JP2022100020A - Surface-treated copper foil, copper-clad laminate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-clad laminate, and printed wiring board Download PDF

Info

Publication number
JP2022100020A
JP2022100020A JP2020214142A JP2020214142A JP2022100020A JP 2022100020 A JP2022100020 A JP 2022100020A JP 2020214142 A JP2020214142 A JP 2020214142A JP 2020214142 A JP2020214142 A JP 2020214142A JP 2022100020 A JP2022100020 A JP 2022100020A
Authority
JP
Japan
Prior art keywords
copper foil
treated
layer
treated copper
treatment layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020214142A
Other languages
Japanese (ja)
Other versions
JP7014884B1 (en
Inventor
裕士 石野
Yuji Ishino
慎介 坂東
Shinsuke Bando
宣明 宮本
Nobuaki Miyamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=80774237&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022100020(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2020214142A priority Critical patent/JP7014884B1/en
Priority to JP2021118211A priority patent/JP7027602B1/en
Priority to CN202180085897.0A priority patent/CN116669948A/en
Priority to PCT/JP2021/046877 priority patent/WO2022138513A1/en
Priority to KR1020237020774A priority patent/KR20230109728A/en
Priority to TW110147726A priority patent/TWI806296B/en
Publication of JP7014884B1 publication Critical patent/JP7014884B1/en
Application granted granted Critical
Priority to JP2022022395A priority patent/JP2022100307A/en
Publication of JP2022100020A publication Critical patent/JP2022100020A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0369Etching selective parts of a metal substrate through part of its thickness, e.g. using etch resist

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

To provide a surface-treated copper foil with which it is possible to reduce peeling from a substrate and to form a fine-pitched circuit pattern.SOLUTION: The surface-treated copper foil in the present invention has a copper foil, a first surface treatment layer formed on one surface of the copper foil, and a second surface treatment layer formed on the other surface of the copper foil. The ratio of the amount of Ni adhering to the first surface treatment layer to the amount of Ni adhering to the second surface treatment layer is 0.01-2.0. The surface-treated copper foil has a tensile strength of 235-290 MPa. The copper foil is made of at least 99.0 mass% of Cu and the balance being unavoidable impurities.SELECTED DRAWING: Figure 1

Description

本発明は、表面処理銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to a surface-treated copper foil, a copper-clad laminate, and a printed wiring board.

近年、電子機器の小型化、高性能化などのニーズの増大に伴い、電子機器に搭載されるプリント配線板に対する回路パターン(「導体パターン」ともいう)のファインピッチ化(微細化)が要求されている。 In recent years, with the increasing needs for miniaturization and high performance of electronic devices, fine pitching (miniaturization) of circuit patterns (also referred to as "conductor patterns") for printed wiring boards mounted on electronic devices is required. ing.

上記のファインピッチ化の要求に対し、例えば、特許文献1には、「銅箔と、前記銅箔の一方の面に形成された第1表面処理層と、前記銅箔の他方の面に形成された第2表面処理層とを有し、前記第2表面処理層のNi付着量に対する前記第1表面処理層のNi付着量の比が0.01~2である表面処理銅箔」が開示されており、当該表面処理銅箔により、ファインピッチ化に適した高エッチングファクタの回路パターンを形成することが可能であることが記載されている。 In response to the above-mentioned demand for fine pitch, for example, Patent Document 1 states that "a copper foil, a first surface-treated layer formed on one surface of the copper foil, and a copper foil formed on the other surface of the copper foil". The surface-treated copper foil having the second surface-treated layer and the ratio of the Ni adhesion amount of the first surface-treated layer to the Ni adhesion amount of the second surface-treated layer is 0.01 to 2, is disclosed. It is described that the surface-treated copper foil can form a circuit pattern having a high etching factor suitable for fine pitching.

特開2019-81913号公報Japanese Unexamined Patent Publication No. 2019-81913

ところで、上記のように回路パターンをファインピッチ化したプリント配線板においては、当該回路パターンがファインピッチであることから、形成された回路が、ファインピッチ化する前の回路と比べて基材から剥がれやすくなり得ることが分かった。特にフレキシブル性を有するフレキシブルプリント配線板(以下、「FPC」とも称する)は、その製造時や使用時等においてプリント配線板の変形を伴うので、よりはがれやすくなり得る。したがって、プリント配線板においては、回路パターンのファインピッチ化とともに耐剥がれ性の向上が必要である。 By the way, in the printed wiring board in which the circuit pattern is made fine pitch as described above, since the circuit pattern is fine pitch, the formed circuit is peeled off from the base material as compared with the circuit before making fine pitch. It turns out that it can be easier. In particular, a flexible printed wiring board (hereinafter, also referred to as “FPC”) having flexibility may be more easily peeled off because the printed wiring board is deformed at the time of its manufacture or use. Therefore, in the printed wiring board, it is necessary to improve the peeling resistance as well as to make the circuit pattern finer pitch.

そこで、本発明は、上記のような問題を解決するためになされたものであり、基板からの剥がれを低減させファインピッチ化した回路パターンを形成することが可能な表面処理銅箔及び銅張積層板を提供することを目的とする。
また、本発明は、基板からの剥がれを低減させファインピッチ化した回路パターンを有するプリント配線板を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned problems, and is a surface-treated copper foil and a copper-clad laminate capable of reducing peeling from a substrate and forming a circuit pattern having a fine pitch. The purpose is to provide a board.
Another object of the present invention is to provide a printed wiring board having a circuit pattern having a fine pitch by reducing peeling from a substrate.

本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、回路パターンがファインピッチ化したプリント配線板において、銅箔の強度を高くすることで、形成された回路の基材からの剥がれを低減することができることを見出して、本発明に至った。
すなわち、本発明は、以下の通りである。
As a result of diligent research to solve the above problems, the present inventors made a circuit board formed by increasing the strength of the copper foil in a printed wiring board having a fine pitch circuit pattern. We have found that it is possible to reduce the peeling of the material, and have arrived at the present invention.
That is, the present invention is as follows.

本発明の表面処理銅箔は一実施態様において、銅箔と、前記銅箔の一方の面に形成された第1表面処理層と、前記銅箔の他方の面に形成された第2表面処理層とを有し、前記第2表面処理層のNi付着量に対する前記第1表面処理層のNi付着量の比が0.01~2.0であり、前記表面処理銅箔の引張強度が235~290MPaであり、
前記銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる。
In one embodiment, the surface-treated copper foil of the present invention comprises a copper foil, a first surface-treated layer formed on one surface of the copper foil, and a second surface-treated surface formed on the other surface of the copper foil. It has a layer, and the ratio of the Ni adhesion amount of the first surface-treated layer to the Ni adhesion amount of the second surface-treated layer is 0.01 to 2.0, and the tensile strength of the surface-treated copper foil is 235. ~ 290 MPa,
The copper foil is composed of 99.0% by mass or more of Cu and the balance of unavoidable impurities.

本発明の銅張積層板は一実施態様において、上記の表面処理銅箔と、前記表面処理銅箔の前記第1表面処理層に接着された基材とを備える。 In one embodiment, the copper-clad laminate of the present invention comprises the above-mentioned surface-treated copper foil and a base material adhered to the first surface-treated layer of the surface-treated copper foil.

本発明のプリント配線板は一実施態様において、上記の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備える。 In one embodiment, the printed wiring board of the present invention comprises a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.

本発明によれば、基板からの剥がれを低減させファインピッチ化した回路パターンを形成することが可能な表面処理銅箔及び銅張積層板を提供することができる。
また、本発明によれば、基板からの剥がれを低減させファインピッチ化した回路パターンを有するプリント配線板を提供することができる。
According to the present invention, it is possible to provide a surface-treated copper foil and a copper-clad laminate capable of forming a circuit pattern having a fine pitch by reducing peeling from a substrate.
Further, according to the present invention, it is possible to provide a printed wiring board having a circuit pattern having a fine pitch by reducing peeling from a substrate.

本実施形態の表面処理銅箔を、基材に接着させた状態で示す断面図である。It is sectional drawing which shows the surface-treated copper foil of this embodiment in the state which adhered to the base material.

以下、本発明の実施形態(以下、「本実施形態」という。)を詳細に説明するが、本発明は本実施形態に限定されるものではない。
<表面処理銅箔>
図1は、本実施形態の表面処理銅箔を、基材に接着させた状態で示す断面図(銅張積層板10の断面図)である。
本実施形態の表面処理銅箔1は、銅箔2と、銅箔2の一方の面に形成された第1表面処理層3と、銅箔2の他方の面に形成された第2表面処理層4とを有する。また、銅張積層板10は、表面処理銅箔1と、表面処理銅箔1の第1表面処理層3に接着された基材11とを有する。
本実施形態の表面処理銅箔1は、特に限定されないが、電子機器等に搭載されるプリント配線板、特にフレキシブルプリント配線板用の銅箔として用いることができる。
Hereinafter, embodiments of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment.
<Surface-treated copper foil>
FIG. 1 is a cross-sectional view (cross-sectional view of a copper-clad laminate 10) showing a state in which the surface-treated copper foil of the present embodiment is adhered to a base material.
The surface-treated copper foil 1 of the present embodiment has the copper foil 2, the first surface-treated layer 3 formed on one surface of the copper foil 2, and the second surface-treated surface-treated on the other surface of the copper foil 2. It has a layer 4. Further, the copper-clad laminate 10 has a surface-treated copper foil 1 and a base material 11 adhered to the first surface-treated layer 3 of the surface-treated copper foil 1.
The surface-treated copper foil 1 of the present embodiment is not particularly limited, but can be used as a copper foil for a printed wiring board mounted on an electronic device or the like, particularly a flexible printed wiring board.

第1表面処理層3及び第2表面処理層4は、付着元素としてNiを少なくとも含む。表面処理銅箔1において、第2表面処理層4のNi付着量に対する第1表面処理層3のNi付着量の比は、0.01~2.0、好ましくは0.8~1.5である。Niはエッチング液に溶解し難い成分であるため、Ni付着量の比を上記の範囲とすることにより、銅張積層板10をエッチングする際に、回路パターンのボトム側となる第1表面処理層3の溶解を促進すると共に、回路パターンのトップ側となる第2表面処理層4の溶解を遅くすることができる。そのため、トップ幅とボトム幅との差が小さく、エッチングファクタが高い回路パターンを得ることが可能になる。 The first surface treatment layer 3 and the second surface treatment layer 4 contain at least Ni as an adhering element. In the surface-treated copper foil 1, the ratio of the Ni adhesion amount of the first surface-treated layer 3 to the Ni adhesion amount of the second surface-treated layer 4 is 0.01 to 2.0, preferably 0.8 to 1.5. be. Since Ni is a component that is difficult to dissolve in the etching solution, by setting the ratio of the amount of Ni adhered to the above range, the first surface treatment layer that becomes the bottom side of the circuit pattern when etching the copper-clad laminate 10. It is possible to promote the dissolution of 3 and delay the dissolution of the second surface treatment layer 4, which is the top side of the circuit pattern. Therefore, it is possible to obtain a circuit pattern in which the difference between the top width and the bottom width is small and the etching factor is high.

第1表面処理層3のNi付着量は、Ni付着量の比が上記の範囲内であれば特に限定されないが、好ましくは20~200μg/dm2、より好ましくは20~100μg/dm2である。第1表面処理層3のNi付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The amount of Ni attached to the first surface treatment layer 3 is not particularly limited as long as the ratio of the amount of attached Ni is within the above range, but is preferably 20 to 200 μg / dm 2 , and more preferably 20 to 100 μg / dm 2 . .. By setting the amount of Ni adhered to the first surface treatment layer 3 within the above range, the etching factor of the circuit pattern can be stably increased.

第1表面処理層3は、付着元素として、Ni以外にZn、Co、Crなどの元素を含むことができる。第1表面処理層3のZn付着量は、第1表面処理層3の種類に依存するため特に限定されないが、第1表面処理層3にZnが含有される場合、好ましくは20~1000μg/dm2、より好ましくは400~500μg/dm2である。第1表面処理層3のZn付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The first surface treatment layer 3 can contain elements such as Zn, Co, and Cr in addition to Ni as an adhering element. The amount of Zn adhered to the first surface treatment layer 3 is not particularly limited because it depends on the type of the first surface treatment layer 3, but when Zn is contained in the first surface treatment layer 3, it is preferably 20 to 1000 μg / dm. 2 , more preferably 400 to 500 μg / dm 2 . By setting the amount of Zn adhered to the first surface treatment layer 3 within the above range, the etching factor of the circuit pattern can be stably increased.

第1表面処理層3のCo付着量は、第1表面処理層3の種類に依存するため特に限定されないが、好ましくは1500μg/dm2以下、より好ましくは0.1~500μg/dm2、さらに好ましくは0.5~100μg/dm2である。第1表面処理層3のCo付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。また、Coは磁性金属であるため、第1表面処理層3のCo付着量を特に100μg/dm2以下、好ましくは0.5~100μg/dm2に抑えることにより、高周波特性に優れたプリント配線板を作製可能な表面処理銅箔1を得ることができる。 The amount of Co adhered to the first surface treatment layer 3 is not particularly limited because it depends on the type of the first surface treatment layer 3, but is preferably 1500 μg / dm 2 or less, more preferably 0.1 to 500 μg / dm 2 , and further. It is preferably 0.5 to 100 μg / dm 2 . By setting the amount of Co adhered to the first surface treatment layer 3 within the above range, the etching factor of the circuit pattern can be stably increased. Further, since Co is a magnetic metal, the amount of Co adhered to the first surface treatment layer 3 is suppressed to 100 μg / dm 2 or less, preferably 0.5 to 100 μg / dm 2 , so that the printed wiring has excellent high frequency characteristics. A surface-treated copper foil 1 capable of producing a plate can be obtained.

第1表面処理層3のCr付着量は、第1表面処理層3の種類に依存するため特に限定されないが、500μg/dm2以下、より好ましくは0.5~300μg/dm2、さらに好ましくは1~100μg/dm2である。第1表面処理層3のCr付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The amount of Cr adhered to the first surface treatment layer 3 is not particularly limited because it depends on the type of the first surface treatment layer 3, but is 500 μg / dm 2 or less, more preferably 0.5 to 300 μg / dm 2 , and even more preferably. It is 1 to 100 μg / dm 2 . By setting the amount of Cr adhered to the first surface treatment layer 3 within the above range, the etching factor of the circuit pattern can be stably increased.

第1表面処理層3のRzjisは、特に限定されないが、好ましくは0.3~1.5、より好ましくは0.5~0.8である。第1表面処理層3のRzjisを上記範囲内とすることにより、基材11との接着性を向上させることができる。ここで、本明細書において「Rzjis」とは、JIS B 0601:2001に規定される十点平均粗さを意味する。 The Rzjis of the first surface treatment layer 3 is not particularly limited, but is preferably 0.3 to 1.5, and more preferably 0.5 to 0.8. By setting the Rzjis of the first surface treatment layer 3 within the above range, the adhesiveness with the base material 11 can be improved. Here, "Rzjis" in the present specification means a ten-point average roughness defined in JIS B 0601: 2001.

第1表面処理層3の種類は、Ni付着量の比が上記の範囲内となれば特に限定されず、当該技術分野において公知の各種表面処理層を用いることができる。表面処理層の例としては、粗化処理層、耐熱層、防錆層、クロメート処理層、シランカップリング処理層などが挙げられる。これらの層は、単一又は2種以上を組み合わせて用いることができる。その中でも第1表面処理層3は、基材11との接着性の観点から、粗化処理層を有することが好ましい。ここで、本明細書において「粗化処理層」とは、粗化処理によって形成される層であり、粗化粒子の層を含む。また、粗化処理では、前処理として通常の銅メッキなどが行われたり、仕上げ処理として粗化粒子の脱落を防止するために通常の銅メッキなどが行われたりする場合があるが、本明細書における「粗化処理層」は、これらの前処理及び仕上げ処理によって形成される層を含む。 The type of the first surface treatment layer 3 is not particularly limited as long as the ratio of the Ni adhesion amount is within the above range, and various surface treatment layers known in the art can be used. Examples of the surface treatment layer include a roughening treatment layer, a heat resistant layer, a rust preventive layer, a chromate treatment layer, a silane coupling treatment layer and the like. These layers can be used alone or in combination of two or more. Among them, the first surface-treated layer 3 preferably has a roughened-treated layer from the viewpoint of adhesiveness to the base material 11. Here, the "roughened layer" in the present specification is a layer formed by the roughening treatment, and includes a layer of roughened particles. Further, in the roughening treatment, normal copper plating or the like may be performed as a pretreatment, or normal copper plating or the like may be performed as a finishing treatment to prevent the roughened particles from falling off. The "roughened layer" in the book includes layers formed by these pretreatments and finishing treatments.

粗化粒子としては、特に限定されないが、銅、ニッケル、コバルト、リン、タングステン、ヒ素、モリブデン、クロム及び亜鉛からなる群から選択されたいずれかの単体又はいずれか1種以上を含む合金から形成することができる。また、粗化粒子を形成した後、更にニッケル、コバルト、銅、亜鉛の単体又は合金などで二次粒子や三次粒子を設ける粗化処理を行うこともできる。 The roughened particles are not particularly limited, but are formed from any simple substance selected from the group consisting of copper, nickel, cobalt, phosphorus, tungsten, arsenic, molybdenum, chromium and zinc, or an alloy containing any one or more thereof. can do. Further, after forming the roughened particles, it is also possible to further perform a roughening treatment for providing secondary particles or tertiary particles with a simple substance or an alloy of nickel, cobalt, copper, zinc or the like.

耐熱層及び防錆層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。なお、耐熱層は防錆層としても機能することがあるため、耐熱層及び防錆層として、耐熱層及び防錆層の両方の機能を有する1つの層を形成してもよい。耐熱層及び/又は防錆層としては、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選択される1種以上の元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。耐熱層及び/又は防錆層の例としては、ニッケル-亜鉛合金を含む層が挙げられる。 The heat-resistant layer and the rust-preventive layer are not particularly limited, and can be formed from a material known in the art. Since the heat-resistant layer may also function as a rust-preventive layer, one layer having both the functions of the heat-resistant layer and the rust-preventive layer may be formed as the heat-resistant layer and the rust-preventive layer. The heat-resistant layer and / or rust-preventive layer includes nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. It can be a layer containing one or more elements selected from the above (which may be in any form such as metal, alloy, oxide, nitride, sulfide, etc.). Examples of the heat-resistant layer and / or the rust-preventive layer include a layer containing a nickel-zinc alloy.

クロメート処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。ここで、本明細書において「クロメート処理層」とは、無水クロム酸、クロム酸、二クロム酸、クロム酸塩又は二クロム酸塩を含む液で形成された層を意味する。クロメート処理層は、コバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素、チタンなどの元素(金属、合金、酸化物、窒化物、硫化物などのいずれの形態であってもよい)を含む層であることができる。クロメート処理層の例としては、無水クロム酸又は二クロム酸カリウム水溶液で処理したクロメート処理層、無水クロム酸又は二クロム酸カリウム及び亜鉛を含む処理液で処理したクロメート処理層などが挙げられる。 The chromate-treated layer is not particularly limited and can be formed from a material known in the art. Here, the term "chromate-treated layer" as used herein means a layer formed of a liquid containing chromic anhydride, chromic acid, chromic acid, chromate or dichromate. The chromate-treated layer can be any element (metal, alloy, oxide, nitride, sulfide, etc.) such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic, and titanium. It can be a layer containing). Examples of the chromate-treated layer include a chromate-treated layer treated with an aqueous solution of chromic acid anhydride or potassium dichromate, and a chromate-treated layer treated with a treatment liquid containing chromic acid anhydride or potassium dichromate and zinc.

シランカップリング処理層としては、特に限定されず、当該技術分野において公知の材料から形成することができる。ここで、本明細書において「シランカップリング処理層」とは、シランカップリング剤で形成された層を意味する。シランカップリング剤としては、特に限定されず、当該技術分野において公知のものを用いることができる。シランカップリング剤の例としては、アミノ系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤などが挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。 The silane coupling treatment layer is not particularly limited and can be formed from a material known in the art. Here, the term "silane coupling-treated layer" as used herein means a layer formed of a silane coupling agent. The silane coupling agent is not particularly limited, and those known in the art can be used. Examples of the silane coupling agent include an amino-based silane coupling agent, an epoxy-based silane coupling agent, and a mercapto-based silane coupling agent. These can be used alone or in combination of two or more.

第2表面処理層4の種類は、Ni付着量の比が上記の範囲内となれば特に限定されず、第1表面処理層3と同様に、当該技術分野において公知の各種表面処理層を用いることができる。また、第2表面処理層4の種類は、第1表面処理層3と同一であっても異なっていてもよい。 The type of the second surface treatment layer 4 is not particularly limited as long as the ratio of the Ni adhesion amount is within the above range, and various surface treatment layers known in the art are used as in the first surface treatment layer 3. be able to. Further, the type of the second surface treatment layer 4 may be the same as or different from that of the first surface treatment layer 3.

第2表面処理層4のNi付着量は、Ni付着量の比が上記の範囲内であれば特に限定されないが、好ましくは0.1~500μg/dm2、より好ましくは0.5~200μg/dm2、さらに好ましくは1.0~100μg/dm2である。第2表面処理層4のNi付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The amount of Ni attached to the second surface treatment layer 4 is not particularly limited as long as the ratio of the amount of attached Ni is within the above range, but is preferably 0.1 to 500 μg / dm 2 , more preferably 0.5 to 200 μg /. It is dm 2 , more preferably 1.0 to 100 μg / dm 2 . By setting the amount of Ni adhered to the second surface treatment layer 4 within the above range, the etching factor of the circuit pattern can be stably increased.

第2表面処理層4は、付着元素として、Ni以外にZn、Crなどの元素を含むことができる。第2表面処理層4のZn付着量は、第2表面処理層4の種類に依存するため特に限定されないが、第2表面処理層4にZnが含有される場合、好ましくは10~1000μg/dm2、より好ましくは50~500μg/dm2、さらに好ましくは100~300μg/dm2である。第2表面処理層4のZn付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The second surface treatment layer 4 can contain elements such as Zn and Cr as adhesion elements in addition to Ni. The amount of Zn adhered to the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but when Zn is contained in the second surface treatment layer 4, it is preferably 10 to 1000 μg / dm. 2 , more preferably 50 to 500 μg / dm 2 , still more preferably 100 to 300 μg / dm 2 . By setting the amount of Zn adhered to the second surface treatment layer 4 within the above range, the etching factor of the circuit pattern can be stably increased.

第2表面処理層4のCr付着量は、第2表面処理層4の種類に依存するため特に限定されないが、第2表面処理層4にCrが含有される場合、好ましくは0μg/dm2超過500μg/dm2以下、より好ましくは0.1~100μg/dm2、さらに好ましくは1~50μg/dm2である。第2表面処理層4のCr付着量を上記範囲内とすることにより、回路パターンのエッチングファクタを安定して高めることができる。 The amount of Cr adhered to the second surface treatment layer 4 is not particularly limited because it depends on the type of the second surface treatment layer 4, but when Cr is contained in the second surface treatment layer 4, it preferably exceeds 0 μg / dm 2 . It is 500 μg / dm 2 or less, more preferably 0.1 to 100 μg / dm 2 , and even more preferably 1 to 50 μg / dm 2 . By setting the amount of Cr adhered to the second surface treatment layer 4 within the above range, the etching factor of the circuit pattern can be stably increased.

銅箔2は、99.0質量%以上のCu、残部不可避的不純物からなり、表面処理銅箔としたときの引張強度が235~290MPaである。銅箔2がこのような構成を有することにより、回路パターンがファインピッチ化したプリント配線板において、形成された回路の基材からの剥がれを低減することができる。より具体的には、回路パターンの耐久性を向上させる(剥がれ防止を行う)場合は、めっき組成や表面粗さを調整して樹脂との接着性向上を検討するのが一般的である。しかし、本実施形態においては、銅箔2を上記のような組成にするとともに、表面処理銅箔としたときの引張強度を所定の範囲にすることにより、ファインピッチ化したプリント配線板であっても、回路パターンの剥がれを低減させることができる。 The copper foil 2 is composed of 99.0% by mass or more of Cu and unavoidable impurities in the balance, and has a tensile strength of 235 to 290 MPa when used as a surface-treated copper foil. When the copper foil 2 has such a configuration, it is possible to reduce peeling of the formed circuit from the base material in the printed wiring board having a fine pitch circuit pattern. More specifically, when improving the durability of the circuit pattern (preventing peeling), it is common to consider improving the adhesiveness with the resin by adjusting the plating composition and the surface roughness. However, in the present embodiment, the copper foil 2 has a composition as described above, and the tensile strength when the surface-treated copper foil is formed is set within a predetermined range, so that the printed wiring board has a fine pitch. Also, the peeling of the circuit pattern can be reduced.

より詳細には、本実施形態において、銅箔(ひいては表面処理銅箔)の引張強度を向上させる方法としては、限定されるものではないが、銅箔の再結晶後の結晶粒を微細化することが挙げられる。
銅箔2のような純銅系の組成の場合、結晶粒の微細化が困難であるが、冷間圧延時の初期に再結晶焼鈍を行い、以後は再結晶焼鈍を行わないことで、冷間圧延により加工ひずみを大量に導入して動的再結晶を生じさせて結晶粒の微細化を実現できる。
More specifically, in the present embodiment, the method for improving the tensile strength of the copper foil (and thus the surface-treated copper foil) is not limited, but the crystal grains after recrystallization of the copper foil are refined. Can be mentioned.
In the case of a pure copper-based composition such as copper foil 2, it is difficult to refine the crystal grains, but by performing recrystallization annealing at the initial stage of cold rolling and not performing recrystallization annealing thereafter, it is cold. A large amount of processing strain can be introduced by rolling to generate dynamic recrystallization, and finer crystal grains can be realized.

また、結晶粒を微細化させる添加元素として、銅箔が上記組成に対し、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.002~0.825質量%含有すると、結晶粒の微細化をより容易に実現できる。これらの添加元素は、冷間圧延時に転位密度を増加させるので、結晶粒の微細化をより容易に実現できる。 Further, as an additive element for refining the crystal grains, the copper foil has a total of 0 or more additive elements selected from the group of P, Ti, Sn, Ni, Be, Zn, In and Mg with respect to the above composition. When it is contained in an amount of .002 to 0.825% by mass, finer crystal grains can be more easily realized. Since these additive elements increase the dislocation density during cold rolling, miniaturization of crystal grains can be realized more easily.

なお、銅箔の再結晶後の結晶粒を微細化する方法としては、添加元素を加える方法のほかに、重合圧延をする方法、電解銅箔にて電析をする際にパルス電流を用いる方法、または電解銅箔にて電解液にチオ尿素やニカワなどを適量添加する方法が挙げられる。 As a method for refining the crystal grains after recrystallization of the copper foil, in addition to the method of adding an additive element, a method of polymerized rolling and a method of using a pulse current when electrolyzing with an electrolytic copper foil. Alternatively, a method of adding an appropriate amount of thiourea, nikawa, or the like to the electrolytic solution using an electrolytic copper foil can be mentioned.

本実施形態の銅箔を、JIS-H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS-H3100(C1011)の無酸素銅(OFC)からなる組成としてもよい。又、上記TPC又はOFCに対し、上記した添加元素を含有させてなる組成としてもよい。 The copper foil of the present embodiment may be composed of tough pitch copper (TPC) standardized for JIS-H3100 (C1100) or oxygen-free copper (OFC) of JIS-H3100 (C1011). Further, the composition may be such that the above-mentioned additive element is contained in the above-mentioned TPC or OFC.

本実施形態において、銅箔の平均結晶粒径が0.5~4.0μmであることが好ましい。平均結晶粒径が0.5μm未満であると、引張強度が所望の値よりも大きくなり得、具体的には、強度が高くなり過ぎて曲げ剛性が大きくなり、特に、表面処理銅箔をフレキシブルプリント配線板用に用いる場合においては、スプリングバックが大きくなってフレキシブルプリント配線板用途に適さない傾向がある。平均結晶粒径が4.0μmを超えると、結晶粒の微細化が実現されず、引張強度が所望の値よりも小さくなり得、具体的には、強度を十分に高めることが困難になると共に、エッチングファクタや回路直線性が劣化してエッチング性が低下する。平均結晶粒径の測定は、誤差を避けるため、箔表面を15μm×15μmの視野で10視野以上を観察して行う。箔表面の観察は、SIM(Scanning Ion Microscope)またはSEM(Scanning Electron Microscope)を用い、JIS H 0501に記載の切断法に基づいて平均結晶粒径を求めることができる。ただし、双晶は、別々の結晶粒とみなして測定する。 In the present embodiment, the average crystal grain size of the copper foil is preferably 0.5 to 4.0 μm. When the average crystal grain size is less than 0.5 μm, the tensile strength can be higher than the desired value, specifically, the strength becomes too high and the bending rigidity becomes high, and in particular, the surface-treated copper foil is flexible. When used for printed wiring boards, the springback tends to be large and not suitable for flexible printed wiring boards. If the average crystal grain size exceeds 4.0 μm, the crystal grains cannot be refined and the tensile strength can be smaller than the desired value. Specifically, it becomes difficult to sufficiently increase the strength. , Etching factor and circuit linearity are deteriorated, and etching property is lowered. The average crystal grain size is measured by observing 10 or more fields of view on the foil surface with a field of view of 15 μm × 15 μm in order to avoid errors. The foil surface can be observed using SIM (Scanning Ion Microscope) or SEM (Scanning Electron Microscope), and the average crystal grain size can be determined based on the cutting method described in JIS H 0501. However, twins are measured as separate crystal grains.

本実施形態において、表面処理銅箔の引張強度が235~290MPaである。上述のように、結晶粒を微細化することにより引張強度が向上する。プリント配線板の製造工程および製品への実装時などにおいて外力が負荷されることにより引き起こされる回路剥離では、回路の変形を伴う。このような変形を伴う剥離の場合、剥離対象の変形のしやすさによって界面上で外力が集中する範囲が変化する。変形がしやすい場合は界面上の狭い範囲に外力が集中し、一方で変形し難い場合は界面上の広い範囲で外力が分散される。すなわち強度が高く変形し難い表面処理銅箔を回路として採用することで、外力を界面上の広い範囲で分散し、回路剥離を抑制することができる。特にファインピッチ回路においては、回路幅の狭さのため外力が集中し易く、剥離対象の変形のし難さによる外力の分散がより重要となることを本発明者らは見出した。表面処理銅箔の引張強度が235MPa未満の場合、界面上に負荷される外力が十分分散されず回路剥離を抑制できない。また表面処理銅箔の引張強度が290MPaを超えると、回路剥離は十分抑制できるが、強度が高くなり過ぎて曲げ剛性が大きくなり、特に、表面処理銅箔をフレキシブルプリント配線板用に用いる場合においては、スプリングバックが大きくなってフレキシブルプリント配線板用途に適さない傾向がある。引張強度は、IPC-TM-650に準拠した引張試験により、試験片幅12.7mm、室温(15~35℃)、引張速度50.8mm/min、ゲージ長さ50mmで、銅箔の圧延方向(又はMD方向)と平行な方向に引張試験した。 In the present embodiment, the tensile strength of the surface-treated copper foil is 235 to 290 MPa. As described above, the tensile strength is improved by refining the crystal grains. Circuit peeling caused by an external force applied during the manufacturing process of a printed wiring board and mounting on a product involves deformation of the circuit. In the case of peeling accompanied by such deformation, the range in which the external force is concentrated on the interface changes depending on the ease of deformation of the peeling target. When it is easily deformed, the external force is concentrated in a narrow range on the interface, while when it is difficult to deform, the external force is dispersed in a wide range on the interface. That is, by adopting a surface-treated copper foil having high strength and being hard to be deformed as a circuit, external force can be dispersed in a wide range on the interface and circuit peeling can be suppressed. In particular, in a fine pitch circuit, the present inventors have found that the narrowness of the circuit width makes it easy for an external force to concentrate, and it is more important to disperse the external force due to the difficulty in deforming the object to be peeled off. When the tensile strength of the surface-treated copper foil is less than 235 MPa, the external force applied on the interface is not sufficiently dispersed and the circuit peeling cannot be suppressed. Further, when the tensile strength of the surface-treated copper foil exceeds 290 MPa, circuit peeling can be sufficiently suppressed, but the strength becomes too high and the bending rigidity becomes large, especially when the surface-treated copper foil is used for a flexible printed wiring board. Tends to be unsuitable for flexible printed wiring board applications due to the large springback. Tensile strength was measured by a tensile test based on IPC-TM-650, with a test piece width of 12.7 mm, room temperature (15 to 35 ° C), a tensile speed of 50.8 mm / min, and a gauge length of 50 mm, in the rolling direction of the copper foil. A tensile test was performed in a direction parallel to (or MD direction).

本実施形態において、表面処理銅箔を300℃で30分間の熱処理後の引張強度が235~290MPaであってもよい(換言すれば、引張強度が235~290MPaである表面処理銅箔は、300℃で30分間の熱処理をしたときのものであってもよい)。本実施形態における表面処理銅箔はプリント配線板に用いることができ、表面処理銅箔と基材としての樹脂とを積層した銅張積層板は、200~400℃で樹脂を硬化させるための熱処理を行うため、再結晶によって結晶粒が粗大化する可能性がある。
一方、本実施形態における表面処理銅箔は、表面処理銅箔を300℃で30分間の熱処理後の引張強度が235~290MPaであってもよいところ、この物性は、樹脂と積層する前の表面処理銅箔に上記熱処理を行ったときの状態に着目して規定している。この300℃で30分間の熱処理は、銅張積層板の積層時に樹脂を硬化熱処理させる温度条件を模したものである。
In the present embodiment, the surface-treated copper foil may have a tensile strength of 235 to 290 MPa after heat treatment of the surface-treated copper foil at 300 ° C. for 30 minutes (in other words, the surface-treated copper foil having a tensile strength of 235 to 290 MPa is 300. It may be the one after heat treatment at ° C. for 30 minutes). The surface-treated copper foil in the present embodiment can be used for a printed wiring board, and the copper-clad laminated board in which the surface-treated copper foil and the resin as a base material are laminated is heat-treated to cure the resin at 200 to 400 ° C. Therefore, there is a possibility that the crystal grains will be coarsened by recrystallization.
On the other hand, the surface-treated copper foil in the present embodiment may have a tensile strength of 235 to 290 MPa after the surface-treated copper foil is heat-treated at 300 ° C. for 30 minutes, but this physical property is the surface before laminating with the resin. It is specified by paying attention to the state when the treated copper foil is subjected to the above heat treatment. This heat treatment at 300 ° C. for 30 minutes imitates the temperature condition for curing and heat-treating the resin when laminating the copper-clad laminate.

銅箔の厚みは、特に限定されないが、例えば1~1000μm、或いは1~500μm、或いは1~300μm、或いは3~100μm、或いは5~70μm、或いは6~35μm、或いは9~18μmとすることができる。 The thickness of the copper foil is not particularly limited, but may be, for example, 1 to 1000 μm, 1 to 500 μm, 1 to 300 μm, 3 to 100 μm, 5 to 70 μm, 6 to 35 μm, or 9 to 18 μm. ..

本実施形態における銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットに上記添加物を添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を行い、上述の最終冷間圧延を行うことにより箔を製造することができる。 The copper foil in this embodiment can be manufactured, for example, as follows. First, the above additive is added to a copper ingot, melted and cast, then hot rolled, cold rolled and annealed, and the final cold rolling described above is carried out to produce a foil.

また、本実施形態の表面処理銅箔1は、上記の銅箔2を用いて、当該技術分野において公知の方法に準じて製造することができる。ここで、第1表面処理層3及び第2表面処理層4のNi付着量、Ni付着量の比は、例えば、形成する表面処理層の種類、厚みなどを変えることによって制御することができる。また、第1表面処理層3のRzjisは、第1表面処理層3の形成条件などを調整することによって制御することができる。 Further, the surface-treated copper foil 1 of the present embodiment can be manufactured by using the above-mentioned copper foil 2 according to a method known in the art. Here, the ratio of the Ni adhesion amount and the Ni adhesion amount of the first surface treatment layer 3 and the second surface treatment layer 4 can be controlled by changing, for example, the type and thickness of the surface treatment layer to be formed. Further, the Rzjis of the first surface treatment layer 3 can be controlled by adjusting the formation conditions of the first surface treatment layer 3 and the like.

<銅張積層板>
本実施形態の銅張積層板10は、上記の表面処理銅箔1と、表面処理銅箔1の第1表面処理層3に接着された基材11とを備える。
基材11としては、特に限定されず、当該技術分野において公知のものを用いることができる。基材11の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレートなど)フィルム、ポリイミドフィルム、液晶ポリマー、フッ素樹脂などが挙げられ、また、絶縁性を有することが好ましい。
<Copper-clad laminate>
The copper-clad laminate 10 of the present embodiment includes the above-mentioned surface-treated copper foil 1 and a base material 11 adhered to the first surface-treated layer 3 of the surface-treated copper foil 1.
The base material 11 is not particularly limited, and those known in the art can be used. Examples of the base material 11 include paper base material phenol resin, paper base material epoxy resin, synthetic fiber cloth base material epoxy resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass non-woven material composite base material epoxy resin, and glass. Examples thereof include a cloth base material epoxy resin, a polyester (polyethylene terephthalate, polyethylene naphthalate, etc.) film, a polyimide film, a liquid crystal polymer, a fluororesin, and the like, and it is preferable that the cloth base material has an insulating property.

銅張積層板10の製造方法としては、特に限定されず、当該技術分野において公知の方法に準じて、表面処理銅箔1と基材11を接着させることにより製造することができる。例えば、表面処理銅箔1と基材11とを積層させて熱圧着すればよい。 The method for manufacturing the copper-clad laminate 10 is not particularly limited, and the copper-clad laminate 10 can be manufactured by adhering the surface-treated copper foil 1 and the base material 11 according to a method known in the art. For example, the surface-treated copper foil 1 and the base material 11 may be laminated and thermocompression bonded.

また、本実施形態の銅張積層板がフレキシブルプリント配線板用の場合には、基材11として、ポリエチレンテレフタレート、ポリイミド、ポリエチレンナフタレート、液晶ポリマーのフィルムを用いることができ、基材11と表面処理銅箔1との積層方法としては、表面処理銅箔1の表面に基材11となる材料を塗布して加熱成膜してもよい。また、基材11として樹脂フィルムを用い、樹脂フィルムと表面処理銅箔1との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを表面処理銅箔1に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。基材11としてフィルムを用いた場合、このフィルムを、接着剤層を介して表面処理銅箔1に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、基材11としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド系接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。 When the copper-clad laminate of the present embodiment is for a flexible printed wiring board, a polyethylene terephthalate, polyimide, polyethylene naphthalate, or liquid crystal polymer film can be used as the base material 11, and the base material 11 and the surface thereof can be used. As a method of laminating with the treated copper foil 1, a material to be a base material 11 may be applied to the surface of the surface-treated copper foil 1 and a heat film may be formed. Further, a resin film may be used as the base material 11, and the following adhesive may be used between the resin film and the surface-treated copper foil 1, and the resin film is thermally pressure-bonded to the surface-treated copper foil 1 without using an adhesive. You may. However, it is preferable to use an adhesive from the viewpoint that extra heat is not applied to the resin film. When a film is used as the base material 11, this film may be laminated on the surface-treated copper foil 1 via an adhesive layer. In this case, it is preferable to use an adhesive having the same composition as the film. For example, when a polyimide film is used as the base material 11, it is preferable to use a polyimide adhesive as the adhesive layer. The polyimide-based adhesive referred to here refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.

<プリント配線板>
本実施形態のプリント配線板は、上記の銅張積層板10の表面処理銅箔1をエッチングして形成された回路パターンを備える。プリント配線板の製造方法としては、特に限定されず公知の方法により製造することができ、銅張積層板10に、フォトリソグラフィー技術を用いて回路を形成することができる。また、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント配線板(フレキシブル配線板)を得ることもできる。
<Printed wiring board>
The printed wiring board of the present embodiment includes a circuit pattern formed by etching the surface-treated copper foil 1 of the copper-clad laminated board 10. The method for manufacturing the printed wiring board is not particularly limited, and the printed wiring board can be manufactured by a known method, and a circuit can be formed on the copper-clad laminate 10 by using a photolithography technique. Further, a flexible printed wiring board (flexible wiring board) can also be obtained by plating the circuit as needed and laminating a coverlay film.

以上、本発明の実施形態を説明したが、本発明の表面処理銅箔、銅張積層板及びプリント配線板は、上記例に限定されることは無く、適宜変更を加えることができる。 Although the embodiment of the present invention has been described above, the surface-treated copper foil, the copper-clad laminate, and the printed wiring board of the present invention are not limited to the above examples, and can be appropriately modified.

以下、本実施形態を実施例によって更に具体的に説明するが、本実施形態はこれらの実施例によって何ら限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.

表面処理銅箔を製造し、その表面処理銅箔を基板に接着して銅張積層板を得て、基板からの剥がれを低減させファインピッチ化した回路パターンを形成することが可能かを検討した。 It was examined whether it is possible to manufacture a surface-treated copper foil and bond the surface-treated copper foil to a substrate to obtain a copper-clad laminate, reduce peeling from the substrate, and form a circuit pattern with a fine pitch. ..

各実施例および各比較例の表面処理銅箔を下記のようにして得た。
<実施例:表面処理銅箔1>
電気銅を用いてインゴットを非酸化性雰囲気で作製した。インゴットに含まれる銅の割合は99.99質量%であった。このインゴットを900℃以上で均質化焼鈍後、熱間圧延し、冷間圧延と焼鈍を行った。最終焼鈍後、最終冷間圧延をして最終厚さ12μmの箔を得た。
次いで、上記の銅箔サンプルの、一方の面に第1表面処理層として粗化処理層、耐熱層及びクロメート処理層を順次形成すると共に、他方の面に第2表面処理層として耐熱層及びクロメート処理層を順次形成することによって表面処理銅箔を得た。各層を形成するための条件は下記の通りである。
なお、表面処理銅箔1の各物性は後述する方法で評価し、その結果を表1に示す。
・第1表面処理層の粗化処理層
電気めっきによって粗化処理層を形成した。
めっき液組成:10~20g/LのCu、50~100g/Lの硫酸
めっき液温度:25~50℃
電気めっき条件:電流を2段階に分けて印加
1段目:電流密度45.0A/dm2、時間1.4秒、クーロン量60.8As/dm2
2段目:電流密度4.1A/dm2、時間2.8秒、クーロン量11.8As/dm2
・第1表面処理層の耐熱層
電気めっきによって耐熱層を形成した。
めっき液組成:1~30g/LのNi、1~30g/LのZn
めっき液pH:2~5
めっき液温度:30~50℃
電気めっき条件:電流密度2.1A/dm2、時間0.7秒、クーロン量1.4As/dm2
・第1表面処理層のクロメート処理層
電気めっきによってクロメート処理層を形成した。
めっき液組成:1~10g/LのK2Cr22、0.01~10g/LのZn
めっき液pH:2~5
めっき液温度:30~50℃
電気めっき条件:電流密度2.1A/dm2、時間1.4秒、クーロン量2.9As/dm2
・第2表面処理層の耐熱層
電気めっきによって耐熱層を形成した。
めっき液組成:1~30g/LのNi、1~30g/LのZn
めっき液pH:2~5
めっき液温度:30~50℃
電気めっき条件:電流密度2.1A/dm2、時間0.7秒、クーロン量1.4As/dm2
・第2表面処理層のクロメート処理層
浸漬クロメート処理によってクロメート処理層を形成した。
クロメート液組成:1~10g/LのK2Cr22、0.01~10g/LのZn
クロメート液pH:2~5
クロメート液温度:30~50℃
The surface-treated copper foils of each Example and each Comparative Example were obtained as follows.
<Example: Surface-treated copper foil 1>
Ingots were made using electrolytic copper in a non-oxidizing atmosphere. The proportion of copper contained in the ingot was 99.99% by mass. This ingot was homogenized and annealed at 900 ° C. or higher, then hot-rolled, and cold-rolled and annealed. After the final annealing, the final cold rolling was performed to obtain a foil having a final thickness of 12 μm.
Next, a roughening-treated layer, a heat-resistant layer and a chromate-treated layer are sequentially formed on one surface of the copper foil sample as a first surface-treated layer, and a heat-resistant layer and chromate as a second surface-treated layer on the other surface. A surface-treated copper foil was obtained by sequentially forming treated layers. The conditions for forming each layer are as follows.
Each physical property of the surface-treated copper foil 1 was evaluated by a method described later, and the results are shown in Table 1.
-Roughening treatment layer of the first surface treatment layer A roughening treatment layer was formed by electroplating.
Plating solution composition: 10 to 20 g / L Cu, 50 to 100 g / L sulfuric acid plating solution temperature: 25 to 50 ° C.
Electroplating conditions: Current is applied in two stages First stage: Current density 45.0 A / dm 2 , Time 1.4 seconds, Coulomb amount 60.8 As / dm 2
Second stage: current density 4.1 A / dm 2 , time 2.8 seconds, coulomb amount 11.8 As / dm 2
-The heat-resistant layer of the first surface treatment layer The heat-resistant layer was formed by electroplating.
Plating solution composition: 1 to 30 g / L Ni, 1 to 30 g / L Zn
Plating solution pH: 2-5
Plating liquid temperature: 30 to 50 ° C
Electroplating conditions: current density 2.1 A / dm 2 , time 0.7 seconds, coulomb amount 1.4 As / dm 2
-Chromate-treated layer of the first surface-treated layer A chromate-treated layer was formed by electroplating.
Plating solution composition: 1 to 10 g / L K 2 Cr 2 O 2 , 0.01 to 10 g / L Zn
Plating solution pH: 2-5
Plating liquid temperature: 30 to 50 ° C
Electroplating conditions: current density 2.1 A / dm 2 , time 1.4 seconds, coulomb amount 2.9 As / dm 2
-The heat-resistant layer of the second surface treatment layer The heat-resistant layer was formed by electroplating.
Plating solution composition: 1 to 30 g / L Ni, 1 to 30 g / L Zn
Plating solution pH: 2-5
Plating liquid temperature: 30 to 50 ° C
Electroplating conditions: current density 2.1 A / dm 2 , time 0.7 seconds, coulomb amount 1.4 As / dm 2
-Chromate-treated layer of the second surface-treated layer A chromate-treated layer was formed by immersion chromate treatment.
Chromate solution composition: 1 to 10 g / L K 2 Cr 2 O 2 , 0.01 to 10 g / L Zn
Chromate solution pH: 2-5
Chromate liquid temperature: 30-50 ° C

<比較例:表面処理銅箔2>
表面処理銅箔2は、表面処理銅箔1の引張強さを低下させた銅箔である。
表面処理銅箔2の各物性は後述する方法で評価し、その結果を表1に示す。
<Comparative example: Surface-treated copper foil 2>
The surface-treated copper foil 2 is a copper foil having a reduced tensile strength of the surface-treated copper foil 1.
Each physical property of the surface-treated copper foil 2 was evaluated by the method described later, and the results are shown in Table 1.

Figure 2022100020000002
Figure 2022100020000002

上記の表面処理銅箔1、2に対して、下記の基材を接着させた。
<基材>
基材としては、FR-4基材(ガラス布基材エポキシ樹脂の一種)を用いた。
The following base materials were adhered to the above surface-treated copper foils 1 and 2.
<Base material>
As the base material, a FR-4 base material (a type of glass cloth base material epoxy resin) was used.

上記の表面処理銅箔と基材とを用いて、下記のように銅張積層板を得た。
<実施例1>
表面処理銅箔1の第1表面処理層の表面に基材を接着させて、銅張積層板1を得た。具体的には、銅箔の第1表面処理層の表面に基材を積層し、加熱プレス(4MPa)で300℃×30分の熱処理を加えて貼り合せ、銅張積層板1を得た。
Using the above surface-treated copper foil and the base material, a copper-clad laminate was obtained as described below.
<Example 1>
A base material was adhered to the surface of the first surface-treated layer of the surface-treated copper foil 1 to obtain a copper-clad laminate 1. Specifically, a base material was laminated on the surface of the first surface treatment layer of the copper foil, and heat-treated at 300 ° C. for 30 minutes with a heating press (4 MPa) to bond them together to obtain a copper-clad laminate 1.

<比較例1>
表面処理銅箔1を表面処理銅箔2に変更した以外、実施例1と同様の方法で銅張積層板2を得た。
上記の銅張積層板1、2について、後述のピール強度の評価を行い、その結果を表2に示す。
<Comparative Example 1>
A copper-clad laminate 2 was obtained in the same manner as in Example 1 except that the surface-treated copper foil 1 was changed to the surface-treated copper foil 2.
The peel strength of the copper-clad laminates 1 and 2 described later was evaluated, and the results are shown in Table 2.

各物性、各評価を下記の方法で行った。 Each physical property and each evaluation were performed by the following methods.

<表面処理銅箔の引張強度>
上記の表面処理銅箔に300℃×30分の熱処理を加え、表面処理銅箔サンプルを得た。各表面処理銅箔サンプルについて、IPC-TM-650に準拠した引張試験により上記条件で引張強度を測定した。
<Tensile strength of surface-treated copper foil>
The above surface-treated copper foil was heat-treated at 300 ° C. for 30 minutes to obtain a surface-treated copper foil sample. The tensile strength of each surface-treated copper foil sample was measured under the above conditions by a tensile test based on IPC-TM-650.

<第1表面処理層及び第2表面処理層における各元素の付着量の測定>
Ni、Zn及びCoの付着量は、各表面処理層を濃度20質量%の硝酸に溶解し、VARIAN社製の原子吸光分光光度計(型式:AA240FS)を用いて原子吸光法で定量分析を行うことによって測定した。また、Crの付着量は各表面処理層を濃度7質量%の塩酸に溶解し、上記と同様に原子吸光法で定量分析を行うことによって測定した。
<Measurement of adhesion amount of each element in the first surface treatment layer and the second surface treatment layer>
The amount of Ni, Zn and Co adhered is quantitatively analyzed by the atomic absorption spectrophotometer (model: AA240FS) manufactured by VARIAN by dissolving each surface treatment layer in nitric acid having a concentration of 20% by mass. Measured by The amount of Cr adhered was measured by dissolving each surface-treated layer in hydrochloric acid having a concentration of 7% by mass and performing quantitative analysis by the atomic absorption method in the same manner as described above.

<ピール強度>
上記の銅張積層板1、2のピール強度(はがれやすさ)は、JIS C 6471 8.1に準拠して測定した。測定用の試験片は、銅張積層板に、塩化銅回路エッチング液を使用して10mm幅の回路を作製した。また、測定は、銅箔を基板から剥いて、90°方向に連続的に引張り、10mm以上の測定長さで荷重が安定した範囲内の最低値をピール強度とした。
なお、ピール強度が0.80kgf/cm以上の場合は、回路パターンが剥がれにくいと評価することができる。
<Peel strength>
The peel strength (easiness of peeling) of the copper-clad laminates 1 and 2 was measured according to JIS C 6471 8.1. As a test piece for measurement, a circuit having a width of 10 mm was prepared on a copper-clad laminate using a copper chloride circuit etching solution. In the measurement, the copper foil was peeled off from the substrate and continuously pulled in the 90 ° direction, and the lowest value within the range where the load was stable with a measurement length of 10 mm or more was defined as the peel strength.
When the peel strength is 0.80 kgf / cm or more, it can be evaluated that the circuit pattern is hard to peel off.

Figure 2022100020000003
Figure 2022100020000003

本発明によれば、基板からの剥がれを低減させファインピッチ化した回路パターンを形成することが可能な表面処理銅箔及び銅張積層板を提供することができる。
また、本発明によれば、基板からの剥がれを低減させファインピッチ化した回路パターンを有するプリント配線板を提供することができる。
According to the present invention, it is possible to provide a surface-treated copper foil and a copper-clad laminate capable of forming a circuit pattern having a fine pitch by reducing peeling from a substrate.
Further, according to the present invention, it is possible to provide a printed wiring board having a circuit pattern having a fine pitch by reducing peeling from a substrate.

1:表面処理銅箔
2:銅箔
3:第1表面処理層
4:第2表面処理層
10:銅張積層板
11:基材
1: Surface-treated copper foil 2: Copper foil 3: First surface-treated layer 4: Second surface-treated layer 10: Copper-clad laminate 11: Base material

Claims (11)

表面処理銅箔であって、
前記表面処理銅箔は、銅箔と、前記銅箔の一方の面に形成された第1表面処理層と、前記銅箔の他方の面に形成された第2表面処理層とを有し、前記第2表面処理層のNi付着量に対する前記第1表面処理層のNi付着量の比が0.01~2.0であり、前記表面処理銅箔の引張強度が235~290MPaであり、
前記銅箔は、99.0質量%以上のCu、残部不可避的不純物からなる表面処理銅箔。
Surface-treated copper foil
The surface-treated copper foil has a copper foil, a first surface-treated layer formed on one surface of the copper foil, and a second surface-treated layer formed on the other surface of the copper foil. The ratio of the Ni adhesion amount of the first surface treatment layer to the Ni adhesion amount of the second surface treatment layer is 0.01 to 2.0, and the tensile strength of the surface-treated copper foil is 235 to 290 MPa.
The copper foil is a surface-treated copper foil composed of 99.0% by mass or more of Cu and unavoidable impurities in the balance.
前記Ni付着量の比が0.8~1.5である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the ratio of the Ni adhesion amount is 0.8 to 1.5. 前記第1表面処理層のNi付着量が20~200μg/dm2である、請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the Ni adhesion amount of the first surface-treated layer is 20 to 200 μg / dm 2 . 前記第1表面処理層のZn付着量が20~1000μg/dm2である、請求項1~3のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the amount of Zn adhered to the first surface-treated layer is 20 to 1000 μg / dm 2 . 前記第1表面処理層のRzjisが0.3~1.5である、請求項1~4のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 4, wherein the Rzjis of the first surface-treated layer is 0.3 to 1.5. 前記銅箔は、JIS-H3100(C1100)に規格するタフピッチ銅又はJIS-H3100(C1011)の無酸素銅からなる、請求項1~5のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 5, wherein the copper foil is made of tough pitch copper specified in JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1011). 前記銅箔は、さらに、P、Ti、Sn、Ni、Be、Zn、In及びMgの群から選ばれる1種以上の添加元素を合計で0.002~0.825質量%含有してなる、請求項1~6のいずれかに記載の表面処理銅箔。 The copper foil further contains 0.002 to 0.825% by mass of one or more additive elements selected from the group of P, Ti, Sn, Ni, Be, Zn, In and Mg in total. The surface-treated copper foil according to any one of claims 1 to 6. 引張強度が235~290MPaである前記表面処理銅箔は、300℃で30分間の熱処理をしたときの前記表面処理銅箔である、請求項1~7のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the surface-treated copper foil having a tensile strength of 235 to 290 MPa is the surface-treated copper foil after being heat-treated at 300 ° C. for 30 minutes. 前記第1表面処理層が基材に接着される、請求項1~8のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, wherein the first surface-treated layer is adhered to a base material. 請求項1~9のいずれかに記載の表面処理銅箔と、前記表面処理銅箔の前記第1表面処理層に接着された基材とを備える、銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to any one of claims 1 to 9 and a base material adhered to the first surface-treated layer of the surface-treated copper foil. 請求項10に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備える、プリント配線板。 A printed wiring board comprising a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate according to claim 10.
JP2020214142A 2020-12-23 2020-12-23 Surface-treated copper foil, copper-clad laminate and printed wiring board Active JP7014884B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020214142A JP7014884B1 (en) 2020-12-23 2020-12-23 Surface-treated copper foil, copper-clad laminate and printed wiring board
JP2021118211A JP7027602B1 (en) 2020-12-23 2021-07-16 Surface-treated copper foil, copper-clad laminate and printed wiring board
KR1020237020774A KR20230109728A (en) 2020-12-23 2021-12-17 Surface treatment copper foil, copper clad laminate and printed wiring board
PCT/JP2021/046877 WO2022138513A1 (en) 2020-12-23 2021-12-17 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
CN202180085897.0A CN116669948A (en) 2020-12-23 2021-12-17 Surface-treated copper foil, copper-clad laminate, and printed wiring board
TW110147726A TWI806296B (en) 2020-12-23 2021-12-20 Surface treated copper foil, copper clad laminate and printed wiring board
JP2022022395A JP2022100307A (en) 2020-12-23 2022-02-16 Surface-treated copper foil, copper-clad laminate, and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020214142A JP7014884B1 (en) 2020-12-23 2020-12-23 Surface-treated copper foil, copper-clad laminate and printed wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021118211A Division JP7027602B1 (en) 2020-12-23 2021-07-16 Surface-treated copper foil, copper-clad laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP7014884B1 JP7014884B1 (en) 2022-02-01
JP2022100020A true JP2022100020A (en) 2022-07-05

Family

ID=80774237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020214142A Active JP7014884B1 (en) 2020-12-23 2020-12-23 Surface-treated copper foil, copper-clad laminate and printed wiring board

Country Status (5)

Country Link
JP (1) JP7014884B1 (en)
KR (1) KR20230109728A (en)
CN (1) CN116669948A (en)
TW (1) TWI806296B (en)
WO (1) WO2022138513A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141501A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith
JP2019081913A (en) * 2017-10-27 2019-05-30 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2019163962A1 (en) * 2018-02-23 2019-08-29 古河電気工業株式会社 Electrolytic copper foil, lithium-ion secondary cell negative electrode using electrolytic copper foil, lithium-ion secondary cell, copper-clad laminate and printed wiring board

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027162A (en) * 2001-07-13 2003-01-29 Nippon Mining & Metals Co Ltd Copper alloy foil for laminated board
JP4115293B2 (en) * 2003-02-17 2008-07-09 古河サーキットフォイル株式会社 Copper foil for chip-on-film
KR100654737B1 (en) * 2004-07-16 2006-12-08 일진소재산업주식회사 Method of manufacturing Surface-treated Copper Foil for PCB having fine-circuit pattern and Surface-treated Copper Foil thereof
WO2009041292A1 (en) * 2007-09-28 2009-04-02 Nippon Mining & Metals Co., Ltd. Copper foil for printed circuit and copper clad laminate
TW200934330A (en) * 2007-11-26 2009-08-01 Furukawa Electric Co Ltd Surface treated copper foil and method for surface treating the same, and stack circuit board
WO2010010893A1 (en) * 2008-07-22 2010-01-28 古河電気工業株式会社 Surface-treated copper foil and copper-clad laminate
JP4927963B2 (en) * 2010-01-22 2012-05-09 古河電気工業株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate
WO2019208525A1 (en) * 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017141501A (en) * 2016-02-05 2017-08-17 Jx金属株式会社 Copper foil for flexible printed circuit board, and copper clad laminate, flexible printed circuit board, and electronic apparatus prepared therewith
JP2019081913A (en) * 2017-10-27 2019-05-30 Jx金属株式会社 Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2019163962A1 (en) * 2018-02-23 2019-08-29 古河電気工業株式会社 Electrolytic copper foil, lithium-ion secondary cell negative electrode using electrolytic copper foil, lithium-ion secondary cell, copper-clad laminate and printed wiring board

Also Published As

Publication number Publication date
CN116669948A (en) 2023-08-29
WO2022138513A1 (en) 2022-06-30
KR20230109728A (en) 2023-07-20
TWI806296B (en) 2023-06-21
JP7014884B1 (en) 2022-02-01
TW202233898A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP4662834B2 (en) Copper or copper alloy foil for circuit
JPWO2019208521A1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
KR101935129B1 (en) Copper foil for flexible printed wiring board, and copper-clad laminate, flexible printed wiring board and electronic device using the same
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
TWI526553B (en) Flexible laminates for flexible wiring
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
KR20160117196A (en) Copper alloy foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6328679B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2008088492A (en) Copper alloy foil and copper-resin organic matter flexible laminate
KR20190089732A (en) Copper foil for flexible printed circuit, and copper clad laminate, flexible printed circuit and electronic device using copper foil
US10602620B2 (en) Laminate for printed wiring board, method of manufacturing printed wiring board, and method of manufacturing electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP2003041334A (en) Copper alloy foil for laminate
JP7014884B1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP7027602B1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
JP7017369B2 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
TW201910524A (en) Copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic equipment
JP2003034829A (en) Copper alloy foil for laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210107

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210420

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210716

C876 Explanation why request for accelerated appeal examination is justified

Free format text: JAPANESE INTERMEDIATE CODE: C876

Effective date: 20210716

C305 Report on accelerated appeal examination

Free format text: JAPANESE INTERMEDIATE CODE: C305

Effective date: 20210802

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210803

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211207

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220111

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R151 Written notification of patent or utility model registration

Ref document number: 7014884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151