KR102285062B1 - Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment - Google Patents

Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment Download PDF

Info

Publication number
KR102285062B1
KR102285062B1 KR1020200034239A KR20200034239A KR102285062B1 KR 102285062 B1 KR102285062 B1 KR 102285062B1 KR 1020200034239 A KR1020200034239 A KR 1020200034239A KR 20200034239 A KR20200034239 A KR 20200034239A KR 102285062 B1 KR102285062 B1 KR 102285062B1
Authority
KR
South Korea
Prior art keywords
copper foil
copper
flexible printed
printed circuit
circuit board
Prior art date
Application number
KR1020200034239A
Other languages
Korean (ko)
Other versions
KR20200115206A (en
Inventor
유지 이시노
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20200115206A publication Critical patent/KR20200115206A/en
Application granted granted Critical
Publication of KR102285062B1 publication Critical patent/KR102285062B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

[과제] 미세 회로 형성 후의 굴곡성이 우수한 플렉시블 프린트 기판용 동박, 그것을 사용한 동장 적층체, 플렉시블 프린트 기판 및 전자 기기를 제공한다.
[해결수단] 99.0질량% 이상의 Cu, 잔부 불가피적 불순물을 포함하는 동박이며, 동박으로부터 회로를 형성한 폭 12.7mm, 길이: 200mm의 2층 편면 CCL 샘플을 사용하여, 곡률 반경 R=2.0으로 2000회의 IPC 미끄럼 이동 굴곡을 행한 후의 회로 표면의 표면 조도 Ra가 0.030㎛ 이상 0.400㎛ 이하이다.
[PROBLEMS] To provide a copper foil for flexible printed circuit boards having excellent flexibility after fine circuit formation, a copper clad laminate using the same, a flexible printed circuit board, and an electronic device.
[Solution] Using a copper foil containing 99.0 mass % or more of Cu and remaining unavoidable impurities, and using a two-layer single-sided CCL sample of 12.7 mm width and 200 mm length in which a circuit is formed from copper foil, 2000 with a radius of curvature R = 2.0 Surface roughness Ra of the circuit surface after performing IPC sliding bending|flexion of a meeting is 0.030 micrometer or more and 0.400 micrometer or less.

Description

플렉시블 프린트 기판용 동박, 그것을 사용한 동장 적층체, 플렉시블 프린트 기판 및 전자 기기 {COPPER FOIL FOR FLEXIBLE PRINTED CIRCUIT BOARD, COPPER-CLAD LAMINATE USING THE SAME, FLEXIBLE PRINTED CIRCUIT BOARD, AND ELECTRONIC EQUIPMENT}Copper foil for flexible printed circuit boards, copper clad laminates using the same, flexible printed circuit boards and electronic devices

본 발명은 플렉시블 프린트 기판 등의 배선 부재에 사용하기에 적합한 동박, 그것을 사용한 동장 적층체, 플렉시블 배선판 및 전자 기기에 관한 것이다.The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper clad laminate using the same, a flexible wiring board, and an electronic device.

플렉시블 프린트 기판(플렉시블 배선판, 이하 「FPC」라고 칭함)은 플렉시블성을 갖기 때문에, 전자 회로의 절곡부나 가동부에 널리 사용되고 있다. 예를 들어, HDD나 DVD 및 CD-ROM 등의 디스크 관련 기기의 가동부나, 접이식 휴대 전화기의 절곡부 등에 FPC가 사용되고 있다.Since a flexible printed circuit board (a flexible wiring board, hereafter called "FPC") has flexibility, it is widely used for the bending part and movable part of an electronic circuit. For example, FPC is used for movable parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and for bending parts of foldable mobile phones.

FPC는 동박과 수지를 적층한 Copper Clad Laminate(동장 적층체, 이하 CCL이라고 칭함)를 에칭함으로써 배선을 형성하고, 그 위를 커버 레이라고 불리는 수지층에 의해 피복한 것이다. 커버 레이를 적층하기 전단계에서, 동박과 커버 레이의 밀착성을 향상시키기 위한 표면 개질 공정의 일환으로서, 동박 표면의 에칭이 행해진다. 또한, 동박의 두께를 저감하여 굴곡성을 향상시키기 위해, 두께 감소 에칭을 행하는 경우도 있다.In FPC, wiring is formed by etching Copper Clad Laminate (copper clad laminate, hereinafter referred to as CCL) in which copper foil and resin are laminated, and the above is covered with a resin layer called a coverlay. In the step before laminating the coverlay, as a part of the surface modification process for improving the adhesion between the copper foil and the coverlay, the surface of the copper foil is etched. Moreover, in order to reduce the thickness of copper foil and to improve a flexibility, thickness reduction etching may be performed.

그런데, 전자 기기의 소형, 박형, 고성능화에 수반하여, FPC의 굴곡성이 더 요구되고 있다. 그래서, 동박의 평균 결정 입경 및 최대 결정 입경을 규제하여 굴곡성을 개선한 기술이 보고되어 있다(특허문헌 1). 또한, 판 두께와 파단 신도의 관계를 규정함으로써 MIT 굴곡성을 개선한 기술이 보고되어 있다(특허문헌 2).By the way, the flexibility of FPC is further calculated|required with improvement of the compactness, thinness, and high performance of an electronic device. Then, the technique which improved the flexibility by regulating the average grain size and the largest grain size of copper foil is reported (patent document 1). Moreover, the technique which improved the MIT flexibility by prescribing|regulating the relationship between plate|board thickness and breaking elongation is reported (patent document 2).

또한, 전자 기기의 소형, 박형, 고성능화에 수반하여, FPC의 회로 폭, 스페이스 폭의 미세화(예를 들어, 20 내지 30㎛ 정도)도 요구되고 있다.Moreover, with the miniaturization, thinness, and high performance of an electronic device, refinement|miniaturization of the circuit width and space width of an FPC (for example, about 20-30 micrometers) is also calculated|required.

일본 특허 공개 제2016-188415호 공보Japanese Patent Laid-Open No. 2016-188415 일본 특허 공개 제2018-131653호 공보Japanese Patent Laid-Open No. 2018-131653

그러나, FPC의 회로가 미세화되면, FPC를 굴곡시켰을 때 저변형의 반복 변형이 회로(동박)에 걸려, 표면 조도가 커져 오목부에 응력이 집중하여 굴곡성이 저하된다고 하는 문제가 있다.However, when the circuit of the FPC is miniaturized, when the FPC is bent, repeated deformation of low strain is applied to the circuit (copper foil), the surface roughness increases, stress is concentrated in the concave portion, and there is a problem that the flexibility is reduced.

즉, 동박의 두께에 대하여 충분히 회로 폭이 넓은 경우, 굴곡 방향에 평행인 방향의 변형이 지배적이지만, 미세 회로의 경우, 동박의 (두께/폭)의 값이 커지기 때문에, 굴곡 방향에 수직인 폭 방향의 변형도 고려할 필요가 생긴다. 또한 일반적으로 회로의 폭 방향 중앙부에 비하여, 단부 부근은 주위로부터의 구속이 적어 변형되기 쉽다고 생각되지만, 미세 회로에 있어서는, 그 변형되기 쉬운 단부 부근이라고 간주할 수 있는 영역의 비율이 커진다. 이상의 이유에 의해, 회로 폭이 좁아짐으로써, 굴곡성이 보다 엄격해진다고 생각된다.That is, when the circuit width is sufficiently wide with respect to the thickness of the copper foil, deformation in the direction parallel to the bending direction is dominant, but in the case of a fine circuit, since the (thickness/width) value of the copper foil becomes large, the width perpendicular to the bending direction Changes in direction also need to be considered. Moreover, compared with the central part in the width direction of a circuit, generally, it is thought that the edge part vicinity has less restraint from the circumference|surroundings and it is thought that it is easy to deform|transform, but in a microcircuit, the ratio of the area|region which can be considered as the edge part vicinity which deform|transforms easily increases. For the above reason, it is thought that flexibility becomes stricter when circuit width becomes narrow.

본 발명은 상기 과제를 해결하기 위해 이루어진 것이며, 미세 회로 형성 후의 굴곡성이 우수한 플렉시블 프린트 기판용 동박, 그것을 사용한 동장 적층체, 플렉시블 프린트 기판 및 전자 기기의 제공을 목적으로 한다.This invention was made in order to solve the said subject, and aims at provision of the copper foil for flexible printed circuit boards excellent in the flexibility after fine circuit formation, a copper clad laminated body using the same, a flexible printed circuit board, and an electronic device.

본 발명자들은 여러 가지 검토한 결과, FPC의 미세 회로의 굴곡성을 저하시키는 반복 변형에 의한 동박(회로)의 표면 조도의 증대가, 최종 냉간 압연에 있어서의 최종 패스의 변형 속도와 관계가 있음을 알아내고, 굴곡성을 저하시키지 않는 표면 조도의 범위를 규정하였다.As a result of various studies, the present inventors found that the increase in the surface roughness of the copper foil (circuit) due to repeated deformation that reduces the flexibility of the fine circuit of FPC is related to the deformation rate of the final pass in the final cold rolling. and the range of surface roughness which does not reduce flexibility was prescribed|regulated.

즉, 본 발명의 플렉시블 프린트 기판용 동박은, 99.0질량% 이상의 Cu, 잔부 불가피적 불순물을 포함하는 동박이며, 상기 동박으로부터 회로를 형성한 폭 12.7mm, 길이: 200mm의 2층 편면 CCL 샘플을 사용하여, 곡률 반경 R=2.0으로 2000회의 IPC 미끄럼 이동 굴곡을 행한 후의 상기 회로 표면의 표면 조도 Ra가 0.030㎛ 이상 0.400㎛ 이하이다. 단, 상기 2층 편면 CCL 샘플은, 상기 동박의 편면에 구리 조화 도금을 행한 후, 두께 25㎛의 폴리이미드 필름의 양면에 2매의 상기 동박의 각각 상기 구리 조화 도금측을 향하여 적층하고, 300℃×30분의 가열 프레스로 4MPa로 접합하고, 편면의 상기 동박을 에치 아웃으로 완전히 제거하여 2층 편면 CCL을 제작한다. 그리고, 상기 2층 편면 CCL 샘플의 동박측의 면에, 선폭 25㎛로 압연 방향을 따라 연장되는 회로를, 회로 개수 8개, 회로 간격 125㎛로 에칭 형성한다.That is, the copper foil for flexible printed circuit boards of the present invention is a copper foil containing 99.0 mass% or more of Cu and residual unavoidable impurities, and a two-layer single-sided CCL sample having a width of 12.7 mm and a length of 200 mm in which a circuit is formed from the copper foil is used. Thus, the surface roughness Ra of the circuit surface after performing IPC sliding bending 2000 times with a radius of curvature R=2.0 is 0.030 µm or more and 0.400 µm or less. However, in the two-layer single-sided CCL sample, after performing copper roughening plating on one side of the copper foil, on both sides of a polyimide film having a thickness of 25 µm, each of the two copper foils is laminated toward the copper roughened plating side, 300 It is joined at 4 MPa by a hot press at °C x 30 minutes, and the copper foil on one side is completely removed by etch-out to produce a two-layer single-sided CCL. Then, on the copper foil side surface of the two-layer single-sided CCL sample, circuits extending along the rolling direction with a line width of 25 µm are etched to form eight circuits and a circuit interval of 125 µm.

본 발명의 플렉시블 프린트 기판용 동박에 있어서, 상기 IPC 미끄럼 이동 굴곡을 행하기 전의 상기 회로 표면의 표면 조도 Ra가 0.010㎛ 이상 0.200㎛ 이하인 것이 바람직하다.Copper foil for flexible printed circuit boards of this invention WHEREIN: It is preferable that surface roughness Ra of the said circuit surface before performing the said IPC sliding bending is 0.010 micrometer or more and 0.200 micrometer or less.

본 발명의 플렉시블 프린트 기판용 동박은, JIS-H3100(C1100)에 규격된 터프 피치 동 또는 JIS-H3100(C1020)의 무산소 동을 포함하는 것이 바람직하다.It is preferable that the copper foil for flexible printed circuit boards of this invention contains the tough-pitch copper standardized by JIS-H3100 (C1100), or the oxygen-free copper of JIS-H3100 (C1020).

본 발명의 플렉시블 프린트 기판용 동박은, 또한 첨가 원소로서 P, Ag, Si, Ge, Al, Ga, Zn, Sn 및 Sb로 이루어지는 군으로부터 선택되는 적어도 1종 또는 2종 이상을 합계로 0.7질량% 이하 함유하여 이루어지는 것이 바람직하다.The copper foil for flexible printed circuit boards of this invention is 0.7 mass % in total of at least 1 type, or 2 or more types selected from the group which consists of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb as an additive element further. It is preferable to contain the following.

본 발명의 동장 적층체는, 상기 플렉시블 프린트 기판용 동박과, 수지층을 적층하여 이루어진다.The copper clad laminate of this invention laminates|stacks the said copper foil for flexible printed circuit boards, and a resin layer.

본 발명의 플렉시블 프린트 기판은, 상기 동장 적층체에 있어서의 상기 동박에 회로를 형성하여 이루어진다.The flexible printed circuit board of this invention forms a circuit in the said copper foil in the said copper clad laminated body.

본 발명의 전자 기기는, 상기 플렉시블 프린트 기판을 사용하여 이루어진다.The electronic device of this invention is made|formed using the said flexible printed circuit board.

본 발명에 따르면, 미세 회로 형성 후의 굴곡성이 우수한 플렉시블 프린트 기판용 동박이 얻어진다.ADVANTAGE OF THE INVENTION According to this invention, the copper foil for flexible printed circuit boards excellent in the flexibility after microcircuit formation is obtained.

도 1은, 굴곡 시험 방법을 도시하는 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the bending test method.

이하, 본 발명에 관한 동박의 실시 형태에 대하여 설명한다. 또한, 본 발명에 있어서 %는 특별히 언급하지 않는 한, 질량%를 나타내는 것으로 한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the copper foil which concerns on this invention is described. In addition, in this invention, unless otherwise indicated, % shall represent mass %.

우선, 미세 회로 형성 후의 굴곡성 평가에 대하여 설명한다.First, the evaluation of flexibility after formation of a fine circuit will be described.

상기한 바와 같이, 미세 회로의 경우, 동박의 (두께/폭)의 값이 커지기 때문에, 굴곡 방향에 수직인 폭 방향의 변형이 커짐과 함께, 변형되기 쉬운 회로의 단부 영역의 비율이 커진다. 그 결과, 저변형의 반복 변형이 회로(동박)에 걸리면, 표면 조도가 커져 오목부에 응력이 집중하여 굴곡성이 저하된다.As described above, in the case of a microcircuit, since the (thickness/width) value of the copper foil increases, the deformation in the width direction perpendicular to the bending direction increases, and the ratio of the end region of the circuit that is easily deformed increases. As a result, when repeated deformation of low strain is applied to the circuit (copper foil), the surface roughness increases, stress is concentrated in the concave portion, and the flexibility decreases.

그래서, 미세 회로를 모의적으로 제작하고, 소정의 굴곡 시험을 행한 전후의 회로(동박)의 표면 조도를 측정하고, 굴곡 후의 Ra를 0.030㎛ 이상 0.400㎛ 이하로 규정하였다.Then, a microcircuit was simulated, and the surface roughness of the circuit (copper foil) before and after performing a predetermined bending test was measured, and Ra after bending was prescribed|regulated to 0.030 micrometer or more and 0.400 micrometer or less.

굴곡 후의 Ra를 상기 범위로 관리함으로써, 표면에 걸리는 응력을 균일하게 분산할 수 있어, 우수한 굴곡성이 발현된다.By managing Ra after bending in the said range, the stress applied to the surface can be disperse|distributed uniformly, and the outstanding flexibility is expressed.

굴곡 후의 Ra가 0.030㎛ 미만이면, 표면이 지나치게 평활하여, 변형 전부터 존재하는 작은 기복(오일 피트 등)에 응력이 집중하여, 오히려 굴곡성이 저하된다. 굴곡 후의 Ra가 0.400㎛를 초과하면, 표면 조도가 커져 오목부에 응력이 집중하여 굴곡성이 저하된다.When Ra after bending is less than 0.030 µm, the surface is too smooth, stress is concentrated on small undulations (oil pits, etc.) existing before deformation, and the flexibility is rather reduced. When Ra after bending exceeds 0.400 µm, the surface roughness becomes large, stress is concentrated in the concave portion, and the flexibility decreases.

또한, 굴곡 전의 Ra가 0.010㎛ 이상 0.200㎛ 이하이면 바람직하다.Moreover, it is preferable that Ra before bending is 0.010 micrometer or more and 0.200 micrometer or less.

굴곡 전의 Ra가 0.010㎛ 미만이면, 굴곡 후의 Ra도 0.030㎛ 미만으로 되기 쉽고, 굴곡 전의 Ra가 0.200㎛를 초과하면, 굴곡 후의 Ra도 0.400㎛를 초과하기 쉽다.When the Ra before bending is less than 0.010 µm, the Ra after bending tends to be less than 0.030 µm, and when Ra before bending exceeds 0.200 µm, the Ra after bending also easily exceeds 0.400 µm.

모의적인 미세 회로는 이하와 같이 제작한다. 우선, 최종 냉간 압연 후의 동박의 편면에 구리 조화 도금을 행하여, 폴리이미드 필름(두께 25㎛)의 양면에 각각 동박의 조화 도금측에 적층하고, 가열 프레스(4MPa)로 접합하여 3층의 양면 동박 CCL 샘플을 얻는다. 또한, 필름의 적층 시에 300℃×30분의 열처리를 가한다. 또한, 3층의 양면 동박 CCL 샘플 중, 편면의 동박을 에치 아웃으로 완전히 제거하여 2층 편면 CCL을 제작한다.A simulated microcircuit is produced as follows. First, copper roughening plating is performed on one side of the copper foil after final cold rolling, and laminating on both sides of a polyimide film (25 µm in thickness) on the roughened plating side of the copper foil, respectively, bonding by hot press (4 MPa), three-layer double-sided copper foil Obtain a CCL sample. In addition, heat treatment for 300°C x 30 minutes is applied at the time of lamination of the film. Moreover, among the double-sided copper foil CCL samples of three layers, copper foil of one side is completely removed by etch-out, and two-layer single-sided CCL is produced.

본 발명에 관한 동박은 플렉시블 프린트 기판에 사용되며, 그때, 동박과 수지를 적층한 CCL은, 200 내지 400℃에서 수지를 경화시키기 위한 열처리를 행한다. 이 열처리를 상정하여, 300℃×30분으로 하였다.The copper foil which concerns on this invention is used for a flexible printed circuit board, CCL which laminated|stacked copper foil and resin in that case performs the heat processing for hardening resin at 200-400 degreeC. This heat treatment was assumed, and it was set as 300 degreeC x 30 minutes.

2층 편면 CCL 샘플의 동박측의 면에, 선폭 25㎛로 압연 방향을 따라 연장되는 회로를, 회로 개수 8개, 회로 간격 125㎛로 에칭 형성한다. 회로의 에칭 팩터 EF는 4.0 이상으로 한다.On the copper foil side surface of the two-layer single-sided CCL sample, circuits extending along the rolling direction with a line width of 25 µm were etched to form eight circuits and a circuit interval of 125 µm. The etching factor EF of the circuit is set to 4.0 or more.

또한, 조 도금은, 굴곡 시험 중에 동박과 수지의 박리를 방지할 수 있다면, 특별히 도금 조건 등은 한정되지 않지만, 예를 들어 일반적으로 FPC 용도에서 사용되고 있는 것으로서 이하가 예시된다. 도금욕 조성: Cu 15g/L, Co 8.5g/L, Ni 8.6g/L, 도금액 pH: 2.5, 도금 온도: 38℃, 전류 밀도: 20A/d㎡, 도금 시간: 2.0초In addition, as for rough plating, if peeling of copper foil and resin can be prevented during a bending test, although plating conditions in particular are not limited, For example, the following are illustrated as what is generally used in FPC use, for example. Plating bath composition: Cu 15g/L, Co 8.5g/L, Ni 8.6g/L, plating solution pH: 2.5, plating temperature: 38°C, current density: 20A/dm2, plating time: 2.0 seconds

에칭액은, 예를 들어 CuCl2-2H2O: 3mol/L, HCl: 4mol/L, 에칭 온도는 예를 들어 50℃, 에칭 시간은 회로 폭이 25㎛가 되도록 조정하면 된다.The etching liquid may be, for example, CuCl 2 -2H 2 O: 3 mol/L, HCl: 4 mol/L, and the etching temperature may be adjusted, for example, at 50° C. and the etching time so that the circuit width is 25 µm.

그리고, 이 회로 형성한 CCL에 대하여, 도 1에 도시하는 IPC(미국 프린트 회로 공업회) 굴곡 시험 장치에 의해, 2000회의 미끄럼 이동 굴곡을 실시한 후, 레이저 현미경을 사용하여 회로 방향에 평행 방향의 표면 조도 Ra를 측정한다.And with respect to the CCL in which this circuit was formed, after performing sliding bending 2000 times with the IPC (American Printed Circuit Manufacturers Association) bending test apparatus shown in FIG. 1, using a laser microscope, the surface roughness of the direction parallel to the circuit direction Measure Ra.

이 장치는, 발진 구동체(4)에 진동 전달 부재(3)를 결합한 구조로 되어 있고, FPC(1)는, 화살표로 나타낸 나사(2)의 부분과 진동 전달 부재(3)의 선단부의 총 4점에서 장치에 고정된다. 진동 전달 부재(3)가 상하로 구동하면, FPC(1)의 중간부는, 소정의 곡률 반경 r로 헤어핀형으로 굴곡된다. 본 시험에서는, 이하의 조건 하에서 굴곡을 반복한다.This device has a structure in which the vibration transmitting member 3 is coupled to the oscillation driving body 4 , and the FPC 1 is a total of a screw 2 indicated by an arrow and a tip of the vibration transmitting member 3 . It is fixed to the device at 4 points. When the vibration transmitting member 3 is driven up and down, the middle portion of the FPC 1 is bent in a hairpin shape with a predetermined radius of curvature r. In this test, bending is repeated under the following conditions.

또한, 시험 조건은 다음과 같다: 시험편 폭: 12.7mm, 시험편 길이: 200mm, 시험편 채취 방향: 시험편의 길이 방향이 압연 방향과 평행으로 되도록 채취, 곡률 반경 r: 2mm, 진동 스트로크: 20mm, 진동 속도: 100회/분, 굽힘 방향: FPC(1) 중 동박이 내측, 으로 한다.In addition, the test conditions are as follows: specimen width: 12.7 mm, specimen length: 200 mm, specimen collection direction: sampled so that the longitudinal direction of the specimen is parallel to the rolling direction, radius of curvature r: 2 mm, vibration stroke: 20 mm, vibration speed : 100 times/min, bending direction: FPC (1) with copper foil inside.

표면 조도(산술 평균 조도) Ra는, 동박 표면의 요철 프로파일로부터 JIS B0601-1994에 준하여 산출되는 중심선 평균 조도이다.Surface roughness (arithmetic mean roughness) Ra is a centerline average roughness computed according to JIS B0601-1994 from the uneven profile of the surface of copper foil.

표면 조도 Ra의 측정은, 키엔스사제의 형상 해석 레이저 현미경 VK-X1050을 사용할 수 있다. 측정 조건은, 대물 렌즈: 50배, 중간 렌즈: 24배의 조건에서, 회로 방향에 평행으로 10개의 선 조도 분석을 행하여, 그 평균값을 표면 조도 Ra로서 채용한다. 선 분석의 간격은, 1개째와 10개째의 사이가 회로 표면의 폭의 80% 이상으로 되도록, 등간격으로 조정한다.For the measurement of surface roughness Ra, a shape analysis laser microscope VK-X1050 manufactured by Keyence Corporation can be used. As the measurement conditions, 10 line roughness analyzes are performed parallel to the circuit direction under the conditions of objective lens: 50 times and intermediate lens: 24 times, and the average value is adopted as the surface roughness Ra. The interval of line analysis is adjusted at equal intervals so that the interval between the 1st and 10th lines becomes 80% or more of the width of the circuit surface.

<조성><Composition>

본 발명에 관한 동박은, 99.0질량% 이상의 Cu, 잔부 불가피적 불순물을 포함한다.The copper foil which concerns on this invention contains 99.0 mass % or more of Cu, and remainder unavoidable impurities.

또한, 첨가 원소로서, 상기 조성에 대하여, P, Ag, Si, Ge, Al, Ga, Zn, Sn 및 Sb로 이루어지는 군으로부터 선택되는 적어도 1종 또는 2종 이상을 합계로 0.7질량% 이하 함유하면, 재결정립을 미세화하여, 반복 변형에 의한 표면 조도의 증대를 억제할 수 있다.In addition, as an additive element, 0.7 mass % or less of at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb in total with respect to the composition is contained. , it is possible to suppress the increase in surface roughness due to repeated deformation by refining the recrystallized grains.

상기 첨가 원소는, 냉간 압연 시에 전위의 얽힘 빈도를 증가시키므로, 재결정립을 미세화할 수 있다.Since the said additive element increases the frequency of entanglement of dislocations at the time of cold rolling, it can refine|miniaturize a recrystallized grain.

상기 첨가 원소를 합계로 0.7질량%를 초과하여 함유시키면, 도전율이 저하되어, 플렉시블 기판용 동박으로서 적합하지 않은 경우가 있으므로, 0.7질량%를 상한으로 하였다. 상기 첨가 원소의 함유량의 하한은 특별히 제한되지 않지만, 예를 들어 각 원소에 대하여 0.0005질량%보다 작게 제어하는 것은 공업적으로 어려우므로, 각 원소의 함유량의 하한을 0.0005질량%로 하면 된다.When the said additive element is contained exceeding 0.7 mass % in total, electrical conductivity will fall and since it may not be suitable as copper foil for flexible substrates, 0.7 mass % was made into the upper limit. The lower limit of the content of the additional element is not particularly limited. For example, since it is industrially difficult to control the content of each element to be smaller than 0.0005 mass%, the lower limit of the content of each element may be set to 0.0005 mass%.

본 발명에 관한 동박을, JIS-H3100(C1100)에 규격된 터프 피치 동(TPC) 또는 JIS-H3100(C1020)의 무산소 동(OFC)을 포함하는 조성으로 해도 된다.The copper foil according to the present invention may have a composition containing tough pitch copper (TPC) standardized in JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020).

또한, 상기 TPC 또는 OFC에 대하여, P를 함유시켜 이루어지는 조성으로 해도 된다.Moreover, it is good also as a composition formed by containing P with respect to the said TPC or OFC.

본 발명의 동박은, 예를 들어 이하와 같이 하여 제조할 수 있다. 우선, 구리 잉곳을 용해, 주조한 후, 열간 압연하고, 냉간 압연과 어닐링을 행하고, 최종 냉간 압연을 행함으로써 박을 제조할 수 있다.The copper foil of this invention can be manufactured as follows, for example. First, after melt|dissolving and casting a copper ingot, foil can be manufactured by performing hot rolling, performing cold rolling and annealing, and performing final cold rolling.

여기서, 최종 냉간 압연에 있어서의 최종 패스의 변형 속도를 높이면, 반복 변형에 의한 회로(동박)의 표면 조도의 증대를 억제할 수 있다. 이 이유는, 변형 속도를 크게 하면, 동박의 내부에 비하여, 동박의 압연면에 큰 변형이 집중하여 축적된다. 그 결과, 동박의 재결정 시에, 압연면에 미세한 결정립이 랜덤한 방위로 배열하게 되고, 반복 변형에 의한 변형이 국부에 집중하지 않아 표면이 거칠어지는 것을 억제하여 평활함이 유지된다. 최종 냉간 압연에 있어서의 최종 패스의 변형 속도는 7.4×103(1/s) 이상이 바람직하다. 단, 변형 속도가 지나치게 크면, 압연 중에 동박이 파단되어, 제조성이 저하될 우려가 있으므로, 9.5×103(1/s)을 최종 패스 변형 속도의 상한으로 하면 된다.Here, if the deformation rate of the last pass in final cold rolling is raised, increase in the surface roughness of the circuit (copper foil) by repeated deformation can be suppressed. For this reason, when a deformation rate is enlarged, compared with the inside of copper foil, large deformation|transformation will concentrate and accumulate|store on the rolling surface of copper foil. As a result, at the time of recrystallization of the copper foil, fine grains are arranged in a random orientation on the rolling surface, and the deformation due to repeated deformation does not concentrate on local areas, thereby suppressing roughness of the surface and maintaining smoothness. The deformation rate of the final pass in the final cold rolling is preferably 7.4×10 3 (1/s) or more. However, if the strain rate is too large, the copper foil may break during rolling and there is a risk of lowering the manufacturability. Therefore, 9.5×10 3 (1/s) may be set as the upper limit of the final pass strain rate.

<동장 적층체 및 플렉시블 프린트 기판><Copper-clad laminate and flexible printed circuit board>

또한, 본 발명의 동박에 (1) 수지 전구체(예를 들어 바니시라고 불리는 폴리이미드 전구체)를 캐스팅하여 열을 가하여 중합시킴, (2) 베이스 필름과 동종의 열가소성 접착제를 사용하여 베이스 필름을 본 발명의 동박에 라미네이트함으로써, 동박과 수지 기재의 2층으로 이루어지는 동장 적층체(CCL)가 얻어진다. 또한, 본 발명의 동박에 접착제를 도착한 베이스 필름을 라미네이트함으로써, 동박과 수지 기재와 그 사이의 접착층의 3층으로 이루어지는 동장 적층체(CCL)가 얻어진다. 이들 CCL 제조 시에 동박이 열처리되어 재결정화된다.In addition, (1) casting a resin precursor (for example, a polyimide precursor called varnish) to the copper foil of the present invention and applying heat to polymerize it, (2) using a thermoplastic adhesive of the same type as the base film By laminating to the copper foil of , the copper clad laminate (CCL) which consists of two layers of copper foil and a resin base material is obtained. Furthermore, by laminating the base film to which the adhesive agent was applied to the copper foil of this invention, the copper clad laminated body (CCL) which consists of three layers of copper foil, a resin base material, and the adhesive layer in between is obtained. In manufacturing these CCLs, copper foil is heat-treated and recrystallized.

이들에 포토리소그래피 기술을 이용하여 회로를 형성하고, 필요에 따라 회로에 도금을 실시하고, 커버레이 필름을 라미네이트함으로써 플렉시블 프린트 기판(플렉시블 배선판)이 얻어진다.A flexible printed circuit board (flexible wiring board) is obtained by forming a circuit in these using a photolithography technique, plating a circuit as needed, and laminating a coverlay film.

따라서, 본 발명의 동장 적층체는, 동박과 수지층을 적층하여 이루어진다. 또한, 본 발명의 플렉시블 프린트 기판은, 동장 적층체의 동박에 회로를 형성하여 이루어진다.Therefore, the copper clad laminate of this invention laminates|stacks copper foil and a resin layer. Moreover, the flexible printed circuit board of this invention forms a circuit in the copper foil of a copper clad laminated body.

수지층으로서는, PET(폴리에틸렌테레프탈레이트), PI(폴리이미드), LCP(액정 폴리머), PEN(폴리에틸렌나프탈레이트)을 들 수 있지만, 이것에 한정되지 않는다. 또한, 수지층으로서, 이들의 수지 필름을 사용해도 된다.Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.

수지층과 동박의 적층 방법으로서는, 동박의 표면에 수지층으로 되는 재료를 도포하여 가열 성막해도 된다. 또한, 수지층으로서 수지 필름을 사용하여, 수지 필름과 동박의 사이에 이하의 접착제를 사용해도 되고, 접착제를 사용하지 않고 수지 필름을 동박에 열압착해도 된다. 단, 수지 필름에 여분의 열을 가하지 않는다고 하는 점에서는, 접착제를 사용하는 것이 바람직하다.As a lamination method of a resin layer and copper foil, you may apply|coat the material used as a resin layer on the surface of copper foil, and may heat-form it into a film. In addition, using a resin film as a resin layer, the following adhesive agents may be used between a resin film and copper foil, and a resin film may be thermocompression-bonded to copper foil without using an adhesive agent. However, it is preferable to use an adhesive agent from the point of not applying excess heat|fever to a resin film.

수지층으로서 필름을 사용한 경우, 이 필름을, 접착제층을 개재시켜 동박에 적층하면 된다. 이 경우, 필름과 동 성분의 접착제를 사용하는 것이 바람직하다. 예를 들어, 수지층으로서 폴리이미드 필름을 사용하는 경우에는, 접착제층도 폴리이미드계 접착제를 사용하는 것이 바람직하다. 또한, 여기서 말하는 폴리이미드 접착제란 이미드 결합을 포함하는 접착제를 가리키며, 폴리에테르이미드 등도 포함한다.When a film is used as a resin layer, what is necessary is just to laminate|stack this film on copper foil through an adhesive bond layer. In this case, it is preferable to use an adhesive of the same component as the film. For example, when using a polyimide film as a resin layer, it is preferable to use a polyimide-type adhesive agent also for an adhesive bond layer. In addition, the polyimide adhesive used here refers to the adhesive agent containing an imide bond, and polyetherimide etc. are included.

또한, 본 발명은 상기 실시 형태에 한정되지 않는다. 또한, 본 발명의 작용 효과를 발휘하는 한, 상기 실시 형태에 있어서의 구리 합금이 그 밖의 성분을 함유해도 된다. 또한, 전해 동박이어도 된다.In addition, this invention is not limited to the said embodiment. In addition, as long as the effect of this invention is exhibited, the copper alloy in the said embodiment may contain another component. Moreover, an electrolytic copper foil may be sufficient.

예를 들어, 동박의 표면에, 조화 처리, 방청 처리, 내열 처리, 또는 이들의 조합에 의한 표면 처리를 실시해도 된다.For example, you may give the surface of copper foil surface treatment by a roughening process, a rust prevention process, a heat-resistant process, or these combination.

<실시예><Example>

이어서, 실시예를 들어 본 발명을 더욱 상세하게 설명하지만, 본 발명은 이들에 한정되는 것은 아니다. 전기 동에, 표 1에 나타내는 원소를 각각 첨가하여 표 1에 나타내는 조성으로 하고, Ar 분위기에서 주조하여 주괴를 얻었다. 주괴 중의 산소 함유량은 15ppm 미만이었다. 이 주괴를 900℃에서 균질화 어닐링 후, 열간 압연한 후, 냉간 압연 및 재결정 어닐링을 반복하고, 또한 최종 재결정 어닐링 및 최종 냉간 압연을 행하여 압연 동박을 얻었다.Next, although an Example demonstrates this invention further in detail, this invention is not limited to these. Each of the elements shown in Table 1 was added to the copper to give the composition shown in Table 1, and cast in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot was subjected to homogenization annealing at 900°C and hot rolling, followed by repeating cold rolling and recrystallization annealing, and further performing final recrystallization annealing and final cold rolling to obtain a rolled copper foil.

얻어진 압연 동박에 상술한 바와 같이 하여 CCL을 제작하였다.CCL was produced in the same manner as described above for the obtained rolled copper foil.

<굴곡 시험 전후의 동박(회로)의 표면 조도><Surface roughness of copper foil (circuit) before and after bending test>

상술한 바와 같이 하여 측정하였다.Measurement was carried out as described above.

<굴곡 피로 수명><Bending fatigue life>

상술한 굴곡 시험용 회로 작성 완료의 CCL(2층 편면 CCL)과 동일한 방법으로 제작한 샘플에 대하여, IPC 미끄럼 이동 굴곡 시험에서, 회로의 양단을 흐르는 초기의 전기 저항값으로부터 10%를 초과하여 높아진 시점을 굴곡 피로 수명으로 하였다. 굴곡 피로 수명을 구할 때의 측정 조건은 이하와 같다: 시험편 폭: 12.7mm, 시험편 길이: 200mm, 시험편 채취 방향: 시험편의 길이 방향이 압연 방향과 평행으로 되도록 채취, 곡률 반경 r: 5mm, 진동 스트로크: 20mm, 진동 속도: 1500회/분, 굽힘 방향: FPC(2층 편면 CCL)(1) 중 동박이 내측, 으로 한다.With respect to the sample produced in the same way as the CCL (two-layer single-sided CCL) having completed the circuit for the bending test described above, in the IPC sliding bending test, the initial electrical resistance value flowing through both ends of the circuit increased by more than 10% was taken as the flex fatigue life. The measurement conditions for determining the flexural fatigue life are as follows: specimen width: 12.7 mm, specimen length: 200 mm, specimen collection direction: specimen so that the longitudinal direction of the specimen is parallel to the rolling direction, radius of curvature r: 5 mm, vibration stroke : 20 mm, vibration speed: 1500 times/min, bending direction: FPC (two-layer single-sided CCL) (1) with copper foil inside.

또한, 굴곡 피로 수명이 8만회 이상인 경우에 우수한 굴곡성을 갖고 있다고 하고, 굴곡 피로 수명이 8만회 미만을 굴곡성이 떨어지는 것으로서 평가하였다.In addition, when the flexural fatigue life is 80,000 or more, it is said to have excellent flexibility, and when the flexural fatigue life is less than 80,000 times, the flexibility is evaluated as inferior.

얻어진 결과를 표 1에 나타낸다.The obtained results are shown in Table 1.

Figure 112020029459814-pat00001
Figure 112020029459814-pat00001

표 1로부터 명백한 바와 같이, 굴곡 시험 후의 회로 표면의 표면 조도 Ra가 0.030㎛ 이상 0.400㎛ 이하인 각 실시예의 경우, 굴곡 피로 수명이 우수한 것이 되었다.As is clear from Table 1, in the case of each Example in which the surface roughness Ra of the circuit surface after a bending test is 0.030 micrometer or more and 0.400 micrometer or less, it became the thing excellent in bending fatigue life.

Ra가 0.030㎛ 미만인 비교예 1의 경우, 굴곡 피로 수명이 떨어졌다. 이것은 표면이 지나치게 평활하여, 변형 전부터 존재하는 작은 기복(오일 피트 등)에 응력이 집중하였기 때문이라고 생각된다.In the case of Comparative Example 1 in which Ra was less than 0.030 μm, the flexural fatigue life was deteriorated. This is thought to be because the surface was too smooth, and stress concentrated on small undulations (oil pits, etc.) that existed before deformation.

Ra가 0.400㎛를 초과한 비교예 2 내지 6의 경우, 굴곡 피로 수명이 떨어졌다. 또한, 비교예 2 내지 6의 경우, 최종 냉간 압연에 있어서의 최종 패스의 변형 속도가 실시예보다 낮아, 압연면에 충분히 변형이 축적되지 않았다고 생각된다.In the case of Comparative Examples 2 to 6 in which Ra exceeded 0.400 μm, the flexural fatigue life was deteriorated. Moreover, in the case of Comparative Examples 2-6, the deformation rate of the last pass in the final cold rolling was lower than that of Example, and it is thought that deformation|transformation was not fully accumulated in the rolling surface.

Claims (8)

99.0질량% 이상의 Cu, 잔부 불가피적 불순물을 포함하는 동박이며,
상기 동박으로부터 회로를 형성한 폭 12.7mm, 길이: 200mm의 2층 편면 CCL 샘플을 사용하여, 곡률 반경 R=2.0으로 2000회의 IPC 미끄럼 이동 굴곡을 행한 후의 상기 회로 표면의 표면 조도 Ra가 0.030㎛ 이상 0.400㎛ 이하인, 플렉시블 프린트 기판용 동박.
단, 상기 2층 편면 CCL 샘플은, 상기 동박의 편면에 구리 조화 도금을 행한 후, 두께 25㎛의 폴리이미드 필름의 양면에 2매의 상기 동박의 각각 상기 구리 조화 도금측을 향하여 적층하고, 300℃×30분의 가열 프레스로 4MPa로 접합하고, 편면의 상기 동박을 에치 아웃으로 완전히 제거하여 2층 편면 CCL을 제작한다. 그리고, 상기 2층 편면 CCL 샘플의 동박측의 면에, 선폭 25㎛로 압연 방향을 따라 연장되는 회로를, 회로 개수 8개, 회로 간격 125㎛로 에칭 형성한다.
It is copper foil containing 99.0 mass % or more of Cu, remainder unavoidable impurities,
Using a two-layer single-sided CCL sample having a width of 12.7 mm and a length of 200 mm in which a circuit is formed from the copper foil, the surface roughness Ra of the circuit surface after performing IPC sliding bending 2000 times with a radius of curvature R=2.0 is 0.030 µm or more The copper foil for flexible printed circuit boards which is 0.400 micrometer or less.
However, in the two-layer single-sided CCL sample, after performing copper roughening plating on one side of the copper foil, on both sides of a polyimide film having a thickness of 25 µm, each of the two copper foils is laminated toward the copper roughened plating side, 300 It is joined at 4 MPa by a hot press at °C x 30 minutes, and the copper foil on one side is completely removed by etch-out to produce a two-layer single-sided CCL. Then, on the copper foil side surface of the two-layer single-sided CCL sample, circuits extending along the rolling direction with a line width of 25 µm are etched to form eight circuits and a circuit interval of 125 µm.
제1항에 있어서, 상기 IPC 미끄럼 이동 굴곡을 행하기 전의 상기 회로 표면의 표면 조도 Ra가 0.010㎛ 이상 0.200㎛ 이하인, 플렉시블 프린트 기판용 동박.The copper foil for flexible printed circuit boards of Claim 1 whose surface roughness Ra of the said circuit surface before performing the said IPC sliding bending is 0.010 micrometer or more and 0.200 micrometer or less. 제1항에 있어서, JIS-H3100(C1100)에 규격된 터프 피치 동 또는 JIS-H3100(C1020)의 무산소 동을 포함하는, 플렉시블 프린트 기판용 동박.The copper foil for flexible printed circuit boards of Claim 1 containing the tough pitch copper standardized by JIS-H3100 (C1100), or the oxygen-free copper of JIS-H3100 (C1020). 제1항 또는 제2항에 있어서, 또한, 첨가 원소로서, P, Ag, Si, Ge, Al, Ga, Zn, Sn 및 Sb로 이루어지는 군으로부터 선택되는 적어도 1종 또는 2종 이상을 합계로 0.7질량% 이하 함유하여 이루어지는, 플렉시블 프린트 기판용 동박.The additive element according to claim 1 or 2, wherein at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb is 0.7 in total. The copper foil for flexible printed circuit boards which contains not more than mass %. 제1항 내지 제3항 중 어느 한 항에 기재된 플렉시블 프린트 기판용 동박과, 수지층을 적층하여 이루어지는, 동장 적층체.The copper clad laminate formed by laminating|stacking the copper foil for flexible printed circuit boards in any one of Claims 1-3, and a resin layer. 제5항에 기재된 동장 적층체에 있어서의 상기 동박에 회로를 형성하여 이루어지는, 플렉시블 프린트 기판.The flexible printed circuit board which forms a circuit in the said copper foil in the copper clad laminated body of Claim 5. 제6항에 기재된 플렉시블 프린트 기판을 사용한, 전자 기기.The electronic device using the flexible printed circuit board of Claim 6. 제1항 내지 제3항에 중 어느 한 항에 있어서, 상기 동박의 최종 냉간 압연에 있어서의 최종 패스의 변형 속도는 7.4×103(1/s) 이상 9.5×103(1/s) 이하인, 플렉시블 프린트 기판용 동박.
The strain rate of the final pass in the final cold rolling of the copper foil is 7.4×10 3 (1/s) or more and 9.5×10 3 (1/s) or less. , copper foil for flexible printed circuit boards.
KR1020200034239A 2019-03-26 2020-03-20 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment KR102285062B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2019-057781 2019-03-26
JP2019057781A JP6856688B2 (en) 2019-03-26 2019-03-26 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Publications (2)

Publication Number Publication Date
KR20200115206A KR20200115206A (en) 2020-10-07
KR102285062B1 true KR102285062B1 (en) 2021-08-04

Family

ID=72639816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200034239A KR102285062B1 (en) 2019-03-26 2020-03-20 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment

Country Status (4)

Country Link
JP (1) JP6856688B2 (en)
KR (1) KR102285062B1 (en)
CN (1) CN111757599B (en)
TW (1) TWI718025B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164752B1 (en) * 2022-07-14 2022-11-01 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196729A (en) * 1999-10-28 2001-07-19 Asahi Kasei Corp Curable sheet
CN101432134B (en) * 2006-04-25 2014-01-22 日立化成工业株式会社 Conductor foil with adhesive layer, conductor-clad laminate, printed wiring board and multilayer wiring board
JP5865759B2 (en) * 2011-03-31 2016-02-17 新日鉄住金化学株式会社 Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate
JP5261595B1 (en) * 2012-06-29 2013-08-14 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and laminate
JP2014214376A (en) * 2013-04-30 2014-11-17 株式会社Shカッパープロダクツ Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board
JP6640567B2 (en) * 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
JP6294257B2 (en) 2015-03-30 2018-03-14 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6663712B2 (en) * 2015-12-25 2020-03-13 Jx金属株式会社 Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI719110B (en) * 2016-01-15 2021-02-21 日商Jx金屬股份有限公司 Manufacturing methods of copper foil, copper-clad laminates, printed wiring boards, manufacturing methods of electronic devices, manufacturing methods of transmission lines, and manufacturing methods of antennas
JP6612168B2 (en) * 2016-03-30 2019-11-27 Jx金属株式会社 Copper foil, copper clad laminate, flexible printed circuit board and electronic device
JP6348621B1 (en) 2017-02-15 2018-06-27 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6793138B2 (en) * 2018-01-22 2020-12-02 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Also Published As

Publication number Publication date
TW202041721A (en) 2020-11-16
TWI718025B (en) 2021-02-01
JP6856688B2 (en) 2021-04-07
JP2020161581A (en) 2020-10-01
CN111757599B (en) 2023-06-30
CN111757599A (en) 2020-10-09
KR20200115206A (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP4672515B2 (en) Rolled copper alloy foil for bending
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5467930B2 (en) Copper clad laminate
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
WO2012128099A1 (en) Copper foil and copper-clad laminate obtained using same
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
KR102049636B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
KR102285062B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2019029606A (en) Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
KR102115086B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP2019194360A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP6712561B2 (en) Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
JP2014162930A (en) Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
KR20200038410A (en) Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant