JP2003034829A - Copper alloy foil for laminate - Google Patents

Copper alloy foil for laminate

Info

Publication number
JP2003034829A
JP2003034829A JP2001222781A JP2001222781A JP2003034829A JP 2003034829 A JP2003034829 A JP 2003034829A JP 2001222781 A JP2001222781 A JP 2001222781A JP 2001222781 A JP2001222781 A JP 2001222781A JP 2003034829 A JP2003034829 A JP 2003034829A
Authority
JP
Japan
Prior art keywords
copper
foil
mass
surface roughness
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001222781A
Other languages
Japanese (ja)
Inventor
Toubun Nagai
燈文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001222781A priority Critical patent/JP2003034829A/en
Publication of JP2003034829A publication Critical patent/JP2003034829A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy foil for a laminate, with small surface roughness, which is used for the printed circuit board employing polyimide as a resin substrate, and can be directly bonded to the polyimide substrate without being plated beforehand for roughening. SOLUTION: The copper alloy foil for the laminate includes elements of iron, nickel, and cobalt of 1 wt.% in total, and P of 0.2 wt.% or less in total, and has tensile strength of 500 N/mm<2> or more, conductance of 60% IACS or more, surface roughness of 2 μm by ten-points average surface roughness (Rz), and peel strength of 8.0 N/cm or more by an 180 degree peel test after directly bonded to a polyimide film without being plated for roughening. The foil can include an element having a solution strengthening effect, of 2.5 wt.% or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント配線板用の積層
板に用いる銅合金箔に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy foil used for a laminated board for a printed wiring board.

【0002】[0002]

【従来の技術】電子機器の電子回路にはプリント配線板
が多く用いられる。 プリント配線板は基材となる樹脂
の種類によって、ガラスエポキシ基板および紙フェノー
ル基板を構成材料とする硬質積層板(リジット基板)
と、ポリイミド基板およびポリエステル基板を構成材料
とする可撓性積層板(フレキシブル基板)とに大別され
る。
2. Description of the Related Art Printed wiring boards are often used in electronic circuits of electronic equipment. A printed wiring board is a rigid laminated board (rigid board) that uses a glass epoxy board and a paper phenol board as constituent materials, depending on the type of resin used as the base material.
And a flexible laminated plate (flexible substrate) including a polyimide substrate and a polyester substrate as constituent materials.

【0003】上記プリント配線板のうち、フレキシブル
基板は可撓性を持つことを特徴とし、可動部の配線に用
いられる他に、電子機器内で折り曲げた状態で収納する
ことも可能であるために、省スペース配線材料としても
用いられている。 また、基板自体が薄いことから、半
導体パッケージのインターポーザー用途あるいは液晶デ
ィスプレイのICテープキャリアとしても用いられてい
る。 フレキシブル基板は樹脂基板と銅箔とを接着剤を
用いて積層し、その後に接着剤を加熱加圧により硬化し
て形成される三層フレキシブル基板と、接着剤を用いず
に樹脂基板と銅箔とを加熱加圧により直接に積層する二
層フレキシブル基板がある。 三層フレキシブル基板
は、樹脂基板にはポリイミド樹脂フィルムやポリエステ
ルが用いられ、接着剤にはエポキシ樹脂やアクリル樹脂
などが広く用いられている。 一方、二層フレキシブル
基板は樹脂基板にポリイミド樹脂が一般に用いられてい
る。近年、環境への影響から鉛フリーはんだの使用が広
まっているが、従来の鉛はんだと比較して融点が高くな
るために、フレキシブル基板への耐熱性の要求が厳しく
なっている。
Of the above printed wiring boards, the flexible board is characterized by flexibility, and is used not only for wiring the movable part but also for storing it in a bent state in electronic equipment. It is also used as a space-saving wiring material. Since the substrate itself is thin, it is also used as an interposer for semiconductor packages or as an IC tape carrier for liquid crystal displays. The flexible substrate is a three-layer flexible substrate formed by laminating a resin substrate and a copper foil with an adhesive, and then curing the adhesive by heating and pressing, and a resin substrate and a copper foil without using the adhesive. There is a two-layer flexible substrate in which and are directly laminated by heating and pressing. In the three-layer flexible substrate, a polyimide resin film or polyester is used as a resin substrate, and an epoxy resin or an acrylic resin is widely used as an adhesive. On the other hand, a polyimide resin is generally used for a resin substrate of the two-layer flexible substrate. In recent years, the use of lead-free solder has been widespread due to the influence on the environment. However, since the melting point is higher than that of the conventional lead solder, the demand for heat resistance of the flexible substrate has become strict.

【0004】プリント配線板は銅張積層板の銅箔をエッ
チングして種々の配線パターンを形成し、電子部品をハ
ンダで接続して実装していく。 プリント配線板用の材
料にはこのような高温下に繰り返して晒されるため、耐
熱性が要求される。 近年は環境への配慮から鉛フリー
ハンダが用いられるようになったが、そのために従来の
鉛ハンダと比較して融点が高くなり、プリント配線板に
は高い耐熱性が求められるようになった。 このため、
二層フレキシブル基板は有機材料に耐熱性に優れたポリ
イミド樹脂だけを使用しているので、三層フレキシブル
基板よりも耐熱性の改善が容易であり、その使用量が増
加している。
In the printed wiring board, various wiring patterns are formed by etching the copper foil of the copper clad laminate, and electronic parts are connected by soldering and mounted. Since the material for the printed wiring board is repeatedly exposed to such a high temperature, heat resistance is required. In recent years, lead-free solders have come to be used due to consideration for the environment, but as a result, the melting point becomes higher than that of conventional lead solders, and printed wiring boards are required to have high heat resistance. For this reason,
Since the two-layer flexible substrate uses only the polyimide resin having excellent heat resistance as the organic material, it is easier to improve the heat resistance than the three-layer flexible substrate and the amount of use thereof is increasing.

【0005】プリント配線板の導電材としては主として
銅箔が使用されているが、銅箔はその製造方法の違いに
より電解銅箔と圧延銅箔に分類される。 電解銅箔は硫
酸銅めっき浴からチタンやステンレスのドラム上に銅を
電解析出して製造される。圧延銅箔は圧延ロールにより
塑性加工して製造されるので、圧延ロールの表面形態が
箔の表面に転写し、平滑な表面が得られることが特徴で
ある。 フレキシブル基板の導電材に用いられる銅箔と
しては、可撓性が良好であることから、主に圧延銅箔が
用いられている。 プリント配線板に使われる銅箔は樹
脂との接着性を改善するために、銅箔に表面に銅の粒子
を電気めっきで形成する粗化めっき処理が施されてい
る。 これは、銅箔の表面に凹凸を形成して、樹脂に銅
箔を食い込ませて機械的な接着強度を得る、いわゆるア
ンカー効果で接着性を改善するものである。 また三層
フレキシブル基板では金属である銅箔と有機物である接
着剤の接着強度を改善するためにシランカップリング剤
等を銅箔に塗布する試みがなされている。 しかし、二
層フレキシブル基板の圧着温度は300℃〜400℃と
三層フレキシブル基板の100〜200℃と比較して高
温であることから、カップリング剤の熱分解が起こりや
すく、接着性が改善されていない。 なお、箔とは一般
に100μm以下の厚さの薄板をいう。
Copper foil is mainly used as a conductive material for a printed wiring board, but the copper foil is classified into an electrolytic copper foil and a rolled copper foil depending on the manufacturing method thereof. The electrolytic copper foil is manufactured by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. Since the rolled copper foil is manufactured by plastic working with a rolling roll, the surface morphology of the rolling roll is transferred to the surface of the foil, and a smooth surface is obtained. As the copper foil used as the conductive material of the flexible substrate, rolled copper foil is mainly used because of its good flexibility. The copper foil used for the printed wiring board is subjected to a roughening plating treatment in which copper particles are formed on the surface of the copper foil by electroplating in order to improve the adhesion with the resin. This is to improve the adhesiveness by a so-called anchor effect, in which unevenness is formed on the surface of the copper foil and the copper foil is made to dig into the resin to obtain mechanical adhesive strength. Further, in the three-layer flexible substrate, an attempt has been made to apply a silane coupling agent or the like to the copper foil in order to improve the adhesive strength between the metal copper foil and the organic adhesive. However, since the pressure of the two-layer flexible substrate is 300 ° C. to 400 ° C., which is higher than the temperature of 100 to 200 ° C. of the three-layer flexible substrate, thermal decomposition of the coupling agent easily occurs and the adhesiveness is improved. Not not. The foil generally means a thin plate having a thickness of 100 μm or less.

【0006】近年の電子機器の小型化、軽量化、高機能
化に伴ってプリント配線板に対して高密度実装の要求が
高まっている。 フレキシブル基板は省スペース配線材
料、半導体パッケージのインターポーザー用途あるいは
液晶ディスプレイのICテープキャリアとしても用いら
れているが、特にこれらの用途では高密度実装の要求か
ら電子回路の配線幅と配線間隔を小さくしたファインピ
ッチ化が進んでいる。表面粗さが大きい銅箔や粗化めっ
き処理で凹凸を形成した銅箔は、エッチングで回路を形
成する際に、樹脂に銅が残るエッチング残が生じたり、
エッチング直線性が低下して回路幅が不均一になりやす
い。 このため、電子回路をファインピッチ化するため
には、銅箔の表面粗さの小さいことが好ましく、粗化め
っき処理を施さない表面粗さの小さい銅箔を樹脂フィル
ムと貼り合わせることが望ましい
With the recent miniaturization, weight reduction, and high functionality of electronic equipment, there is an increasing demand for high-density mounting on printed wiring boards. Flexible substrates are also used as space-saving wiring materials, semiconductor package interposer applications, and IC tape carriers for liquid crystal displays. Especially, in these applications, the wiring width and wiring interval of electronic circuits are reduced due to the demand for high-density mounting. Fine pitching is progressing. A copper foil with a large surface roughness or a copper foil having irregularities formed by a roughening plating treatment may have an etching residue where copper remains in the resin when a circuit is formed by etching,
The etching linearity is liable to decrease and the circuit width tends to be nonuniform. Therefore, in order to make the electronic circuit fine-pitch, it is preferable that the surface roughness of the copper foil is small, and it is desirable to bond the copper foil having a small surface roughness that is not subjected to the roughening plating treatment to the resin film.

【0007】また、パソコンや移動体通信等の電子機器
では電気信号が高周波化しているが、電気信号の周波数
が1GHz以上になると、電流が導体の表面にだけ流れ
る表皮効果の影響が顕著になる。 銅箔に粗化めっき処
理を施して表面に凹凸を形成して表面を粗くしている
が、1GHz以上の高周波になるとこの表面の凹凸で伝
送経路が変化する影響が無視できなくなる。 これに対
応するために粗化めっき処理を施さずに接着強度を確保
することが必要である。 この場合も粗化めっき処理を
施さない表面粗さの小さい銅箔を樹脂フィルムと貼り合
わせることが望ましい。
In electronic devices such as personal computers and mobile communications, electric signals have a high frequency, but when the frequency of the electric signals is 1 GHz or higher, the effect of the skin effect in which the current flows only on the surface of the conductor becomes remarkable. . The surface of the copper foil is roughened by roughening the surface of the copper foil to roughen the surface. However, at high frequencies of 1 GHz or higher, the effect of changing the transmission path due to the roughness of the surface cannot be ignored. In order to deal with this, it is necessary to secure the adhesive strength without performing the roughening plating treatment. Also in this case, it is desirable to bond a copper foil having a small surface roughness, which is not subjected to the roughening plating treatment, to the resin film.

【0008】エッチングで微細な回路が形成するために
は、銅箔の表面粗さが小さいこと以外に銅箔の厚さを薄
くすることが必要である。 銅箔が薄くなるほど、厚み
方向への回路幅の差異が小さくなるので、微細な回路を
形成できるようになる。 銅張積層板に用いる銅箔の厚
さを薄くすることによって、あるいは銅張積層板の銅箔
をエッチングによって減肉化することによって、微細な
回路を形成できるようにしている。 銅は導電性に優れ
た材料であり、導電性が重視される上記の分野では純度
99.9%以上の純銅が用いられるのが一般的である。
しかし、銅は純度を上げると強度が低下するので、銅
箔が薄くなるとハンドリング性が悪くなる。 また、銅
箔の厚みをエッチングによって減肉化することは製造工
程が増加する問題がある。 したがって、回路材料に適
した導電性を有すると同時に、強度が大きい銅箔を積層
板に用いることが好ましい。また、二層フレキシブル基
板は積層する際に300℃〜400℃と高温で10分か
ら1時間程度の加熱処理が必要であることから、銅箔が
軟化してハンドリング性が悪くなるため、300℃で1
時間程度の加熱処理で軟化しないことが好ましい。
In order to form a fine circuit by etching, it is necessary to reduce the thickness of the copper foil in addition to the surface roughness of the copper foil being small. As the copper foil becomes thinner, the difference in the circuit width in the thickness direction becomes smaller, so that a fine circuit can be formed. Fine circuits can be formed by reducing the thickness of the copper foil used for the copper-clad laminate or by reducing the thickness of the copper foil of the copper-clad laminate by etching. Copper is a material having excellent conductivity, and pure copper having a purity of 99.9% or more is generally used in the above fields where conductivity is important.
However, since the strength of copper decreases as the purity increases, the handleability deteriorates when the copper foil becomes thin. Further, reducing the thickness of the copper foil by etching has a problem of increasing the number of manufacturing processes. Therefore, it is preferable to use a copper foil, which has a conductivity suitable for a circuit material and a high strength, for the laminate. In addition, since the two-layer flexible substrate requires heat treatment at a high temperature of 300 ° C. to 400 ° C. for about 10 minutes to 1 hour when laminated, the copper foil is softened and the handling property deteriorates. 1
It is preferable that it is not softened by a heat treatment for about an hour.

【0009】このような状況の中で、導電材に適した純
度の高い無酸素銅を圧延した銅箔を、粗化めっき処理を
施していない表面が平滑な状態で、樹脂基板となるポリ
イミドフィルムを、接着剤を用いずに接着させて二層フ
レキシブル基板を作製することを試みた。 この結果、
ポリイミドフィルムと純銅の圧延銅箔との接着性が悪
く、剥離しやすいことが判明した。 このため粗化めっ
き処理を施さない表面粗さの小さい銅箔を、二層フレキ
シブル基板の導電材に用いることは、銅箔の剥離が生じ
やすく、断線などの欠陥となる問題が生じるやすいこと
が判明した。 このため、高い導電性と高い強度を有
し、かつ粗化めっき処理を施さなくともポリイミド樹脂
との接着性に優れた表面粗さの小さい銅箔が求められて
いる。
Under such circumstances, a copper foil obtained by rolling high-purity oxygen-free copper suitable for a conductive material is used as a resin film as a polyimide film with a smooth surface not subjected to roughening plating. Was attempted to be bonded without using an adhesive to fabricate a two-layer flexible substrate. As a result,
It was found that the adhesion between the polyimide film and the rolled copper foil of pure copper was poor, and peeling was easy. Therefore, when a copper foil having a small surface roughness that is not subjected to roughening plating is used as the conductive material of the two-layer flexible substrate, peeling of the copper foil is likely to occur, and problems such as disconnection are likely to occur. found. Therefore, there is a demand for a copper foil having high conductivity and high strength, which has excellent surface adhesiveness with a polyimide resin and which has a small surface roughness without being subjected to a roughening plating treatment.

【0010】[0010]

【発明が解決しようとする課題】プリント配線板で必要
な接着強度は電子機器の製造条件や使用環境によっても
異なるが、一般に180゜ピール強度が8.0N/cm
以上であれば実用上の支障がないとされている。 本発
明では、表面粗さがRzで2μm以下の銅箔で、粗化め
っき処理のような特別な処理を施さずに、接着強度が1
80゜ピール強度で8.0N/cm以上とすることを目
標とした。 また、ハンドリング性を考慮して加熱前の
引張強さを500N/mm以上であること、導電性の
目標値は60%IACS以上であることを目標とした。
本発明の目的は、表面粗さが小さく、かつポリイミド
との接着性に優れた積層板用の銅箔を提供することであ
る。
The adhesive strength required for the printed wiring board varies depending on the manufacturing conditions of the electronic equipment and the operating environment, but the 180 ° peel strength is generally 8.0 N / cm.
If it is above, there is no problem in practical use. In the present invention, a copper foil having a surface roughness Rz of 2 μm or less has an adhesive strength of 1 without being subjected to a special treatment such as a roughening plating treatment.
The target was 80 N peel strength of 8.0 N / cm or more. Further, the tensile strength before heating was set to 500 N / mm 2 or more in consideration of handleability, and the target value of the conductivity was set to 60% IACS or more.
An object of the present invention is to provide a copper foil for a laminated board, which has a small surface roughness and is excellent in adhesiveness with polyimide.

【0011】[0011]

【課題を改善するための手段】本発明者らは、ポリイミ
ドとの接着性が、導電性の優れる純銅をベースにして、
少量の添加元素を加えた銅合金によって改善されること
を見いだした。 具体的には、ポリイミドとの接着性、
強度および導電性に対する各種の添加元素の影響につい
て研究を重ねた結果、本発明は、 (1) 加元素の成分を重量割合にてFeが0.02質
量%〜0.5質量%、Niが0.04質量%〜1.0質
量%、Coが0.04質量%〜1.0質量%のうち1種
以上を合計して1.0質量%を超えない範囲で含むと共
に、Fe、NiおよびCoの合計量に対して0.05〜
0.2倍の重量のPを含み、残部を銅及び不可避不純物
とすることにより、引張強さが500N/mm以上、
導電率が60%IACS以上であり、表面粗さが十点平
均表面粗さ(Rz)で2μm以下であって、粗化めっき
処理を施さずにポリイミドフィルムと直接に接合したと
きの180゜ピール強度が8.0N/cm以上であるこ
とを特徴とする、積層板用銅合金箔 (2) 1時間の加熱を行ったときの引張強さが、加熱
前の引張強さと軟化したときの引張強さの中間となる温
度が300℃以上であることを特徴とする(1)に記載
の積層板用銅合金箔を提供するものである。
The inventors of the present invention have found that the adhesiveness with polyimide is based on pure copper having excellent conductivity.
It was found to be improved by a copper alloy with a small amount of additive element added. Specifically, adhesiveness with polyimide,
As a result of repeated studies on the influence of various additive elements on the strength and conductivity, the present invention shows that (1) Fe is 0.02 mass% to 0.5 mass% and Ni is a mass ratio of the additive element components. 0.04% by mass to 1.0% by mass, and one or more of 0.04% by mass to 1.0% by mass of Co is contained in a range not exceeding 1.0% by mass, and Fe and Ni are contained. And 0.05 to the total amount of Co
A tensile strength of 500 N / mm 2 or more is obtained by containing 0.2 times the weight of P and making the balance copper and inevitable impurities.
Conductivity is 60% IACS or more, surface roughness is 10 μm average surface roughness (Rz) of 2 μm or less, and 180 ° peel when directly bonded to a polyimide film without roughening treatment. A copper alloy foil for a laminate, characterized by having a strength of 8.0 N / cm or more (2) The tensile strength when heated for 1 hour is the tensile strength before heating and the tensile strength when softened. The copper alloy foil for laminated plate according to (1) is characterized in that the intermediate temperature of the strength is 300 ° C. or higher.

【0012】また、本発明は、Ag、Al、Be、M
g、Mn、Pb、Sn、TiおよびZnはいずれも主と
して固溶強化により銅合金の強度を高める効果を有して
おり、必要に応じて1種以上の元素を添加することが可
能である。 その含有量が総量で0.005質量%未満
であると上記の作用に所望の効果が得られず、一方で総
量で2.5質量%を越える場合には導電性、ハンダ付け
性、加工性を著しく劣化させるので、Ag、Al、B
e、Mg、Mn、Pb、Sn、TiおよびZnの含有量
の範囲は総量で0.005〜2.5質量%が好ましい。
本発明は銅合金箔の表面粗さを十点平均表面粗さ(R
z)で2μm以下を有する箔でもある。
The present invention also provides Ag, Al, Be, M
All of g, Mn, Pb, Sn, Ti and Zn have an effect of enhancing the strength of the copper alloy mainly by solid solution strengthening, and it is possible to add one or more elements as necessary. If the total content is less than 0.005 mass%, the desired effects cannot be obtained, while if the total content exceeds 2.5 mass%, the conductivity, solderability, and workability are not obtained. Ag, Al, B
The total content of e, Mg, Mn, Pb, Sn, Ti and Zn is preferably 0.005 to 2.5 mass%.
In the present invention, the surface roughness of a copper alloy foil is defined by a ten-point average surface roughness (R
It is also a foil having z) of 2 μm or less.

【0013】[0013]

【発明実施の形態】本発明において合金組成等を上記に
限定した理由を述べる。 (1)Fe、Ni、Co、P:Fe、Ni、Coは樹脂
を製造する際に、重合を促進する触媒としての作用が働
くことが知られている。 このため、Fe、Ni、Co
を銅に添加して合金箔とすることにより、ポリイミドと
の接着性を向上することが判明した。 その理由は、F
e、Ni、Coが金属と樹脂の結合を促進して、界面の
結合が強化されたためと考えられる。 これらの含有量
が少なすぎると触媒として十分な作用をしないため、金
属と樹脂の結合が十分に行われず、接着性の改善効果が
小さい。 また、Fe、Ni、Coは銅合金中で単体の
元素として銅中に固溶することで金属とポリイミド樹脂
の接着改善する作用を発現し、化合物を形成するとその
作用が小さくなることが判明した。 銅中に固溶するF
e、Ni、Coの量が多くなると、導電率を低下して回
路用の導電材料として適さなくなる。一方、PはFe、
Ni、CoとそれぞれFeP、NiP、CoPの
化合物を生成して、微細な粒子として析出する。 これ
らの微細析出物が転位や粒界の移動を抑制して、強度を
高めたり、加熱時の耐軟化性を改善するが、その生成量
が少ないと改善効果が小さい。 従って、強度を高めた
り、加熱時の耐軟化性を改善する作用と金属とポリイミ
ド樹脂の接着性を改善する作用を同時に発現するために
は、銅合金箔中にFe、Ni、CoがPと化合物を生成
すると共に、Fe、Ni、Coが単体の元素として固溶
することが必要である。 Fe、Ni、Coに対するP
の添加割合が多くなると化合物が増加するが、固溶する
Fe、Ni、Coが減少して金属とポリイミド樹脂の接
着性を改善する作用が減じる。また、析出物が多くなる
と銅合金の塑性加工性を損なわれる問題が生じる。 こ
れらの特性から適切な組成を検討した結果、プリント配
線板の積層板用銅合金箔として、合金成分の適正な含有
量の範囲は、重量比でFeが0.02〜0.5質量%、
より好ましくは0.05〜0.3質量%、Niが0.0
4〜1.0質量%、より好ましくは0.1〜0.5質量
%、Coが0.04〜1.0質量%、より好ましくは
0.1〜0.5質量%から1種以上を選び、かつFe、
NiおよびCoの合計量が1.0質量%を超えないこ
と、PはFe、Ni、Coの合計重量に対して0.05
〜0.2倍の重量、より好ましくは0.07〜0.15
倍の重量であると定めた。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the alloy composition and the like are limited to the above in the present invention will be described. (1) Fe, Ni, Co, P: Fe, Ni, and Co are known to act as a catalyst for promoting polymerization when a resin is produced. Therefore, Fe, Ni, Co
It has been found that the addition of copper to copper to form an alloy foil improves the adhesion to polyimide. The reason is F
It is considered that e, Ni, and Co promoted the bond between the metal and the resin, and the bond at the interface was strengthened. If the content of these components is too small, they do not act sufficiently as a catalyst, so that the metal and resin are not sufficiently bonded and the effect of improving the adhesiveness is small. Further, it was found that Fe, Ni, and Co exhibit the action of improving the adhesion between the metal and the polyimide resin by forming a solid solution in copper as a simple element in the copper alloy, and the action is reduced when the compound is formed. . F dissolved in copper
If the amounts of e, Ni, and Co increase, the conductivity decreases and it becomes unsuitable as a conductive material for circuits. On the other hand, P is Fe,
Compounds of Fe 2 P, Ni 3 P, and Co 2 P are formed with Ni and Co, respectively, and deposited as fine particles. These fine precipitates suppress the movement of dislocations and grain boundaries to increase the strength and improve the softening resistance at the time of heating, but if the amount of formation is small, the improvement effect is small. Therefore, in order to enhance the strength and simultaneously exhibit the effect of improving the softening resistance at the time of heating and the effect of improving the adhesion between the metal and the polyimide resin, Fe, Ni, and Co are added to P in the copper alloy foil. It is necessary for Fe, Ni, and Co to form a solid solution as a simple element while forming a compound. P for Fe, Ni, Co
Although the compound increases as the addition ratio of is increased, Fe, Ni, and Co that form a solid solution decrease, and the effect of improving the adhesiveness between the metal and the polyimide resin decreases. Further, if the amount of precipitates increases, there is a problem that the plastic workability of the copper alloy is impaired. As a result of investigating an appropriate composition from these characteristics, as a copper alloy foil for a laminated board of a printed wiring board, an appropriate content range of alloy components is 0.02 to 0.5 mass% of Fe in weight ratio,
More preferably 0.05 to 0.3 mass%, Ni is 0.0
4 to 1.0% by mass, more preferably 0.1 to 0.5% by mass, Co is 0.04 to 1.0% by mass, and more preferably 0.1 to 0.5% by mass. Choose and Fe,
The total amount of Ni and Co does not exceed 1.0% by mass, and P is 0.05 with respect to the total weight of Fe, Ni, and Co.
~ 0.2 times the weight, more preferably 0.07 to 0.15
Determined to be twice as heavy.

【0014】(2)引張強さと導電性:一般に強度と導
電性は相反する関係にあり、高強度の材料ほど導電性が
低下する傾向がある。引張強さが500N/mmより
小さい場合、ハンドリング等の取り扱いでしわを発生し
やすく、また導電率が60%IACS以下では、積層板
用の導電材料として好ましくない。高強度でハンドリン
グ性に優れた積層板用の銅合金箔に適する条件として引
張強さが500N/mm 以上、導電率が60%IAC
S以上と定めた。 (3)180゜ピール強度:180゜ピール強度が小さ
い場合、積層板から剥離が生じる恐れがあるので、8.
0N/cm以上の接着強度が必要である。
(2) Tensile strength and conductivity: Generally strength and conductivity
The electrical properties are in conflict with each other.
Tends to decline. Tensile strength is 500 N / mmTwoThan
If it is small, wrinkles may occur during handling, etc.
Easy, and if the conductivity is 60% IACS or less, the laminated board
It is not preferable as a conductive material. High strength and handling
As a condition suitable for copper alloy foil for laminates with excellent ruggedness,
Tensile strength is 500 N / mm TwoAbove, conductivity is 60% IAC
It was defined as S or higher. (3) 180 ° peel strength: 180 ° peel strength is small
If not, peeling may occur from the laminated plate, so 8.
An adhesive strength of 0 N / cm or more is required.

【0015】(4)表面粗さ:銅箔の表面粗さが大きく
なると、電気信号の周波数が1GHz以上で電流が導体
の表面にだけ流れる表皮効果により、インピーダンスが
増大して高周波信号の伝送に影響する。 したがって、
高周波回路用途の導電材の用途では表面粗さが小さくる
ことが必要であり、表面粗さと高周波特性の関連を検討
した結果、プリント配線板の積層板用銅合金箔として、
表面粗さが十点平均表面粗さ(Rz)で2μm以下とす
ればよいことがわかった。 表面粗さを小さくする方法
は、圧延銅箔、電解銅箔の製造条件を適正化すること、
銅箔の表面を化学研磨あるいは電解研磨するといった手
法がある。 一般には圧延銅箔は容易に表面粗さを小さ
くすることが可能であり、圧延機のワークロールの表面
粗さを小さくして、銅箔に転写されるワークロールのプ
ロファイルを小さくすることができる。
(4) Surface roughness: When the surface roughness of the copper foil increases, the impedance increases due to the skin effect in which the frequency of the electrical signal is 1 GHz or more and the current flows only on the surface of the conductor, so that high-frequency signals can be transmitted. Affect. Therefore,
In the use of conductive materials for high frequency circuits, it is necessary to have a small surface roughness, and as a result of examining the relationship between surface roughness and high frequency characteristics, as a copper alloy foil for laminated boards of printed wiring boards,
It was found that the ten-point average surface roughness (Rz) should be 2 μm or less. The method of reducing the surface roughness is to optimize the production conditions of rolled copper foil and electrolytic copper foil,
There is a method of chemically polishing or electrolytically polishing the surface of the copper foil. Generally, rolled copper foil can easily reduce the surface roughness, and the work roll surface of the rolling mill can be reduced to reduce the profile of the work roll transferred to the copper foil. .

【0016】本発明の銅合金箔は製造方法に限定される
ものではなく、例えば合金めっき法による電解銅箔ある
いは合金を溶解鋳造して圧延する圧延銅箔のような方法
で製造できる。以下に例として圧延による方法を述べ
る。 溶融した純銅に所定量の合金元素を添加して、鋳
型内に鋳造してインゴットとする。 インゴットは、熱
間圧延である程度の厚さまで薄くした後、皮削りを行
い、その後冷間圧延と焼鈍を繰返し行い、最後に冷間圧
延を行って箔に仕上げる。 圧延上がりの材料は圧延油
が付着しているので、アセトンや石油系溶剤等で脱脂処
理をする。
The copper alloy foil of the present invention is not limited to a manufacturing method, and can be manufactured by a method such as electrolytic copper foil by an alloy plating method or a rolled copper foil in which an alloy is melt cast and rolled. The rolling method will be described below as an example. A predetermined amount of alloying element is added to molten pure copper and cast in a mold to form an ingot. The ingot is thinned to a certain thickness by hot rolling, then cut, then repeatedly cold-rolled and annealed, and finally cold-rolled to obtain a foil. Since the rolling oil adheres to the material after rolling, it is degreased with acetone or a petroleum solvent.

【0017】焼鈍で酸化層が生じると後工程で支障が生
じるので、焼鈍は真空中あるいは不活性ガス雰囲気中で
行うか、焼鈍後に酸化層を除去することが必要である。
例えば、酸洗で酸化層を除去するには硫酸+過酸化水
素、硝酸+過酸化水素、または硫酸+過酸化水素+弗化
物を用いることが好ましい。
If an oxide layer is formed by annealing, it will interfere with the subsequent steps. Therefore, it is necessary to perform the annealing in vacuum or in an inert gas atmosphere, or to remove the oxide layer after annealing.
For example, in order to remove the oxide layer by pickling, it is preferable to use sulfuric acid + hydrogen peroxide, nitric acid + hydrogen peroxide, or sulfuric acid + hydrogen peroxide + fluoride.

【0018】[0018]

【実施例】以下に本発明の実施例を説明する。銅合金の
作製は、高周波真空誘導溶解炉を用いてAr雰囲気中に
て高純度黒鉛製るつぼ内で主原料の無酸素銅を溶解した
ところへ、副原料として銅鉄母合金、ニッケル、コバル
ト、銅リン母合金、銀、アルミニウム、銅ベリリウム母
合金、マグネシウム、マンガン、鉛、スズ、チタンおよ
び亜鉛から選ばれた添加元素を添加した後、鋳鉄製の鋳
型内に鋳造した。この方法で厚さ30mm、幅50m
m、長さ150mm、重さ約2kgの銅合金のインゴッ
トを得た。このインゴットを900℃に加熱して、熱間
圧延により厚さ8mmまで圧延して酸化スケールを除去
した後、冷間圧延と熱処理とを繰り返して厚さ35μm
の圧延上がりの銅合金箔を得た。
EXAMPLES Examples of the present invention will be described below. The copper alloy was prepared by melting oxygen-free copper as a main raw material in a high-purity graphite crucible in an Ar atmosphere using a high-frequency vacuum induction melting furnace, and a copper-iron master alloy, nickel, and cobalt as auxiliary raw materials. After adding an additive element selected from a copper phosphorus master alloy, silver, aluminum, a copper beryllium master alloy, magnesium, manganese, lead, tin, titanium and zinc, it was cast in a cast iron mold. This method has a thickness of 30 mm and a width of 50 m.
A copper alloy ingot having a length of m, a length of 150 mm and a weight of about 2 kg was obtained. This ingot is heated to 900 ° C. and hot rolled to a thickness of 8 mm to remove oxide scale, and then cold rolling and heat treatment are repeated to obtain a thickness of 35 μm.
A rolled copper alloy foil was obtained.

【0019】上記の方法で得られた厚さ35μmの銅合
金箔は圧延油が付着しているのでアセトン中に浸漬して
油分を除去した。 これを硫酸10重量%および過酸化
水素1重量%を含む水溶液に浸漬して表面の酸化層およ
び防錆皮膜を除去した。 これ以外に粗化めっき処理や
シランカップリング処理等の接着性を改善する特別な表
面処理を実施していない。 このようにして作製した銅
合金箔は平面加熱プレス機を用いてポリイミドフィルム
とを接着した。 接着条件は銅合金箔とポリイミドフィ
ルムとを重ねて、温度330℃に保持した平面加熱プレ
ス機上で5分間予熱した後、圧力490N/cmに加
圧して5分間保持後除荷して、冷却した。 ポリイミド
フィルムはピロメリット酸系、ビフェニルテトラカルボ
ン酸系、ベンゾフェノンテトラカルボン酸系等の種類が
あり、フレキシブル基板には厚みが10〜60μmのも
のが使われることが多い。 本発明の実施例は厚さ25
μmの図1に構造式を示すビフェニルテトラカルボン酸
系のものを使用したが、これに限定されるものではな
い。
Since the rolling oil adhered to the copper alloy foil having a thickness of 35 μm obtained by the above method, it was immersed in acetone to remove the oil. This was immersed in an aqueous solution containing 10% by weight of sulfuric acid and 1% by weight of hydrogen peroxide to remove the oxide layer and the rust preventive film on the surface. Other than this, no special surface treatment such as roughening plating treatment or silane coupling treatment for improving adhesion is carried out. The copper alloy foil thus produced was bonded to a polyimide film by using a plane heating press. The adhesion conditions are such that a copper alloy foil and a polyimide film are overlapped with each other, preheated for 5 minutes on a flat heating press held at a temperature of 330 ° C., then pressurized to a pressure of 490 N / cm 2 and held for 5 minutes and then unloaded, Cooled. There are various types of polyimide films such as pyromellitic acid type, biphenyl tetracarboxylic acid type, and benzophenone tetracarboxylic acid type, and flexible substrates having a thickness of 10 to 60 μm are often used. The embodiment of the present invention has a thickness of 25.
Although a biphenyltetracarboxylic acid type having a structural formula of μm shown in FIG. 1 was used, the present invention is not limited to this.

【0020】このように得られた銅合金箔の「引張強
さ」、「導電率」、「耐熱性」、「表面粗さ」、「高周
波特性」、および銅合金箔をポリイミドと接着後の「接
着強度」を以下の方法で評価した。 (1)引張強さ:引張強さは引張試験で室温における引
張強さを測定した。測定試料は厚さ35μmに加工した
銅箔をプレシジョンカッターを用いて幅12.7mm、
長さ150mmの短冊状に切断した。 これを評点間距
離50mmで、引張速度50mm/分で測定した。 (2)導電率:導電率は20℃における電気抵抗をダブ
ルブリッジを用いた直流四端子法で求めた。測定試料は
厚さ35μmの箔に加工した銅箔を幅12.7mmに切
断した。 これを測定間長さ50mmの電気抵抗を測定
して導電率を求めた。 (3)耐熱性:耐熱性は1時間の加熱を行ったときの室
温で引張強さを測定し、加熱前の引張強さと軟化したと
きの引張強さの中間となるような加熱温度を軟化温度と
して評価した。 (4)表面粗さ:表面粗さは触針式表面粗さ計を用いて
圧延方向に対して直角方向に測定した。測定条件はJI
S B 0601に記載された方法に準拠して、十点平
均表面粗さ(Rz)で評価した。 (5)高周波特性:高周波特性は高周波電流を通電した
ときのインピーダンスで評価した。インピーダンスは厚
さ35μmの箔に加工した銅箔を幅1mmに加工し、1
0MHz、20mAの高周波電流を通電したときの電圧
降下を長さ100mmについて測定して求めた。 (6)接着強度:接着強度は180゜ピール強度をJI
S C 5016に記載された方法に準拠して実施し
た。 銅合金箔の成分によって強度が異なるので、測定
は銅合金箔を両面テープを用いて引張試験機側に固定し
て、ポリイミドを180゜方向に曲げて引き剥がした。
引き剥がし幅を5.0mmとして、引張速度50mm
/分で測定した。
The "tensile strength", "conductivity", "heat resistance", "surface roughness", "high frequency characteristics" of the copper alloy foil thus obtained, and after the copper alloy foil was bonded to polyimide "Adhesive strength" was evaluated by the following method. (1) Tensile strength: Tensile strength was measured by measuring the tensile strength at room temperature by a tensile test. The measurement sample is a copper foil processed to have a thickness of 35 μm and a width of 12.7 mm using a precision cutter.
It was cut into a strip having a length of 150 mm. This was measured at a distance between scores of 50 mm and a tensile speed of 50 mm / min. (2) Conductivity: The conductivity was obtained by measuring the electric resistance at 20 ° C. by a DC four-terminal method using a double bridge. As the measurement sample, a copper foil processed into a foil having a thickness of 35 μm was cut into a width of 12.7 mm. The electrical resistance was measured by measuring the electrical resistance of this for a measurement length of 50 mm. (3) Heat resistance: Heat resistance is measured by measuring the tensile strength at room temperature when heating for 1 hour, and softening the heating temperature so that it is between the tensile strength before heating and the tensile strength when softening. It was evaluated as temperature. (4) Surface roughness: The surface roughness was measured in the direction perpendicular to the rolling direction using a stylus type surface roughness meter. Measurement conditions are JI
The ten-point average surface roughness (Rz) was evaluated according to the method described in S B 0601. (5) High frequency characteristics: The high frequency characteristics were evaluated by the impedance when a high frequency current was applied. For impedance, copper foil processed to a thickness of 35 μm was processed to a width of 1 mm, and 1
The voltage drop when a high frequency current of 0 MHz and 20 mA was applied was measured for a length of 100 mm. (6) Adhesive strength: Adhesive strength is 180 ° peel strength JI
It was carried out according to the method described in S C 5016. Since the strength varies depending on the composition of the copper alloy foil, the measurement was carried out by fixing the copper alloy foil to the tensile tester side using a double-sided tape, bending the polyimide in the direction of 180 ° and peeling it off.
Peeling width is 5.0mm, pulling speed is 50mm
It was measured in minutes.

【0021】表1に銅合金箔の組成および表2に銅合金
箔の特性評価結果を示す。 表中に「−」で示した部分
は測定を実施していないことを示す。 実施例のNo.
1〜No.9は本発明の銅合金箔の実施例である。 表
1に示すように、本発明の銅合金箔は導電率が60%I
ACS以上であり、引張強さが500N/mm以上で
あり、ポリイミドを接着したときの180゜ピール強度
が8.0N/cm以上であった。 優れた導電性と耐熱
性を有し、かつ高い接着強度を有していることがわか
る。
Table 1 shows the composition of the copper alloy foil, and Table 2 shows the evaluation results of the characteristics of the copper alloy foil. The portion indicated by "-" in the table indicates that the measurement was not performed. No. of the embodiment.
1-No. 9 is an example of the copper alloy foil of the present invention. As shown in Table 1, the copper alloy foil of the present invention has an electric conductivity of 60% I
The tensile strength was ACS or more, the tensile strength was 500 N / mm 2 or more, and the 180 ° peel strength when polyimide was adhered was 8.0 N / cm or more. It can be seen that it has excellent conductivity and heat resistance, and has high adhesive strength.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】一方、表1に示す比較例のNo.10は本
発明の合金成分を加えていない圧延銅箔である。 無酸
素銅をAr雰囲気中にて溶解鋳造したインゴットを箔に
加工して、ポリイミドと接着した。 素材が純銅である
ので導電性が大きいが、180゜ピール強度は7.3N
/cmと充分な接着強度が得られていないので、プリン
ト配線板としたときに剥離が生じる恐れがある。また張
強さが500N/mm 未満と小さいことから、ハンド
リング性が悪い。
On the other hand, in Comparative Example No. 1 shown in Table 1. 10 is a book
It is a rolled copper foil to which the alloy component of the invention is not added. Acid free
Ingot made by melting and casting copper in Ar atmosphere as foil
Processed and bonded with polyimide. The material is pure copper
Because of its high conductivity, 180 ° peel strength is 7.3N
/ Cm is not enough adhesive strength, so pudding
When used as a wiring board, peeling may occur. Again
Strength is 500 N / mm TwoBecause it is less than less than
Ringing is bad.

【0025】比較例のNo.11〜No.14は、Fe
およびPを添加して実施例と同様の方法で箔に加工し
た。 No.11はFeの濃度に対してP濃度が少ない
ために、FePの析出量が少なくなり、耐熱性と引張
強さが小さい。一方、No.12はFe濃度に対してP
濃度が高いために、FePの析出量が多くなり、銅中
に固溶するFeの割合が小さくなった。 このため、引
張強さが630N/mm と大きいが、180゜ピール
強度が小さく、積層板に加工したときの剥離する恐れが
ある。またNo.13はFeの濃度が0.01質量%未
満であったために導電率は高いが、引張強さ、耐熱性お
よび接着性を改善する効果が十分でない。No.14は
Feの濃度が重量比で0.5質量%を超えて添加したた
めに、導電率が低くなり、プリント配線板の導電材とし
ては適さない。
No. of the comparative example. 11-No. 14 is Fe
And P were added to form a foil in the same manner as in the example.
It was No. No. 11 has less P concentration than Fe concentration
For FeTwoPrecipitation amount of P decreases, heat resistance and tensile strength
The strength is small. On the other hand, No. 12 is P for Fe concentration
Due to the high concentration, FeTwoIn the copper, the precipitation amount of P increases.
The proportion of Fe that is solid-dissolved in is reduced. For this reason,
Tensile strength of 630 N / mm TwoAnd a big 180 degree peel
The strength is low and there is a risk of peeling when processed into a laminated board.
is there. In addition, No. No. 13 has a Fe concentration of 0.01% by mass
The conductivity was high because it was full, but the tensile strength and heat resistance
And the effect of improving the adhesiveness is not sufficient. No. 14 is
The Fe concentration was added in an amount of more than 0.5% by weight.
Therefore, the conductivity of the printed wiring board becomes low,
Is not suitable.

【0026】比較例のNo.15はFe、Ni、Coお
よびPを添加して実施例と同様の方法で箔に加工した。
Fe、Ni、Coの濃度の合計が重量比で1.0質量
%を超えて添加したために、導電率が低くなり、プリン
ト配線板の導電材としては適さない。
No. of the comparative example. In No. 15, Fe, Ni, Co and P were added to form a foil in the same manner as in the example.
Since the total concentration of Fe, Ni, and Co is more than 1.0 mass% in terms of weight ratio, the conductivity is low and it is not suitable as a conductive material for a printed wiring board.

【0027】比較例のNo.16はFeおよびPに加え
てTiを添加したが、Tiの濃度が重量比で2.5質量
%を超えて添加したために、導電率が小さく、プリント
配線板の導電材としては適さない。
No. of the comparative example. In the case of No. 16, Ti was added in addition to Fe and P, but since the concentration of Ti was more than 2.5% by mass in weight ratio, the electric conductivity was small and it was not suitable as a conductive material for a printed wiring board.

【0028】比較例のNo.17は、実施例のNo.3
の合金箔を用いて、その表面をエメリー紙で軽く削り取
って表面を粗す処理を行った。その結果、表面粗さが大
きくなると高周波で通電した場合に表皮効果によってイ
ンピーダンスが増加するため、高周波回路の導電材用途
としては適さない。
No. of the comparative example. No. 17 of the example. Three
The surface of the alloy foil of No. 3 was lightly shaved with emery paper to roughen the surface. As a result, when the surface roughness becomes large, the impedance increases due to the skin effect when energized at a high frequency, which is not suitable as a conductive material for a high frequency circuit.

【0029】[0029]

【発明の効果】本発明のポリイミドを基材とするプリン
ト配線板の積層板用に用いる銅合金箔は、基材樹脂と優
れた接着性を有し、かつ高い導電性と強度を有する。ま
た強度が大きく耐熱性が良好であることから、箔のハン
ドリング性に優れている。これによって、微細配線を必
要とする電子回路の導電材としての用途に好適である。
EFFECT OF THE INVENTION The copper alloy foil used for a laminate of a printed wiring board having a polyimide as a base material of the present invention has excellent adhesiveness to a base resin and has high conductivity and strength. Further, since the strength is high and the heat resistance is good, the handleability of the foil is excellent. This makes it suitable for use as a conductive material for electronic circuits that require fine wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例で使用したポリイミドの構
造式の説明図である。
FIG. 1 is an explanatory diagram of a structural formula of polyimide used in Examples and Comparative Examples.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 添加元素の成分を重量割合にてFeが
0.02質量%〜0.5質量%、Niが0.04質量%
〜1.0質量%、Coが0.04質量%〜1.0質量%
のうち1種以上を合計して1.0質量%を超えない範囲
で含むと共に、Fe、NiおよびCoの合計量に対して
0.05〜0.2倍の重量のPを含み、残部を銅及び不
可避不純物とすることにより、引張強さが500N/m
以上、導電率が60%IACS以上であり、表面粗
さが十点平均表面粗さ(Rz)で2μm以下であって、
粗化めっき処理を施さずにポリイミドフィルムと直接に
接合したときの180゜ピール強度が8.0N/cm以
上であることを特徴とする、積層板用銅合金箔。
1. Fe is 0.02% by mass to 0.5% by mass and Ni is 0.04% by mass in terms of a weight ratio of the additive element components.
~ 1.0% by mass, Co 0.04% by mass to 1.0% by mass
One or more of them are added in a range not exceeding 1.0 mass% in total, and P is contained in an amount of 0.05 to 0.2 times the weight of the total amount of Fe, Ni and Co, and the balance is Tensile strength of 500 N / m due to copper and unavoidable impurities
m 2 or more, the conductivity is 60% IACS or more, and the surface roughness is 2 μm or less in terms of ten-point average surface roughness (Rz),
A copper alloy foil for a laminate, which has a 180 ° peel strength of 8.0 N / cm or more when directly bonded to a polyimide film without being subjected to a roughening plating treatment.
【請求項2】 1時間の加熱を行ったときの引張強さ
が、加熱前の引張強さと軟化したときの引張強さの中間
となる温度が300℃以上であることを特徴とする請求
項1に記載の積層板用銅合金箔。
2. The temperature at which the tensile strength when heated for 1 hour is intermediate between the tensile strength before heating and the tensile strength when softened is 300 ° C. or higher. 1. The copper alloy foil for laminated plate according to 1.
JP2001222781A 2001-07-24 2001-07-24 Copper alloy foil for laminate Pending JP2003034829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001222781A JP2003034829A (en) 2001-07-24 2001-07-24 Copper alloy foil for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001222781A JP2003034829A (en) 2001-07-24 2001-07-24 Copper alloy foil for laminate

Publications (1)

Publication Number Publication Date
JP2003034829A true JP2003034829A (en) 2003-02-07

Family

ID=19056208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001222781A Pending JP2003034829A (en) 2001-07-24 2001-07-24 Copper alloy foil for laminate

Country Status (1)

Country Link
JP (1) JP2003034829A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244840B1 (en) 2010-10-26 2013-03-25 한국기계연구원 A copper alloy with improved softening resistance and method for manufacturing thereof
EP2339038A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
JP2015038253A (en) * 2013-08-01 2015-02-26 長春石油化學股▲分▼有限公司 Electrolytic copper foil
CN115058711A (en) * 2022-06-17 2022-09-16 山东大学 Preparation method of easy-to-peel ultrathin carrier copper foil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339038A3 (en) * 2006-07-21 2014-01-22 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
US9631260B2 (en) 2006-07-21 2017-04-25 Kobe Steel, Ltd. Copper alloy sheets for electrical/electronic part
US9644250B2 (en) 2006-07-21 2017-05-09 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic part
KR101244840B1 (en) 2010-10-26 2013-03-25 한국기계연구원 A copper alloy with improved softening resistance and method for manufacturing thereof
JP2015038253A (en) * 2013-08-01 2015-02-26 長春石油化學股▲分▼有限公司 Electrolytic copper foil
US9388371B2 (en) 2013-08-01 2016-07-12 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil, cleaning fluid composition and method for cleaning copper foil
CN115058711A (en) * 2022-06-17 2022-09-16 山东大学 Preparation method of easy-to-peel ultrathin carrier copper foil
CN115058711B (en) * 2022-06-17 2022-12-27 山东大学 Preparation method of easily-stripped ultrathin carrier copper foil

Similar Documents

Publication Publication Date Title
KR100466062B1 (en) Copper-alloy foil to be used for laminate sheet
JP4381574B2 (en) Copper alloy foil for laminates
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
US6939620B2 (en) Copper alloy foil
US6808825B2 (en) Copper alloy foil
JP4652020B2 (en) Copper-clad laminate
JP2003041334A (en) Copper alloy foil for laminate
KR100504518B1 (en) Copper alloy foil for laminated sheet
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP2002226928A (en) Copper alloy foil for laminated board
JP2002249835A (en) Copper alloy foil for lamination
JP4550263B2 (en) Copper alloy foil for laminates
JP2003041332A (en) Copper alloy foil for laminate
JP2003034829A (en) Copper alloy foil for laminate
JP2003055722A (en) Copper alloy foil for laminate sheet
JP4798894B2 (en) Copper alloy foil for laminates
JP2003041333A (en) Copper alloy foil for laminate
JP2003025489A (en) Copper alloy foil for laminate
JP2003034830A (en) Copper alloy foil for laminate
JP2003055723A (en) Copper alloy foil for laminate sheet
JP2003013156A (en) Copper alloy foil for laminate
JP4798890B2 (en) Copper alloy foil for laminates
JP2003064430A (en) Copper alloy foil for laminate sheet
JP2003013157A (en) Copper alloy foil for laminate (a-3)
JP2002356789A (en) Copper alloy foil for laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427