 was added to electrolytic copper standardized to JIS-H3100 (C1100), and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. When this ingot is homogenized and annealed at 900 ° C, it is hot rolled and then cold rolled, and if it is annealed once at a high temperature, it will recrystallize even when the crystal grain size is larger than 20μm and the annealing temperature is low. In addition, when the annealing conditions were optimized and single annealing was performed, a crystal grain size of 20 μm was obtained. Thereafter, the oxide scale generated on the surface was removed, and final cold rolling was performed at a working degree η shown in Table 1 to obtain a foil having a desired final thickness. A heat treatment at 300 ° C. for 30 minutes was added to the obtained foil to obtain a copper foil sample.

<A.銅箔サンプルの評価>
1.導電率
上記熱処理後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が75%IACSより大きければ導電性が良好である。
2.引張強度及び破断伸び
上記熱処理後の各銅箔サンプルについて、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向と平行な方向に引張試験することにより、引張強度及び破断伸びを測定した。
<A. Evaluation of copper foil sample>
1. Electrical conductivity The electrical conductivity (% IACS) at 25 ° C. was measured for each copper foil sample after the heat treatment by a four-terminal method based on JIS H 0505.
If the conductivity is greater than 75% IACS, the conductivity is good.
2. Tensile strength and elongation at break Each copper foil sample after the above heat treatment was subjected to a tensile test in accordance with IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), tensile speed of 50.8 mm / min, and gauge length of 50 mm. The tensile strength and elongation at break were measured by conducting a tensile test in a direction parallel to the rolling direction of the copper foil.

3.銅箔の折り曲げ性(MIT耐折性)
上記熱処理後の各銅箔サンプルについて、JIS P 8115に基づいてMIT耐折回数(往復折曲げ回数)を測定した。ただし、折り曲げクランプのRは0.38mm、荷重は250gとした。
MIT耐折回数が同じ厚みの比較例よりも大きければ銅箔の折り曲げ性が良好である。
4.結晶粒径
上記熱処理前であって最終冷間圧延前(最終焼鈍後)の各銅箔サンプル表面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、圧延方向に平行な断面の400μm ×400μmとした。
3. Copper foil bendability (MIT folding resistance)
About each copper foil sample after the said heat processing, the MIT folding endurance (number of reciprocal bending) was measured based on JISP8115. However, the bending clamp R was 0.38 mm and the load was 250 g.
If the MIT folding endurance number is larger than that of the comparative example having the same thickness, the copper foil has good bendability.
4). Crystal grain size The surface of each copper foil sample before the heat treatment and before the final cold rolling (after the final annealing) was observed using a SEM (Scanning Electron Microscope), and the average grain size was determined based on JIS H 0501. . However, the twins were measured as if they were separate crystal grains. The measurement region was 400 μm × 400 μm in a cross section parallel to the rolling direction.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

Figure 2018154888
Figure 2018154888

表1から明らかなように、最終冷間圧延前の結晶粒径が15〜20μm、破断伸びy[%]が式1:[y=-0.0365x2+2.1352x-5.7219]以上である各実施例の場合、同じ厚みの比較例よりもMIT屈曲性に優れていた。 As is clear from Table 1, each grain size before final cold rolling is 15 to 20 μm, and elongation at break y [%] is equal to or greater than Formula 1: [y = -0.0365x 2 + 2.1352x-5.7219] In the case of the example, the MIT flexibility was superior to the comparative example having the same thickness.

一方、最終冷間圧延前の結晶粒径が20μmを超えた比較例1〜6の場合、破断伸びy[%]が式1より小さく、同じ厚みの各実施例よりもMIT屈曲性が劣った。   On the other hand, in the case of Comparative Examples 1 to 6 in which the crystal grain size before the final cold rolling exceeded 20 μm, the breaking elongation y [%] was smaller than that of Formula 1, and the MIT flexibility was inferior to each of the Examples having the same thickness. .

0.01質量%のAgのみを添加した比較例7の場合、破断伸びy[%]が式1:[y=-0.0365x2+2.1352x-5.7219]未満であったため、同じ厚みの実施例3、9、12、13、14および15よりもMIT屈曲性が劣った。
また、Pの添加量が0.03質量%を超えた比較例8の場合、導電率が75%以下となり導電性が劣った。
In the case of Comparative Example 7 in which only 0.01% by mass of Ag was added, the elongation at break y [%] was less than Formula 1: [y = −0.0365x 2 + 2.1352x−5.7219]. MIT flexibility was inferior to 9, 12, 13, 14 and 15.
In the case of Comparative Example 8 in which the addition amount of P exceeded 0.03% by mass, the conductivity was 75% or less and the conductivity was inferior.

Claims (5)

JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅に対し、
Agを0.001〜0.05質量%含有すると共に;
Pを0.03質量%以下、Sbを0.14質量%以下、Snを0.163質量%以下、Niを0.288質量%以下、Beを0.058質量%以下、Znを0.812質量%以下、Inを0.429質量%以下、およびMgを0.149質量%以下、それぞれ単独又は2種以上を含有してなり;
板厚をx[μm]としたとき、破断伸びy[%]が式1:[y=-0.0365x2+2.1352x-5.7219]以上であるフレキシブルプリント基板用銅箔。
For tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020),
Containing 0.001 to 0.05 mass% of Ag;
P is 0.03 mass% or less, Sb is 0.14 mass% or less, Sn is 0.163 mass% or less, Ni is 0.288 mass% or less, Be is 0.058 mass% or less, Zn is 0.812 mass% or less, In is 0.429 mass% or less, and Mg contains 0.149% by mass or less, each containing one or more kinds;
A copper foil for a flexible printed circuit board having a breaking elongation y [%] of formula 1: [y = -0.0365x 2 + 2.1352x-5.7219] or more when the plate thickness is x [μm].
前記銅箔が圧延銅箔であり、
300℃×30min焼鈍(但し、昇温速度100℃/min〜300℃/min)後の破断伸びy[%]が前記式1以上である請求項1に記載のフレキシブルプリント基板用銅箔。
The copper foil is a rolled copper foil,
2. The copper foil for a flexible printed circuit board according to claim 1, wherein the elongation at break y [%] after annealing at 300 ° C. for 30 minutes (however, the temperature rising rate is 100 ° C./min to 300 ° C./min) is equal to or greater than the formula 1.
請求項1又は2に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。   The copper clad laminated body formed by laminating | stacking the copper foil for flexible printed circuit boards of Claim 1 or 2, and a resin layer. 請求項3に記載の銅張積層体における前記銅箔に回路を形成してなるフレキシブルプリント基板。   The flexible printed board formed by forming a circuit in the said copper foil in the copper clad laminated body of Claim 3. 請求項4に記載のフレキシブルプリント基板を用いた電子機器。   An electronic device using the flexible printed circuit board according to claim 4.
JP2017054049A 2017-03-21 2017-03-21 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device Active JP6712561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017054049A JP6712561B2 (en) 2017-03-21 2017-03-21 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017054049A JP6712561B2 (en) 2017-03-21 2017-03-21 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device

Publications (2)

Publication Number Publication Date
JP2018154888A true JP2018154888A (en) 2018-10-04
JP6712561B2 JP6712561B2 (en) 2020-06-24

Family

ID=63717189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017054049A Active JP6712561B2 (en) 2017-03-21 2017-03-21 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device

Country Status (1)

Country Link
JP (1) JP6712561B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP2009097075A (en) * 2007-09-28 2009-05-07 Nikko Kinzoku Kk Copper alloy foil, and flexible printed wiring board using it
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
JP2011070830A (en) * 2009-09-24 2011-04-07 Jx Nippon Mining & Metals Corp Rolled copper foil excellent in shearing processability and electrode collector using this, negative electrode plate, and secondary battery
JP2011094200A (en) * 2009-10-30 2011-05-12 Jx Nippon Mining & Metals Corp Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same
WO2012157469A1 (en) * 2011-05-13 2012-11-22 Jx日鉱日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
JP2017143233A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board, and electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009383B2 (en) * 1998-03-31 2000-02-14 日鉱金属株式会社 Rolled copper foil and method for producing the same
JP2009097075A (en) * 2007-09-28 2009-05-07 Nikko Kinzoku Kk Copper alloy foil, and flexible printed wiring board using it
JP2009108376A (en) * 2007-10-31 2009-05-21 Nikko Kinzoku Kk Copper foil and flexible printed circuit board using the same
JP2011070830A (en) * 2009-09-24 2011-04-07 Jx Nippon Mining & Metals Corp Rolled copper foil excellent in shearing processability and electrode collector using this, negative electrode plate, and secondary battery
JP2011094200A (en) * 2009-10-30 2011-05-12 Jx Nippon Mining & Metals Corp Copper or copper alloy foil, and method for manufacturing double-sided copper-clad laminate using the same
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same
WO2012157469A1 (en) * 2011-05-13 2012-11-22 Jx日鉱日石金属株式会社 Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
JP2017143233A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board, and electronic device

Also Published As

Publication number Publication date
JP6712561B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6617313B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6328679B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
JP2019127603A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same
JPWO2018180920A1 (en) Rolled copper foil
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2018154888A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same
CN111757599A (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2019199638A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same
KR102260207B1 (en) Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment
CN118272696A (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190225

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R151 Written notification of patent or utility model registration

Ref document number: 6712561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250