JP4652020B2 - Copper-clad laminate - Google Patents

Copper-clad laminate Download PDF

Info

Publication number
JP4652020B2
JP4652020B2 JP2004332306A JP2004332306A JP4652020B2 JP 4652020 B2 JP4652020 B2 JP 4652020B2 JP 2004332306 A JP2004332306 A JP 2004332306A JP 2004332306 A JP2004332306 A JP 2004332306A JP 4652020 B2 JP4652020 B2 JP 4652020B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
clad laminate
insulating layer
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332306A
Other languages
Japanese (ja)
Other versions
JP2006142514A (en
Inventor
公一 服部
龍三 新田
康史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2004332306A priority Critical patent/JP4652020B2/en
Priority to TW094138362A priority patent/TWI366513B/en
Priority to KR1020050109016A priority patent/KR101078234B1/en
Publication of JP2006142514A publication Critical patent/JP2006142514A/en
Application granted granted Critical
Publication of JP4652020B2 publication Critical patent/JP4652020B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Description

本発明は、銅箔上にポリイミド系樹脂からなる絶縁層を設けた銅張り積層板に関する。   The present invention relates to a copper-clad laminate in which an insulating layer made of a polyimide resin is provided on a copper foil.

近年、高機能化する携帯電話やデジタルカメラ、デジタルビデオ、PDA、カーナビゲータ、その他の各種電子機器の小型化、軽量化の進展に伴って、これらの電気配線用基板材料としてフレキシブルプリント基板が使用され、配線部材の小型高密度化、多層化、ファイン化、低誘電化、高耐熱化等の要求が高まっている。   In recent years, flexible printed circuit boards have been used as substrate materials for electrical wiring, as mobile phones, digital cameras, digital video, PDAs, car navigators, and other various electronic devices that are becoming more sophisticated have become smaller and lighter. Accordingly, there are increasing demands for miniaturization and high density, multilayering, finer, low dielectric, and high heat resistance of wiring members.

このようなフレキシブルプリント基板に用いられる銅張り積層板は、これまで、ポリイミドやポリエステル等のフィルムからなる絶縁体と銅箔(導体)とをエポキシ樹脂やアクリル樹脂などの接着剤を介して貼り合わせて製造されている。しかしながら、上記のような方法で製造した銅張り積層板は、接着剤層の存在によって耐熱性や難燃性が低下するといった問題がある。また、導体をエッチングした際や何らかの熱処理を施した際の寸法変化が大きく、このような銅張り積層板は、その後の工程で支障をきたすという問題がある。   Copper-clad laminates used for such flexible printed circuit boards have so far been made by bonding an insulator made of a film such as polyimide or polyester and a copper foil (conductor) via an adhesive such as epoxy resin or acrylic resin. Manufactured. However, the copper-clad laminate produced by the method as described above has a problem that heat resistance and flame retardancy are lowered due to the presence of the adhesive layer. Moreover, the dimensional change is large when the conductor is etched or when any heat treatment is performed, and such a copper-clad laminate has a problem in that it hinders subsequent processes.

これらの問題を解決すべく、導体上に直接ポリイミド系樹脂層を塗工形成し、絶縁体を互いに熱膨張係数の異なる複数のポリイミド系樹脂層で多層化して形成することにより、温度変化に対する寸法安定性、接着力、更にはエッチング後の平面性等で信頼性に優れたフレキシブルプリント基板を提供する方法が特公平6−93537号公報(特許文献1)などに開示されている。   In order to solve these problems, the polyimide resin layer is applied directly on the conductor, and the insulator is formed by multilayering with a plurality of polyimide resin layers having different thermal expansion coefficients. Japanese Patent Publication No. 6-93537 (Patent Document 1) and the like disclose a method for providing a flexible printed circuit board having excellent reliability with respect to stability, adhesive strength, flatness after etching, and the like.

ところで、フレキシブルプリント基板に用いられる銅張り積層板には、屈曲性、柔軟性、高密度実装等が要求される上、上述したように、特に近時では機器のメモリ容量の増加によって、配線の狭ピッチ化や高密度実装化が望まれている。フレキシブルプリント基板を高密度化するためには、回路配線の幅と間隔を小さくする、すなわちファインピッチ化する必要がある。そこで、接着剤層を有さない銅張り積層板においては、例えば特開2001−214298号公報(特許文献2)等のように、樹脂層との接着力を高めるために粗度が高く若しくは粗化処理された銅箔が用いられている。しかしながら、ファインピッチが要求される用途で粗度が高い銅箔を用いて積層板を形成すると、エッチングで回路を形成する際に樹脂に銅箔が残る根残りが生じたり、エッチング直線性が低下して回路幅が不均一になりやすい等の問題が生じる。   By the way, a copper-clad laminate used for a flexible printed circuit board is required to have flexibility, flexibility, high-density mounting, and the like. Narrow pitch and high density mounting are desired. In order to increase the density of the flexible printed circuit board, it is necessary to reduce the width and interval of the circuit wiring, that is, to make the pitch fine. Therefore, in a copper-clad laminate without an adhesive layer, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-214298 (Patent Document 2), the roughness is high or rough in order to increase the adhesive force with the resin layer. Copper foil that has been processed is used. However, when a laminated board is formed using copper foil with high roughness for applications that require fine pitch, the copper foil remains on the resin when etching is used to form a circuit, or the etching linearity decreases. As a result, problems such as non-uniform circuit widths occur.

このため、配線の狭ピッチ化や高密度化するためには、表面粗さの小さい銅箔を使用する必要があるが、表面粗さの小さい銅箔は、アンカー効果、すなわち樹脂の銅箔の表面凹凸への食い込みが小さいため、機械的な接着強度が得られず、樹脂に対する接着力が低くなってしまう。そこで、実質的に粗面化処理が施されていない金属箔の表面を防錆処理、クロメート処理、及びシランカップリング処理のいずれか、もしくはこれらの組み合わせによって表面処理することで、金属箔と絶縁層との界面の密着性及び平坦性が両立される金属張積層板が提案されている(特許文献3参照)。しかしながら、この積層板は絶縁層を特定の樹脂組成物からなるワニスを基材に塗布したプリプレグを用いるものである。   For this reason, it is necessary to use a copper foil with a small surface roughness in order to narrow the wiring pitch and increase the density, but the copper foil with a small surface roughness has an anchor effect, that is, a resin copper foil. Since the bite into the surface irregularities is small, the mechanical adhesive strength cannot be obtained, and the adhesive strength to the resin becomes low. Therefore, the surface of the metal foil that has not been subjected to roughening treatment is insulated from the metal foil by subjecting the surface to any one of rust prevention treatment, chromate treatment, and silane coupling treatment, or a combination thereof. There has been proposed a metal-clad laminate in which adhesion and flatness at the interface with a layer are compatible (see Patent Document 3). However, this laminate uses a prepreg in which an insulating layer is coated on a base material with a varnish made of a specific resin composition.

一方、銅張り積層板においては、これまで、銅箔表面の低粗化、ハーフエッチング後の表面の低粗化、表面金属種の検討など、銅箔側からのアプローチが主に行われているが、近年の高密度実装等への要求に応じるためには、樹脂側における寸法安定性、実装時の沈み込み、ACF(異方導電性フィルム)の接着性等の課題を検討する必要性もあり、これらを考慮した樹脂からなる絶縁層と銅箔との接着性等についても満足する必要がある。   On the other hand, for copper-clad laminates, approaches from the copper foil side, such as low roughness of the copper foil surface, low roughness of the surface after half-etching, and examination of surface metal species, have been mainly performed so far. However, in order to meet the recent demands for high-density mounting, it is also necessary to examine issues such as dimensional stability on the resin side, sinking during mounting, and adhesiveness of ACF (anisotropic conductive film) In view of these, it is necessary to satisfy the adhesiveness between the insulating layer made of resin and the copper foil.

特公平6−93537号公報Japanese Patent Publication No. 6-93537 特開2001−214298号公報JP 2001-214298 A 特開2004−25835号公報JP 2004-25835 A

以上のように、耐熱性、難燃性及び寸法安定性等に優れるとされる、接着剤を用いずに銅箔上に直接絶縁層を形成する銅張り積層板において、高密度実装化と、銅箔と絶縁層との機械的な接着強度における信頼性とを同時に満足できるものについてはいまだ見出されていない。本発明は、耐熱性、難燃性及び寸法安定性等において優れると共に、高密度実装が可能であり、かつ、優れた接着性及び接着力保持性を備えた銅張り積層板を提供することを目的とする。   As described above, in a copper-clad laminate in which an insulating layer is formed directly on a copper foil without using an adhesive, which is said to be excellent in heat resistance, flame retardancy and dimensional stability, No one has yet been found that can simultaneously satisfy the reliability of the mechanical adhesive strength between the copper foil and the insulating layer. The present invention provides a copper-clad laminate having excellent heat resistance, flame retardancy, dimensional stability, etc., capable of high-density mounting, and having excellent adhesion and adhesive strength retention. Objective.

上記目的を達成するために本発明者らが検討を行ったところ、絶縁層と接する銅箔の表面に所定の金属を析出させると共にカップリング剤による処理を行うことにより、接着性とファインピッチ化の要請とを同時に満足させることができる銅張り積層板を得ることができることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have studied, and by depositing a predetermined metal on the surface of the copper foil in contact with the insulating layer and performing a treatment with a coupling agent, adhesion and fine pitch are achieved. The present inventors have found that a copper-clad laminate that can satisfy the above requirements can be obtained at the same time, and have completed the present invention.

すなわち、本発明は、銅箔上にポリイミド前駆体溶液を塗布して熱処理により形成されたポリイミド系樹脂からなる絶縁層を設けた銅張り積層板であって、線熱膨張係数(CTE)30×10 -6 /℃以下の非熱可塑性低熱膨張性ポリイミド系樹脂からなる絶縁層と接し、表面粗度Rzが0.3〜1.0μmの銅箔の表面が、少なくともニッケル、亜鉛、及びコバルトを析出させる金属析出処理と、カップリング剤による処理とが施されており、上記金属析出処理した銅箔の表面が、ニッケル5〜15μg/cm2、亜鉛1〜5μg/cm2、及びコバルト0.1〜5μg/cm2を有し、かつ、ニッケルと亜鉛の含有割合を表すニッケル/(ニッケル+亜鉛)が0.70以上である銅張り積層板である。 That is, the present invention is a copper-clad laminate provided with an insulating layer made of a polyimide-based resin formed by heat treatment by applying a polyimide precursor solution on a copper foil, and has a coefficient of linear thermal expansion (CTE) of 30 × A surface of a copper foil having a surface roughness Rz of 0.3 to 1.0 μm is in contact with an insulating layer made of a non-thermoplastic low thermal expansion polyimide resin of 10 −6 / ° C. or less , and at least nickel, zinc, and cobalt are contained. A metal precipitation treatment to be precipitated and a treatment with a coupling agent are performed, and the surface of the copper foil subjected to the metal precipitation treatment is nickel 5 to 15 μg / cm 2 , zinc 1 to 5 μg / cm 2 , and cobalt 0. It is a copper-clad laminate having a nickel / (nickel + zinc) ratio of 0.70 or more, having 1-5 μg / cm 2 and representing the content ratio of nickel and zinc.

本発明において、銅箔は、例えば圧延銅箔、電解銅箔等の公知の製造方法によって得られたものを用いることができる。この銅箔の厚さについては8〜35μmの範囲であるのがよく、好ましくは12〜18μmの範囲であるのがよい。銅箔の厚みが8μmに満たないと、銅張り積層板を大量生産する場合のようなライン製造の工程において、テンションの調整等が困難となるおそれがあり、反対に35μmを超えるとフレキシブル銅張り積層板の屈曲性が劣る。また、本発明においては、特に銅箔の表面を粗面化する処理は必要とせず、銅箔の表面の粗度についてはRz=0.3〜1.5μmであるのがよい。銅箔の表面の粗度が上記範囲であるものを使用することで、微細な回路パターンが成形可能な銅張り積層板を得ることができる。特に回路加工時のファインパターン性を考慮すると、上記Rzの値が0.3〜1.0であるのが好ましい。尚、Rzは、表面粗さにおける十点平均粗さ(JIS B 0601-1994)を示す。   In this invention, what was obtained by well-known manufacturing methods, such as rolled copper foil and electrolytic copper foil, can be used for copper foil, for example. The thickness of the copper foil may be in the range of 8 to 35 μm, and preferably in the range of 12 to 18 μm. If the thickness of the copper foil is less than 8 μm, it may be difficult to adjust the tension in the line manufacturing process as in the case of mass production of copper-clad laminates. The flexibility of the laminate is poor. In the present invention, the treatment for roughening the surface of the copper foil is not particularly required, and the roughness of the surface of the copper foil is preferably Rz = 0.3 to 1.5 μm. By using a copper foil whose surface roughness is within the above range, a copper-clad laminate capable of forming a fine circuit pattern can be obtained. In particular, considering the fine pattern properties during circuit processing, the Rz value is preferably 0.3 to 1.0. Rz represents the ten-point average roughness (JIS B 0601-1994) in the surface roughness.

本発明においては、絶縁層と接する銅箔の表面が、少なくともニッケル及び亜鉛を析出させる金属析出処理されて、この銅箔の表面にニッケル5〜15μg/cm2及び亜鉛1〜5μg/cm2を有し、かつ、上記ニッケルと亜鉛の含有割合を表すニッケル/(ニッケル+亜鉛)を0.70以上とする必要がある。金属析出処理後の銅箔の表面におけるニッケル及び亜鉛の析出量が上記のそれぞれの値より少ないと、銅張り積層板を形成した際の銅箔と樹脂層との初期接着力が十分に得られないおそれがあると共に、耐熱試験を行った際の接着力の保持率が十分な値を得られないおそれがある。反対にニッケル及び亜鉛の析出量が上記のそれぞれの値より多くなると銅張り積層板を形成し、微細回路加工を行った場合にエッチング残り等の問題が生じるおそれがある。また、ニッケル/(ニッケル+亜鉛)の値が0.70より小さいと初期接着力の低下や耐熱試験後の保持率の低下等の問題が生じるおそれがある。 In the present invention, the surface of the copper foil in contact with the insulating layer is subjected to a metal deposition treatment for depositing at least nickel and zinc, and nickel of 5 to 15 μg / cm 2 and zinc of 1 to 5 μg / cm 2 are applied to the surface of the copper foil. And nickel / (nickel + zinc) representing the content ratio of nickel and zinc needs to be 0.70 or more. When the amount of nickel and zinc deposited on the surface of the copper foil after the metal deposition treatment is less than the above values, the initial adhesive strength between the copper foil and the resin layer when the copper-clad laminate is formed is sufficiently obtained. In addition, there is a possibility that a sufficient value of the adhesive strength retention rate when the heat resistance test is performed may not be obtained. On the contrary, if the amount of nickel and zinc deposited exceeds the above values, problems such as etching residue may occur when a copper-clad laminate is formed and fine circuit processing is performed. On the other hand, if the value of nickel / (nickel + zinc) is less than 0.70, problems such as a decrease in initial adhesive strength and a decrease in retention after a heat test may occur.

また、本発明における金属析出処理について、好ましくは上述したニッケル及び亜鉛と共にコバルトを析出させる金属析出処理であるのがよい。この際、銅箔の表面に析出させるコバルトの析出量については0.1〜5μg/cm2であるのがよい。ニッケル及び亜鉛と共にコバルトを上記範囲で析出させることにより初期接着力が向上し、耐熱試験後の接着力の低下を抑えることができる。
本発明において、銅箔の表面に析出させるニッケル、亜鉛及びコバルトの総含有量については、銅箔の表面に存在する、銅を除いた全ての金属の総量に対し70%以上であるのが好ましい。より具体的には、金属析出処理後の銅箔の表面に存在する金属組成比で表した場合、Ni(ニッケル)70〜85重量%、Zn(亜鉛)10〜20重量%、Co(コバルト)0〜30重量%を有するのがよく、その他の金属として、例えばMo(モリブデン)0〜5重量%、Cr(クロム)0〜5重量%等を有していてもよい。
Further, the metal precipitation treatment in the present invention is preferably a metal precipitation treatment in which cobalt is precipitated together with the nickel and zinc described above. At this time, the amount of cobalt deposited on the surface of the copper foil is preferably 0.1 to 5 μg / cm 2 . By precipitating cobalt in the above range together with nickel and zinc, the initial adhesive strength can be improved, and a decrease in the adhesive strength after the heat resistance test can be suppressed.
In the present invention, the total content of nickel, zinc and cobalt deposited on the surface of the copper foil is preferably 70% or more with respect to the total amount of all metals excluding copper present on the surface of the copper foil. . More specifically, Ni (nickel) 70 to 85% by weight, Zn (zinc) 10 to 20% by weight, Co (cobalt) when represented by the metal composition ratio present on the surface of the copper foil after the metal deposition treatment. It may have 0 to 30% by weight, and other metals may include, for example, Mo (molybdenum) 0 to 5% by weight, Cr (chromium) 0 to 5% by weight, and the like.

本発明における金属析出処理については、銅箔の表面に上述した金属を所定量で析出させることができる手段であれば特に制限されず、例えば上記金属を用いた防錆処理等を挙げることができ、具体的には上記金属を所定量含んだ浴を用いてめっき処理を行いて銅箔の表面に上記金属を析出させる方法等を例示することができる。   The metal deposition treatment in the present invention is not particularly limited as long as it is a means capable of depositing the above-described metal in a predetermined amount on the surface of the copper foil, and examples thereof include a rust prevention treatment using the above metal. Specifically, a method of performing a plating treatment using a bath containing a predetermined amount of the above metal and depositing the above metal on the surface of the copper foil can be exemplified.

また、本発明においては、金属析出処理した銅箔の表面がカップリング剤により処理されている必要がある。カップリング剤によって処理することにより、銅張り積層板を形成した際の銅箔と絶縁層との初期の接着力が優れたものを得ることができると共に、耐熱試験を行った場合の接着力の保持率も優れたものを得ることができる。   Moreover, in this invention, the surface of the copper foil which carried out the metal precipitation process needs to be processed with the coupling agent. By treating with a coupling agent, it is possible to obtain an excellent initial adhesive strength between the copper foil and the insulating layer when a copper-clad laminate is formed, and the adhesive strength when a heat resistance test is performed. An excellent retention rate can be obtained.

上記カップリング剤については、銅箔の表面を有機処理できるものであるのがよく、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤、トリアジンチオール類、ベンゾトリアゾール類、アセチレンアルコール類、アセチルアセトン類、カテコール類、o-ベンゾキノン類、タンニン類、キノリノール類、アゾール類等を例示することができる。特に銅箔と絶縁層との間に優れた接着性を発揮させることができる観点から、具体的にはγ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、N-2-(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、3-アミノ-1,2,4-トリアゾール、2-アミノ-1,3,4-トリアゾール、4-アミノ-1,2,4-トリアゾール、1-アミノ-1,3,4-トリアゾール、p-スチリルトリメトキシシラン、ビニルエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカトプロピルトリエトキシシラン等のカップリング剤であるのがよく、より一層優れた接着性を発揮できる観点からγ-グリシドキシプロピルトリメトキシシランが好ましい。これらのカップリング剤は単独で使用してもよく、2種以上を組み合わせて使用してもよい。   For the above coupling agent, it is preferable that the surface of the copper foil can be organically treated, such as aluminum alcoholate, aluminum chelate, silane coupling agent, triazine thiols, benzotriazoles, acetylene alcohols, acetylacetones, catechols. O-benzoquinones, tannins, quinolinols, azoles and the like. In particular, from the viewpoint of exhibiting excellent adhesion between the copper foil and the insulating layer, specifically, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, N-2- ( Aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, 3-amino-1,2,4-triazole, 2- Amino-1,3,4-triazole, 4-amino-1,2,4-triazole, 1-amino-1,3,4-triazole, p-styryltrimethoxysilane, vinylethoxysilane, N-phenyl-3 Coupling agents such as -aminopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane are preferred, and γ-glycidoxypropyltrimethoxysilane is preferred from the viewpoint of further improving adhesiveness. These coupling agents may be used alone or in combination of two or more.

本発明における、カップリング剤による処理の具体的な方法については、例えば上記のようなカップリング剤を用いる場合には、先ず、溶媒としての水に所定量のカップリング剤を溶解させ、本発明における金属析出処理した後の銅箔の表面に塗布し、乾燥させる。この際、必要により加熱処理を行ってもよい。また、銅箔の表面に対して水に溶解させたカップリング剤を塗布する方法としては、例えば浸漬法、シャワーリング法、噴霧法等の公知の方法を用いることができる。   Regarding a specific method of treatment with a coupling agent in the present invention, for example, when using the above coupling agent, first, a predetermined amount of the coupling agent is dissolved in water as a solvent, and then the present invention. It is applied to the surface of the copper foil after the metal precipitation treatment in and dried. At this time, heat treatment may be performed as necessary. Moreover, as a method of apply | coating the coupling agent dissolved in water with respect to the surface of copper foil, well-known methods, such as a dipping method, a showering method, a spraying method, can be used, for example.

また、本発明における、ポリイミド系樹脂からなる絶縁層については、公知のジアミンと酸無水物とを溶媒の存在下で重合して得たものを用いることができる。
用いるジアミンとしては、例えば4,4'-ジアミノジフェニルエーテル、2'-メトキシ-4,4'-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'ジアミノベンズアニリド等を挙げることができる。また、酸無水物としては、例えば無水ピロメリット酸、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、3, 3'4, ,4'-ビフェニルテトラカルボン酸二無水物、3, 3',4, 4'-ジフェニルスルフォンテトラカルボン酸二無水物、4,4'-オキシジフタル酸無水物等を挙げることができる。ジアミン及び酸無水物については、それぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。
Moreover, about the insulating layer which consists of a polyimide-type resin in this invention, what was obtained by superposing | polymerizing a well-known diamine and an acid anhydride in presence of a solvent can be used.
Examples of the diamine used include 4,4′-diaminodiphenyl ether, 2′-methoxy-4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-amino). Phenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'- Diaminobiphenyl, 4,4′diaminobenzanilide and the like can be mentioned. Examples of the acid anhydride include pyromellitic anhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3'4,4'-biphenyltetracarboxylic dianhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride and the like can be mentioned. About diamine and an acid anhydride, respectively, only 1 type may be used and it can also be used in combination of 2 or more types.

重合する際に用いる溶媒については、例えばジメチルアセトアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等を挙げることができ、これらについては1種若しくは2種以上を併用して使用することもできる。また、重合して得られた前駆体(ポリアミック酸)の樹脂粘度については、500cps〜35000cpsの範囲とするのが好ましい。   Examples of the solvent used in the polymerization include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These can be used alone or in combination of two or more. . The resin viscosity of the precursor (polyamic acid) obtained by polymerization is preferably in the range of 500 cps to 35000 cps.

本発明において、ポリイミド系樹脂からなる樹脂層を形成する方法については、ポリイミドの前駆体溶液を、金属析出処理及びカップリング剤による処理を施した銅箔の表面に塗布し、温度範囲100〜450℃、好ましくは300〜450℃の温度範囲で5〜20分間程度の熱処理を行って、溶媒の乾燥及びイミド化を行うのがよい。熱処理の温度が100℃より低いとポリイミドが十分にイミド化せず本来の特性を発現することができないおそれがあり、反対に450℃を超えると、ポリイミド系樹脂からなる樹脂層及び銅箔が酸化等により劣化するおそれがある。熱処理の温度が300℃以上であれば、樹脂のイミド化を十分に進行させることができる。   In this invention, about the method of forming the resin layer which consists of a polyimide-type resin, the precursor solution of a polyimide is apply | coated to the surface of the copper foil which performed the metal deposition process and the process by a coupling agent, and the temperature range is 100-450. The solvent is dried and imidized by performing a heat treatment for about 5 to 20 minutes at a temperature range of 300C, preferably 300C to 450C. If the temperature of the heat treatment is lower than 100 ° C, the polyimide may not be imidized sufficiently and the original characteristics may not be exhibited. Conversely, if the temperature exceeds 450 ° C, the resin layer and the copper foil made of polyimide resin are oxidized. There is a risk of deterioration due to, for example. If the temperature of heat processing is 300 degreeC or more, imidation of resin can fully advance.

本発明における絶縁層の厚みについては8〜45μmの範囲であるのがよく、好ましくは15〜40μmの範囲である。絶縁層の厚みが8μmに満たないと、銅張り積層板製造後における実装時の搬送性等で不具合が生じるおそれがあり、反対に45μmを超えると銅張り積層板の製造時の寸法安定性や屈曲性等において問題が生じるおそれがある。   The thickness of the insulating layer in the present invention is preferably in the range of 8 to 45 μm, and preferably in the range of 15 to 40 μm. If the thickness of the insulating layer is less than 8 μm, there may be a problem in the transportability at the time of mounting after manufacturing the copper-clad laminate, and conversely if it exceeds 45 μm, the dimensional stability during the production of the copper-clad laminate There is a risk of problems in flexibility and the like.

本発明における絶縁層を形成するポリイミド系樹脂については、好ましくは線熱膨張係数(CTE)が30×10-6/℃以下、更に好ましくはCTEが1×10-6〜30×10-6/℃の範囲となる非熱可塑性低熱膨張性ポリイミド系樹脂であるのがよい。CTEの値が上記範囲であるポリイミド系樹脂を用いて絶縁層を形成することにより、寸法安定性に優れて銅張り積層板を形成した際のカールの発生等を可及的に低減でき、ACF接着性やカバー材接着性も優れる。更には得られた銅張り積層板の実装時におけるチップ等の沈み込みを低減させることができる。 The polyimide resin forming the insulating layer in the present invention preferably has a coefficient of linear thermal expansion (CTE) of 30 × 10 −6 / ° C. or less, more preferably a CTE of 1 × 10 −6 to 30 × 10 −6 / A non-thermoplastic low thermal expansion polyimide resin having a temperature range of ° C. is preferable. By forming an insulating layer using a polyimide resin with a CTE value in the above range, it is possible to reduce as much as possible the occurrence of curling when forming a copper-clad laminate with excellent dimensional stability. Excellent adhesion and cover material adhesion. Furthermore, sinking of the chip or the like during mounting of the obtained copper-clad laminate can be reduced.

また、本発明における絶縁層については、二層以上の複数層のポリイミド系樹脂から形成してもよい。この際、絶縁層を形成するポリイミド系樹脂の総厚みの70%以上が上記CTEを有する非熱可塑性低熱膨張性ポリイミド系樹脂から形成するのが好ましい。絶縁層における非熱可塑性低熱膨張性ポリイミド系樹脂の割合(厚み)が70%より少ないと、実装時の沈み込みを低減させる効果を十分に発揮できないおそれがある。   Further, the insulating layer in the present invention may be formed from two or more layers of polyimide resin. At this time, it is preferable that 70% or more of the total thickness of the polyimide resin forming the insulating layer is formed from the non-thermoplastic low thermal expansion polyimide resin having the CTE. If the ratio (thickness) of the non-thermoplastic low-thermal-expansion polyimide resin in the insulating layer is less than 70%, the effect of reducing sinking during mounting may not be exhibited sufficiently.

また、本発明における銅張り積層板については、好ましくは初期接着力が1.0kN/m以上(銅箔厚み18μm、回路幅100μm時)であり、150℃で168時間経過後の接着力の保持率が80%以上であるのがよい。これらの値を備えればフレキシブルプリント基板用の製品として優れた信頼性を有する。   The copper-clad laminate in the present invention preferably has an initial adhesive strength of 1.0 kN / m or more (when the copper foil thickness is 18 μm and the circuit width is 100 μm), and the adhesive strength is maintained after 168 hours at 150 ° C. The rate should be 80% or more. With these values, the product has excellent reliability as a product for flexible printed circuit boards.

本発明における銅張り積層板については、絶縁層の片面側のみに銅箔を備えた片面銅張り積層板であってもよいことは勿論のこと、銅箔を2枚用意し、それぞれの接着面に本発明における金属析出処理及びカップリング剤による処理を施し、これらの銅箔の間に絶縁層が挟み込まれるようにして形成した両面銅張り積層板としてもよい。尚、両面銅張り積層板を得るためには、片面銅張り積層板を形成した後、互いに絶縁層を向き合わせて熱プレスによって圧着し形成してもよく、また、2枚の銅箔の間に絶縁層を挟み込み、熱プレスによって圧着し形成してもよい。   The copper-clad laminate in the present invention may be a single-sided copper-clad laminate provided with a copper foil only on one side of the insulating layer, and two copper foils are prepared and the respective adhesive surfaces are prepared. It is good also as a double-sided copper clad laminated board formed by performing the metal precipitation process and the process by a coupling agent in this invention, and interposing an insulating layer between these copper foils. In addition, in order to obtain a double-sided copper-clad laminate, after forming a single-sided copper-clad laminate, the insulating layers may be faced to each other and bonded by hot pressing, or between two copper foils. An insulating layer may be sandwiched between the layers and pressed by hot pressing.

本発明における銅張り積層板は、接着剤を用いずに銅箔上に直接絶縁層を形成するため耐熱性、難燃性及び寸法安定性等に優れ、かつ、チップ等の実装時の沈み込みも低減され、更には、高密度実装が可能であって微細回路加工性に優れると共に接着性及び接着力保持性に優れることから、フレキシブルプリント基板として電気、電子部品に使用した際に信頼性に優れ、微細加工用途に好適に用いることができる。特に、絶縁層を線熱膨張係数(CTE)30×10-6/℃以下の非熱可塑性低熱膨張性ポリイミド系樹脂から形成すると、絶縁層の寸法安定性に優れ、銅張り積層板を形成した際のカールの発生等を可及的に低減でき、また、ACF接着性やカバー材接着性においても優れた性能を発揮し、更には実装時におけるチップ等の沈み込みをより一層低減せしめることができる。 The copper-clad laminate in the present invention is excellent in heat resistance, flame retardancy, dimensional stability, etc. because it forms an insulating layer directly on the copper foil without using an adhesive, and sinks when mounting a chip or the like In addition, high-density mounting is possible, excellent in fine circuit processability, and excellent adhesion and adhesive strength retention. As a flexible printed circuit board, it is reliable when used in electrical and electronic components. It is excellent and can be suitably used for fine processing applications. In particular, when the insulating layer is formed from a non-thermoplastic low thermal expansion polyimide resin having a coefficient of linear thermal expansion (CTE) of 30 × 10 −6 / ° C. or less, the insulating layer has excellent dimensional stability and a copper-clad laminate is formed. The occurrence of curling at the time of cutting can be reduced as much as possible, and excellent performance in ACF adhesion and cover material adhesion can be achieved, and further, sinking of chips etc. during mounting can be further reduced. it can.

以下、本発明を実施例に基づき更に詳細に説明する。尚、以下の実施例において、特に断りのない限り各種評価については下記によるものである。   Hereinafter, the present invention will be described in more detail based on examples. In the following Examples, various evaluations are as follows unless otherwise specified.

[線膨張係数の測定]
セイコーインスツルメンツ製のサーモメカニカルアナライザーを使用し、250℃まで昇温し、更にその温度で10分保持した後、5℃/分の速度で冷却し、240℃から100℃までの平均熱膨張係数(線熱膨張係数)を求めた。
[Measurement of linear expansion coefficient]
Using a thermomechanical analyzer manufactured by Seiko Instruments Inc., heated up to 250 ° C, held at that temperature for 10 minutes, cooled at a rate of 5 ° C / min, and an average coefficient of thermal expansion from 240 ° C to 100 ° C ( (Linear thermal expansion coefficient) was determined.

[接着力の測定]
銅箔と絶縁層との間の接着力は、銅箔上にポリイミド系樹脂からなる絶縁層を形成した後、線幅0.1mmに回路加工を行い、東洋精機株式会社製引張試験機(ストログラフ−M1)を用いて、銅箔を90°方向に引き剥がし測定した。
[Measurement of adhesive strength]
The adhesive strength between the copper foil and the insulating layer is that after forming an insulating layer made of polyimide resin on the copper foil, circuit processing is performed to a line width of 0.1 mm, and a tensile tester manufactured by Toyo Seiki Co., Ltd. Using -M1), the copper foil was peeled off in the 90 ° direction and measured.

[保持率の測定]
銅箔上にポリイミド系樹脂からなる絶縁層を形成した後、線幅0.1mmに回路加工を行い、その後150℃の大気雰囲気下で168時間熱処理し、東洋精機株式会社製引張試験機(ストログラフ−M1)を用いて、銅箔を90°方向に引き剥がし測定した。得られた値と上記で得られた接着力の百分率比を保持率とした。
[Measurement of retention rate]
After forming an insulation layer made of polyimide resin on the copper foil, circuit processing was performed to a line width of 0.1 mm, and then heat treatment was performed in an air atmosphere at 150 ° C. for 168 hours, and a tensile tester manufactured by Toyo Seiki Co., Ltd. Using -M1), the copper foil was peeled off in the 90 ° direction and measured. The percentage of the obtained value and the adhesive force obtained above was defined as the retention rate.

[ACF接着性の測定]
銅箔上にポリイミド系樹脂からなる絶縁層を形成した後、銅箔をエッチングし、積層板を作成する。積層板を適度にカットした後に、日本アビオニクス製パルスヒートボンダーを用いて、一定条件下でACF(異方導電性フィルム)を接着させた後、東洋精機株式会社製引張試験機(ストログラフ−M1)を用いて、銅箔を90°方向に引き剥がし測定した。測定した結果については、○:1.5kN/m以上、△:1.5kN/m未満、の二段階で評価した。
[Measurement of ACF adhesion]
After forming an insulating layer made of a polyimide resin on the copper foil, the copper foil is etched to create a laminate. After moderately cutting the laminate, using a Japan Avionics pulse heat bonder, after attaching ACF (anisotropic conductive film) under certain conditions, Toyo Seiki Co., Ltd. tensile tester (Strograph-M1 The copper foil was peeled off in the 90 ° direction and measured. About the measured result, it evaluated in two steps, (circle): 1.5 kN / m or more and (triangle | delta): less than 1.5 kN / m.

[実装時沈み込みの測定]
銅箔上にポリイミド系樹脂からなる絶縁層を形成した後、実装用の回路加工を行う。実装はすずめっきを施した銅配線上に、チップの金バンプを金−すず共晶により熱圧着させるものである。熱圧着ツールは300℃以上に加熱されており、圧力や圧着時間については各部材に対して最適化された条件にて行う。金−すずの共晶状態やパンプの沈み込みは、熱圧着後断面を観察することにより判断し、◎断面観察時に全く沈み込みなし、○:やや沈み込みが観察されるが実用上問題なし、△:共晶領域の未形成、バンプの熱変形、樹脂部への沈み込みについていずれかひとつ以上に問題あり、の三段階で評価した。
[Measurement of sinking during mounting]
After an insulating layer made of polyimide resin is formed on the copper foil, circuit processing for mounting is performed. In the mounting, a gold bump of a chip is thermocompression bonded by a gold-tin eutectic on a copper wiring plated with tin. The thermocompression bonding tool is heated to 300 ° C. or higher, and the pressure and the crimping time are performed under conditions optimized for each member. The eutectic state of gold-tin and the sinking of the pump are judged by observing the cross section after thermocompression bonding. ◎ No subsidence at the time of cross-sectional observation, ○: Slight subsidence is observed but there is no practical problem, Δ : There was a problem in any one or more of non-eutectic region formation, bump thermal deformation, and sinking into the resin part, and was evaluated in three stages.

(合成例1)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、n−メチルピロリジノンを入れ、この反応容器を容器に入った氷水に浸けた後、反応容器に無水ピロメリット酸(以下PMDA)を投入し、その後、4,4'−ジアミノジフェニルエーテル(以下DAPE)と2'−メトキシ−4,4'−ジアミノベンズアニリド(以下MABA)を投入した。モノマーの投入総量が15wt%で、各ジアミンのモル比率(MABA:DAPE)が60:40であり、酸無水物とジアミンのモル比が0.98:1.0となるように投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は15,000cpsであった。
(Synthesis Example 1)
Put n-methylpyrrolidinone in a reaction vessel equipped with a thermocouple and stirrer and capable of introducing nitrogen, immerse this reaction vessel in ice water, and then add pyromellitic anhydride (PMDA) to the reaction vessel. Thereafter, 4,4′-diaminodiphenyl ether (hereinafter referred to as DAPE) and 2′-methoxy-4,4′-diaminobenzanilide (hereinafter referred to as MABA) were added. The total amount of monomers charged was 15 wt%, the molar ratio of each diamine (MABA: DAPE) was 60:40, and the molar ratio of acid anhydride to diamine was 0.98: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 15,000 cps.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、n−メチルピロリジノンを入れ、この反応容器を容器に入った氷水に浸けた後、反応容器にPMDA/3, 3',4, 4'−ビフェニルテトラカルボン酸二無水物(以下BTDA)を投入し、その後、4,4'−ジアミノジフェニルエーテル(以下DAPE)を投入した。モノマーの投入総量が15wt%で、酸無水物とジアミンのモル比が1.03:1.0となるように投入した。その後、更に攪拌を続け、反応容器内の温度が室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は3,200cpsであった。
(Synthesis Example 2)
In a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen, n-methylpyrrolidinone is placed, and after this reaction vessel is immersed in ice water contained in the vessel, PMDA / 3, 3 ', 4, 4 '-Biphenyltetracarboxylic dianhydride (hereinafter BTDA) was added, and then 4,4'-diaminodiphenyl ether (hereinafter DAPE) was added. The total monomer charge was 15 wt%, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 3,200 cps.

(合成例3)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2'−ジメチル−4,4'−ジアミノビフェニル(以下m-TB)を容器中で撹拌しながら溶解させた。次に3, 3',4, 4'−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が80:20となるように投入した。その後、3時間撹拌を続け、得られたポリアミック酸の溶液粘度は20,000cpsであった。
(Synthesis Example 3)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2′-Dimethyl-4,4′-diaminobiphenyl (hereinafter referred to as m-TB) was dissolved in the reaction vessel with stirring. Then 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 80:20. Thereafter, stirring was continued for 3 hours, and the solution viscosity of the obtained polyamic acid was 20,000 cps.

(合成例4)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを容器中で撹拌しながら溶解させた。次に3,3' ,4,4'−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が90:10となるように投入した。その後、3時間撹拌を続け、得られたポリアミック酸の溶液粘度は5,000cpsであった。
(Synthesis Example 4)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane was dissolved in the reaction vessel with stirring. Then 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 90:10. Thereafter, stirring was continued for 3 hours, and the solution viscosity of the obtained polyamic acid was 5,000 cps.

[実施例1]
厚さ18μm、表面粗さRz=0.7μmの電解銅箔を用意した。この銅箔の表面をニッケル、亜鉛及びコバルトを所定量含んだ浴でめっき処理(金属析出処理)し、表1に示した析出量となるように銅箔の表面に各金属を析出させて銅箔1を得た。尚、この銅箔1について、原子吸光分析装置(Rigaku社製)を用いて銅箔の表面に含まれる金属組成分析を行った。その結果を表1に示す。
[Example 1]
An electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz = 0.7 μm was prepared. The surface of this copper foil is plated with a bath containing a predetermined amount of nickel, zinc and cobalt (metal precipitation treatment), and each metal is deposited on the surface of the copper foil so that the amount of precipitation shown in Table 1 is obtained. A foil 1 was obtained. In addition, about this copper foil 1, the metal composition analysis contained in the surface of copper foil was performed using the atomic absorption analyzer (made by Rigaku). The results are shown in Table 1.

Figure 0004652020
Figure 0004652020

次いで、γ-グリシドキシプロピルトリメトキシシランを5g/lの濃度になるように調整した水溶液を用意し、上記銅箔の金属析出処理した面にシャワーリングにより吹きつけを行い、その後140℃で約5秒間乾燥させた(カップリング剤による処理)。この銅箔のカップリング処理した面に上記合成例1で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は20ppmであった。この銅張り積層板の0.1mmピールは初期接着力が1.0kN/mであり、150℃(大気雰囲気下)で168時間経過した後の接着力の保持率が90%であった。また、ACF接着性の評価及び実装時の沈み込みについては、上記で説明した方法により評価した。結果を表2に示す。   Next, an aqueous solution prepared by adjusting the concentration of γ-glycidoxypropyltrimethoxysilane to a concentration of 5 g / l was prepared and sprayed on the surface of the copper foil that had been subjected to metal deposition treatment by showering. It was dried for about 5 seconds (treatment with a coupling agent). The polyimide precursor solution prepared in Synthesis Example 1 is applied by hand on the surface of the copper foil that has been subjected to the coupling treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes, and the thickness of the insulating layer is 40 μm. A copper-clad laminate was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 20 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 1.0 kN / m and a retention rate of adhesive strength of 90% after 168 hours at 150 ° C. (in the air atmosphere). Further, the evaluation of ACF adhesion and the sinking during mounting were evaluated by the method described above. The results are shown in Table 2.

Figure 0004652020
Figure 0004652020

[実施例2]
実施例1と同じ銅箔1を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔1の表面に、上記合成例3で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は14ppmであった。この銅張り積層板の0.1mmピールは初期接着力が1.0kN/mであり、150℃(大気雰囲気下)で168時間経過後の保持率が90%であった。また、ACF接着性の評価及び実装時の沈み込みについては、上記で説明した方法により評価した。結果を表2に示す。
[Example 2]
Using the same copper foil 1 as in Example 1, treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 3 is applied by hand on the surface of the copper foil 1 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 1.0 kN / m and a retention rate of 90% after 168 hours at 150 ° C. (in the atmosphere). Further, the evaluation of ACF adhesion and the sinking during mounting were evaluated by the method described above. The results are shown in Table 2.

[参考例1]
実施例1と同じ銅箔1を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔1の表面に、上記合成例2で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は54ppmであった。この銅張り積層板の0.1mmピールは初期接着力が1.8kN/m、150℃(大気雰囲気下)で168時間経過後の保持率が25%であった。また、ACF接着性の評価及び実装時の沈み込みについては、上記で説明した方法により評価した。結果を表2に示す。
[Reference Example 1]
Using the same copper foil 1 as in Example 1, treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 2 is applied by hand on the surface of the copper foil 1 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 54 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 1.8 kN / m, a retention rate of 25% after 168 hours at 150 ° C. (in the atmosphere). Further, the evaluation of ACF adhesion and the sinking during mounting were evaluated by the method described above. The results are shown in Table 2.

[参考例2]
実施例1と同じ銅箔1を用い、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔1の表面に、上記合成例4で調整したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミドの熱膨張係数は48ppmであった。この銅張り積層板の0.1mmピールは初期接着力が1.8kN/m、150℃(大気雰囲気下)で168時間経過後の保持率が25%であった。また、ACF接着性の評価及び実装時の沈み込みについては、上記で説明した方法により評価した。結果を表2に示す。
[Reference Example 2]
Using the same copper foil 1 as in Example 1, treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 4 is applied by hand on the surface of the copper foil 1 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide in the obtained copper-clad laminate was 48 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 1.8 kN / m, a retention rate of 25% after 168 hours at 150 ° C. (in the atmosphere). Further, the evaluation of ACF adhesion and the sinking during mounting were evaluated by the method described above. The results are shown in Table 2.

[比較例1]
厚さ18μm、表面粗さRz=0.8μmの電解銅箔を用意した。この銅箔の表面をニッケル、亜鉛及びコバルトを所定量含んだ浴でめっき処理(金属析出処理)し、表1に示した析出量となるように銅箔の表面に各金属を析出させて銅箔2を得た。この銅箔2を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔2の表面に、上記合成例1で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は20ppmであった。この銅張り積層板の0.1mmピールは初期接着力が0.4kN/mであった(表2)。
[Comparative Example 1]
An electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz = 0.8 μm was prepared. The surface of this copper foil is plated with a bath containing a predetermined amount of nickel, zinc and cobalt (metal precipitation treatment), and each metal is deposited on the surface of the copper foil so that the amount of precipitation shown in Table 1 is obtained. A foil 2 was obtained. Using this copper foil 2, a treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 1 is applied by hand onto the surface of the copper foil 2 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 20 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 0.4 kN / m (Table 2).

[比較例2]
銅箔2を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔2の表面に、上記合成例3で調整したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミドの熱膨張係数は14ppmであった。このサンプルの0.1mmピールは初期接着力が0.4kN/mであった(表2)。
[Comparative Example 2]
Using the copper foil 2, treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 3 is applied by hand on the surface of the copper foil 2 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this sample had an initial adhesive strength of 0.4 kN / m (Table 2).

[比較例3]
厚さ18μm、表面粗さRz=1.0μmの圧延銅箔を用意した。この銅箔の表面をニッケル、亜鉛及びコバルトを所定量含んだ浴でめっき処理(金属析出処理)し、表1に示した析出量となるように銅箔の表面に各金属を析出させて銅箔3を得た。この銅箔3を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔3の表面に、上記合成例3で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は14ppmであった。この銅張り積層板の0.1mmピールは初期接着力が0.2kN/mであった(表2)。
[Comparative Example 3]
A rolled copper foil having a thickness of 18 μm and a surface roughness Rz = 1.0 μm was prepared. The surface of this copper foil is plated with a bath containing a predetermined amount of nickel, zinc and cobalt (metal precipitation treatment), and each metal is deposited on the surface of the copper foil so that the amount of precipitation shown in Table 1 is obtained. A foil 3 was obtained. Using this copper foil 3, treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 3 is applied by hand on the surface of the copper foil 3 that has been subjected to the metal deposition treatment and the coupling agent treatment, and after drying, heat treatment is finally performed at 300 ° C. or higher for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 0.2 kN / m (Table 2).

[比較例4]
厚さ18μm、表面粗さRz=1.0μmの電解銅箔を用意した。この銅箔の表面をニッケル、亜鉛及びコバルトを所定量含んだ浴でめっき処理(金属析出処理)し、表1に示した析出量となるように銅箔の表面に各金属を析出させて銅箔4を得た。この銅箔4を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔4の表面に、上記合成例3で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は14ppmであった。この銅張り積層板の0.1mmピールは初期接着力が0.6kN/mであり、150℃(大気雰囲気下)で168時間経過後の保持率が70%であった。また、ACF接着性の評価及び実装時の沈み込みについては、上記で説明した方法により評価した。結果を表2に示す。
[Comparative Example 4]
An electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz = 1.0 μm was prepared. The surface of this copper foil is plated with a bath containing a predetermined amount of nickel, zinc and cobalt (metal precipitation treatment), and each metal is deposited on the surface of the copper foil so that the amount of precipitation shown in Table 1 is obtained. A foil 4 was obtained. Using this copper foil 4, a treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 3 above is applied to the surface of the copper foil 4 subjected to the metal deposition treatment and the coupling agent treatment by hand, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 0.6 kN / m and a retention rate of 70% after 168 hours at 150 ° C. (in the atmosphere). Further, the evaluation of ACF adhesion and the sinking during mounting were evaluated by the method described above. The results are shown in Table 2.

[比較例5]
厚さ18μm、表面粗さRz=1.0μmの電解銅箔を用意した。この銅箔の表面をニッケル、亜鉛及びコバルトを所定量含んだ浴でめっき処理(金属析出処理)し、表1に示した析出量となるように銅箔の表面に各金属を析出させて銅箔5を得た。この銅箔5を用いて、実施例1と同様の方法でカップリング剤による処理を行った。金属析出処理及びカップリング剤処理を行った銅箔5の表面に、上記合成例3で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は14ppmであった。この銅張り積層板の0.1mmピールは初期接着力が0.3kN/mであった(表2)。
[Comparative Example 5]
An electrolytic copper foil having a thickness of 18 μm and a surface roughness Rz = 1.0 μm was prepared. The surface of this copper foil is plated with a bath containing a predetermined amount of nickel, zinc and cobalt (metal precipitation treatment), and each metal is deposited on the surface of the copper foil so that the amount of precipitation shown in Table 1 is obtained. A foil 5 was obtained. Using this copper foil 5, a treatment with a coupling agent was performed in the same manner as in Example 1. The polyimide precursor solution prepared in Synthesis Example 3 is applied to the surface of the copper foil 5 that has been subjected to the metal deposition treatment and the coupling agent treatment by hand, and after drying, heat treatment is finally performed at 300 ° C. or more for about 4 minutes. Then, a copper-clad laminate with an insulating layer thickness of 40 μm was obtained. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 0.3 kN / m (Table 2).

[比較例6]
銅箔1を用いて、カップリング剤による処理を行わずに、金属析出処理した銅箔1の表面に上記合成例3で調製したポリイミド前駆体溶液を手塗り塗布し、乾燥後、最終的に300℃以上約4分で熱処理を行い、絶縁層の厚みが40μmの銅張り積層板を得た。得られた銅張り積層板におけるポリイミド(絶縁層)の熱膨張係数は14ppmであった。この銅張り積層板の0.1mmピールは初期接着力が0.6kN/mであった(表2)。
[Comparative Example 6]
Using the copper foil 1, the polyimide precursor solution prepared in Synthesis Example 3 was hand-coated on the surface of the copper foil 1 subjected to the metal deposition treatment without performing the treatment with the coupling agent, and after drying, finally Heat treatment was performed at 300 ° C. or more for about 4 minutes to obtain a copper-clad laminate with an insulating layer thickness of 40 μm. The thermal expansion coefficient of polyimide (insulating layer) in the obtained copper-clad laminate was 14 ppm. The 0.1 mm peel of this copper-clad laminate had an initial adhesive strength of 0.6 kN / m (Table 2).

Claims (4)

銅箔上にポリイミド前駆体溶液を塗布して熱処理により形成されたポリイミド系樹脂からなる絶縁層を設けた銅張り積層板であって、線熱膨張係数(CTE)30×10 -6 /℃以下の非熱可塑性低熱膨張性ポリイミド系樹脂からなる絶縁層と接し、表面粗度Rzが0.3〜1.0μmの銅箔の表面が、少なくともニッケル、亜鉛、及びコバルトを析出させる金属析出処理と、カップリング剤による処理とが施されており、上記金属析出処理した銅箔の表面が、ニッケル5〜15μg/cm2、亜鉛1〜5μg/cm2、及びコバルト0.1〜5μg/cm2を有し、かつ、ニッケルと亜鉛の含有割合を表すニッケル/(ニッケル+亜鉛)が0.70以上であることを特徴とする銅張り積層板。 A copper-clad laminate having a polyimide precursor solution coated on a copper foil and provided with an insulating layer made of a polyimide resin formed by heat treatment, and having a coefficient of linear thermal expansion (CTE) of 30 × 10 −6 / ° C. or less A metal deposition treatment in which at least nickel, zinc, and cobalt are deposited on the surface of the copper foil having a surface roughness Rz of 0.3 to 1.0 μm in contact with an insulating layer made of a non-thermoplastic low thermal expansion polyimide resin. The surface of the copper foil subjected to the metal deposition treatment is nickel 5 to 15 μg / cm 2 , zinc 1 to 5 μg / cm 2 , and cobalt 0.1 to 5 μg / cm 2. And nickel / (nickel + zinc) representing the content ratio of nickel and zinc is 0.70 or more. 金属析出処理後の銅箔の表面に存在する金属組成比が、銅を除いた全ての金属の総量に対して、ニッケル70〜85重量%、亜鉛10〜20重量%、及びコバルト30重量%以下である請求項1に記載の銅張り積層The metal composition ratio present on the surface of the copper foil after the metal deposition treatment is 70 to 85% by weight of nickel, 10 to 20% by weight of zinc, and 30% by weight or less of cobalt with respect to the total amount of all metals excluding copper. copper-clad laminate according to claim 1 is. 絶縁層が、線熱膨張係数(CTE)30×10-6/℃以下の非熱可塑性低熱膨張性ポリイミド系樹脂の単一層からなる請求項1又は2に記載の銅張り積層板。 3. The copper-clad laminate according to claim 1, wherein the insulating layer comprises a single layer of a non-thermoplastic low thermal expansion polyimide resin having a coefficient of linear thermal expansion (CTE) of 30 × 10 −6 / ° C. or less. 初期接着力が1.0kN/m以上(銅箔厚み18μm、回路幅100μm時)であり、150℃で168時間経過後の接着力の保持率が80%以上である請求項1〜3のいずれかに記載の銅張り積層板。   The initial adhesive strength is 1.0 kN / m or more (when the copper foil thickness is 18 μm and the circuit width is 100 μm), and the retention of adhesive strength after 168 hours at 150 ° C. is 80% or more. A copper-clad laminate according to crab.
JP2004332306A 2004-11-16 2004-11-16 Copper-clad laminate Expired - Fee Related JP4652020B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004332306A JP4652020B2 (en) 2004-11-16 2004-11-16 Copper-clad laminate
TW094138362A TWI366513B (en) 2004-11-16 2005-11-02 Copper clad laminates sheet
KR1020050109016A KR101078234B1 (en) 2004-11-16 2005-11-15 Copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332306A JP4652020B2 (en) 2004-11-16 2004-11-16 Copper-clad laminate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010235599A Division JP5073801B2 (en) 2010-10-20 2010-10-20 Method for producing copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2006142514A JP2006142514A (en) 2006-06-08
JP4652020B2 true JP4652020B2 (en) 2011-03-16

Family

ID=36622757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332306A Expired - Fee Related JP4652020B2 (en) 2004-11-16 2004-11-16 Copper-clad laminate

Country Status (3)

Country Link
JP (1) JP4652020B2 (en)
KR (1) KR101078234B1 (en)
TW (1) TWI366513B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117155A (en) 2015-03-31 2016-10-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 Copper-clad laminate and printed wiring board
KR20180124859A (en) 2016-03-17 2018-11-21 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyamide acid, thermoplastic polyimide, resin film, metal laminate and circuit board

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958045B2 (en) * 2006-10-27 2012-06-20 三井金属鉱業株式会社 Surface-treated copper foil for producing flexible copper-clad laminate and flexible copper-clad laminate obtained using the surface-treated copper foil
JP5215631B2 (en) * 2007-10-24 2013-06-19 三井金属鉱業株式会社 Surface treated copper foil
TW200934330A (en) * 2007-11-26 2009-08-01 Furukawa Electric Co Ltd Surface treated copper foil and method for surface treating the same, and stack circuit board
WO2009107845A1 (en) * 2008-02-28 2009-09-03 日本ゼオン株式会社 Metal/cured resin laminate
JP4907580B2 (en) * 2008-03-25 2012-03-28 新日鐵化学株式会社 Flexible copper clad laminate
WO2009154066A1 (en) * 2008-06-17 2009-12-23 日鉱金属株式会社 Copper foil for printed circuit board and copper clad laminate plate for printed circuit board
JP5524475B2 (en) * 2008-11-28 2014-06-18 株式会社有沢製作所 Two-layer double-sided flexible metal laminate and its manufacturing method
JP5191367B2 (en) * 2008-12-08 2013-05-08 三井化学株式会社 Polyimide metal foil laminate and manufacturing method thereof
JP5171690B2 (en) * 2009-02-27 2013-03-27 新日鉄住金化学株式会社 Copper-clad laminate and manufacturing method thereof
JP2010202891A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Surface-treated copper foil and method of manufacturing the same
JP4927963B2 (en) * 2010-01-22 2012-05-09 古河電気工業株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate
JP2012087388A (en) * 2010-10-21 2012-05-10 Furukawa Electric Co Ltd:The Surface-treated copper foil and copper-clad laminate sheet
JP6580128B2 (en) * 2015-03-31 2019-09-25 株式会社カネカ Manufacturing method of rigid flexible wiring board
JP6473028B2 (en) * 2015-03-31 2019-02-20 日鉄ケミカル&マテリアル株式会社 Copper-clad laminate, printed wiring board and method of using the same
JP6708753B2 (en) 2017-10-12 2020-06-10 株式会社クレハ Aromatic polymer continuous production method and aromatic polymer continuous production apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047681A (en) * 2002-07-11 2004-02-12 Nippon Denkai Kk Copper foil for printed circuit board
JP2004142183A (en) * 2002-10-23 2004-05-20 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004244656A (en) * 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same
JP2004263296A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306404B2 (en) 2000-01-28 2002-07-24 三井金属鉱業株式会社 Method for producing surface-treated copper foil and copper-clad laminate using surface-treated copper foil obtained by the method
JP2003096776A (en) * 2001-09-25 2003-04-03 Asahi Kasei Corp Execution control method of steel pipe pile
JP2003102277A (en) * 2001-09-28 2003-04-08 Omote Tekkosho:Kk Flower bed for horticulture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047681A (en) * 2002-07-11 2004-02-12 Nippon Denkai Kk Copper foil for printed circuit board
JP2004142183A (en) * 2002-10-23 2004-05-20 Mitsui Chemicals Inc Polyimide metallic foil laminate
JP2004244656A (en) * 2003-02-12 2004-09-02 Furukawa Techno Research Kk Copper foil which can deal with high-frequency application and method for manufacturing the same
JP2004263296A (en) * 2003-02-12 2004-09-24 Furukawa Techno Research Kk Copper foil for fine pattern printed circuit and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160117155A (en) 2015-03-31 2016-10-10 신닛테츠 수미킨 가가쿠 가부시키가이샤 Copper-clad laminate and printed wiring board
KR20180124859A (en) 2016-03-17 2018-11-21 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyamide acid, thermoplastic polyimide, resin film, metal laminate and circuit board
US10844175B2 (en) 2016-03-17 2020-11-24 Nippon Steel Chemical & Material Co., Ltd. Polyamide acid, thermoplastic polyimide, resin film, metal-clad laminate and circuit board

Also Published As

Publication number Publication date
JP2006142514A (en) 2006-06-08
KR101078234B1 (en) 2011-11-01
TW200630215A (en) 2006-09-01
TWI366513B (en) 2012-06-21
KR20060055359A (en) 2006-05-23

Similar Documents

Publication Publication Date Title
KR101078234B1 (en) Copper-clad laminate
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
JP4757666B2 (en) Copper-clad laminate
US8852754B2 (en) Surface-treated copper foil, method for producing same, and copper clad laminated board
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
JP5031639B2 (en) Flexible copper clad laminate
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JP4907580B2 (en) Flexible copper clad laminate
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
JP2007109982A (en) Method for manufacturing copper wired polyimide film
TWI387017B (en) Copper clad laminate for cof and carrier tape for cof
KR101169829B1 (en) Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
JP5073801B2 (en) Method for producing copper-clad laminate
JP5698585B2 (en) Metal-clad laminate
JP3664708B2 (en) Polyimide metal laminate and manufacturing method thereof
JP2005271449A (en) Laminate for flexible printed circuit board
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP2008168582A (en) Manufacturing method of flexible laminated plate
KR20210053937A (en) Laminate
JP2003034829A (en) Copper alloy foil for laminate
JP2009154447A (en) Metal-clad laminate
JP2009066860A (en) Metal-clad laminate and its manufacturing method
JP2005280031A (en) Copper clad laminate for flexible printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Ref document number: 4652020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees