JP6294376B2 - Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device - Google Patents

Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device Download PDF

Info

Publication number
JP6294376B2
JP6294376B2 JP2016063232A JP2016063232A JP6294376B2 JP 6294376 B2 JP6294376 B2 JP 6294376B2 JP 2016063232 A JP2016063232 A JP 2016063232A JP 2016063232 A JP2016063232 A JP 2016063232A JP 6294376 B2 JP6294376 B2 JP 6294376B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
printed circuit
flexible printed
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016063232A
Other languages
Japanese (ja)
Other versions
JP2017141501A (en
Inventor
慎介 坂東
慎介 坂東
和樹 冠
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to TW106100661A priority Critical patent/TWI633195B/en
Priority to CN201710050041.5A priority patent/CN107046768B/en
Priority to KR1020170010940A priority patent/KR101935129B1/en
Publication of JP2017141501A publication Critical patent/JP2017141501A/en
Application granted granted Critical
Publication of JP6294376B2 publication Critical patent/JP6294376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。   The present invention relates to a copper foil suitable for a wiring member such as a flexible printed circuit board, a copper clad laminate using the copper foil, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
A flexible printed circuit board (flexible wiring board, hereinafter referred to as “FPC”) has flexibility, and is widely used in a bent portion and a movable portion of an electronic circuit. For example, FPCs are used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for folding parts of foldable mobile phones.
The FPC is formed by etching a copper clad laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated, and then coating the wiring with a resin layer called a coverlay. The copper foil surface is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay before the coverlay is laminated. Further, in order to improve the flexibility by reducing the thickness of the copper foil, thinning etching may be performed.

ところで、電子機器の小型、薄型、高性能化に伴い、これら機器の内部にFPCを高密度で実装することが要求されているが、高密度実装を行うためには、小型化した機器の内部にFPCを折り曲げて収容する、つまり高い折り曲げ性が必要となる。
一方、IPC屈曲性に代表される高サイクル屈曲性を改善した銅箔が開発されている(特許文献1、2)。
By the way, along with the downsizing, thinning, and high performance of electronic devices, it is required to mount FPCs in these devices at a high density. The FPC needs to be folded and accommodated, that is, high bendability is required.
On the other hand, copper foils with improved high-cycle flexibility represented by IPC flexibility have been developed (Patent Documents 1 and 2).

特開2010-100887号公報JP 2010-100877 A 特開2009-111203号公報JP 2009-111203 A

しかしながら、上述のようにFPCを高密度で実装するためには、MIT耐折性に代表される折り曲げ性の向上が必要であり、従来の銅箔では折り曲げ性の改善が十分とはいえないという問題がある。
又、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅も20〜30μm程度に微細化しており、エッチングにより回路を形成する時にエッチングファクタや回路直線性が劣化し易くなるという問題があり、この解決も要求されている。
本発明は上記の課題を解決するためになされたものであり、折り曲げ性及びエッチング性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, in order to mount the FPC at a high density as described above, it is necessary to improve the bendability represented by MIT fold resistance, and the conventional copper foil cannot be said to have sufficient improvement in bendability. There's a problem.
In addition, as electronic devices become smaller, thinner, and higher in performance, the circuit width and space width of FPC are also reduced to about 20-30 μm, and etching factors and circuit linearity are likely to deteriorate when forming circuits by etching. There is a problem that this is solved, and this solution is also required.
The present invention has been made to solve the above-described problems, and provides a copper foil for a flexible printed circuit board excellent in bendability and etching property, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic device. With the goal.

本発明者らは種々検討した結果、銅箔の再結晶後の結晶粒を微細化することにより、強度を高めて折り曲げ性を向上できることを見出した。これは、ホールペッチ則により結晶粒を微細化するほど強度が高くなり、折り曲げ性も高くなるからである。但し、結晶粒を微細化し過ぎると強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。従って、結晶粒径の範囲をも規定した。
又、結晶粒径を、近年のFPCの20〜30μm程度の回路幅のおよそ1/10程度に微細化することにより、エッチングにより回路を形成する時のエッチングファクタや回路直線性をも改善することができる。
As a result of various studies, the present inventors have found that by refining crystal grains after recrystallization of copper foil, the strength can be increased and the bendability can be improved. This is because as the crystal grains are refined according to the Hall Petch rule, the strength increases and the bendability also increases. However, if the crystal grains are made too fine, the strength becomes too high and the bending rigidity increases, and the spring back becomes large, which is not suitable for flexible printed circuit board applications. Therefore, the range of crystal grain size was also defined.
Also, by reducing the crystal grain size to about 1/10 of the circuit width of about 20-30 μm of recent FPC, the etching factor and circuit linearity when forming a circuit by etching are also improved. Can do.

すなわち、本発明のフレキシブルプリント基板用銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、平均結晶粒径が0.5〜4.0μm、かつ引張強度が235〜290MPa、JIS P 8115に基づくMIT耐折回数(往復折曲げ回数、ただし、折り曲げクランプのRは0.38、荷重は500g)が75〜129である。 That is, the copper foil for a flexible printed circuit board of the present invention is a copper foil comprising 99.0% by mass or more of Cu and the balance unavoidable impurities, the average crystal grain size is 0.5 to 4.0 μm, and the tensile strength is 235 to 290 MPa . The number of MIT folding endurances based on JIS P 8115 (the number of reciprocal foldings, where the bending clamp R is 0.38 and the load is 500 g) is 75 to 129 .

本発明のフレキシブルプリント基板用銅箔において、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅からなることが好ましい。
さらに、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなることが好ましい。
300℃で30分間の熱処理したときの前記平均結晶粒径が0.5〜4.0μm、かつ前記引張強度が235〜290MPa、前記MIT耐折回数が75〜129であることが好ましい。
前記銅箔の片面に、厚さ25μmのポリイミド樹脂フィルムを積層してなる銅張積層体を、曲げ半径0.05mmで前記銅箔が外側になるように180度密着曲げし、その後に折り曲げ部を0度に戻す試験を3回繰り返した後、前記銅箔を200倍で観察したときに亀裂が視認されないことが好ましい。


The copper foil for a flexible printed circuit board of the present invention is preferably made of tough pitch copper standardized to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1011).
Furthermore, it is preferable to contain 0.003-0.825 mass% in total of 1 or more types of additional elements chosen from the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg.
It is preferable that the average crystal grain size when subjected to heat treatment at 300 ° C. for 30 minutes is 0.5 to 4.0 μm, the tensile strength is 235 to 290 MPa, and the MIT folding resistance is 75 to 129 .
A copper-clad laminate formed by laminating a polyimide resin film with a thickness of 25 μm on one side of the copper foil is bent 180 degrees so that the copper foil is on the outside with a bending radius of 0.05 mm, and then the bent portion is formed. It is preferable that no crack is visually recognized when the copper foil is observed at 200 times after repeating the test for returning to 0 degree three times.


本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。   The copper clad laminate of the present invention is formed by laminating the flexible printed circuit board copper foil and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体を用い、前記銅箔に回路を形成してなる。
前記回路のL/Sが40/40〜15/15(μm/μm)であることが好ましい。なお、回路のL/S(ラインアンドスペース)とは、回路を構成する配線の幅(L:ライン)と、隣り合う配線の間隔(S:スペース)の比である。Lは回路中のLの最小値を採用し、Sは回路中のSの最小値を採用する。
なお、L及びSは15〜40μmであればよく、両者が同一の値である必要はない。例えば、L/S=20.5/35、35/17などの値をとることもできる。
The flexible printed board of the present invention is formed by using the copper-clad laminate and forming a circuit on the copper foil.
The L / S of the circuit is preferably 40/40 to 15/15 (μm / μm). Note that the L / S (line and space) of a circuit is the ratio of the width (L: line) of the wiring constituting the circuit and the interval (S: space) between adjacent wirings. L adopts the minimum value of L in the circuit, and S adopts the minimum value of S in the circuit.
In addition, L and S should just be 15-40 micrometers, and both do not need to be the same value. For example, values such as L / S = 20.5 / 35 and 35/17 can be taken.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。   The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、折り曲げ性及びエッチング性に優れたフレキシブルプリント基板用銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in the bendability and etching property is obtained.

CCLの折り曲げ性試験方法を示す図である。It is a figure which shows the bendability test method of CCL.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<組成>
本発明に係る銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
上述のように、本発明においては銅箔の再結晶後の結晶粒を微細化することにより、強度を高めて折り曲げ性を向上させている。
但し、上記した純銅系の組成の場合、結晶粒の微細化が困難であるため、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないことで、冷間圧延により加工ひずみを大量に導入して動的再結晶を生じさせて結晶粒の微細化を実現できる。
<Composition>
The copper foil according to the present invention comprises 99.0% by mass or more of Cu and the balance of inevitable impurities.
As described above, in the present invention, by refining crystal grains after recrystallization of copper foil, the strength is increased and the bendability is improved.
However, in the case of the above pure copper-based composition, since it is difficult to refine the crystal grains, recrystallization annealing is performed only once in the initial stage of cold rolling, and thereafter recrystallization annealing is not performed. A large amount of processing strain can be introduced by hot rolling to cause dynamic recrystallization, thereby achieving refinement of crystal grains.

又、冷間圧延における加工ひずみを大きくするには、最終冷間圧延(焼鈍と圧延を繰り返す工程全体の中で、最後の焼鈍後に行う仕上げ圧延)での加工度として、η=ln(最終冷間圧延前の板厚/最終冷間圧延後の板厚)=3.5〜7.5とすると好ましい。
ηが3.5未満の場合、加工時のひずみの蓄積が小さく、再結晶粒の核が少なくなるため、再結晶粒が粗大になる傾向にある。ηが7.5より大きい場合、ひずみが過剰に蓄積されて結晶粒成長の駆動力となり、結晶粒が粗大になる傾向にある。η=5.5〜7.5とするとさらに好ましい。
In order to increase the work strain in cold rolling, the degree of work in final cold rolling (finish rolling performed after the last annealing in the entire process of annealing and rolling) is η = ln (final cold rolling). (Thickness before cold rolling / thickness after final cold rolling) = 3.5 to 7.5.
When η is less than 3.5, the accumulation of strain during processing is small and the nuclei of the recrystallized grains are reduced, so that the recrystallized grains tend to be coarse. When η is greater than 7.5, excessive strain is accumulated to serve as a driving force for crystal grain growth, and the crystal grains tend to be coarse. More preferably, η = 5.5 to 7.5.

又、結晶粒を微細化させる添加元素として、上記組成に対し、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有すると、結晶粒の微細化をより容易に実現できる。これらの添加元素は、冷間圧延時に転位密度を増加させるので、結晶粒の微細化をより容易に実現できる。又、冷間圧延時の初期に一回のみ再結晶焼鈍を行い、以後は再結晶焼鈍を行わないようにすれば、冷間圧延により加工ひずみを大量に導入して動的再結晶を生じさせて結晶粒の微細化をさらに確実に実現できる。
上記添加元素の合計含有量が0.003質量%未満であると結晶粒の微細化が困難になり、0.825質量%を超えると導電率が低下することがある。又、再結晶温度が上昇して樹脂と積層した際に再結晶せず、強度が高くなり過ぎて銅箔及びCCLの折り曲げ性が劣化する場合がある。
Further, as an additive element for refining crystal grains, a total of 0.003 to 0.825 mass of one or more additive elements selected from the group of P, Ti, Sn, Ni, Be, Zn, In and Mg with respect to the above composition If it is contained in%, the crystal grains can be made finer more easily. Since these additive elements increase the dislocation density during cold rolling, crystal grain refinement can be realized more easily. Also, if recrystallization annealing is performed only once in the initial stage of cold rolling and no subsequent recrystallization annealing is performed, a large amount of work strain is introduced by cold rolling to cause dynamic recrystallization. In this way, it is possible to realize further refinement of crystal grains.
When the total content of the additive elements is less than 0.003 mass%, it is difficult to refine the crystal grains, and when it exceeds 0.825 mass%, the conductivity may be lowered. In addition, when the recrystallization temperature rises and is laminated with the resin, it does not recrystallize, and the strength becomes too high, and the bendability of the copper foil and CCL may deteriorate.

なお、銅箔の再結晶後の結晶粒を微細化する方法としては、添加元素を加える方法のほかに、重合圧延をする方法、電解銅箔にて電析をする際にパルス電流を用いる方法、または電解銅箔にて電解液にチオ尿素やニカワなどを適量添加する方法が挙げられる。   In addition, as a method of refining crystal grains after recrystallization of copper foil, in addition to a method of adding an additive element, a method of polymerization rolling, a method of using a pulse current when electrodepositing on electrolytic copper foil Alternatively, a method of adding an appropriate amount of thiourea, glue or the like to the electrolytic solution with electrolytic copper foil can be mentioned.

本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1011)の無酸素銅(OFC)からなる組成としてもよい。
又、上記TPC又はOFCに対し、上記した添加元素を含有させてなる組成としてもよい。
The copper foil according to the present invention may be composed of tough pitch copper (TPC) standardized to JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1011).
Moreover, it is good also as a composition which contains the above-mentioned additional element with respect to said TPC or OFC.

<平均結晶粒径>
銅箔の平均結晶粒径が0.5〜4.0μmである。平均結晶粒径が0.5μm未満であると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。平均結晶粒径が4.0μmを超えると、結晶粒の微細化が実現されず、強度を高めて折り曲げ性を向上させることが困難になると共に、エッチングファクタや回路直線性が劣化してエッチング性が低下する。
平均結晶粒径の測定は、誤差を避けるため、箔表面を100μm×100μmの視野で3視野以上を観察して行う。箔表面の観察は、SIM(Scanning Ion Microscope)またはSEM(Scanning Electron Microscope)を用い、JIS H 0501に基づいて平均結晶粒径を求めることができる。
ただし、双晶は、別々の結晶粒とみなして測定する。
<Average crystal grain size>
The average crystal grain size of the copper foil is 0.5 to 4.0 μm. If the average crystal grain size is less than 0.5 μm, the strength becomes too high, the bending rigidity becomes large, the spring back becomes large, and it is not suitable for flexible printed circuit board applications. If the average crystal grain size exceeds 4.0 μm, it is difficult to refine the crystal grains, and it becomes difficult to increase the strength and improve the bendability. descend.
The average crystal grain size is measured by observing at least 3 fields of view on the surface of the foil in a 100 μm × 100 μm field in order to avoid errors. For observation of the foil surface, the average crystal grain size can be determined based on JIS H 0501 using a SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope).
However, twins are measured as being considered as separate crystal grains.

<引張強度(TS)>
銅箔の引張強度が235〜290MPaである。上述のように、結晶粒を微細化することにより引張強度が向上する。引張強度が235MPa未満であると、強度を高めて折り曲げ性を向上させることが困難になる。引張強度が290MPaを超えると、強度が高くなり過ぎて曲げ剛性が大きくなり、スプリングバックが大きくなってフレキシブルプリント基板用途に適さない。
引張強度は、IPC-TM650に準拠した引張試験により、試験片幅12.7mm、室温(15〜35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向(又はMD方向)と平行な方向に引張試験した。
<Tensile strength (TS)>
The tensile strength of the copper foil is 235 to 290 MPa. As described above, the tensile strength is improved by refining the crystal grains. If the tensile strength is less than 235 MPa, it is difficult to increase the strength and improve the bendability. If the tensile strength exceeds 290 MPa, the strength becomes too high and the bending rigidity becomes large, and the spring back becomes large, which is not suitable for flexible printed circuit board applications.
Tensile strength is determined by a tensile test according to IPC-TM650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C.), tensile speed of 50.8 mm / min, gauge length of 50 mm, and the rolling direction of copper foil (or MD direction) ) In the direction parallel to.

<300℃で30分間の熱処理>
銅箔を300℃で30分間の熱処理後の平均結晶粒径が0.5〜4.0μm、かつ引張強度が235〜290MPaであってもよい。
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
従って、樹脂と積層する前後で、銅箔の平均結晶粒径及び引張強度が変わる。そこで、本願の請求項1に係るフレキシブルプリント基板用銅箔は、樹脂と積層後の銅張積層体になった後の、樹脂の硬化熱処理を受けた状態の銅箔を規定している。
一方、本願の請求項4に係るフレキシブルプリント基板用銅箔は、樹脂と積層する前の銅箔に上記熱処理を行ったときの状態を規定している。この300℃で30分間の熱処理は、CCLの積層時に樹脂を硬化熱処理させる温度条件を模したものである。
<Heat treatment at 300 ° C for 30 minutes>
The average crystal grain size of the copper foil after heat treatment at 300 ° C. for 30 minutes may be 0.5 to 4.0 μm and the tensile strength may be 235 to 290 MPa.
The copper foil which concerns on this invention is used for a flexible printed circuit board, In that case, since CCL which laminated | stacked copper foil and resin performs the heat processing for hardening resin at 200-400 degreeC, a crystal grain is formed by recrystallization. There is a possibility of coarsening.
Therefore, the average crystal grain size and tensile strength of the copper foil change before and after lamination with the resin. Then, the copper foil for flexible printed circuit boards concerning Claim 1 of this application has prescribed | regulated the copper foil of the state which received the hardening heat processing of resin after it became a copper clad laminated body laminated | stacked with resin.
On the other hand, the copper foil for flexible printed circuit boards according to claim 4 of the present application defines a state when the heat treatment is performed on the copper foil before being laminated with the resin. This heat treatment at 300 ° C. for 30 minutes simulates the temperature condition for curing and heat-treating the resin during CCL lamination.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、上述の最終冷間圧延を行うことにより箔を製造することができる。   The copper foil of this invention can be manufactured as follows, for example. First, after adding the said additive to a copper ingot and melt | dissolving and casting, it hot-rolls, performs cold rolling and annealing, and can manufacture foil by performing the above-mentioned final cold rolling.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Also, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) a thermoplastic adhesive of the same type as the base film is used. By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) composed of two layers of the copper foil and the resin base material is obtained. Further, by laminating a base film obtained by applying an adhesive to the copper foil of the present invention, a copper clad laminate (CCL) comprising three layers of a copper foil, a resin base material, and an adhesive layer therebetween is obtained. During the production of these CCLs, the copper foil is heat-treated and recrystallized.
A circuit is formed on these using a photolithographic technique, a circuit is plated as needed, and a cover-lay film is laminated, and a flexible printed circuit board (flexible wiring board) is obtained.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。
Therefore, the copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.
When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.
For example, the surface of the copper foil may be subjected to a surface treatment by roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。純度99.9%以上の電気銅に、表1に示す元素をそれぞれ添加し、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延して厚さ30mmとした後、14mmまで冷間圧延を行った後、1回の焼鈍を行った後に表面を面削して、表1に示す加工度ηで最終冷間圧延をして最終厚さ17μmの箔を得た。得られた箔に300℃×30分の熱処理を加え、銅箔サンプルを得た。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these. Each element shown in Table 1 was added to electrolytic copper with a purity of 99.9% or more, and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. The ingot was homogenized and annealed at 900 ° C., hot-rolled to a thickness of 30 mm, cold-rolled to 14 mm, and then annealed once, and then the surface was chamfered. Final cold rolling was performed at a working degree η shown in Fig. 1 to obtain a foil having a final thickness of 17 µm. A heat treatment at 300 ° C. for 30 minutes was added to the obtained foil to obtain a copper foil sample.

<A.銅箔サンプルの評価>
1.導電率
上記熱処理後の各銅箔サンプルについて、JIS H 0505に基づいて4端子法により、25℃の導電率(%IACS)を測定した。
導電率が75%IACS以上であれば導電性が良好である。
2.粒径
上記熱処理後の各銅箔サンプル表面をSEM(Scanning Electron Microscope)を用いて観察し、JIS H 0501に基づいて平均粒径を求めた。ただし、双晶は、別々の結晶粒とみなして測定を行った。測定領域は、表面の100μm ×100μmとした。
<A. Evaluation of copper foil sample>
1. Electrical conductivity The electrical conductivity (% IACS) at 25 ° C. was measured for each copper foil sample after the heat treatment by a four-terminal method based on JIS H 0505.
If the conductivity is 75% IACS or more, the conductivity is good.
2. Particle Size The surface of each copper foil sample after the heat treatment was observed using a SEM (Scanning Electron Microscope), and the average particle size was determined based on JIS H 0501. However, the twins were measured as if they were separate crystal grains. The measurement area was 100 μm × 100 μm on the surface.

3.銅箔の折り曲げ性(MIT耐折性)
上記熱処理後の各銅箔サンプルについて、JIS P 8115に基づいてMIT耐折回数(往復折曲げ回数)を測定した。ただし、折り曲げクランプのRは0.38、荷重は500gとした。
MIT耐折回数が75回以上であれば銅箔の折り曲げ性が良好である。
4.銅箔の引張強度
上記熱処理後の各銅箔サンプルについて、IPC-TM650に準拠した引張試験により上記条件で引張強度を測定した。
3. Copper foil bendability (MIT folding resistance)
About each copper foil sample after the said heat processing, the MIT folding endurance (number of reciprocal bending) was measured based on JISP8115. However, the bending clamp R was 0.38, and the load was 500 g.
If the MIT folding endurance number is 75 times or more, the bendability of the copper foil is good.
4). Tensile strength of copper foil About each copper foil sample after the said heat processing, the tensile strength was measured on the said conditions by the tensile test based on IPC-TM650.

<B.CCLの評価>
5.CCLの折り曲げ性
最終冷間圧延後で上記熱処理を行わない銅箔サンプル(熱処理前の銅箔)の片面に銅粗化めっきを行った。銅粗化めっき浴としてCu:10-25g/L,硫酸:20-100g/Lの組成を用い、浴温20-40℃、電流密度30-70A/dm2で1-5秒電気めっきし、銅付着量を20g/dm2とした。
銅箔サンプルの粗化めっき面にポリイミドフィルム(宇部興産株式会社製の製品名「ユーピレックスVT」、厚み25μm)を積層し、加熱プレス(4MPa)で300℃×30分の熱処理を加えて貼り合せ、CCLサンプルを得た。折り曲げ試験に使用したCCLサンプルの寸法は圧延方向(長手方向)が50mm、幅方向が12.7mmである。
<B. Evaluation of CCL>
5. CCL bendability Copper roughening plating was performed on one side of a copper foil sample (copper foil before heat treatment) that was not subjected to the heat treatment after the final cold rolling. Using copper: 10-25g / L, sulfuric acid: 20-100g / L as the copper roughening plating bath, electroplating at a bath temperature of 20-40 ° C and a current density of 30-70A / dm2 for 1-5 seconds, copper The adhesion amount was 20 g / dm2.
A polyimide film (product name “Iupilex VT” manufactured by Ube Industries Co., Ltd., thickness 25 μm) is laminated on the roughened plating surface of the copper foil sample, and bonded by applying a heat treatment at 300 ° C. for 30 minutes with a heating press (4 MPa). A CCL sample was obtained. The dimensions of the CCL sample used for the bending test are 50 mm in the rolling direction (longitudinal direction) and 12.7 mm in the width direction.

図1に示すように、このCCLサンプル30を銅箔面が外側になるようにして0.1mm厚の板20(JIS−H3130(C1990)に規格するチタン銅板)を挟み込み、長手方向の中央で2つ折りし、圧縮試験機10(島津製作所社製の製品名「オートグラフAGS」)の下型10aと上型10bの間に配置した。
この状態で上型10bを下げてCCLサンプル30を2つ折り部分で板20に密着するように折り曲げた(図1(a))。直ちにCCLサンプル30を圧縮試験機10から取り出し、2つ折り部分の「横向きVの字」状の折り曲げ先端部30sを、マイクロスコープ(キーエンス製社製の製品名「ワンショット3D測定マイクロスコープVR-3000」を用いて、倍率200倍で銅箔面の割れの有無を目視で確認した。なお、折り曲げ先端部30sは曲げ半径0.05mmの180度密着曲げに相当する。
割れが確認された場合は試験を終了し、図1(a)の圧縮を行った回数をCCLの折り曲げ回数とした。
As shown in FIG. 1, this CCL sample 30 is sandwiched with a 0.1 mm thick plate 20 (titanium copper plate standardized to JIS-H3130 (C1990)) with the copper foil surface facing outward, and at the center in the longitudinal direction. Folded in half and placed between the lower mold 10a and the upper mold 10b of the compression tester 10 (product name “Autograph AGS” manufactured by Shimadzu Corporation).
In this state, the upper mold 10b was lowered and the CCL sample 30 was bent so as to be in close contact with the plate 20 at the two-folded portion (FIG. 1A). Immediately remove the CCL sample 30 from the compression tester 10 and fold the “folded V-shaped” tip 30 s into a microscope (product name “One-shot 3D measurement microscope VR-3000” manufactured by Keyence Corporation). ”Was visually confirmed at 200 × magnification for cracking of the copper foil surface. Note that the bending tip 30s corresponds to 180 ° contact bending with a bending radius of 0.05 mm.
When cracking was confirmed, the test was terminated, and the number of times of compression shown in FIG.

割れが確認されなかった場合は、図1(b)に示すように、折り曲げ先端部30sが上向きになるようにして、CCLサンプル30を圧縮試験機10の下型10aと上型10bの間に配置し、この状態で上型10bを下げて折り曲げ先端部30sを開いた。
そして、図1(a)の折り曲げを再度行い、同様に折り曲げ先端部30sの割れの有無を目視で確認した。以下、同様に図1(a)〜(b)の工程を繰り返し、折り曲げ回数を決定した。
CCLの折り曲げ回数が3回以上であればCCLの折り曲げ性が良好である。
When no crack is confirmed, the CCL sample 30 is placed between the lower mold 10a and the upper mold 10b of the compression tester 10 so that the bent tip 30s faces upward as shown in FIG. In this state, the upper die 10b was lowered and the bent tip portion 30s was opened.
And the bending of Fig.1 (a) was performed again, and the presence or absence of the crack of the bending front-end | tip part 30s was confirmed visually. Hereinafter, similarly, the steps of FIGS. 1A to 1B were repeated to determine the number of bendings.
If the number of times the CCL is bent is 3 times or more, the CCL bendability is good.

6.エッチング性
上記CCLサンプルの銅箔部分にL/S(ライン/スペース)=40/40μm、35/35μm、25/25μm、 20/20μm、および15/15μmの短冊状の回路を形成した。比較として、市販の圧延銅箔(タフピッチ銅箔)と同様に回路を形成した。そして、エッチングファクタ(回路の(エッチング深さ/上下の平均エッチング幅)で表される比)、及び回路の直線性をマイクロスコープで目視判定し、以下の基準で評価した。評価が○であれば良い。
○:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が良好
△:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が同等
×:市販の圧延銅箔に比べてエッチングファクタ及び回路の直線性が劣る
6). Etchability Strip-like circuits of L / S (line / space) = 40/40 μm, 35/35 μm, 25/25 μm, 20/20 μm, and 15/15 μm were formed on the copper foil portion of the CCL sample. For comparison, a circuit was formed in the same manner as a commercially available rolled copper foil (tough pitch copper foil). Then, the etching factor (ratio represented by (etching depth / average upper and lower average etching width) of the circuit) and the linearity of the circuit were visually determined with a microscope and evaluated according to the following criteria. If evaluation is (circle), it is good.
○: Etching factor and circuit linearity are better than commercially available rolled copper foils △: Etching factor and circuit linearity are comparable to commercially available rolled copper foils ×: Etching factor compared to commercially available rolled copper foils And circuit linearity is poor

得られた結果を表1に示す。   The obtained results are shown in Table 1.

表1から明らかなように、銅箔の平均結晶粒径が0.5〜4.0μm、かつ引張強度が235〜290MPaである各実施例の場合、折り曲げ性及びエッチング性に優れていた。なお、実施例1は最終冷間圧延の最後の1パスで重合圧延を行った。   As is clear from Table 1, in each of the examples in which the average crystal grain size of the copper foil was 0.5 to 4.0 μm and the tensile strength was 235 to 290 MPa, the bending property and the etching property were excellent. In Example 1, polymerization rolling was performed in the last one pass of the final cold rolling.

一方、最終冷間圧延での加工度ηが3.5未満である比較例1、4の場合、銅箔の平均結晶粒径が4.0μmを超え、引張強度が235MPa未満となり、銅箔及びCCLの折り曲げ性に劣った。なお、比較例4の場合、銅箔の平均結晶粒径が4.0μmよりやや大きい4.5μmのため、エッチング性は良好であった。 On the other hand, in Comparative Examples 1 and 4 in which the degree of work η in the final cold rolling is less than 3.5, the average crystal grain size of the copper foil exceeds 4.0 μm, the tensile strength becomes less than 235 MPa, and the copper foil and the CCL are bent. Inferior. In the case of Comparative Example 4, the average crystal grain size of the copper foil was 4.5 μm, which is slightly larger than 4.0 μm, so that the etching property was good.

添加元素の合計含有量が下限値未満である比較例3の場合、添加元素による再結晶粒の微細化が十分でなく、銅箔の平均結晶粒径が4.0μmを大幅に超えて粗大化し、引張強度が235MPa未満となり、銅箔及びCCLの折り曲げ性及びエッチング性に劣った。添加元素の合計含有量が上限値を超えた比較例2の場合、導電率が劣った。
添加元素の合計含有量が上限値を超えた比較例5の場合、再結晶温度が高くなって300℃の熱処理では再結晶せず、導電率が低下すると共に、引張強度が290MPaを超えて高くなった。そのため、銅箔及びCCLの折り曲げ性が大幅に劣化した。
In the case of Comparative Example 3 in which the total content of the additive elements is less than the lower limit value, the recrystallized grains are not sufficiently refined by the additive elements, and the average crystal grain size of the copper foil greatly exceeds 4.0 μm, The tensile strength was less than 235 MPa, and the copper foil and CCL were inferior in bending property and etching property. In the case of Comparative Example 2 in which the total content of additive elements exceeded the upper limit value, the conductivity was inferior.
In the case of Comparative Example 5 in which the total content of the additive elements exceeded the upper limit value, the recrystallization temperature was increased and the heat treatment at 300 ° C. did not recrystallize, the conductivity decreased, and the tensile strength exceeded 290 MPa. became. Therefore, the bendability of the copper foil and CCL was greatly deteriorated.

Claims (9)

99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、
平均結晶粒径が0.5〜4.0μm、かつ引張強度が235〜290MPa
JIS P 8115に基づくMIT耐折回数(往復折曲げ回数、ただし、折り曲げクランプのRは0.38、荷重は500g)が75〜129であるフレキシブルプリント基板用銅箔。
99.0% by mass or more of Cu, the remaining copper foil consisting of inevitable impurities,
An average crystal grain size of 0.5 to 4.0 μm and a tensile strength of 235 to 290 MPa ,
A copper foil for a flexible printed circuit board having a MIT folding endurance number (the number of reciprocal bendings , where the bending clamp R is 0.38 and the load is 500 g) of 75 to 129 based on JIS P 8115 .
JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1011)の無酸素銅からなる請求項1に記載のフレキシブルプリント基板用銅箔。   The copper foil for flexible printed circuit boards of Claim 1 which consists of tough pitch copper specified to JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1011). さらに、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.003〜0.825質量%含有してなる請求項1又は2に記載のフレキシブルプリント基板用銅箔。   Furthermore, the flexible print of Claim 1 or 2 which contains 0.003-0.825 mass% of 1 or more types of additional elements chosen from the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg in total. Copper foil for substrates. 300℃で30分間の熱処理したときの前記平均結晶粒径が0.5〜4.0μm、かつ前記引張強度が235〜290MPa、前記MIT耐折回数が75〜129である請求項1〜3のいずれか一項に記載のフレキシブルプリント基板用銅箔。 The average crystal grain size when subjected to heat treatment at 300 ° C for 30 minutes is 0.5 to 4.0 µm, the tensile strength is 235 to 290 MPa, and the MIT folding resistance is 75 to 129 . The copper foil for flexible printed circuit boards of one term. 前記銅箔の片面に、厚さ25μmのポリイミド樹脂フィルムを積層してなる銅張積層体を、曲げ半径0.05mmで前記銅箔が外側になるように180度密着曲げし、その後に折り曲げ部を0度に戻す試験を3回繰り返した後、前記銅箔を200倍で観察したときに亀裂が視認されない請求項1〜4のいずれか一項に記載のフレキシブルプリント基板用銅箔。   A copper-clad laminate formed by laminating a polyimide resin film with a thickness of 25 μm on one side of the copper foil is bent 180 degrees so that the copper foil is on the outside with a bending radius of 0.05 mm, and then the bent portion is formed. The copper foil for flexible printed circuit boards as described in any one of Claims 1-4 in which a crack is not visually recognized when the said copper foil is observed by 200 time after repeating the test returned to 0 degree | times 3 times. 請求項1〜5のいずれか一項に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。   The copper clad laminated body formed by laminating | stacking the copper foil for flexible printed circuit boards as described in any one of Claims 1-5, and a resin layer. 請求項6に記載の銅張積層体を用い、前記銅箔に回路を形成してなるフレキシブルプリント基板。   A flexible printed circuit board obtained by forming a circuit on the copper foil using the copper-clad laminate according to claim 6. 前記回路のL/Sが40/40〜15/15(μm/μm)である請求項7に記載のフレキシブルプリント基板。   The flexible printed circuit board according to claim 7, wherein L / S of the circuit is 40/40 to 15/15 (μm / μm). 請求項7又は8に記載のフレキシブルプリント基板を用いた電子機器。   The electronic device using the flexible printed circuit board of Claim 7 or 8.
JP2016063232A 2016-02-05 2016-03-28 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device Active JP6294376B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106100661A TWI633195B (en) 2016-02-05 2017-01-10 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN201710050041.5A CN107046768B (en) 2016-02-05 2017-01-23 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR1020170010940A KR101935129B1 (en) 2016-02-05 2017-01-24 Copper foil for flexible printed wiring board, and copper-clad laminate, flexible printed wiring board and electronic device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016020758 2016-02-05
JP2016020758 2016-02-05

Publications (2)

Publication Number Publication Date
JP2017141501A JP2017141501A (en) 2017-08-17
JP6294376B2 true JP6294376B2 (en) 2018-03-14

Family

ID=59628333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063232A Active JP6294376B2 (en) 2016-02-05 2016-03-28 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Country Status (3)

Country Link
JP (1) JP6294376B2 (en)
KR (1) KR101935129B1 (en)
TW (1) TWI633195B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6328679B2 (en) * 2016-03-28 2018-05-23 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6793138B2 (en) 2018-01-22 2020-12-02 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6827022B2 (en) * 2018-10-03 2021-02-10 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP7394017B2 (en) 2020-05-14 2023-12-07 Jx金属株式会社 Metal alloy manufacturing method
JP7158434B2 (en) 2020-05-14 2022-10-21 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
JP7014884B1 (en) 2020-12-23 2022-02-01 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
JP7027602B1 (en) * 2020-12-23 2022-03-01 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4162087B2 (en) * 2003-08-22 2008-10-08 日鉱金属株式会社 Highly flexible rolled copper foil and method for producing the same
JP5235080B2 (en) * 2007-09-28 2013-07-10 Jx日鉱日石金属株式会社 Copper alloy foil and flexible printed circuit board using the same
JP5588607B2 (en) * 2007-10-31 2014-09-10 三井金属鉱業株式会社 Electrolytic copper foil and method for producing the electrolytic copper foil
JP5752536B2 (en) * 2011-08-23 2015-07-22 Jx日鉱日石金属株式会社 Rolled copper foil
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
JP2014152352A (en) * 2013-02-06 2014-08-25 Sh Copper Products Corp Composite copper foil and production method thereof

Also Published As

Publication number Publication date
KR101935129B1 (en) 2019-01-03
JP2017141501A (en) 2017-08-17
TWI633195B (en) 2018-08-21
KR20170093708A (en) 2017-08-16
TW201734220A (en) 2017-10-01

Similar Documents

Publication Publication Date Title
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI687526B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
KR102049636B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102285062B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2019194360A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2019199638A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus including the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170606

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6294376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250