JP6856688B2 - Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices - Google Patents

Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Download PDF

Info

Publication number
JP6856688B2
JP6856688B2 JP2019057781A JP2019057781A JP6856688B2 JP 6856688 B2 JP6856688 B2 JP 6856688B2 JP 2019057781 A JP2019057781 A JP 2019057781A JP 2019057781 A JP2019057781 A JP 2019057781A JP 6856688 B2 JP6856688 B2 JP 6856688B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
flexible printed
printed circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019057781A
Other languages
Japanese (ja)
Other versions
JP2020161581A (en
Inventor
裕士 石野
裕士 石野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2019057781A priority Critical patent/JP6856688B2/en
Priority to TW109108214A priority patent/TWI718025B/en
Priority to KR1020200034239A priority patent/KR102285062B1/en
Priority to CN202010223434.3A priority patent/CN111757599B/en
Publication of JP2020161581A publication Critical patent/JP2020161581A/en
Application granted granted Critical
Publication of JP6856688B2 publication Critical patent/JP6856688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper foil suitable for use in a wiring member such as a flexible printed circuit board, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.

フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)はフレキシブル性を有するため、電子回路の折り曲げ部や可動部に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等にFPCが用いられている。
FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。カバーレイを積層する前段階で、銅箔とカバーレイとの密着性を向上するための表面改質工程の一環として、銅箔表面のエッチングが行われる。また、銅箔の厚みを低減して屈曲性を向上させるため、減肉エッチングを行う場合もある。
Since a flexible printed circuit board (flexible wiring board, hereinafter referred to as "FPC") has flexibility, it is widely used for bent parts and movable parts of electronic circuits. For example, FPCs are used for moving parts of disk-related devices such as HDDs, DVDs, and CD-ROMs, and bent parts of foldable mobile phones.
FPC is formed by etching Copper Clad Laminate (copper-clad laminate, hereinafter referred to as CCL) in which a copper foil and a resin are laminated to form wiring, and coating the wiring with a resin layer called a coverlay. Before laminating the coverlay, the surface of the copper foil is etched as part of the surface modification step for improving the adhesion between the copper foil and the coverlay. Further, in order to reduce the thickness of the copper foil and improve the flexibility, thinning etching may be performed.

ところで、電子機器の小型、薄型、高性能化に伴い、FPCの屈曲性がさらに要求されている。そこで、銅箔の平均結晶粒径及び最大結晶粒径を規制して屈曲性を改善した技術が報告されている(特許文献1)。又、板厚と破断伸との関係を規定することでMIT屈曲性を改善した技術が報告されている(特許文献2)。
又、電子機器の小型、薄型、高性能化に伴い、FPCの回路幅、スペース幅の微細化(例えば、20〜30μm程度)も要求されている。
By the way, as electronic devices become smaller, thinner, and have higher performance, the flexibility of FPC is further required. Therefore, a technique for improving flexibility by regulating the average crystal grain size and the maximum crystal grain size of copper foil has been reported (Patent Document 1). Further, a technique for improving MIT flexibility by defining the relationship between the plate thickness and the elongation at break has been reported (Patent Document 2).
Further, as electronic devices become smaller, thinner, and have higher performance, miniaturization of FPC circuit width and space width (for example, about 20 to 30 μm) is also required.

特開2016-188415号公報Japanese Unexamined Patent Publication No. 2016-188415 特開2018-131653号公報Japanese Unexamined Patent Publication No. 2018-131653

しかしながら、FPCの回路が微細化すると、FPCを屈曲させたときに低ひずみの繰り返し変形が回路(銅箔)に掛かり、表面粗さが大きくなって凹部に応力が集中し屈曲性が低下するという問題がある。
つまり、銅箔の厚みに対して十分に回路幅が広い場合、屈曲方向に平行な方向の変形が支配的であるが、微細回路の場合、銅箔の(厚み/幅)の値が大きくなるため、屈曲方向に垂直な幅方向の変形も考慮する必要が出てくる。また一般に回路の幅方向中央部に比べて、端部付近は周囲からの拘束が少なく変形し易いと考えられるが、微細回路においては、その変形し易い端部付近と見なせる領域の割合が大きくなる。以上の理由により、回路幅が狭くなることで、屈曲性がより厳しくなると考えられる。
本発明は上記の課題を解決するためになされたものであり、微細回路形成後の屈曲性に優れたフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。
However, when the FPC circuit is miniaturized, when the FPC is bent, low-strain repeated deformation is applied to the circuit (copper foil), the surface roughness becomes large, stress is concentrated in the recesses, and the flexibility is lowered. There's a problem.
That is, when the circuit width is sufficiently wide with respect to the thickness of the copper foil, the deformation in the direction parallel to the bending direction is dominant, but in the case of a fine circuit, the value of the copper foil (thickness / width) becomes large. Therefore, it is necessary to consider the deformation in the width direction perpendicular to the bending direction. In addition, it is generally considered that the vicinity of the end portion is less constrained from the surroundings and is more easily deformed than the central portion in the width direction of the circuit, but in a fine circuit, the proportion of the region that can be regarded as the vicinity of the easily deformable end portion is large. .. For the above reasons, it is considered that the flexibility becomes more severe as the circuit width becomes narrower.
The present invention has been made to solve the above problems, and is a copper foil for a flexible printed circuit board having excellent flexibility after forming a fine circuit, a copper-clad laminate using the copper foil, a flexible printed circuit board, and an electronic device. The purpose is to provide.

本発明者らは種々検討した結果、FPCの微細回路の屈曲性を低下させる繰り返し変形による銅箔(回路)の表面粗さの増大が、最終冷間圧延における最終パスのひずみ速度と関係があることを見出し、屈曲性を低下させない表面粗さの範囲を規定した。 As a result of various studies by the present inventors, an increase in the surface roughness of the copper foil (circuit) due to repeated deformation that reduces the flexibility of the fine circuit of the FPC is related to the strain rate of the final pass in the final cold rolling. We found that, and defined the range of surface roughness that does not reduce the flexibility.

すなわち、本発明のフレキシブルプリント基板用銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、前記銅箔から回路を形成した幅12.7mm、長さ:200mmの二層片面CCLサンプルを用い、曲率半径R=2.0で2000回のIPC摺動屈曲を行った後の前記回路表面の表面粗さRaが0.030μm以上0.400μm以下である。但し、前記二層片面CCLサンプルは、前記銅箔の片面に銅粗化めっきを行った後、厚み25μmのポリイミドフィルムの両面に2枚の前記銅箔のそれぞれ前記銅粗化めっき側を向けて積層し、300℃×30分の加熱プレスにて4MPaで貼り合せ、片面の前記銅箔をエッチアウトで完全に除去して二層片面CCLを作製する。そして、前記二層片面CCLサンプルの銅箔側の面に、線幅25μmで圧延方向に沿って延びる回路を、回路本数8本、回路間隔125umでエッチング形成する。 That is, the copper foil for a flexible printed circuit board of the present invention is a copper foil composed of 99.0% by mass or more of Cu and inevitable impurities in the balance, and has a width of 12.7 mm and a length of 200 mm in which a circuit is formed from the copper foil. The surface roughness Ra of the circuit surface after performing 2000 IPC sliding bends with a radius of curvature R = 2.0 using a two-layer single-sided CCL sample is 0.030 μm or more and 0.400 μm or less. However, in the two-layer single-sided CCL sample, after copper roughening plating is performed on one side of the copper foil, the copper roughening plating side of each of the two copper foils is directed to both sides of a polyimide film having a thickness of 25 μm. The layers are laminated and bonded at 4 MPa with a heating press at 300 ° C. for 30 minutes, and the copper foil on one side is completely removed by etchout to prepare a two-layer single-sided CCL. Then, a circuit extending along the rolling direction with a line width of 25 μm is etched and formed on the surface of the two-layer single-sided CCL sample on the copper foil side with eight circuits and a circuit interval of 125 um.

本発明のフレキシブルプリント基板用銅箔において、前記IPC摺動屈曲を行う前の前記回路表面の表面粗さRaが0.010μm以上0.200μm以下であることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、さらに、添加元素として、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有してなることが好ましい。
In the copper foil for a flexible printed circuit board of the present invention, it is preferable that the surface roughness Ra of the circuit surface before the IPC sliding bending is 0.010 μm or more and 0.200 μm or less.
The copper foil for a flexible printed circuit board of the present invention is preferably made of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020).
The copper foil for flexible printed circuit boards of the present invention further contains at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb as additive elements in total. It is preferably contained in an amount of 0.7% by mass or less.

本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。 The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit board and a resin layer.

本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。 The flexible printed circuit board of the present invention is formed by forming a circuit on the copper foil in the copper-clad laminate.

本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。 The electronic device of the present invention uses the flexible printed circuit board.

本発明によれば、微細回路形成後の屈曲性に優れたフレキシブルプリント基板用銅箔が得られる。 According to the present invention, a copper foil for a flexible printed circuit board having excellent flexibility after forming a fine circuit can be obtained.

屈曲試験方法を示す図である。It is a figure which shows the bending test method.

以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。
まず、微細回路形成後の屈曲性の評価について説明する。
上記したように、微細回路の場合、銅箔の(厚み/幅)の値が大きくなるため、屈曲方向に垂直な幅方向の変形が大きくなると共に、変形し易い回路の端部の領域の割合が大きくなる。その結果、低ひずみの繰り返し変形が回路(銅箔)に掛かると、表面粗さが大きくなって凹部に応力が集中し屈曲性が低下する。
Hereinafter, embodiments of the copper foil according to the present invention will be described. In the present invention,% means mass% unless otherwise specified.
First, the evaluation of flexibility after forming a fine circuit will be described.
As described above, in the case of a fine circuit, since the value of the copper foil (thickness / width) becomes large, the deformation in the width direction perpendicular to the bending direction becomes large, and the ratio of the region at the end of the circuit which is easily deformed. Becomes larger. As a result, when the circuit (copper foil) is repeatedly deformed with low strain, the surface roughness becomes large, stress is concentrated in the recesses, and the flexibility is lowered.

そこで、微細回路を模擬的に作製し、所定の屈曲試験を行った前後の回路(銅箔)の表面粗さを測定し、屈曲後のRaを0.030μm以上0.400μm以下に規定した。
屈曲後のRaを上記範囲に管理することで、表面にかかる応力を均一に分散することができ、優れた屈曲性が発現する。
屈曲後のRaが0.030μm未満であると、表面が平滑過ぎて、変形前から存在する小さな起伏(オイルピット等)に応力が集中し、かえって屈曲性が低下する。屈曲後のRaが0.400μmを超えると、表面粗さが大きくなって凹部に応力が集中し屈曲性が低下する。
Therefore, a fine circuit was simulated, the surface roughness of the circuit (copper foil) before and after the predetermined bending test was measured, and the Ra after bending was defined as 0.030 μm or more and 0.400 μm or less.
By controlling the Ra after bending within the above range, the stress applied to the surface can be uniformly dispersed, and excellent flexibility is exhibited.
If Ra after bending is less than 0.030 μm, the surface is too smooth, stress is concentrated on small undulations (oil pits, etc.) existing before deformation, and the flexibility is rather lowered. When Ra after bending exceeds 0.400 μm, the surface roughness becomes large, stress is concentrated in the recesses, and the flexibility is lowered.

また、屈曲前のRaが0.010μm以上0.200μm以下であると好ましい。
屈曲前のRaが0.010μm未満であると、屈曲後のRaも0.030μm未満になり易く、屈曲前のRaが0.200μmを超えると、屈曲後のRaも0.400μmを超え易い。
Further, it is preferable that Ra before bending is 0.010 μm or more and 0.200 μm or less.
If the Ra before bending is less than 0.010 μm, the Ra after bending tends to be less than 0.030 μm, and if the Ra before bending exceeds 0.200 μm, the Ra after bending tends to exceed 0.400 μm.

模擬的な微細回路は以下のように作製する。まず、最終冷間圧延後の銅箔の片面に銅粗化めっきを行い、ポリイミドフィルム(厚み25μm)の両面にそれぞれ銅箔の粗化めっき側に積層し、加熱プレス(4MPa)で貼り合せて三層の両面銅箔CCLサンプルを得る。なお、フィルムの積層時に300℃×30分の熱処理を加える。さらに、三層の両面銅箔CCLサンプルのうち、片面の銅箔をエッチアウトで完全に除去して二層片面CCLを作製する。
本発明に係る銅箔はフレキシブルプリント基板に用いられ、その際、銅箔と樹脂とを積層したCCLは、200〜400℃で樹脂を硬化させるための熱処理を行う。この熱処理を想定し、300℃×30分とした。
A simulated microcircuit is produced as follows. First, copper roughening plating is performed on one side of the copper foil after the final cold rolling, and the copper foil is laminated on both sides of the polyimide film (thickness 25 μm) on the roughened plating side of the copper foil, and bonded by a heating press (4MPa). Obtain a three-layer double-sided copper foil CCL sample. A heat treatment of 300 ° C. for 30 minutes is applied when laminating the film. Further, out of the three-layer double-sided copper foil CCL sample, the single-sided copper foil is completely removed by etchout to prepare a two-layer single-sided CCL.
The copper foil according to the present invention is used for a flexible printed circuit board, and at that time, the CCL in which the copper foil and the resin are laminated is subjected to a heat treatment for curing the resin at 200 to 400 ° C. Assuming this heat treatment, the temperature was set to 300 ° C. × 30 minutes.

二層片面CCLサンプルの銅箔側の面に、線幅25μmで圧延方向に沿って延びる回路を、回路本数8本、回路間隔125umでエッチング形成する。回路のエッチングファクタEFは4.0以上とする。 A circuit extending along the rolling direction with a line width of 25 μm is etched and formed on the copper foil side surface of the two-layer single-sided CCL sample with eight circuits and a circuit interval of 125 um. The etching factor EF of the circuit shall be 4.0 or more.

なお、粗めっきは、屈曲試験中に銅箔と樹脂の剥離を防止できれば、特にメッキ条件等は限定されないが、例えば、一般的にFPC用途で用いられているものとして以下が例示される。めっき浴組成:Cu15g/L、Co8.5g/L、Ni8.6g/L 、めっき液pH:2.5 、めっき温度:38℃ 、電流密度:20A/dm 、めっき時間:2.0秒
エッチング液は、例えばCuCl2-2H2O:3mol/L、HCl:4mol/L、エッチング温度は例えば50℃、エッチング時間は回路幅が25umになるように調整すればよい。
The rough plating is not particularly limited as long as the copper foil and the resin can be prevented from peeling during the bending test, and the plating conditions and the like are not particularly limited. For example, the following are exemplified as those generally used for FPC applications. Plating bath composition: Cu 15 g / L, Co 8.5 g / L, Ni 8.6 g / L, plating solution pH: 2.5, plating temperature: 38 ° C, current density: 20 A / dm 2 , plating time: 2.0 seconds Etching The liquid may be adjusted so that, for example, CuCl 2 -2H 2 O: 3 mol / L, HCl: 4 mol / L, the etching temperature is, for example, 50 ° C., and the etching time is 25 um.

そして、この回路形成したCCLにつき、図1に示すIPC(アメリカプリント回路工業会)屈曲試験装置により、2000回の摺動屈曲を施した後、レーザー顕微鏡を用いて回路方向に平行方向の表面粗さRaを測定する。
この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、FPC1は、矢印で示したねじ2の部分と振動伝達部材3の先端部の計4点で装置に固定される。振動伝達部材3が上下に駆動すると、FPC1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返す。
なお、試験条件は次の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2mm、振動ストローク:20mm、振動速度:100回/分、曲げ方向:FPC1のうち銅箔が内側、とする。
Then, the CCL in which this circuit is formed is subjected to sliding bending 2000 times by the IPC (American Print Circuit Industry Association) bending test apparatus shown in FIG. 1, and then the surface roughness in the direction parallel to the circuit direction is roughened using a laser microscope. Measure Ra.
This device has a structure in which the vibration transmission member 3 is coupled to the oscillation drive body 4, and the FPC 1 is fixed to the device at a total of four points, the screw 2 portion indicated by the arrow and the tip portion of the vibration transmission member 3. To. When the vibration transmitting member 3 is driven up and down, the intermediate portion of the FPC 1 is bent like a hairpin with a predetermined radius of curvature r. In this test, bending is repeated under the following conditions.
The test conditions are as follows: test piece width: 12.7 mm, test piece length: 200 mm, test piece sampling direction: sampled so that the length direction of the test piece is parallel to the rolling direction, radius of curvature r : 2 mm, vibration stroke: 20 mm, vibration speed: 100 times / minute, bending direction: FPC1 with copper foil inside.

表面粗さ(算術平均粗さ)Raは、銅箔表面の凹凸プロファイルからJIS B0601-1994に準じて算出される中心線平均粗さである。
表面粗さRaの測定は、キーエンス社製の形状解析レーザー顕微鏡VK-X1050を用いることができる。測定条件は、対物レンズ:50倍、中間レンズ:24倍の条件で、回路方向に平行に10本の線粗さ分析を行い、その平均値を表面粗さRaとして採用する。線分析の間隔は、1本目と10本目の間が回路表面の幅の80%以上となるように、等間隔に調整する。
Surface roughness (arithmetic mean roughness) Ra is the center line average roughness calculated according to JIS B 0601-1994 from the unevenness profile of the copper foil surface.
For the measurement of the surface roughness Ra, a shape analysis laser microscope VK-X1050 manufactured by KEYENCE Corporation can be used. The measurement conditions are an objective lens: 50 times and an intermediate lens: 24 times. Ten line roughness analyzes are performed parallel to the circuit direction, and the average value is adopted as the surface roughness Ra. The interval of line analysis is adjusted to equal intervals so that the distance between the 1st and 10th lines is 80% or more of the width of the circuit surface.

<組成>
本発明に係る銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
又、添加元素として、上記組成に対し、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有すると、再結晶粒を微細化し、繰り返し変形による表面粗さの増大を抑制することができる。
上記添加元素は、冷間圧延時に転位の絡み合いの頻度を増加させるので、再結晶粒が微細化することができる。
上記添加元素を合計で0.7質量%を超えて含有させると、導電率が低下し、フレキシブル基板用銅箔として適さない場合があるので、0.7質量%を上限とした。上記添加元素の含有量の下限は特に制限されないが、例えば各元素につき0.0005質量%より小さく制御することは工業的に難しいので、各元素の含有量の下限を0.0005質量%とするとよい。
<Composition>
The copper foil according to the present invention is composed of 99.0% by mass or more of Cu and unavoidable impurities in the balance.
Further, as the additive element, at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb are added to the above composition in a total of 0.7% by mass or less. When it is contained, the recrystallized grains can be made finer and the increase in surface roughness due to repeated deformation can be suppressed.
Since the additive element increases the frequency of dislocation entanglement during cold rolling, the recrystallized grains can be made finer.
If the above additive elements are contained in excess of 0.7% by mass in total, the conductivity is lowered and the copper foil for a flexible substrate may not be suitable. Therefore, the upper limit is 0.7% by mass. The lower limit of the content of the additive element is not particularly limited, but for example, it is industrially difficult to control each element to be smaller than 0.0005% by mass, so the lower limit of the content of each element is preferably 0.0005% by mass.

本発明に係る銅箔を、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)の無酸素銅(OFC)からなる組成としてもよい。
又、上記TPC又はOFCに対し、Pを含有させてなる組成としてもよい。
The copper foil according to the present invention may be composed of tough pitch copper (TPC) standardized for JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1020).
Further, the composition may be such that P is contained in the TPC or OFC.

本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットを溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、最終冷間圧延を行うことにより箔を製造することができる。
ここで、最終冷間圧延における最終パスのひずみ速度を高くすると、繰り返し変形による回路(銅箔)の表面粗さの増大を抑制することができる。この理由は、歪速度を大きくすると、銅箔の内部に比べ、銅箔の圧延面に大きな歪が集中して蓄積する。その結果、銅箔の再結晶時に、圧延面に微細な結晶粒がランダムな方位で配列することとなり、繰り返し変形による変形が局部に集中せずに表面が粗くなることを抑制して平滑さが維持される。最終冷間圧延における最終パスのひずみ速度は7.4×103(1/s)以上が好ましい。但し、ひずみ速度が大きすぎると、圧延中に銅箔が破断し、製造性が低下するおそれがあるので、9.5×103(1/s)を最終パスひずみ速度の上限とするとよい。
The copper foil of the present invention can be produced, for example, as follows. First, a copper ingot is melted and cast, then hot-rolled, cold-rolled and annealed, and finally cold-rolled to produce a foil.
Here, if the strain rate of the final pass in the final cold rolling is increased, it is possible to suppress an increase in the surface roughness of the circuit (copper foil) due to repeated deformation. The reason for this is that when the strain rate is increased, a large strain is concentrated and accumulated on the rolled surface of the copper foil as compared with the inside of the copper foil. As a result, when the copper foil is recrystallized, fine crystal grains are arranged in random directions on the rolled surface, and the deformation due to repeated deformation is not concentrated locally and the surface is prevented from becoming rough and smooth. Be maintained. The strain rate of the final pass in the final cold rolling is preferably 7.4 × 10 3 (1 / s) or more. However, if the strain rate is too high, the copper foil may break during rolling and the manufacturability may decrease. Therefore, 9.5 × 10 3 (1 / s) should be set as the upper limit of the final pass strain rate.

<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
Further, (1) a resin precursor (for example, a polyimide precursor called varnish) is cast on the copper foil of the present invention and polymerized by applying heat, and (2) using the same type of thermoplastic adhesive as the base film. By laminating the base film on the copper foil of the present invention, a copper-clad laminate (CCL) composed of two layers of the copper foil and a resin base material can be obtained. Further, by laminating a base film coated with an adhesive on the copper foil of the present invention, a copper-clad laminate (CCL) composed of three layers of a copper foil, a resin base material, and an adhesive layer between them can be obtained. During the production of these CCLs, the copper foil is heat treated and recrystallized.
A flexible printed circuit board (flexible wiring board) can be obtained by forming a circuit on these using photolithography technology, plating the circuit as necessary, and laminating a coverlay film.

従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper-clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Further, the flexible printed circuit board of the present invention is formed by forming a circuit on a copper foil of a copper-clad laminate.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
As a method of laminating the resin layer and the copper foil, a material to be a resin layer may be applied to the surface of the copper foil and a heat film may be formed. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying extra heat to the resin film.

樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。 When a film is used as the resin layer, this film may be laminated on the copper foil via the adhesive layer. In this case, it is preferable to use an adhesive having the same composition as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive as the adhesive layer. The polyimide adhesive referred to here refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。また、電解銅箔でも良い。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
The present invention is not limited to the above embodiment. Further, the copper alloy in the above-described embodiment may contain other components as long as the effects of the present invention are exhibited. Further, electrolytic copper foil may be used.
For example, the surface of the copper foil may be roughened, rust-proofed, heat-resistant, or surface-treated by a combination thereof.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。電気銅に、表1に示す元素をそれぞれ添加して表1に示す組成とし、Ar雰囲気で鋳造して鋳塊を得た。鋳塊中の酸素含有量は15ppm未満であった。この鋳塊を900℃で均質化焼鈍後、熱間圧延した後、冷間圧延および再結晶焼鈍を繰り返し、さらに最終再結晶焼鈍及び最終冷間圧延を行って圧延銅箔を得た。
得られた圧延銅箔に上述のようにしてCCLを作製した。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The elements shown in Table 1 were added to the electrolytic copper to obtain the composition shown in Table 1, and casting was performed in an Ar atmosphere to obtain an ingot. The oxygen content in the ingot was less than 15 ppm. This ingot was homogenized and annealed at 900 ° C., hot-rolled, then cold-rolled and recrystallized annealed repeatedly, and finally recrystallized and finally cold-rolled to obtain rolled copper foil.
A CCL was prepared on the obtained rolled copper foil as described above.

<屈曲試験前後の銅箔(回路)の表面粗さ>
上述のようにして測定した。
<屈曲疲労寿命>
上述の屈曲試験用の回路作成済のCCL(二層片面CCL)と同一の方法で作製したサンプルにつき、IPC摺動屈曲試験にて、回路の両端を流れる初期の電気抵抗値から10%を超えて高くなった時点を屈曲疲労寿命とした。屈曲疲労寿命を求める際の測定条件は以下の通りである:試験片幅:12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:5mm、振動ストローク:20mm、振動速度:1500回/分、曲げ方向:FPC(二層片面CCL)1のうち銅箔が内側、とする。
なお、屈曲疲労寿命が8万回以上の場合に優れた屈曲性を有しているとし、屈曲疲労寿命が8万回未満を屈曲性が劣るとして評価した。
<Surface roughness of copper foil (circuit) before and after bending test>
It was measured as described above.
<Bending fatigue life>
In the IPC sliding bending test, the sample prepared by the same method as the CCL (two-layer single-sided CCL) for which the circuit for the bending test has been prepared described above exceeds 10% from the initial electrical resistance value flowing through both ends of the circuit. The time when it became high was defined as the bending fatigue life. The measurement conditions for determining the bending fatigue life are as follows: test piece width: 12.7 mm, test piece length: 200 mm, test piece collection direction: so that the length direction of the test piece is parallel to the rolling direction. Collection, radius of curvature r: 5 mm, vibration stroke: 20 mm, vibration speed: 1500 times / minute, bending direction: FPC (two-layer single-sided CCL) 1 with copper foil inside.
When the bending fatigue life was 80,000 times or more, it was evaluated as having excellent flexibility, and when the bending fatigue life was less than 80,000 times, it was evaluated as being inferior in flexibility.

得られた結果を表1に示す。 The results obtained are shown in Table 1.

Figure 0006856688
Figure 0006856688

表1、表2から明らかなように、屈曲試験後の回路表面の表面粗さRaが0.030μm以上0.400μm以下である各実施例の場合、屈曲疲労寿命が優れたものとなった。 As is clear from Tables 1 and 2, in each example in which the surface roughness Ra of the circuit surface after the bending test was 0.030 μm or more and 0.400 μm or less, the bending fatigue life was excellent.

Raが0.030μm未満である比較例1の場合、屈曲疲労寿命が劣った。これは、表面が平滑過ぎて、変形前から存在する小さな起伏(オイルピット等)に応力が集中したためと考えられる。
Raが0.400μmを超えた比較例2〜6の場合、屈曲疲労寿命が劣った。なお、比較例2〜6の場合、最終冷間圧延における最終パスのひずみ速度が実施例より低く、圧延面に十分に歪が蓄積しなかったと考えられる。
In the case of Comparative Example 1 in which Ra was less than 0.030 μm, the bending fatigue life was inferior. It is considered that this is because the surface is too smooth and the stress is concentrated on the small undulations (oil pits, etc.) that existed before the deformation.
In Comparative Examples 2 to 6 in which Ra exceeded 0.400 μm, the bending fatigue life was inferior. In the case of Comparative Examples 2 to 6, it is considered that the strain rate of the final pass in the final cold rolling was lower than that of the examples, and the strain was not sufficiently accumulated on the rolled surface.

Claims (7)

99.0質量%以上のCu、残部不可避的不純物からなる銅箔であって、
前記銅箔から回路を形成した幅12.7mm、長さ:200mmの二層片面CCLサンプルを用い、曲率半径R=2.0で2000回のIPC摺動屈曲を行った後の前記回路表面の表面粗さRaが0.030μm以上0.400μm以下であるフレキシブルプリント基板用銅箔。
但し、前記二層片面CCLサンプルは、前記銅箔の片面に銅粗化めっきを行った後、厚み25μmのポリイミドフィルムの両面に2枚の前記銅箔のそれぞれ前記銅粗化めっき側を向けて積層し、300℃×30分の加熱プレスにて4MPaで貼り合せ、片面の前記銅箔をエッチアウトで完全に除去して二層片面CCLを作製する。そして、前記二層片面CCLサンプルの銅箔側の面に、線幅25μmで圧延方向に沿って延びる回路を、回路本数8本、回路間隔125umでエッチング形成する。
A copper foil consisting of 99.0% by mass or more of Cu and unavoidable impurities in the balance.
Using a two-layer single-sided CCL sample having a width of 12.7 mm and a length of 200 mm formed from the copper foil, the surface of the circuit surface is roughened after performing 2000 IPC sliding bends with a radius of curvature R = 2.0. Copper foil for flexible printed circuits with a Ra of 0.030 μm or more and 0.400 μm or less.
However, in the two-layer single-sided CCL sample, after copper roughening plating is performed on one side of the copper foil, the copper roughening plating side of each of the two copper foils is directed to both sides of a polyimide film having a thickness of 25 μm. The layers are laminated and bonded at 4 MPa with a heating press at 300 ° C. for 30 minutes, and the copper foil on one side is completely removed by etchout to prepare a two-layer single-sided CCL. Then, a circuit extending along the rolling direction with a line width of 25 μm is etched and formed on the surface of the two-layer single-sided CCL sample on the copper foil side with eight circuits and a circuit interval of 125 um.
前記IPC摺動屈曲を行う前の前記回路表面の表面粗さRaが0.010μm以上0.200μm以下である請求項1に記載のフレキシブルプリント基板用銅箔。 The copper foil for a flexible printed circuit board according to claim 1, wherein the surface roughness Ra of the circuit surface before the IPC sliding bending is 0.010 μm or more and 0.200 μm or less. JIS−H3100(C1100)に規格するタフピッチ銅又はJIS−H3100(C1020)の無酸素銅からなる請求項1に記載のフレキシブルプリント基板用銅箔。 The copper foil for a flexible printed circuit board according to claim 1, which is made of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020). さらに、添加元素として、P、Ag、Si、Ge、Al、Ga、Zn、SnおよびSbからなる群から選ばれる少なくとも1種又は2種以上を合計で0.7質量%以下含有してなる請求項1又は2に記載のフレキシブルプリント基板用銅箔。 Further, as an additive element, at least one or two or more selected from the group consisting of P, Ag, Si, Ge, Al, Ga, Zn, Sn and Sb are contained in an amount of 0.7% by mass or less in total. Item 2. The copper foil for a flexible printed circuit board according to Item 1 or 2. 請求項1〜4のいずれか一項に記載のフレキシブルプリント基板用銅箔と、樹脂層とを積層してなる銅張積層体。 A copper-clad laminate obtained by laminating the copper foil for a flexible printed circuit board according to any one of claims 1 to 4 and a resin layer. 請求項5に記載の銅張積層体における前記銅箔に回路を形成してなるフレキシブルプリント基板。 A flexible printed circuit board formed by forming a circuit on the copper foil in the copper-clad laminate according to claim 5. 請求項6に記載のフレキシブルプリント基板を用いた電子機器。 An electronic device using the flexible printed circuit board according to claim 6.
JP2019057781A 2019-03-26 2019-03-26 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices Active JP6856688B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019057781A JP6856688B2 (en) 2019-03-26 2019-03-26 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TW109108214A TWI718025B (en) 2019-03-26 2020-03-12 Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
KR1020200034239A KR102285062B1 (en) 2019-03-26 2020-03-20 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment
CN202010223434.3A CN111757599B (en) 2019-03-26 2020-03-26 Copper foil for flexible printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057781A JP6856688B2 (en) 2019-03-26 2019-03-26 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Publications (2)

Publication Number Publication Date
JP2020161581A JP2020161581A (en) 2020-10-01
JP6856688B2 true JP6856688B2 (en) 2021-04-07

Family

ID=72639816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057781A Active JP6856688B2 (en) 2019-03-26 2019-03-26 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Country Status (4)

Country Link
JP (1) JP6856688B2 (en)
KR (1) KR102285062B1 (en)
CN (1) CN111757599B (en)
TW (1) TWI718025B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164752B1 (en) * 2022-07-14 2022-11-01 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196729A (en) * 1999-10-28 2001-07-19 Asahi Kasei Corp Curable sheet
CN101432134B (en) * 2006-04-25 2014-01-22 日立化成工业株式会社 Conductor foil with adhesive layer, conductor-clad laminate, printed wiring board and multilayer wiring board
JP5865759B2 (en) * 2011-03-31 2016-02-17 新日鉄住金化学株式会社 Copper foil, copper-clad laminate, flexible circuit board, and method for producing copper-clad laminate
JP5261595B1 (en) * 2012-06-29 2013-08-14 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and laminate
JP2014214376A (en) * 2013-04-30 2014-11-17 株式会社Shカッパープロダクツ Rolled copper foil, flexible copper-clad laminated plate, and flexible printed wiring board
JP6640567B2 (en) * 2015-01-16 2020-02-05 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board, method for manufacturing electronic equipment, and method for manufacturing printed wiring board
JP6294257B2 (en) 2015-03-30 2018-03-14 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6663712B2 (en) * 2015-12-25 2020-03-13 Jx金属株式会社 Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
MY190857A (en) * 2016-01-15 2022-05-12 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate board,method for producing printed wiring board,method for producing electronic apparatus,method for producing transmission channel, and method for producing antenna
JP6612168B2 (en) * 2016-03-30 2019-11-27 Jx金属株式会社 Copper foil, copper clad laminate, flexible printed circuit board and electronic device
JP6348621B1 (en) 2017-02-15 2018-06-27 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6643287B2 (en) * 2017-08-03 2020-02-12 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6793138B2 (en) * 2018-01-22 2020-12-02 Jx金属株式会社 Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices

Also Published As

Publication number Publication date
TWI718025B (en) 2021-02-01
JP2020161581A (en) 2020-10-01
CN111757599A (en) 2020-10-09
KR20200115206A (en) 2020-10-07
KR102285062B1 (en) 2021-08-04
CN111757599B (en) 2023-06-30
TW202041721A (en) 2020-11-16

Similar Documents

Publication Publication Date Title
JP5467930B2 (en) Copper clad laminate
JP4672515B2 (en) Rolled copper alloy foil for bending
JP6294376B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP4662834B2 (en) Copper or copper alloy foil for circuit
JP6392268B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6617313B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR102049636B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP6856688B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
JP2019029606A (en) Copper foil for flexible printed board, copper-clad laminate arranged by use thereof, flexible printed board, and electronic device
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JP2019194360A (en) Copper foil for flexible printed wiring board, and copper clad laminate, flexible printed wiring board and electronic device using the same
JP6827022B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2022100207A (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2022100020A (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
JP2018154888A (en) Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus using the same
WO2012070471A1 (en) Rolled copper foil for flexible printed wiring board, copper-clad laminated board, flexible wiring board, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210318

R151 Written notification of patent or utility model registration

Ref document number: 6856688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250