JP5886027B2 - Double-sided metal-clad laminate and method for producing the same - Google Patents

Double-sided metal-clad laminate and method for producing the same Download PDF

Info

Publication number
JP5886027B2
JP5886027B2 JP2011280017A JP2011280017A JP5886027B2 JP 5886027 B2 JP5886027 B2 JP 5886027B2 JP 2011280017 A JP2011280017 A JP 2011280017A JP 2011280017 A JP2011280017 A JP 2011280017A JP 5886027 B2 JP5886027 B2 JP 5886027B2
Authority
JP
Japan
Prior art keywords
polyimide resin
resin layer
layer
metal
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011280017A
Other languages
Japanese (ja)
Other versions
JP2013129116A (en
Inventor
栄吾 近藤
栄吾 近藤
健太郎 矢熊
健太郎 矢熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2011280017A priority Critical patent/JP5886027B2/en
Priority to KR1020120147272A priority patent/KR101987038B1/en
Priority to TW101148013A priority patent/TWI547368B/en
Priority to CN201210558943.7A priority patent/CN103171190B/en
Publication of JP2013129116A publication Critical patent/JP2013129116A/en
Application granted granted Critical
Publication of JP5886027B2 publication Critical patent/JP5886027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、両面金属張積層板に関し、特には、絶縁層がポリイミド樹脂からなる可撓性を有する両面金属張積層板に関するものである。   The present invention relates to a double-sided metal-clad laminate, and more particularly to a flexible double-sided metal-clad laminate in which an insulating layer is made of a polyimide resin.

近年、携帯電話やデジタルカメラ、デジタルビデオ、PDA、カーナビゲーター、ハードディスク、その他の各種電子機器の高機能化、小型化および軽量化に伴い、これらの電気配線用基板材料として、配線の自由度が高く、薄型化が容易なフレキシブル基板が採用されている。そして、より高度化していくこれらの電子機器に用いられる可撓性のあるフレキシブルプリント基板に関しては、さらなる小型高密度化、多層化、ファイン化および高耐熱性化等の要求が高まってきている。   In recent years, as mobile phones, digital cameras, digital video, PDAs, car navigators, hard disks, and other various electronic devices have become more functional, smaller, and lighter, these circuit boards have a greater degree of freedom in wiring. A flexible substrate that is high and can be easily thinned is employed. As for flexible flexible printed boards used in these electronic devices that are becoming more sophisticated, there are increasing demands for further miniaturization, higher density, multilayering, refinement, and higher heat resistance.

このような要求に応えるため、特許文献1に回路配線となる導体上に直接ポリイミド樹脂層を塗工によって形成し(以後、塗工法と略称する)、かつ熱膨張係数の異なる複数のポリイミド樹脂層を多層化して形成する方法が提案されている。この方法によれば、温度変化に対する寸法の安定性、接着力、さらにはエッチング後の平面性等で信頼性に優れたフレキシブルプリント基板を提供することが可能である。なお、ここで塗工法とは、ポリイミド樹脂層となるポリイミド前駆体樹脂溶液またはポリイミド樹脂溶液を金属層に塗布後、乾燥のみ、または乾燥およびイミド化のための加熱処理によって金属層とポリイミド樹脂層を接着させる方法をいうものとする。   In order to meet such a demand, in Patent Document 1, a polyimide resin layer is directly formed on a conductor serving as a circuit wiring by coating (hereinafter abbreviated as a coating method), and a plurality of polyimide resin layers having different thermal expansion coefficients are used. There has been proposed a method of forming a multi-layered structure. According to this method, it is possible to provide a flexible printed board having excellent reliability in terms of dimensional stability with respect to temperature change, adhesive strength, flatness after etching, and the like. Here, the coating method means that after applying a polyimide precursor resin solution or a polyimide resin solution to be a polyimide resin layer to the metal layer, the metal layer and the polyimide resin layer are dried only or by heat treatment for drying and imidization. Is a method of adhering.

また、導体層と樹脂基板を加熱圧着により貼り合わせてフレキシブルプリント基板を形成する方法においても、導体層である銅箔表面を銅−コバルト−ニッケルからなるめっきによる粗化処理を施して接着性を向上させる方法、すなわち、銅箔表面の粗化による改質が提案されている(特許文献2)。以後、導体層と樹脂基板を加熱圧着により貼り合わせる方法を「加熱圧着法」と略称する場合がある。   Also, in the method of bonding a conductor layer and a resin substrate by thermocompression bonding to form a flexible printed circuit board, the copper foil surface, which is a conductor layer, is subjected to a roughening treatment by plating made of copper-cobalt-nickel to provide adhesion. The improvement method, ie, the modification | reformation by roughening of the copper foil surface is proposed (patent document 2). Hereinafter, the method of bonding the conductor layer and the resin substrate by thermocompression bonding may be abbreviated as “thermocompression bonding method”.

ところで、小型高密度化要求への対応として、ポリイミド樹脂層の両表面に導体である金属層が形成されている、いわゆる両面金属張積層板に対するニーズが高まっている。当該両面金属張積層板のうち塗工法によって製造される両面金属張積層板においては、一方の金属層とポリイミド樹脂層とは塗工法により形成され、すでにポリイミド樹脂層はイミド化により硬化されているため、他方の金属層は加熱圧着法により接着されるものであった。すなわち、塗工法においても両面金属張積層板を製造するには、少なくとも片方の金属層は加熱圧着法によりポリイミド樹脂層に接着せざるを得ない状況であった。   By the way, as a response to the demand for smaller size and higher density, there is a growing need for a so-called double-sided metal-clad laminate in which metal layers as conductors are formed on both surfaces of a polyimide resin layer. In the double-sided metal-clad laminate manufactured by the coating method among the double-sided metal-clad laminates, one metal layer and the polyimide resin layer are formed by the coating method, and the polyimide resin layer is already cured by imidization. Therefore, the other metal layer was bonded by a thermocompression bonding method. That is, in order to produce a double-sided metal-clad laminate also in the coating method, at least one of the metal layers must be adhered to the polyimide resin layer by a thermocompression bonding method.

一方で、鉛フリー化に伴い鉛はんだより溶融温度の高いはんだ材料を用いるため、はんだ接合温度の上昇に対応すべく、金属層に接するポリイミド樹脂層が高耐熱性化している。したがって、加熱圧着法で金属層とポリイミド樹脂層とを貼り合わせるとき、加熱圧着時に金属層とポリイミド樹脂層との間にマイクロボイドが生成し易くなるという問題がある。このマイクロボイドの形成により、フレキシブルプリント基板に回路を形成する時に酸洗浄液の浸透による配線剥れが発生する等の、金属層とポリイミド樹脂層との接着信頼性が低下するという問題があった。   On the other hand, since a solder material having a melting temperature higher than that of lead solder is used with lead-free soldering, the polyimide resin layer in contact with the metal layer has high heat resistance in order to cope with an increase in soldering temperature. Therefore, when the metal layer and the polyimide resin layer are bonded together by the thermocompression bonding method, there is a problem that microvoids are easily generated between the metal layer and the polyimide resin layer during the thermocompression bonding. Due to the formation of the microvoids, there has been a problem that the reliability of adhesion between the metal layer and the polyimide resin layer is lowered, such as the occurrence of peeling of the wiring due to the penetration of the acid cleaning liquid when forming a circuit on the flexible printed board.

この問題に対して、例えば特許文献3は、金属層である銅箔粗化処理面のめっき層を制御して、粗化処理高さ、すなわち粗化処理度合いを抑制する方法を開示する。しかしながら、この方法では銅箔−ポリイミド樹脂層間のピール強度が低下してしまうという問題がある。このように、両面金属張積層板における接着信頼性とピール強度の両立という課題が残されていた。   For example, Patent Document 3 discloses a method of controlling the height of the roughening treatment, that is, the degree of the roughening treatment, by controlling the plating layer on the copper foil roughening treatment surface, which is a metal layer. However, this method has a problem that the peel strength between the copper foil and the polyimide resin layer is lowered. Thus, the subject of coexistence of the adhesive reliability and peel strength in a double-sided metal-clad laminate was left.

特公平6−93537号公報Japanese Patent Publication No. 6-93537 特開平8−335775号公報JP-A-8-335775 WO2010/010892 A1WO2010 / 010892 A1

本発明は、粗化処理された金属層と接するポリイミド樹脂層が高い耐熱性を有するにもかかわらず、金属層とポリイミド樹脂層との間に生じるマイクロボイドの発生を抑制し、かつ、金属層とポリイミド樹脂層との接着信頼性を向上させることで酸洗浄液の浸透による回路剥がれを抑制した両面金属張積層板を提供することを目的とする。すなわち、本発明の課題は両面金属張積層板における接着信頼性とピール強度の両立を図ることである。   The present invention suppresses the generation of microvoids generated between the metal layer and the polyimide resin layer even though the polyimide resin layer in contact with the roughened metal layer has high heat resistance, and the metal layer An object of the present invention is to provide a double-sided metal-clad laminate that suppresses circuit peeling due to permeation of an acid cleaning liquid by improving the adhesion reliability between the resin and the polyimide resin layer. That is, the subject of this invention is aiming at coexistence of the adhesive reliability and peel strength in a double-sided metal-clad laminate.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、塗工法により形成した二つの片面金属張積層板を用い、片面金属張積層板の各々の最外層のポリイミド樹脂層同士を加熱圧着して両面金属張積層板とすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。なお、以下本明細書中では特に断わりのない限り、「片面金属張積層板」とは、複数のポリイミド樹脂層を有する積層体の片面に金属層が接着されたものをいう。また、「両面金属張積層板」とは、複数のポリイミド樹脂層を有する積層体の両面に金属層が接着されたものをいう。なお、以後、ポリイミド樹脂層同士を加熱圧着する場合も加熱圧着法と称することとする。   As a result of intensive studies in order to solve the above problems, the present inventors used two single-sided metal-clad laminates formed by a coating method, and the outermost polyimide resin layers of the single-sided metal-clad laminates It was found that the above problems can be solved by thermocompression bonding to form a double-sided metal-clad laminate, and the present invention has been completed. In the present specification, unless otherwise specified, the term “single-sided metal-clad laminate” means that a metal layer is bonded to one side of a laminate having a plurality of polyimide resin layers. In addition, the “double-sided metal-clad laminate” means that a metal layer is bonded to both sides of a laminate having a plurality of polyimide resin layers. Hereinafter, the polyimide resin layers are also referred to as a thermocompression bonding method when thermocompression bonding is performed.

本発明によれば、第1の積層体と第2の積層体とを一体化した両面の外側に金属層を有する金属張積層体であって、
前記第1の積層体および第2の積層体はそれぞれ、金属層と、第1のポリイミド樹脂層および第2のポリイミド樹脂層を含む複数のポリイミド樹脂層を有し、
前記第1のポリイミド樹脂層は線湿度膨張係数が20×10-6/%RH以下であり、
当該金属張積層体において対向する前記第1の積層体の前記第2のポリイミド樹脂層と前記第2の積層体の前記第2のポリイミド樹脂層は、ガラス転移点温度が300℃以上かつ前記第1のポリイミド樹脂層のガラス転移点温度より低く、
前記第2のポリイミド樹脂層は、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られるものである、
両面金属張積層板が提供される。
According to the present invention, there is provided a metal-clad laminate having a metal layer on both sides outside the first laminate and the second laminate,
Having the first laminate and the second laminate Waso respectively, and a metal layer, a plurality of polyimide resin layers including a first polyimide resin layer and the second polyimide resin layer,
The first polyimide resin layer has a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less,
The second polyimide resin layer and the second polyimide resin layer of the first laminate facing in the metal-clad laminate and the second laminate, and wherein the glass transition temperature of 300 ° C. or higher Lower than the glass transition temperature of the polyimide resin layer 1 ,
The second polyimide resin layer is prepared by reacting a diamino compound containing 50 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane with a tetracarboxylic acid compound to obtain a polyimide precursor resin. Is obtained via
A double-sided metal-clad laminate is provided.

また本発明によれば、第1の金属層となる金属箔上に、線湿度膨張係数が20×10-6/%RH以下である第1のポリイミド樹脂層、または、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られる、ガラス転移点温度が300℃以上かつ前記第1のポリイミド樹脂層のガラス転移点温度より低い第2のポリイミド樹脂層を形成し、当該第1のポリイミド樹脂層または当該第2のポリイミド樹脂層の上に、前記第1のポリイミド樹脂層、前記第2のポリイミド樹脂層、または、前記第1のポリイミド樹脂層および前記第2のポリイミド樹脂層を、前記第2のポリイミド樹脂層が最外層となるように少なくとも1層積層して第1の積層体を形成する工程と、
第2の金属層となる金属箔上に、前記第1の積層体とポリイミド樹脂層の積層構造が同じまたは異なる第2の積層体を、前記第2のポリイミド樹脂層が最外層となるように形成する工程と、
前記第1の積層体の前記第2のポリイミド樹脂層と前記第2の積層体の前記第2のポリイミド樹脂層同士を加熱圧着する工程と、を有し、
前記金属箔上に前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層を形成する工程は、前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層となるポリイミド前駆体樹脂溶液またはポリイミド樹脂溶液を塗布後、乾燥および必要に応じて行なわれるイミド化のための加熱処理を行う工程である、
外側両面に前記第1の金属層および前記第2の金属層を有する、両面金属張積層板の製造方法が提供される
According to the invention, the first polyimide resin layer having a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less, or 2,2-bis [ A glass transition temperature obtained by reacting a diamino compound containing 50 mol% or more of 4- (4-aminophenoxy) phenyl] propane with a tetracarboxylic acid compound and via a polyimide precursor resin is 300 ° C. or more. and said first have lower than the glass transition temperature of the polyimide resin layer to form a second polyimide resin layer, on the said first polyimide resin layer or the second polyimide resin layer, the first polyimide The resin layer, the second polyimide resin layer, or the first polyimide resin layer and the second polyimide resin layer are reduced so that the second polyimide resin layer is the outermost layer. With a step of forming a first laminate by laminating one layer,
A second laminated body having the same or different laminated structure of the first laminated body and the polyimide resin layer is disposed on the metal foil to be the second metal layer, and the second polyimide resin layer is the outermost layer. Forming, and
Thermocompression bonding the second polyimide resin layer of the first laminate and the second polyimide resin layer of the second laminate,
The step of forming the first polyimide resin layer or the second polyimide resin layer on the metal foil includes a polyimide precursor resin solution or a polyimide that becomes the first polyimide resin layer or the second polyimide resin layer. After applying the resin solution, it is a step of performing drying and heat treatment for imidization performed as necessary.
A method for producing a double-sided metal-clad laminate having the first metal layer and the second metal layer on both outer surfaces is provided .

本発明の両面金属張積層板は、絶縁層を構成するポリイミド樹脂が高い耐熱性を有し、優れた寸法安定性を示すだけでなく、金属層とそれと接するポリイミド樹脂層間のマイクロボイドの発生を金属層の表面形状によらず抑制することができる。また、本発明の両面金属張積層板は、耐薬品性にも優れることから、高精細の加工が求められる種々の用途に適しており、その有用性は非常に高いものである。   In the double-sided metal-clad laminate of the present invention, the polyimide resin constituting the insulating layer has high heat resistance and not only exhibits excellent dimensional stability, but also generates microvoids between the metal layer and the polyimide resin layer in contact with the metal layer. It can suppress regardless of the surface shape of a metal layer. Moreover, since the double-sided metal-clad laminate of the present invention is excellent in chemical resistance, it is suitable for various uses requiring high-definition processing, and its usefulness is very high.

第1の実施の形態の両面金属張積層板の断面図である。It is sectional drawing of the double-sided metal clad laminated board of 1st Embodiment. 第2の実施の形態の両面金属張積層板の断面図である。It is sectional drawing of the double-sided metal-clad laminated board of 2nd Embodiment. 他の形態の両面金属張積層板の断面図である。It is sectional drawing of the double-sided metal clad laminated board of another form. 第1の実施の形態の両面金属張積層板を製造するための中間体である片面金属張積層板の断面図である。It is sectional drawing of the single-sided metal-clad laminate which is an intermediate body for manufacturing the double-sided metal-clad laminate of 1st Embodiment. 第1の実施の形態の両面金属張積層板の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the double-sided metal-clad laminated board of 1st Embodiment. 第2の実施の形態の両面金属張積層板の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the double-sided metal clad laminated board of 2nd Embodiment.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1の実施の形態について図1を用いて説明する。第1の実施の形態の両面金属張積層板10は、図1に示すように、第1のポリイミド樹脂層2,2および第2のポリイミド樹脂層3,3からなる積層構造の複数のポリイミド樹脂層の両面に、金属層1,1を備えた構造をしている。金属層1,1に接着している第1のポリイミド樹脂層2,2は塗工法により形成されている。第2のポリイミド樹脂層3,3は、後述するが、貼り合わされて第2のポリイミド樹脂貼り合わせ層3aを形成している。図1の破線は、その部分で貼り合わされていることを示す(図2および3も同じ)。   A first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the double-sided metal-clad laminate 10 of the first embodiment includes a plurality of polyimide resins having a laminated structure composed of first polyimide resin layers 2 and 2 and second polyimide resin layers 3 and 3. The structure has metal layers 1 and 1 on both sides of the layer. The first polyimide resin layers 2 and 2 adhered to the metal layers 1 and 1 are formed by a coating method. As will be described later, the second polyimide resin layers 3 and 3 are bonded to form a second polyimide resin bonding layer 3a. The broken lines in FIG. 1 indicate that the portions are bonded together (the same applies to FIGS. 2 and 3).

本発明の第2の実施の形態の両面金属張積層板11は、金属層1,1に接着している第2のポリイミド樹脂層3,3は塗工法により形成されている。さらに、図2に示すように、第1のポリイミド樹脂層2,2および第2のポリイミド樹脂層3,3が積層され、最内層の第2のポリイミド樹脂層3,3が貼り合わされて第2のポリイミド樹脂貼り合わせ層3aを形成している。   In the double-sided metal-clad laminate 11 of the second embodiment of the present invention, the second polyimide resin layers 3 and 3 adhered to the metal layers 1 and 1 are formed by a coating method. Further, as shown in FIG. 2, the first polyimide resin layers 2 and 2 and the second polyimide resin layers 3 and 3 are laminated, and the innermost second polyimide resin layers 3 and 3 are bonded together to form the second The polyimide resin bonding layer 3a is formed.

第1および第2の実施の形態では、金属層1,1に塗工法で形成されるポリイミド樹脂層は、第1または第2の同種のポリイミド樹脂層であるが、別の形態でもよい。すなわち、図3に示す両面金属張積層板12のように、一方の金属層1には第1のポリイミド樹脂層、他方の金属層1には第2のポリイミド樹脂層が塗工法により接着されているものを挙げることができる。さらには、図1−図3のポリイミド樹脂層は3層、4層および5層(貼り合わせた層は1層と数える)構造であるが、本発明の複数のポリイミド樹脂層はこれに限らず、その他の多層構造をとることができる。   In the first and second embodiments, the polyimide resin layer formed on the metal layers 1 and 1 by the coating method is the first or second kind of polyimide resin layer, but may be in another form. That is, as in the double-sided metal-clad laminate 12 shown in FIG. 3, a first polyimide resin layer is bonded to one metal layer 1 and a second polyimide resin layer is bonded to the other metal layer 1 by a coating method. You can list what you have. Further, the polyimide resin layers in FIGS. 1 to 3 have a structure of three layers, four layers, and five layers (a bonded layer is counted as one layer), but the polyimide resin layers of the present invention are not limited to this. Other multilayer structures can be taken.

第1の実施の形態の両面金属張積層板10の製造方法は、図5に示すように、まず、金属箔等の金属層1に、第1のポリイミド樹脂層2となる、ポリイミド前駆体樹脂溶液またはポリイミド樹脂溶液を塗布する(S1)。ここで、ポリイミド前駆体樹脂溶液およびポリイミド樹脂溶液を総称してプレポリイミド樹脂層と称することとする。つづいて、さらに第2のポリイミド樹脂層3に対応するプレポリイミド樹脂層を塗布して積層する(S2)。図5において、プレ第1ポリイミド樹脂層、プレ第2ポリイミド樹脂層は、各々第1のポリイミド樹脂層2、第2のポリイミド樹脂層3のプレポリイミド樹脂層を意味する。   As shown in FIG. 5, the manufacturing method of the double-sided metal-clad laminate 10 of the first embodiment is as follows. First, a polyimide precursor resin that becomes a first polyimide resin layer 2 on a metal layer 1 such as a metal foil. A solution or a polyimide resin solution is applied (S1). Here, the polyimide precursor resin solution and the polyimide resin solution are collectively referred to as a pre-polyimide resin layer. Subsequently, a pre-polyimide resin layer corresponding to the second polyimide resin layer 3 is further applied and laminated (S2). In FIG. 5, the pre-first polyimide resin layer and the pre-second polyimide resin layer mean pre-polyimide resin layers of the first polyimide resin layer 2 and the second polyimide resin layer 3, respectively.

次に、乾燥[溶媒の加熱除去](S3)、およびイミド化[加熱硬化処理](S4)によって、金属層1と第1のポリイミド樹脂層2とを接着させると共に、第2のポリイミド樹脂層3も形成させる。ここで、ポリイミド前駆体樹脂溶液を塗布した場合は乾燥およびイミド化を実施し、ポリイミド樹脂溶液を塗布した場合は乾燥のみを実施する。以上のようにして、複数のポリイミド樹脂層を有する片面金属張積層板20を形成する。   Next, the metal layer 1 and the first polyimide resin layer 2 are bonded together by drying [solvent heat removal] (S3) and imidization [heat curing treatment] (S4), and the second polyimide resin layer. 3 is also formed. Here, when the polyimide precursor resin solution is applied, drying and imidization are performed, and when the polyimide resin solution is applied, only drying is performed. As described above, the single-sided metal-clad laminate 20 having a plurality of polyimide resin layers is formed.

次に、2つの片面金属張積層板20(20aおよび20b)の第2のポリイミド樹脂層3同士を加熱圧着して、両面金属張積層板10を形成する(S5)。   Next, the second polyimide resin layers 3 of the two single-sided metal-clad laminates 20 (20a and 20b) are thermocompression bonded together to form the double-sided metal-clad laminate 10 (S5).

第2の実施の形態の両面金属張積層板11の製造方法は、基本的に第1の実施の形態の両面金属張積層板10と同じである。異なる点は、図6に示すように金属箔等の金属層1に、第2のポリイミド樹脂層3となる、プレ第2ポリイミド樹脂層を塗布する(S11)点である。ステップ11(S11)の後は、プレ第1ポリイミド樹脂層の塗布(S12)、プレ第2ポリイミド層の塗布(S13)、乾燥[溶媒の加熱除去](S14)、およびイミド化[加熱硬化処理](S15)を順次行う。なお、本実施の形態においても、ポリイミド樹脂溶液を塗布した場合は乾燥のみを実施し、イミド化のステップ(S15)は無い。   The manufacturing method of the double-sided metal-clad laminate 11 of the second embodiment is basically the same as that of the double-sided metal-clad laminate 10 of the first embodiment. A different point is that a pre-second polyimide resin layer to be the second polyimide resin layer 3 is applied to the metal layer 1 such as a metal foil as shown in FIG. 6 (S11). After step 11 (S11), application of the pre-first polyimide resin layer (S12), application of the pre-second polyimide layer (S13), drying [heat removal of solvent] (S14), and imidization [heat curing treatment] ] (S15) are sequentially performed. Also in this embodiment, when a polyimide resin solution is applied, only drying is performed, and there is no imidization step (S15).

最後に、第1の実施の形態と同様に、形成した2つの片面金属張積層板の第2のポリイミド樹脂層3同士を加熱圧着して、両面金属張積層板11を形成する(S16)。なお、S13〜S16は、第1の実施の形態のS2〜S5に対応する。   Finally, as in the first embodiment, the second polyimide resin layers 3 of the two formed single-sided metal-clad laminates are thermocompression bonded to form the double-sided metal-clad laminate 11 (S16). Note that S13 to S16 correspond to S2 to S5 of the first embodiment.

なお、図3の両面金属張積層板12のような形態とするため、2つの片面金属張積層板20a,20bのポリイミド樹脂層の積層構造は、異なっていてもよい。ただし、加熱圧着する最外層のポリイミド樹脂層は、ガラス転移点温度が300℃以上である第2のポリイミド樹脂層3である。   In addition, in order to set it as the form like the double-sided metal-clad laminated board 12 of FIG. 3, the laminated structure of the polyimide resin layer of the two single-sided metal-clad laminated boards 20a and 20b may differ. However, the outermost polyimide resin layer to be thermocompression bonded is the second polyimide resin layer 3 having a glass transition temperature of 300 ° C. or higher.

2つの片面金属張積層板の接着に際し、第2のポリイミド樹脂層3同士を加熱圧着する理由は、第1のポリイミド樹脂層2よりガラス転移点温度が低いため、加熱圧着時の温度を極力低く抑えることができ、高温加熱圧着による金属張積層板の劣化等の不具合を抑制することができるからである。   When bonding two single-sided metal-clad laminates, the reason for thermocompression bonding between the second polyimide resin layers 3 is that the glass transition temperature is lower than that of the first polyimide resin layer 2, so the temperature during thermocompression bonding is as low as possible. This is because it is possible to suppress problems such as deterioration of the metal-clad laminate due to high-temperature thermocompression bonding.

図4は、上記のようにして形成される片面金属張積層板20の断面図の一例を示したものであり、図4のように2つの片面金属張積層板20a,20bの第2のポリイミド樹脂層3,3が加熱圧着されるように準備する。図4は、図1の両面金属張積層板10を形成する場合の例示であるが、上記したように本発明は当該実施の形態に限られるものではない。   FIG. 4 shows an example of a sectional view of the single-sided metal-clad laminate 20 formed as described above. As shown in FIG. 4, the second polyimide of the two single-sided metal-clad laminates 20a and 20b. The resin layers 3 and 3 are prepared so as to be heat-pressed. FIG. 4 is an illustration when the double-sided metal-clad laminate 10 of FIG. 1 is formed, but as described above, the present invention is not limited to this embodiment.

以上の工程において、上記では、一括して複数のポリイミド樹脂層2、3を形成する方法を例示したが、逐次的に、プレポリイミド樹脂層の塗布、乾燥およびイミド化(加熱硬化)処理して1層ずつポリイミド樹脂層2、3を形成してもよい。あるいは、乾燥を逐次的に行い、イミド化(加熱硬化)処理は同時に行ってもよい。複数のポリイミド樹脂層を形成するに当たって、これらの各処理は任意に組み合わせることができる。なお、詳細な製造方法については後述する。   In the above steps, the method of forming the plurality of polyimide resin layers 2 and 3 at once has been exemplified above. However, the pre-polyimide resin layer is applied, dried, and imidized (heat-cured) sequentially. The polyimide resin layers 2 and 3 may be formed one by one. Alternatively, drying may be performed sequentially and imidization (heat curing) treatment may be performed simultaneously. In forming a plurality of polyimide resin layers, these treatments can be arbitrarily combined. A detailed manufacturing method will be described later.

本発明の金属層1は接着性の観点からは金属箔を用いることが好ましく、当該金属箔の金属として、銅、アルミニウム、ステンレス、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、ジルコニウム、金、コバルト、チタン、タンタル、亜鉛、鉛、錫、シリコン、ビスマス、インジウム又はこれらの合金などから選択される金属を挙げることができる。導電性の点で特に好ましいものは銅箔である。なお、本発明の両面金属張積層板の製造方法は、5〜30μmの膜厚の金属箔に適用することが好ましく、7〜20μmの膜厚がより好適である。金属箔の膜厚が5μmに満たないと、生産工程でシワ等の原因になりやすく、30μmを超えると近年の微細配線パターンへの対応に不利となる。   The metal layer 1 of the present invention preferably uses a metal foil from the viewpoint of adhesion, and as the metal of the metal foil, copper, aluminum, stainless steel, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zirconium, Mention may be made of metals selected from gold, cobalt, titanium, tantalum, zinc, lead, tin, silicon, bismuth, indium or alloys thereof. A copper foil is particularly preferable in terms of conductivity. In addition, it is preferable to apply the manufacturing method of the double-sided metal-clad laminate of this invention to a metal foil with a film thickness of 5-30 micrometers, and the film thickness of 7-20 micrometers is more suitable. If the film thickness of the metal foil is less than 5 μm, it tends to cause wrinkles in the production process, and if it exceeds 30 μm, it is disadvantageous for dealing with recent fine wiring patterns.

また、これらの金属層1については、ポリイミド樹脂との接着力などの向上を目的として、その表面にサイジング、クロムメッキ、ニッケルメッキ、クロム−ニッケルメッキ、銅−亜鉛合金メッキ、酸化銅析出またはアルミニウムアルコラート、アルミニウムキレート、シランカップリング剤、トリアジンチオール類、ベンゾトリアゾール類、アセチレンアルコール類、アセチルアセトン類、カテコール類、o−ベンゾキノン類、タンニン類、キノリノール類などによって化学的あるいは表層粗化処理などの機械的な表面処理を施してもよい。   Further, for the purpose of improving the adhesive strength with the polyimide resin, these metal layers 1 are sized, chrome plated, nickel plated, chrome-nickel plated, copper-zinc alloy plated, copper oxide deposited or aluminum on the surface thereof. Chemical or surface roughening machines such as alcoholates, aluminum chelates, silane coupling agents, triazine thiols, benzotriazoles, acetylene alcohols, acetylacetones, catechols, o-benzoquinones, tannins, quinolinols, etc. Surface treatment may be applied.

ここにおいて、金属層1のポリイミド樹脂層(2または3)と接する面の表面粗さは、Rzで0.5〜3μmであることが好ましい。この範囲であれば、ポリイミド樹脂層との接着力(接着強度)がより良好となるためである。1〜2.5μmであれば、好適な接着力と微細配線パターン形成時の良好なエッチング性との両立を図ることができるため、より好ましい。ここで、Rzは、JIS B 0601(1994)に規定される十点平均粗さを示す。   Here, it is preferable that the surface roughness of the surface which contacts the polyimide resin layer (2 or 3) of the metal layer 1 is 0.5-3 micrometers in Rz. This is because the adhesive strength (adhesive strength) with the polyimide resin layer is better within this range. If it is 1-2.5 micrometers, since coexistence with suitable adhesive force and the favorable etching property at the time of fine wiring pattern formation can be aimed at, it is more preferable. Here, Rz indicates a ten-point average roughness defined in JIS B 0601 (1994).

本発明のポリイミド樹脂とは、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエステルイミド、ポリシロキサンイミド、ポリベンズイミダゾールイミドなどの構造中にイミド基を有するポリマーからなる樹脂を意味する。   The polyimide resin of the present invention means a resin comprising a polymer having an imide group in the structure such as polyimide, polyamideimide, polyetherimide, polyesterimide, polysiloxaneimide, polybenzimidazoleimide and the like.

本発明の第1のポリイミド樹脂層2を構成するポリイミド樹脂は、その線湿度膨張係数が20×10−6/%RH以下という特徴を有する。加熱圧着時等の湿度変化による片面および両面金属張積層板のカールを極力抑制することができるからである。また、製品としての両面金属張積層板の湿度環境変化による寸法安定性を維持することができるからである。カール抑制および寸法安定性の点で、好ましくは15×10−6/%RH以下である。 The polyimide resin constituting the first polyimide resin layer 2 of the present invention has a characteristic that its linear humidity expansion coefficient is 20 × 10 −6 /% RH or less. This is because curling of the single-sided and double-sided metal-clad laminate due to a change in humidity during thermocompression bonding or the like can be suppressed as much as possible. Moreover, it is because the dimensional stability by the humidity environment change of the double-sided metal-clad laminate as a product can be maintained. In terms of curling suppression and dimensional stability, it is preferably 15 × 10 −6 /% RH or less.

ここで、線湿度膨張係数は、25℃において、1.5cm×3mmの大きさの樹脂フィルムを、相対湿度(RH)25%および80%における長軸方向の長さ(L25およびL80)を測定し、得られた測定値の差L(cm)=L80−L25から、次の式により求める。
L(cm)×1/1.5(cm)×1/(80−25)(%RH)
Here, the linear humidity expansion coefficient is a length of a long axis direction (L 25 and L 80 ) at a relative humidity (RH) of 25% and 80% of a resin film having a size of 1.5 cm × 3 mm at 25 ° C. Is obtained from the difference L (cm) = L 80 −L 25 between the obtained measured values according to the following equation.
L (cm) × 1 / 1.5 (cm) × 1 / (80-25) (% RH)

具体的な測定条件は、サーモメカニカルアナライザー(セイコーインスツル株式会社製)にサーモメカニカルアナライザー用調湿装置(セイコーインスツル株式会社製)を組み合わせて用い、25℃の測定温度制御下、試料の樹脂フィルムの相対湿度25%および80%における長軸方向の寸法変化を測定し、1cm当たり、1%RH当たりの寸法変化率を線湿度膨張係数として求める。ここで、試料が導体上に形成された樹脂層である場合には、エッチングなどで導体層を除去して単層の樹脂フィルムとしたものを用いることができる。   The specific measurement conditions were as follows: Thermomechanical analyzer (manufactured by Seiko Instruments Inc.) and thermomechanical analyzer humidity controller (Seiko Instruments Inc.) were used in combination. The dimensional change in the long axis direction at 25% and 80% relative humidity of the film is measured, and the dimensional change rate per 1% RH per cm is obtained as the linear humidity expansion coefficient. Here, when the sample is a resin layer formed on a conductor, a single layer resin film can be used by removing the conductor layer by etching or the like.

また、第1のポリイミド樹脂層2を構成するポリイミド樹脂は、4,4’−ジアミノ−2,2’−ジメチルビフェニル(m−TB)を50モル%以上含有するジアミノ化合物をテトラカルボン酸化合物と反応させて得られたものが好ましい。望ましい線湿度膨張係数を達成することができるからである。m−TBを70モル%以上含有するジアミノ化合物を用いることがより好ましい。m−TBは100モル%でもよいが、80〜98モル%がさらに好ましい。   Moreover, the polyimide resin which comprises the 1st polyimide resin layer 2 is a tetracarboxylic acid compound and the diamino compound containing 50 mol% or more of 4,4'- diamino-2,2'- dimethylbiphenyl (m-TB). What was obtained by making it react is preferable. This is because a desirable linear humidity expansion coefficient can be achieved. It is more preferable to use a diamino compound containing 70 mol% or more of m-TB. Although 100 mol% may be sufficient as m-TB, 80-98 mol% is still more preferable.

さらに、第1のポリイミド樹脂層2を構成するポリイミド樹脂としては、下記一般式(1)および(2)で示される構成単位のいずれか一方または両者を50モル%以上含有することがより好ましい。なお、両者を含むときは、その合計量が上記含有量の範囲である。   Furthermore, as a polyimide resin which comprises the 1st polyimide resin layer 2, it is more preferable to contain 50 mol% or more of either one or both of the structural units shown by the following general formula (1) and (2). In addition, when both are included, the total amount is the range of the said content.

Figure 0005886027
Figure 0005886027

ジアミノ化合物のうちm−TB以外のものとしては、NH−Ar−NHで表される芳香族ジアミノ化合物が好適なものとして挙げられる。ここで、Arは下記式(3)で表される基から選択されるものであり、アミノ基の置換位置は任意であるが、p,p’−位好ましい。Arは置換基を有することもできるが、好ましくは有しないか、炭素数1〜6の低級アルキルまたは低級アルコキシ基である。これらの芳香族ジアミノ化合物は1種以上を使用してもよい。 Among the diamino compounds other than m-TB, aromatic diamino compounds represented by NH 2 —Ar 1 —NH 2 are preferred. Here, Ar 1 is selected from the group represented by the following formula (3), and the substitution position of the amino group is arbitrary, but is preferably p, p′-position. Ar 1 may have a substituent, but preferably does not have it, or is a lower alkyl or lower alkoxy group having 1 to 6 carbon atoms. One or more of these aromatic diamino compounds may be used.

Figure 0005886027
Figure 0005886027

ジアミノ化合物と反応させるテトラカルボン酸化合物としては、芳香族テトラカルボン酸およびその酸無水物、エステル化物、ハロゲン化物などが挙げられるが、芳香族テトラカルボン酸化合物が好適であり、ポリイミド樹脂の前駆体であるポリアミド酸(ポリアミック酸)の合成の容易さの点で、その酸無水物が好ましい。なお、芳香族テトラカルボン酸化合物としては、O(CO)Ar(CO)Oで表される化合物が好適なものとして挙げられる。 Examples of the tetracarboxylic acid compound to be reacted with the diamino compound include aromatic tetracarboxylic acid and acid anhydrides, esterified products, halides, etc., but aromatic tetracarboxylic acid compounds are preferred and are precursors of polyimide resins. In terms of ease of synthesis of the polyamic acid (polyamic acid), the acid anhydride is preferable. As the aromatic tetracarboxylic acid compound, O (CO) 2 Ar 2 (CO) a compound represented by 2 O is mentioned as suitable.

ここで、Arは、下記式(4)で表される4価の芳香族基であることがよく、酸無水物基[(CO)O]の置換位置は任意であるが、対称の位置が好ましい。Arは、置換基を有することもできるが、好ましくは有しないか、炭素数1〜6の低級アルキル基である。好ましい芳香族テトラカルボン酸化合物は、ビフェニルテトラカルボン酸無水物(BPDA)、4,4’−オキシジフタル酸無水物(ODPA)、ピロメリット酸無水物(PMDA)又はこれらの組合せである。さらに好ましい芳香族テトラカルボン酸化合物は、BPDA、PMDAまたは両者であり、BPDAとPMDAを0:10〜8:2のモル比で使用することが諸性能のバランス調整に好都合である。 Here, Ar 2 is preferably a tetravalent aromatic group represented by the following formula (4), and the substitution position of the acid anhydride group [(CO) 2 O] is arbitrary, but symmetrical. Position is preferred. Ar 2 may have a substituent, but preferably does not have it or is a lower alkyl group having 1 to 6 carbon atoms. Preferred aromatic tetracarboxylic acid compounds are biphenyltetracarboxylic anhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), pyromellitic anhydride (PMDA) or combinations thereof. More preferred aromatic tetracarboxylic acid compounds are BPDA, PMDA, or both, and it is convenient to adjust the balance of various performances by using BPDA and PMDA in a molar ratio of 0:10 to 8: 2.

Figure 0005886027
Figure 0005886027

第1のポリイミド樹脂層2を構成するポリイミド樹脂は、例えば、上記したm−TBを50モル%以上含有するジアミノ化合物と、ほぼ等モルの上記テトラカルボン酸化合物とを溶媒中で反応させ、ポリイミド樹脂の前駆体であるポリアミド酸(ポリアミック酸)の合成と、イミド化反応の2段階で製造することができる。   The polyimide resin constituting the first polyimide resin layer 2 is prepared by reacting, for example, a diamino compound containing 50 mol% or more of the above-described m-TB with an approximately equimolar amount of the tetracarboxylic acid compound in a solvent. It can be produced in two stages: synthesis of polyamic acid (polyamic acid), which is a resin precursor, and imidization reaction.

ポリイミド樹脂の前駆体であるポリアミド酸の合成までは、金属層1への塗布前に、反応容器等の中で行われる。あるいは、イミド化までを行い、ポリイミド樹脂溶液としてもよい。そして、前駆体であるポリアミド酸溶液またはポリイミド樹脂溶液を金属層に塗布してプレポリイミド樹脂層とする。当然、すでに塗布されているプレポリイミド樹脂層あるいはポリイミド樹脂層上にも塗布される。   Until the synthesis of the polyamic acid, which is a precursor of the polyimide resin, is performed in a reaction vessel or the like before application to the metal layer 1. Or it is good also as imidation, and it is good also as a polyimide resin solution. And the polyamic acid solution or polyimide resin solution which is a precursor is apply | coated to a metal layer, and it is set as a prepolyimide resin layer. Of course, it is applied also to the pre-polyimide resin layer or the polyimide resin layer which has already been applied.

次に、本発明の第2のポリイミド樹脂層3を構成するポリイミド樹脂は、ガラス転移点温度が300℃以上かつ第1のポリイミド樹脂層2を構成するポリイミド樹脂のガラス転移点温度より低いという特徴を有する。好ましくは300〜330℃の範囲である。このようにすることで、絶縁層全体の耐熱性を維持すると共に、金属層との接着性のバランスを図ることができる。また、同様の理由により、第1のポリイミド樹脂層のガラス転移点温度は、第2のポリイミド樹脂層のガラス転移点温度より50℃以上高いことが好ましく、50〜120℃高いことがより好ましい。   Next, the polyimide resin constituting the second polyimide resin layer 3 of the present invention has a glass transition temperature of 300 ° C. or higher and lower than the glass transition temperature of the polyimide resin constituting the first polyimide resin layer 2. Have Preferably it is the range of 300-330 degreeC. By doing in this way, while maintaining the heat resistance of the whole insulating layer, the balance of adhesiveness with a metal layer can be aimed at. For the same reason, the glass transition temperature of the first polyimide resin layer is preferably 50 ° C. or more higher than the glass transition temperature of the second polyimide resin layer, and more preferably 50 to 120 ° C.

また、第2のポリイミド樹脂層3を構成するポリイミド樹脂は、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)を50モル%以上含有するジアミノ化合物とテトラカルボン酸化合物と反応させて得られたものが好ましい。望ましいガラス転移点温度を達成することができるからである。BAPPを70モル%以上含有するジアミノ化合物を用いることがより好ましい。BAPPの構造を下記一般式(5)に示す。   The polyimide resin constituting the second polyimide resin layer 3 is a diamino compound and a tetracarboxylic acid compound containing 50 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP). What was obtained by making it react with is preferable. This is because a desirable glass transition temperature can be achieved. More preferably, a diamino compound containing 70 mol% or more of BAPP is used. The structure of BAPP is shown in the following general formula (5).

Figure 0005886027
Figure 0005886027

ジアミノ化合物のうちBAPP以外のものとしては、第1のポリイミド樹脂層2を構成するポリイミド樹脂の場合と同様、上記NH−Ar−NHで表される芳香族ジアミノ化合物が好適なものとして挙げられる。また、1,3−ビス(4−アミノフェノキシ)ベンゼン(1,3−BAB)、1,4−ビス(4−アミノフェノキシ)ベンゼン(1,4−BAB)も好適に使用し得る。 Among the diamino compounds other than BAPP, the aromatic diamino compound represented by NH 2 —Ar 1 —NH 2 is suitable as in the case of the polyimide resin constituting the first polyimide resin layer 2. Can be mentioned. Further, 1,3-bis (4-aminophenoxy) benzene (1,3-BAB) and 1,4-bis (4-aminophenoxy) benzene (1,4-BAB) can also be suitably used.

ジアミノ化合物と反応させるテトラカルボン酸化合物としては、上記した第1のポリイミド樹脂層を構成するポリイミド樹脂の場合と同様の化合物を使用することが好ましい。また、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、および3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)も使用することができる。   As the tetracarboxylic acid compound to be reacted with the diamino compound, it is preferable to use the same compound as in the case of the polyimide resin constituting the first polyimide resin layer. Also, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA) and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA) may be used. it can.

第1のポリイミド樹脂層2および第2のポリイミド樹脂層3を構成するポリイミド樹脂は、例えば次のような方法により製造することができる。すなわち、溶媒中で、上記のジアミノ化合物およびテトラカルボン酸二無水物をほぼ等モルの割合で混合し、反応温度0〜200℃の範囲で、好ましくは0〜100℃の範囲で反応させて、ポリイミド前駆体樹脂溶液を得て、さらに、これをイミド化することによりポリイミド樹脂を得る方法がある。   The polyimide resin which comprises the 1st polyimide resin layer 2 and the 2nd polyimide resin layer 3 can be manufactured by the following methods, for example. That is, in a solvent, the above diamino compound and tetracarboxylic dianhydride are mixed in an approximately equimolar ratio, and reacted in a reaction temperature range of 0 to 200 ° C., preferably in a range of 0 to 100 ° C., There is a method of obtaining a polyimide resin by obtaining a polyimide precursor resin solution and further imidizing it.

溶媒としては、N−メチルピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルフォキサイド(DMSO)、硫酸ジメチル、スルフォラン、ブチロラクトン、クレゾール、フェノール、ハロゲン化フェノール、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライムなどが挙げられる。   As the solvent, N-methylpyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), dimethyl sulfate, sulfolane, butyrolactone, cresol, phenol, halogenated phenol, cyclohexanone, Examples include dioxane, tetrahydrofuran, diglyme, and triglyme.

上記したように、イミド化はポリイミド前駆体(ポリアミド酸)樹脂溶液を金属層1に塗布した後に行なってもよい。   As described above, imidization may be performed after applying a polyimide precursor (polyamic acid) resin solution to the metal layer 1.

金属層1に塗布するプレポリイミド樹脂層は、このポリイミド前駆体樹脂溶液またはイミド化を終了させたポリイミド樹脂溶液のいずれでもよいが、ポリイミドが溶剤可溶性でない場合には粘度調整の観点から、ポリイミド前駆体樹脂溶液が好ましい。   The pre-polyimide resin layer applied to the metal layer 1 may be either this polyimide precursor resin solution or a polyimide resin solution that has been imidized, but if the polyimide is not solvent-soluble, from the viewpoint of viscosity adjustment, the polyimide precursor A body resin solution is preferred.

次に、本発明の両面金属張積層板の製造方法について、図5または6を参照して詳細に説明する。本発明の両面金属張積層板を製造するには、まず、金属層1にプレポリイミド樹脂層を塗布する(S1,S11)。ポリイミド樹脂層が3層以上の積層構造である両面金属張積層板を製造する場合には、少なくとも一方の片面金属張積層板は、複数層のポリイミド樹脂層を形成するために、さらに別のプレポリイミド樹脂層を塗布して積層体とするS2,S12)。このとき、図5または図6に示すように、金属層に塗布するプレポリイミド樹脂層は、第1のポリイミド樹脂層2となるもの、第2のポリイミド樹脂層3になるもの、いずれであってもよい。また、複数層のポリイミド樹脂層を形成するための塗工方法は任意の方法を選択できるが、好ましくは塗工精度の点により以下の3方法が望ましい。   Next, the manufacturing method of the double-sided metal-clad laminate of the present invention will be described in detail with reference to FIG. In order to manufacture the double-sided metal-clad laminate of the present invention, first, a pre-polyimide resin layer is applied to the metal layer 1 (S1, S11). In the case of producing a double-sided metal-clad laminate having a laminate structure of three or more polyimide resin layers, at least one single-sided metal-clad laminate is used for forming a plurality of polyimide resin layers. A polyimide resin layer is applied to form a laminate S2, S12). At this time, as shown in FIG. 5 or FIG. 6, the pre-polyimide resin layer applied to the metal layer is either the first polyimide resin layer 2 or the second polyimide resin layer 3. Also good. Moreover, although the arbitrary coating methods can be selected as the coating method for forming the multiple polyimide resin layers, the following three methods are preferable from the viewpoint of coating accuracy.

1)多層ダイにより2種以上のプレポリイミド樹脂層を同時に導体上に塗布する。
2)任意の方法でプレポリイミド樹脂層を塗布後、その未乾燥塗布面上にナイフコート方式やダイ方式等によりさらに別のプレポリイミド樹脂層を塗布する。
3)任意の方法でプレポリイミド樹脂層を塗布、乾燥後、さらにその乾燥塗工面に任意の方法で別のプレポリイミド樹脂層を塗布する。
ここで言うナイフコート方式とは、バー、スキージ、ナイフなどにより樹脂溶液をならして塗布する方法である。
1) Two or more kinds of pre-polyimide resin layers are simultaneously coated on a conductor by a multilayer die.
2) After applying the pre-polyimide resin layer by an arbitrary method, another pre-polyimide resin layer is applied onto the undried application surface by a knife coating method, a die method, or the like.
3) A pre-polyimide resin layer is applied by an arbitrary method and dried, and then another pre-polyimide resin layer is applied to the dry coated surface by an arbitrary method.
The knife coating method referred to here is a method in which a resin solution is leveled and applied with a bar, squeegee, knife or the like.

乾燥およびイミド化(加熱硬化)処理方法としては、任意の方法が活用可能であるが、プレポリイミド樹脂層を塗布したのちに、予備乾燥した未硬化のプレポリイミド樹脂層を含む積層体を、所定の温度に設定可能な熱風乾燥炉の中で、一定時間静置させるか、あるいは、乾燥炉エリア範囲内を連続移動させ所定の乾燥硬化時間を確保させることで高温での熱処理(200℃以上)を行う方法によって、複数層のポリイミド樹脂層を有する片面金属張積層板20を形成する。   Any method can be used as the drying and imidization (heat-curing) treatment method. After applying the pre-polyimide resin layer, a laminate including a pre-dried uncured pre-polyimide resin layer is predetermined. Heat treatment at a high temperature (200 ° C or higher) by allowing it to stand for a certain period of time in a hot-air drying oven that can be set to a temperature of or by continuously moving within the drying oven area to ensure a predetermined drying and curing time The single-sided metal-clad laminate 20 having a plurality of polyimide resin layers is formed by the method of performing the above.

また、作業の効率化、歩留まりなどを考慮して、プレポリイミド樹脂層を塗布したのちに、予備乾燥した未硬化積層体を、ロール状に巻き取り、さらに高温での乾燥および加熱硬化を行なうバッチ処理方式も可能である。このバッチ処理方式の際、導体である金属層1の酸化を防ぐことを目的として、高温(200℃以上)での熱処理を、減圧下、還元性気体雰囲気下あるいは還元性気体雰囲気減圧下にて行うことが好ましい。   In consideration of work efficiency and yield, the pre-polyimide resin layer is applied, and then the pre-dried uncured laminate is wound into a roll and then dried at a high temperature and heat-cured. Processing methods are also possible. In this batch processing method, heat treatment at a high temperature (200 ° C. or higher) is performed under reduced pressure, reducing gas atmosphere or reducing gas atmosphere reduced pressure for the purpose of preventing oxidation of the metal layer 1 as a conductor. Preferably it is done.

なお、乾燥およびイミド化(加熱硬化)処理工程において、プレポリイミド樹脂層は熱処理によって溶媒が除去され、ポリイミド前駆体樹脂溶液を用いた場合には、さらにイミド閉環される。この際、急激に高温で熱処理すると樹脂表面にスキン層が生成して溶媒が蒸発しづらくなったり、発泡したりするので、低温から徐々に高温まで上昇させながら熱処理していくのが望ましい。なお、イミド化(硬化)されたポリイミド樹脂層とするための最終的な熱処理温度としては、300〜400℃が好ましい。   In the drying and imidization (heat curing) treatment step, the solvent is removed from the pre-polyimide resin layer by heat treatment, and when the polyimide precursor resin solution is used, the imide ring is further closed. At this time, since a skin layer is formed on the resin surface when the heat treatment is suddenly performed at a high temperature and the solvent is difficult to evaporate or foams, it is desirable to perform the heat treatment while gradually raising the temperature from low temperature to high temperature. In addition, as a final heat processing temperature for setting it as the imidized (hardened) polyimide resin layer, 300-400 degreeC is preferable.

プレポリイミド樹脂層としてポリイミド前駆体樹脂溶液を使用する場合の樹脂溶液濃度は、ポリマーであるポリイミド前駆体の重合度にもよるが、通常5〜30重量%、好ましくは10〜20重量%である。ポリマー濃度が5重量%より高ければ、一回の塗布で充分な膜厚が得られ、30重量%より低ければ、当該樹脂溶液の粘度が高くなりすぎず、均一性および平滑性の点で良好に塗布できるからである。   The resin solution concentration when using the polyimide precursor resin solution as the pre-polyimide resin layer is usually 5 to 30% by weight, preferably 10 to 20% by weight, although it depends on the degree of polymerization of the polyimide precursor polymer. . If the polymer concentration is higher than 5% by weight, a sufficient film thickness can be obtained by one application. If the polymer concentration is lower than 30% by weight, the viscosity of the resin solution does not become too high, and it is good in terms of uniformity and smoothness. It is because it can apply | coat to.

金属層1上に形成されるポリイミド樹脂層の膜厚は、第1のポリイミド樹脂層2は、絶縁層であるポリイミド層全体の耐熱性維持、線膨張係数や湿度膨張係数の制御による寸法安定性制御の観点から3〜30μmが好ましく、5〜25μmがより好ましい。また、第2のポリイミド樹脂層3は、基本的には熱圧着による接着性の機能が発現されればよいことから、それほど厚くする必要はなく0.5〜5μmが好ましく、1〜3μmの範囲がより好ましい。ここで、第2のポリイミド樹脂層3は、第1のポリイミド樹脂層2より薄い膜厚とすることが好ましい。なお、積層構造のポリイミド樹脂層全体の厚みは、7〜80μmが好ましく、10〜60μmがより好ましく、20〜30μmが最も好ましい。   The film thickness of the polyimide resin layer formed on the metal layer 1 is such that the first polyimide resin layer 2 is dimensional stability by maintaining the heat resistance of the entire polyimide layer which is an insulating layer and controlling the linear expansion coefficient and the humidity expansion coefficient. From the viewpoint of control, 3 to 30 μm is preferable, and 5 to 25 μm is more preferable. The second polyimide resin layer 3 basically only needs to exhibit an adhesive function by thermocompression bonding, so it is not necessary to make it too thick, and preferably 0.5 to 5 μm, preferably in the range of 1 to 3 μm. Is more preferable. Here, the second polyimide resin layer 3 is preferably thinner than the first polyimide resin layer 2. In addition, 7-80 micrometers is preferable, as for the thickness of the whole polyimide resin layer of a laminated structure, 10-60 micrometers is more preferable, and 20-30 micrometers is the most preferable.

以上のようにして形成される片面金属張積層板20は、第1のポリイミド樹脂層2および第2のポリイミド樹脂層3の積層構造は、第1のポリイミド樹脂層2同士および第2のポリイミド樹脂層3同士が積層される部分があってもよい。しかし、片面金属張積層板製造時でのカール制御の観点より、交互に積層されていたほうがよい。また、どちらか1層であってもよい。   The single-sided metal-clad laminate 20 formed as described above has a laminated structure of the first polyimide resin layer 2 and the second polyimide resin layer 3 such that the first polyimide resin layers 2 and the second polyimide resin are laminated. There may be a portion where the layers 3 are laminated. However, from the viewpoint of curl control at the time of manufacturing a single-sided metal-clad laminate, it is better to laminate them alternately. Moreover, either one layer may be sufficient.

以上の工程により、図4に例示する片面金属張積層板20を形成することができる。次に、2つの片面金属張積層板20a,20bの第2のポリイミド樹脂層3,3同士を加熱圧着して、図1、2に例示する両面金属張積層板(10または11)を形成する。このとき、2つの片面金属張積層板20のポリイミド樹脂層の積層構造は、異なっていてもよく、その例示が図3の両面金属張積層板12である。なお、加熱圧着するポリイミド樹脂層の一方が第1のポリイミド樹脂層2であってもよい。   Through the above steps, the single-sided metal-clad laminate 20 illustrated in FIG. 4 can be formed. Next, the second polyimide resin layers 3 and 3 of the two single-sided metal-clad laminates 20a and 20b are thermocompression bonded to form a double-sided metal-clad laminate (10 or 11) illustrated in FIGS. . At this time, the laminated structure of the polyimide resin layers of the two single-sided metal-clad laminates 20 may be different, and an example thereof is the double-sided metal-clad laminate 12 of FIG. One polyimide resin layer to be heat-bonded may be the first polyimide resin layer 2.

したがって、貼り合わせる片面金属張積層板20のうち少なくとも一方は、その最外層のポリイミド樹脂層が、第2のポリイミド樹脂層3である必要がある。加熱圧着するポリイミド樹脂層同士の接着性において、十分な強度が得られる点で、最外層が第2のポリイミド樹脂層3である2つの片面金属張積層板20を貼り合わせることが好適である。   Therefore, at least one of the single-sided metal-clad laminates 20 to be bonded needs to have the second polyimide resin layer 3 as the outermost polyimide resin layer. In terms of adhesion between the polyimide resin layers to be thermocompression bonded, it is preferable to bond the two single-sided metal-clad laminates 20 whose outermost layer is the second polyimide resin layer 3 in that sufficient strength can be obtained.

2つの片面金属張積層板20のポリイミド樹脂層同士を貼り合わせるときの加熱圧着は、例えば次のような方法をとることができる。すなわち、ハイドロプレス、真空タイプのハイドロプレス、オートクレーブ加圧式真空プレス、連続式熱ラミネータなどを使用することができる。このうち真空ハイドロプレスは、十分なプレス圧力が得られ、残留揮発分の除去も容易であり、また金属箔などの導体の酸化を防止できることから好ましい加熱圧着方法である。   For example, the following method can be used for thermocompression bonding when the polyimide resin layers of the two single-sided metal-clad laminates 20 are bonded together. That is, a hydro press, a vacuum type hydro press, an autoclave pressurizing vacuum press, a continuous thermal laminator, or the like can be used. Among these, the vacuum hydropress is a preferable thermocompression bonding method because a sufficient pressing pressure can be obtained, residual volatile components can be easily removed, and oxidation of a conductor such as a metal foil can be prevented.

この加熱圧着時の熱プレス温度については、特に限定されるものではないが、使用されるポリイミド樹脂のガラス転移点温度以上であることが望ましい。また、熱プレス圧力については、使用するプレス機器の種類にもよるが、0.1〜50MPa(1〜500kg/cm)が適当である。加熱圧着時のプレス温度が高くなりすぎると金属層およびポリイミド樹脂層の劣化等の不具合が発生する懸念があるため、この点においてもガラス転移点温度が低い方である第2のポリイミド樹脂層3同士を貼り合わせる方が好ましい。 Although it does not specifically limit about the hot press temperature at the time of this thermocompression bonding, It is desirable that it is more than the glass transition point temperature of the polyimide resin to be used. Moreover, about hot press pressure, although based also on the kind of press apparatus to be used, 0.1-50 MPa (1-500 kg / cm < 2 >) is suitable. If the press temperature at the time of thermocompression bonding becomes too high, there is a concern that defects such as deterioration of the metal layer and the polyimide resin layer may occur. Therefore, also in this respect, the second polyimide resin layer 3 having a lower glass transition temperature. It is preferable to stick them together.

以上説明したようにして製造された両面金属張積層板は、両面とも、金属層1と金属層1に接するポリイミド樹脂層との密着性および接着強度が非常に優れている。したがって、マイクロボイドが生成されず、酸洗浄液の浸透による回路剥がれの無い高耐酸性の両面金属張積層板である。また複数のポリイミド樹脂層はいずれもガラス転移点温度が300℃以上であり、高耐熱性との両立が図られている。さらに、線湿度膨張係数が20×10−6/%RH以下のポリイミド樹脂層を有しているため、湿度変化によるカールの発生および寸法変化を抑制することができる。 The double-sided metal-clad laminate manufactured as described above is extremely excellent in adhesion and adhesive strength between the metal layer 1 and the polyimide resin layer in contact with the metal layer 1 on both sides. Therefore, it is a highly acid-resistant double-sided metal-clad laminate that does not generate microvoids and does not peel off the circuit due to penetration of the acid cleaning liquid. Moreover, all of the plurality of polyimide resin layers have a glass transition temperature of 300 ° C. or higher, and are compatible with high heat resistance. Furthermore, since it has a polyimide resin layer having a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less, it is possible to suppress the occurrence of curls and dimensional changes due to changes in humidity.

すなわち、本発明の両面金属張積層板は、金属層とポリイミド樹脂層との接着を塗工法で形成しているので、(1)両面とも密着性および接着強度が非常に良好で、耐酸性等に優れるという特徴を有する。また、線湿度膨張係数が20×10−6/%RH以下の第1のポリイミド樹脂層2を使用しているので、(2)両面金属張積層板としての寸法安定性が良好で、カールも抑制されるという特徴を有する。さらに、ガラス転移点温度が第1のポリイミド樹脂層2より低く、330℃以下で剛性が低下してガラス状態となる第2のポリイミド樹脂層3を使用しているので、(3)両面金属張積層板として、全ての積層部分の接着性が非常に良好であるという特徴を有する。まとめると、上記(1)〜(3)の優れた性質を同時に達成できるという顕著な効果を発揮する。 That is, the double-sided metal-clad laminate of the present invention is formed by applying a metal layer and a polyimide resin layer by a coating method. (1) The adhesion and adhesive strength on both sides are very good, acid resistance, etc. It has the characteristic that it is excellent in. In addition, since the first polyimide resin layer 2 having a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less is used, (2) dimensional stability as a double-sided metal-clad laminate is good, and curling is also caused. It has the feature of being suppressed. Further, since the second polyimide resin layer 3 having a glass transition temperature lower than that of the first polyimide resin layer 2 and having a reduced rigidity at 330 ° C. or lower and being in a glass state is used. As a laminated board, it has the characteristic that the adhesiveness of all the laminated parts is very favorable. In summary, the outstanding properties (1) to (3) can be achieved at the same time.

以下、実施例により、本発明の実施の形態についてより具体的に説明する。また、比較例を示すことにより、本実施の形態の優位性を明らかにする。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. Further, the superiority of the present embodiment will be clarified by showing a comparative example.

1.金属箔
金属層とする金属箔として、膜厚が12μmおよびポリイミド樹脂層と接する側の表面粗さ(Rz)が1.6μmの銅箔を使用した。
1. As the metal foil for the metal foil metal layer, a copper foil having a film thickness of 12 μm and a surface roughness (Rz) on the side in contact with the polyimide resin layer of 1.6 μm was used.

2.各種物性測定および性能試験方法
[線湿度膨張係数]
金属層である銅箔をエッチングしフィルム状態となったポリイミド樹脂をサーモメカニカルアナライザー(セイコーインスツル株式会社製)にサーモメカニカルアナライザー用調湿装置(セイコーインスツル株式会社製)を組み合わせて用い、前記の方法により求めた。
2. Various physical properties measurement and performance test method [Linear humidity expansion coefficient]
Using a polyimide resin in a film state by etching a copper foil that is a metal layer in combination with a thermomechanical analyzer (manufactured by Seiko Instruments Inc.) and a humidity control device for thermomechanical analyzer (manufactured by Seiko Instruments Inc.), Obtained by the method of

[線熱膨張係数]
銅箔をエッチングしフィルム状態となったポリイミド樹脂を、サーモメカニカルアナライザー(セイコーインスツル株式会社製)を用い、255℃まで昇温し、さらにその温度で10分間保持した後、5℃/分の速度で冷却して240℃から100℃までの平均熱膨張率(線熱膨張係数)を求めた。
[Linear thermal expansion coefficient]
The polyimide resin in which the copper foil was etched to be in a film state was heated to 255 ° C. using a thermomechanical analyzer (manufactured by Seiko Instruments Inc.) and further maintained at that temperature for 10 minutes, and then 5 ° C./min. It cooled at the speed | rate and calculated | required the average thermal expansion coefficient (linear thermal expansion coefficient) from 240 degreeC to 100 degreeC.

[ガラス転移温度の測定]
銅箔をエッチングしフィルム状態となったポリイミド樹脂を、エスアイアイ・ナノテクノロジー株式会社製の動的粘弾性測定装置(RSA−III)を用い、引張りモードにて1.0Hzの温度分散測定したtanδのピークトップをガラス転移点温度とした。
[Measurement of glass transition temperature]
A tanδ obtained by etching a copper foil into a film state and measuring a temperature dispersion of 1.0 Hz in a tensile mode using a dynamic viscoelasticity measuring device (RSA-III) manufactured by SII Nano Technology Co., Ltd. The peak top of was the glass transition temperature.

[耐酸性の測定]
耐酸性の評価は、フレキシブル片面銅張積層板(片面金属張積層板)について、線幅1mmに回路加工を行い、塩酸18wt%の水溶液中に50℃、60分間浸漬したのちに絶縁層側(ポリイミド樹脂層側)から回路端部を200倍の光学顕微鏡を用いて塩酸の浸み込みによる変色部を測定し、染込み幅(μm)として耐酸性の指標とした。
[Measurement of acid resistance]
The evaluation of acid resistance was performed on a flexible single-sided copper-clad laminate (single-sided metal-clad laminate) by processing the circuit to a line width of 1 mm and immersing it in an aqueous solution of 18 wt% hydrochloric acid at 50 ° C. for 60 minutes, A circuit end portion from the polyimide resin layer side) was measured for a discolored portion due to the infiltration of hydrochloric acid using a 200 × optical microscope, and used as an acid resistance index as a soaking width (μm).

[接着力の測定]
銅箔とポリイミド樹脂層との間の接着力は、フレキシブル片面銅張積層板について、線幅1mmに回路加工を行い、東洋精機株式会社製引張試験機(ストログラフ−M1)を用いて、銅箔を180°方向に引き剥がし、初期ピール強度を測定した。また前記耐酸性測定後のピール強度を測定し、(耐酸後ピール強度/初期ピール強度)×100をピール強度保持率(%)とした。
[Measurement of adhesive strength]
The adhesive force between the copper foil and the polyimide resin layer was obtained by subjecting a flexible single-sided copper-clad laminate to circuit processing to a line width of 1 mm and using a tensile tester (Strograph-M1) manufactured by Toyo Seiki Co., Ltd. The foil was peeled off in the 180 ° direction and the initial peel strength was measured. Further, the peel strength after the acid resistance measurement was measured, and (peel strength after acid resistance / initial peel strength) × 100 was defined as the peel strength retention rate (%).

[吸湿ハンダ耐熱試験]
市販のフォトレジストフィルムを、導体/樹脂層/導体で構成された積層体にラミネートし、所定のパターン形成用マスクで露光(365nm、露光量500J/m程度)し、銅箔層が表裏一体で直径1mmの円形となるパターンにレジスト層を硬化形成した。
次に、硬化レジスト箇所を現像(現像液は1%NaOH水溶液)し、塩化第二鉄水溶液を用いて所定のパターン形成に不要な銅箔層をエッチング除去し、さらに、硬化レジスト層をアルカリ液にて剥離除去することにより、鉛フリーはんだに対応した耐熱性を評価するためのパターンが形成されたサンプル(導体/絶縁樹脂層/導体で構成された積層体の導体層に、表裏一体で直径1mmの円形パターンが形成された積層体)を得た。
サンプルを40℃の90%RH環境下に192時間放置した後、温度の異なる溶融ハンダ浴槽に10sec浸積して、銅箔層箇所における変形、膨れの有無を観察した。銅箔層箇所に変形や膨れが発生しない、ハンダ浴槽の最高温度をハンダ耐熱温度とした。
[Hygroscopic solder heat resistance test]
A commercially available photoresist film is laminated on a laminate composed of a conductor / resin layer / conductor, exposed with a predetermined pattern forming mask (365 nm, exposure amount of about 500 J / m 2 ), and the copper foil layers are integrated into the front and back sides. The resist layer was cured and formed into a circular pattern having a diameter of 1 mm.
Next, the cured resist portion is developed (the developer is 1% NaOH aqueous solution), and the copper foil layer unnecessary for forming a predetermined pattern is removed by etching using a ferric chloride aqueous solution. The sample with the pattern for evaluating the heat resistance corresponding to lead-free solder was formed by peeling and removing in (a conductor layer of a laminate composed of a conductor / insulating resin layer / conductor, and the diameter of the conductor layer on both sides A laminate in which a 1 mm circular pattern was formed was obtained.
After leaving the sample in a 90% RH environment at 40 ° C. for 192 hours, the sample was immersed in a molten solder bath at different temperatures for 10 seconds, and the presence or absence of deformation or swelling in the copper foil layer portion was observed. The maximum solder bath temperature at which no deformation or swelling occurred in the copper foil layer was defined as the solder heat resistance temperature.

3.ポリイミド前駆体樹脂の合成
合成例1:第2のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、302gのN,N−ジメチルアセトアミドを入れた。この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン30.99g(0.076モル)を容器中で撹拌しながら溶解させた。次に、16.96g(0.078モル)のピロメリット酸二無水物を加えた。その後、3時間撹拌を続け、溶液粘度2,960mPa・sのポリアミド酸(ポリアミック酸)の樹脂溶液aを得た。なお、溶液粘度は、E型粘度計による25℃でのみかけ粘度の値である(以下、同様)。
このポリアミド酸から得られたポリイミド樹脂の線膨張係数は55×10−6(1/K)であり、線湿度膨張係数は7.0×10−6/%RHであった。
3. Synthesis of polyimide precursor resin
Synthesis Example 1 302 g of N, N-dimethylacetamide was placed in a reaction vessel equipped with a second thermocouple for polyimide resin layer and a stirrer and capable of introducing nitrogen. In this reaction vessel, 30.99 g (0.076 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane was dissolved in the vessel with stirring. Next, 16.96 g (0.078 mol) of pyromellitic dianhydride was added. Thereafter, stirring was continued for 3 hours to obtain a resin solution a of polyamic acid (polyamic acid) having a solution viscosity of 2,960 mPa · s. The solution viscosity is an apparent viscosity value only at 25 ° C. by an E-type viscometer (hereinafter the same).
The linear expansion coefficient of the polyimide resin obtained from this polyamic acid was 55 × 10 −6 (1 / K), and the linear humidity expansion coefficient was 7.0 × 10 −6 /% RH.

合成例2:第2のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、334gのN,N−ジメチルアセトアミドを入れた。この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン29.24g(0.072モル)および3.81g(0.018モル)の4,4’−ジアミノ−2,2’−ジメチルビフェニルを容器中で撹拌しながら溶解させた。次に、20.00g(0.092モル)のピロメリット酸二無水物を加えた。その後、3時間撹拌を続け、ポリアミド酸の樹脂溶液bを得た。ポリアミド酸の樹脂溶液bの溶液粘度は3,140mPa・sであった。
このポリアミド酸から得られたポリイミド樹脂の線膨張係数は56×10−6(1/K)であった。
Synthesis Example 2: 334 g of N, N-dimethylacetamide was placed in a reaction vessel equipped with a second precursor thermocouple for polyimide resin layer and a stirrer and capable of introducing nitrogen. The reaction vessel was charged with 29.24 g (0.072 mol) of 2,2-bis [4- (4-aminophenoxy) phenyl] propane and 3.81 g (0.018 mol) of 4,4′-diamino-2, 2'-dimethylbiphenyl was dissolved in the vessel with stirring. Next, 20.00 g (0.092 mol) of pyromellitic dianhydride was added. Thereafter, stirring was continued for 3 hours to obtain a resin solution b of polyamic acid. The solution viscosity of the polyamic acid resin solution b was 3,140 mPa · s.
The linear expansion coefficient of the polyimide resin obtained from this polyamic acid was 56 × 10 −6 (1 / K).

合成例3:対照用のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、630gのN,N−ジメチルアセトアミドを入れた。この反応容器に26.83g(0.134モル)の4,4’−ジアミノジフェニルエーテルを容器中で撹拌しながら溶解させた。次に、42.96g(0.133モル)の3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を加えた。その後、2時間撹拌を続け、溶液粘度2,850mPa・sのポリアミド酸の樹脂溶液cを得た。
このポリアミド酸から得られたポリイミドの線膨張係数は53×10−6(1/K)であった。
Synthesis Example 3: 630 g of N, N-dimethylacetamide was placed in a reaction vessel equipped with a control thermocouple for a polyimide resin layer and a stirrer and capable of introducing nitrogen. In this reaction vessel, 26.83 g (0.134 mol) of 4,4′-diaminodiphenyl ether was dissolved in the vessel with stirring. Next, 42.96 g (0.133 mol) of 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride was added. Thereafter, stirring was continued for 2 hours to obtain a polyamic acid resin solution c having a solution viscosity of 2,850 mPa · s.
The linear expansion coefficient of the polyimide obtained from this polyamic acid was 53 × 10 −6 (1 / K).

合成例4:対照用のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、255gのN,N−ジメチルアセトアミドを入れた。この反応容器に22.13g(0.076モル)の1,3−ビス(4−アミノフェノキシ)ベンゼンを容器中で撹拌しながら溶解させた。次に、16.71g(0.047モル)のジフェニルスルホンテトラカルボン酸二無水物及び6.78g(0.031モル)のピロメリット酸二無水物を加えた。その後、2時間撹拌を続け、溶液粘度2,640mPa・sのポリアミド酸の樹脂溶液dを得た。
このポリアミド酸から得られたポリイミドの線膨張係数は61×10−6(1/K)であった。
Synthesis Example 4: 255 g of N, N-dimethylacetamide was placed in a reaction vessel equipped with a control thermocouple for a polyimide resin layer and a stirrer and capable of introducing nitrogen. In this reaction vessel, 22.13 g (0.076 mol) of 1,3-bis (4-aminophenoxy) benzene was dissolved in the vessel with stirring. Next, 16.71 g (0.047 mol) of diphenylsulfone tetracarboxylic dianhydride and 6.78 g (0.031 mol) of pyromellitic dianhydride were added. Thereafter, stirring was continued for 2 hours to obtain a polyamic acid resin solution d having a solution viscosity of 2,640 mPa · s.
The linear expansion coefficient of the polyimide obtained from this polyamic acid was 61 × 10 −6 (1 / K).

合成例5:第1のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、3.076kgのN,N−ジメチルアセトアミドを入れた。この反応容器に4,4’−ジアミノ−2,2’−ジメチルビフェニル225.73g(1.063モル)を容器中で撹拌しながら溶解させた。次に、61.96g(0.211モル)の3,3’−4,4’−ビフェニルテトラカルボン酸二無水物および183.73g(0.842モル)のピロメリット酸二無水物(PMDA)を加えた。その後、3時間撹拌を続け、溶液粘度20,000mPa・sのポリアミド酸の樹脂溶液eを得た。
このポリアミド酸から得られたポリイミド樹脂は7×10−6(1/K)と20×10−6(1/K)以下の低線膨張係数を示し、非熱可塑性の性質を有していた。線湿度膨張係数は9.0×10−6/%RHであった。
Synthesis Example 5 3.076 kg of N, N-dimethylacetamide was placed in a reaction vessel equipped with a first thermocouple for polyimide resin layer and a stirrer and capable of introducing nitrogen. In this reaction vessel, 22,5.73 g (1.063 mol) of 4,4′-diamino-2,2′-dimethylbiphenyl was dissolved in the vessel with stirring. Next, 61.96 g (0.211 mol) of 3,3′-4,4′-biphenyltetracarboxylic dianhydride and 183.73 g (0.842 mol) of pyromellitic dianhydride (PMDA) Was added. Thereafter, stirring was continued for 3 hours to obtain a polyamic acid resin solution e having a solution viscosity of 20,000 mPa · s.
The polyimide resin obtained from this polyamic acid had a low linear expansion coefficient of 7 × 10 −6 (1 / K) and 20 × 10 −6 (1 / K) or less, and had non-thermoplastic properties. . The linear humidity expansion coefficient was 9.0 × 10 −6 /% RH.

合成例6:対照用のポリイミド樹脂層用前駆体
熱電対および攪拌機を備えると共に窒素導入が可能な反応容器に、1.11kgのN,N−ジメチルアセトアミドを入れた。この反応容器に4,4’−ジアミノ−2’−メトキシベンズアニリド66.51g(0.259モル)および4,4’−ジアミノジフェニルエーテル34.51g(0.172モル)を容器中で撹拌しながら溶解させた。次に、92.62g(0.425モル)のピロメリット酸二無水物を加えた。その後、3時間撹拌を続け、溶液粘度24,000mPa・sのポリアミド酸の樹脂溶液fを得た。
このポリアミド酸から得られたポリイミド樹脂は19×10−6(1/K)と20×10−6(1/K)以下の低線膨張係数を示し、非熱可塑性の性質を有していた。線湿度膨張係数は27.0×10−6/%RHであった。
Synthesis Example 6 1.11 kg of N, N-dimethylacetamide was placed in a reaction vessel equipped with a precursor thermocouple for a polyimide resin layer for control and a stirrer and capable of introducing nitrogen. In this reaction vessel, 66.51 g (0.259 mol) of 4,4′-diamino-2′-methoxybenzanilide and 34.51 g (0.172 mol) of 4,4′-diaminodiphenyl ether were stirred in the vessel. Dissolved. Next, 92.62 g (0.425 mol) of pyromellitic dianhydride was added. Thereafter, stirring was continued for 3 hours to obtain a polyamic acid resin solution f having a solution viscosity of 24,000 mPa · s.
The polyimide resin obtained from this polyamic acid had a low linear expansion coefficient of 19 × 10 −6 (1 / K) and 20 × 10 −6 (1 / K) or less, and had non-thermoplastic properties. . The linear humidity expansion coefficient was 27.0 × 10 −6 /% RH.

各合成例の合成条件、および得られた各ポリイミド酸をイミド化してポリイミド樹脂としたときのそれぞれの樹脂物性をまとめて表1に示す。なお、表1の「役割」の項目において、「ベース」とは両面金属張積層板の寸法安定性制御の役割を担うことを、「TPI」とは熱圧着による接着性の役割を担うことを示す。したがって、「ベース」は第1のポリイミド樹脂層またはその相当層(比較例用)に用いるポリイミド樹脂であり、「TPI」は第2のポリイミド樹脂層またはその相当層(比較例用)に用いるポリイミド樹脂である。   Table 1 shows the synthesis conditions of each synthesis example and the respective resin physical properties when the obtained polyimide acids are imidized to form polyimide resins. In addition, in the item of “Role” in Table 1, “Base” plays the role of controlling the dimensional stability of the double-sided metal-clad laminate, and “TPI” plays the role of adhesiveness by thermocompression bonding. Show. Therefore, “base” is a polyimide resin used for the first polyimide resin layer or its equivalent layer (for comparative example), and “TPI” is a polyimide used for the second polyimide resin layer or its equivalent layer (for comparative example). Resin.

Figure 0005886027
Figure 0005886027

実施例1
表面粗さ(Rz)1.6μmを有する銅箔(古河電気工業株式会社製、膜厚12μm、電解品)に、合成例1で調製したポリアミド酸の樹脂溶液aと合成例5で調整したポリアミド酸の樹脂溶液eを順次塗布し、さらに、その上に樹脂溶液aを塗布して乾燥後、最終的に300℃以上約2分間の熱処理を行い、ポリイミド樹脂層の全膜厚が25μm(層構成:a/e/a=2.5μm/20μm/2.5μm)のフレキシブル片面銅張積層板(片面金属張積層板)を得た。なお、樹脂溶液aから得られた層は第2のポリイミド樹脂層であり、樹脂溶液eから得られた層は第1のポリイミド樹脂層である。
この片面銅張積層板2つを、そのポリイミド樹脂面同士で貼り合わせ、同時に一対の加熱ロール間に1m/分の速度で連続的に供給して熱圧着することでポリイミド樹脂層の全膜厚が50μmのフレキシブル両面銅張積層板(両面金属張積層板)を得た。このときロール表面温度は390℃であり、ロール間の線圧は134kN/mであった。なお、ポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液eから得られた層とポリアミド酸の樹脂溶液aから得られた層の比率は4:1であった。
この両面銅張積層板の1mmピールは初期接着力が0.98kN/mであった。また、この回路の耐酸性試験による染込み幅は69μmであり、ピール強度の保持率は89%であった。結果を表2に示す。以下、実施例2、3および比較例1−3の結果も表2に示す。
Example 1
Polyamide prepared in Synthesis Example 1 and polyamide prepared in Synthesis Example 5 on copper foil (Furukawa Electric Co., Ltd., film thickness 12 μm, electrolytic product) having a surface roughness (Rz) of 1.6 μm The acid resin solution e is applied in sequence, and the resin solution a is applied thereon and dried. Finally, heat treatment is performed at 300 ° C. or higher for about 2 minutes, and the total film thickness of the polyimide resin layer is 25 μm (layer A flexible single-sided copper-clad laminate (single-sided metal-clad laminate) having a configuration: a / e / a = 2.5 μm / 20 μm / 2.5 μm was obtained. In addition, the layer obtained from the resin solution a is a 2nd polyimide resin layer, and the layer obtained from the resin solution e is a 1st polyimide resin layer.
Two single-sided copper-clad laminates are bonded together on their polyimide resin surfaces, and simultaneously supplied at a rate of 1 m / min between a pair of heating rolls and thermocompression bonded, thereby the total film thickness of the polyimide resin layer Yielded a flexible double-sided copper-clad laminate (double-sided metal-clad laminate). At this time, the roll surface temperature was 390 ° C., and the linear pressure between the rolls was 134 kN / m. In the polyimide resin layer, the ratio of the layer obtained from the polyamic acid resin solution e to the layer obtained from the polyamic acid resin solution a was 4: 1.
The 1 mm peel of this double-sided copper clad laminate had an initial adhesion of 0.98 kN / m. Further, the penetration width of the circuit according to the acid resistance test was 69 μm, and the peel strength retention rate was 89%. The results are shown in Table 2. The results of Examples 2 and 3 and Comparative Example 1-3 are also shown in Table 2.

実施例2
実施例1と同様にして片面銅張積層板のポリイミド樹脂面同士を貼り合わせることで50μmのフレキシブル両面銅張積層板を得た。
銅箔上に塗布した樹脂溶液は順に樹脂溶液b/樹脂溶液e/樹脂溶液b(層構成:b/e/b=2.5μm/20μm/2.5μm)であり、得られたポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液eから得られた層とポリアミド酸の樹脂溶液bから得られた層の比率は4:1であった。なお、樹脂溶液bから得られた層は第2のポリイミド樹脂層である。
Example 2
In the same manner as in Example 1, the polyimide resin surfaces of the single-sided copper-clad laminate were bonded together to obtain a flexible double-sided copper-clad laminate having a thickness of 50 μm.
The resin solution applied on the copper foil was resin solution b / resin solution e / resin solution b (layer structure: b / e / b = 2.5 μm / 20 μm / 2.5 μm) in order, and the obtained polyimide resin layer Among them, the ratio of the layer obtained from the polyamic acid resin solution e to the layer obtained from the polyamic acid resin solution b was 4: 1. Note that the layer obtained from the resin solution b is a second polyimide resin layer.

実施例3
実施例1と同様にして片面銅張積層板のポリイミド樹脂面同士を貼り合わせることで50μmのフレキシブル両面銅張積層板を得た。
銅箔上に塗布した樹脂溶液は順に樹脂溶液e/樹脂溶液a(層構成:e/a=22.5
/2.5μm)であり、得られたポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液eから得られた層とポリアミド酸の樹脂溶液aから得られた層の比率は9:1であった。
Example 3
In the same manner as in Example 1, the polyimide resin surfaces of the single-sided copper-clad laminate were bonded together to obtain a flexible double-sided copper-clad laminate having a thickness of 50 μm.
The resin solution applied on the copper foil was resin resin e / resin solution a (layer structure: e / a = 22.5 in order).
The ratio of the layer obtained from the polyamic acid resin solution e to the layer obtained from the polyamic acid resin solution a in the obtained polyimide resin layer was 9: 1.

比較例1
実施例1と同様にして銅箔上に順次、樹脂溶液a/樹脂溶液e/樹脂溶液aを塗布乾燥し、最終的に300℃以上約2分間の熱処理を行い、ポリイミド樹脂層の厚みが25μm(層構成:a/e/a=2.5μm/20μm/2.5μm)のフレキシブル片面銅張積層板を得た。得られたポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液eから得られた層とポリアミド酸の樹脂溶液aから得られた層の比率は4:1であった。この片面銅張積層板のポリイミド樹脂面に表面粗さ(Rz)1.6μmを有する銅箔(古河電気工業株式会社製、膜厚12μm、電解品)を貼り合わせ、実施例1と同様に熱圧着することで25μmのフレキシブル両面銅張積層板を得た。
Comparative Example 1
In the same manner as in Example 1, resin solution a / resin solution e / resin solution a were sequentially applied and dried on the copper foil, and finally heat-treated at 300 ° C. or more for about 2 minutes, and the thickness of the polyimide resin layer was 25 μm. A flexible single-sided copper-clad laminate (layer configuration: a / e / a = 2.5 μm / 20 μm / 2.5 μm) was obtained. Among the obtained polyimide resin layers, the ratio of the layer obtained from the polyamic acid resin solution e to the layer obtained from the polyamic acid resin solution a was 4: 1. A copper foil having a surface roughness (Rz) of 1.6 μm (made by Furukawa Electric Co., Ltd., film thickness: 12 μm, electrolytic product) was bonded to the polyimide resin surface of this single-sided copper-clad laminate, and heat was applied in the same manner as in Example 1. A 25 μm flexible double-sided copper-clad laminate was obtained by pressure bonding.

比較例2
実施例1と同様にして片面銅張積層板のポリイミド樹脂面同士を貼り合わせることで50μmのフレキシブル両面銅張積層板を得た。
銅箔上に塗布した樹脂溶液は順に樹脂溶液a/樹脂溶液e(層構成:a/e=2.5μm/22.5μm)であり、得られたポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液eから得られた層とポリアミド酸の樹脂溶液aから得られた層の比率は9:1であった。
Comparative Example 2
In the same manner as in Example 1, the polyimide resin surfaces of the single-sided copper-clad laminate were bonded together to obtain a flexible double-sided copper-clad laminate having a thickness of 50 μm.
The resin solution applied on the copper foil is, in order, resin solution a / resin solution e (layer configuration: a / e = 2.5 μm / 22.5 μm). Among the obtained polyimide resin layers, a resin solution of polyamic acid The ratio of the layer obtained from e to the layer obtained from the polyamic acid resin solution a was 9: 1.

比較例3
実施例1と同様にして片面銅張積層板のポリイミド樹脂面同士を貼り合わせることで50μmのフレキシブル両面銅張積層板を得た。
銅箔上に塗布した樹脂溶液は順に樹脂溶液c/樹脂溶液f/樹脂溶液d(層構成:c/f/d=2μm/21μm/2μm)であり、得られたポリイミド樹脂層のうち、ポリアミド酸の樹脂溶液cから得られた層と樹脂溶液fから得られた層と樹脂溶液dから得られた層の比率は略1:10:1であった。なお、樹脂溶液cおよびdから得られた層は第2のポリイミド樹脂層であり、樹脂溶液fから得られた層は第1のポリイミド樹脂層である。
Comparative Example 3
In the same manner as in Example 1, the polyimide resin surfaces of the single-sided copper-clad laminate were bonded together to obtain a flexible double-sided copper-clad laminate having a thickness of 50 μm.
The resin solution applied on the copper foil was resin solution c / resin solution f / resin solution d (layer structure: c / f / d = 2 μm / 21 μm / 2 μm) in order, and among the obtained polyimide resin layers, polyamide The ratio of the layer obtained from the acid resin solution c, the layer obtained from the resin solution f, and the layer obtained from the resin solution d was about 1: 10: 1. The layer obtained from the resin solutions c and d is the second polyimide resin layer, and the layer obtained from the resin solution f is the first polyimide resin layer.

Figure 0005886027
Figure 0005886027

表2において、「ピール強度」は初期ピール強度を示している。「ピール強度保持率」および「染込み幅」は上記説明した通りである。
表2から明らかなように、各実施例はいずれも、初期ピール強度、ピール強度保持率、染込み幅、およびハンダ耐熱温度の点で各比較例より優れた性能を発揮している。なお、比較例3において、貼り合わせ部の樹脂dは第2のポリイミド樹脂層に相当するが、ガラス転移点温度が300℃未満であるため、ハンダ耐熱温度の性能が不十分であった。
In Table 2, “peel strength” indicates initial peel strength. “Peel strength retention” and “penetration width” are as described above.
As is apparent from Table 2, each example demonstrates performance superior to each comparative example in terms of initial peel strength, peel strength retention, penetration width, and solder heat resistance temperature. In Comparative Example 3, the resin d in the bonded portion corresponds to the second polyimide resin layer, but the glass transition point temperature is less than 300 ° C., so that the solder heat resistance temperature is insufficient.

1 金属層(金属箔)、 2 第1のポリイミド樹脂層、 3,3a 第2のポリイミド樹脂層、 10,11,12 両面金属張積層板、 20,20a,20b 片面金属張積層板 DESCRIPTION OF SYMBOLS 1 Metal layer (metal foil), 2 1st polyimide resin layer, 3, 3a 2nd polyimide resin layer, 10, 11, 12 Double-sided metal-clad laminate, 20, 20a, 20b Single-sided metal-clad laminate

Claims (9)

第1の積層体と第2の積層体とを一体化した両面の外側に金属層を有する金属張積層体であって、
前記第1の積層体および第2の積層体はそれぞれ、金属層と、第1のポリイミド樹脂層および第2のポリイミド樹脂層を含む複数のポリイミド樹脂層を有し、
前記第1のポリイミド樹脂層は線湿度膨張係数が20×10-6/%RH以下であり、
当該金属張積層体において対向する前記第1の積層体の前記第2のポリイミド樹脂層と前記第2の積層体の前記第2のポリイミド樹脂層は、ガラス転移点温度が300℃以上かつ前記第1のポリイミド樹脂層のガラス転移点温度より低く、
前記第2のポリイミド樹脂層は、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られるものである、
両面金属張積層板。
A metal-clad laminate having a metal layer on both outer sides of the first laminate and the second laminate integrated,
Having the first laminate and the second laminate Waso respectively, and a metal layer, a plurality of polyimide resin layers including a first polyimide resin layer and the second polyimide resin layer,
The first polyimide resin layer has a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less,
The second polyimide resin layer and the second polyimide resin layer of the first laminate facing in the metal-clad laminate and the second laminate, and wherein the glass transition temperature of 300 ° C. or higher Lower than the glass transition temperature of the polyimide resin layer 1 ,
The second polyimide resin layer is prepared by reacting a diamino compound containing 50 mol% or more of 2,2-bis [4- (4-aminophenoxy) phenyl] propane with a tetracarboxylic acid compound to obtain a polyimide precursor resin. Is obtained via
Double-sided metal-clad laminate.
前記第1のポリイミド樹脂層のガラス転移点温度は、前記第2のポリイミド樹脂層のガラス転移点温度よりも50〜120℃高い、
請求項1記載の両面金属張積層板。
The glass transition temperature of the first polyimide resin layer, 50 to 120 ° C. has higher than the glass transition temperature of the second polyimide resin layer,
The double-sided metal-clad laminate according to claim 1.
前記第1のポリイミド樹脂層と接する前記金属層の面の十点平均表面粗さ(Rz)が0.5〜3μmの範囲にある、
請求項1または2いずれか1項に記載の両面金属張積層板。
The ten-point average surface roughness (Rz) of the surface of the metal layer in contact with the first polyimide resin layer is in the range of 0.5 to 3 μm .
The double-sided metal-clad laminate according to claim 1 or 2 .
前記第1のポリイミド樹脂層は、4,4’−ジアミノ−2,2’−ジメチルビフェニルを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られるものである、
請求項1〜3いずれか1項に記載の両面金属張積層板。
The first polyimide resin layer is prepared by reacting a diamino compound containing 50 mol% or more of 4,4′-diamino-2,2′-dimethylbiphenyl with a tetracarboxylic acid compound, and passing through a polyimide precursor resin. Is obtained by
The double-sided metal-clad laminate according to any one of claims 1 to 3.
第1の金属層となる金属箔上に、線湿度膨張係数が20×10-6/%RH以下である第1のポリイミド樹脂層、または、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られる、ガラス転移点温度が300℃以上かつ前記第1のポリイミド樹脂層のガラス転移点温度より低い第2のポリイミド樹脂層を形成し、当該第1のポリイミド樹脂層または当該第2のポリイミド樹脂層の上に、前記第1のポリイミド樹脂層、前記第2のポリイミド樹脂層、または、前記第1のポリイミド樹脂層および前記第2のポリイミド樹脂層を、前記第2のポリイミド樹脂層が最外層となるように少なくとも1層積層して第1の積層体を形成する工程と、
第2の金属層となる金属箔上に、前記第1の積層体とポリイミド樹脂層の積層構造が同じまたは異なる第2の積層体を、前記第2のポリイミド樹脂層が最外層となるように形成する工程と、
前記第1の積層体の前記第2のポリイミド樹脂層と前記第2の積層体の前記第2のポリイミド樹脂層同士を加熱圧着する工程と、を有し、
前記金属箔上に前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層を形成する工程は、前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層となるポリイミド前駆体樹脂溶液またはポリイミド樹脂溶液を塗布後、乾燥および必要に応じて行なわれるイミド化のための加熱処理を行う工程である、
外側両面に前記第1の金属層および前記第2の金属層を有する、両面金属張積層板の製造方法。
A first polyimide resin layer having a linear humidity expansion coefficient of 20 × 10 −6 /% RH or less or 2,2-bis [4- (4-aminophenoxy) on a metal foil serving as a first metal layer The first polyimide resin having a glass transition temperature of 300 ° C. or higher obtained by reacting a diamino compound containing 50 mol% or more of phenyl] propane with a tetracarboxylic acid compound and via a polyimide precursor resin forming a second polyimide resin layer had lower than the glass transition temperature of the layer, on top of the first polyimide resin layer or the second polyimide resin layer, wherein the first polyimide resin layer, the second A polyimide resin layer or at least one layer of the first polyimide resin layer and the second polyimide resin layer is laminated so that the second polyimide resin layer is the outermost layer. Forming a laminate,
A second laminated body having the same or different laminated structure of the first laminated body and the polyimide resin layer is disposed on the metal foil to be the second metal layer, and the second polyimide resin layer is the outermost layer. Forming, and
Thermocompression bonding the second polyimide resin layer of the first laminate and the second polyimide resin layer of the second laminate,
The step of forming the first polyimide resin layer or the second polyimide resin layer on the metal foil includes a polyimide precursor resin solution or a polyimide that becomes the first polyimide resin layer or the second polyimide resin layer. After applying the resin solution, it is a step of performing drying and heat treatment for imidization performed as necessary.
A method for producing a double-sided metal-clad laminate having the first metal layer and the second metal layer on both outer surfaces .
前記第1の積層体と前記第2の積層体は、いずれも前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層が交互に積層されて形成されるものである、
請求項5に記載の両面金属張積層板の製造方法。
Wherein the first laminate second laminate are those both of the first polyimide resin layer or the second polyimide resin layer is formed by alternately stacking,
The method for producing a double-sided metal-clad laminate according to claim 5 .
前記第1のポリイミド樹脂層として、前記第2のポリイミド樹脂層よりガラス転移点温度が50〜120℃高いものを用いる
請求項5または6に記載の両面金属張積層板の製造方法。
As said 1st polyimide resin layer, the thing whose glass transition point temperature is 50-120 degreeC higher than said 2nd polyimide resin layer is used ,
The method for producing a double-sided metal-clad laminate according to claim 5 or 6 .
前記第1、第2の金属層の金属箔として、前記第1のポリイミド樹脂層または前記第2のポリイミド樹脂層と接する金属箔の面の十点平均表面粗さ(Rz)が0.5〜3μmの範囲の金属箔を使用する、
請求項5〜7のいずれかに記載の両面金属張積層板の製造方法。
As the metal foil of the first and second metal layers, the ten-point average surface roughness (Rz) of the surface of the metal foil in contact with the first polyimide resin layer or the second polyimide resin layer is 0.5 to Use a metal foil in the range of 3 μm,
The manufacturing method of the double-sided metal-clad laminated board in any one of Claims 5-7 .
前記第1のポリイミド樹脂層は、4,4’−ジアミノ−2,2’−ジメチルビフェニルを50モル%以上含有するジアミノ化合物と、テトラカルボン酸化合物とを反応させ、ポリイミド前駆体樹脂を経由して得られるものである、
請求項5〜8いずれか1項に記載の両面金属張積層板の製造方法。
The first polyimide resin layer is prepared by reacting a diamino compound containing 50 mol% or more of 4,4′-diamino-2,2′-dimethylbiphenyl with a tetracarboxylic acid compound, and passing through a polyimide precursor resin. Is obtained by
The manufacturing method of the double-sided metal-clad laminated board of any one of Claims 5-8 .
JP2011280017A 2011-12-21 2011-12-21 Double-sided metal-clad laminate and method for producing the same Active JP5886027B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011280017A JP5886027B2 (en) 2011-12-21 2011-12-21 Double-sided metal-clad laminate and method for producing the same
KR1020120147272A KR101987038B1 (en) 2011-12-21 2012-12-17 Both sides metal-clad laminate and method of producing the same
TW101148013A TWI547368B (en) 2011-12-21 2012-12-18 Double-sided metal clad laminate and method for manufacturing the same
CN201210558943.7A CN103171190B (en) 2011-12-21 2012-12-20 Two sides metal-clad and its manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280017A JP5886027B2 (en) 2011-12-21 2011-12-21 Double-sided metal-clad laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013129116A JP2013129116A (en) 2013-07-04
JP5886027B2 true JP5886027B2 (en) 2016-03-16

Family

ID=48631589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280017A Active JP5886027B2 (en) 2011-12-21 2011-12-21 Double-sided metal-clad laminate and method for producing the same

Country Status (4)

Country Link
JP (1) JP5886027B2 (en)
KR (1) KR101987038B1 (en)
CN (1) CN103171190B (en)
TW (1) TWI547368B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210036342A (en) 2018-07-25 2021-04-02 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal Clad Laminates and Circuit Boards
KR20230099675A (en) 2021-12-27 2023-07-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Layered resin product, metal-clad laminate, circuit substrate, electronic device and electronic apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456900B (en) * 2013-08-20 2016-07-06 Tcl集团股份有限公司 The manufacture method of flexible display apparatus
JP6119867B2 (en) * 2013-09-20 2017-04-26 大日本印刷株式会社 Organic glass laminate
JP5793720B1 (en) 2014-04-11 2015-10-14 パナソニックIpマネジメント株式会社 Adhesive sheet with metal foil, laminate with metal foil, multilayer substrate with metal foil, method for producing circuit board
KR102239605B1 (en) * 2014-12-23 2021-04-12 주식회사 두산 Double-sided flexible metallic laminate and method thereof
JP6528597B2 (en) * 2015-08-20 2019-06-12 住友金属鉱山株式会社 Conductive substrate, and method of manufacturing conductive substrate
WO2020066880A1 (en) * 2018-09-25 2020-04-02 株式会社クラレ Method for manufacturing metal-clad layered body
CN115971017B (en) * 2018-09-28 2024-01-16 日铁化学材料株式会社 Method for producing polyimide film, method for producing metal-clad laminate, and method for producing circuit board
JP7446741B2 (en) * 2018-09-28 2024-03-11 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
JP2021106248A (en) * 2019-12-27 2021-07-26 日鉄ケミカル&マテリアル株式会社 Metal-clad laminated plate and circuit board
CN113147151B (en) * 2021-04-20 2023-09-22 合肥佩尔哲汽车内饰系统有限公司 Environment-friendly equipment for automobile interior production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693537A (en) 1992-09-07 1994-04-05 Kanebo Ltd Loom management apparatus
JP2875186B2 (en) 1995-06-08 1999-03-24 日鉱グールド・フォイル株式会社 Processing method of copper foil for printed circuit
WO2008133182A1 (en) * 2007-04-18 2008-11-06 Asahi Kasei E-Materials Corporation Metal-resin laminate
JP5176886B2 (en) * 2007-11-12 2013-04-03 東洋紡株式会社 Flexible metal laminate and flexible printed circuit board
JP5240204B2 (en) * 2007-11-12 2013-07-17 東洋紡株式会社 Metal laminate
TWI462826B (en) 2008-07-22 2014-12-01 Furukawa Electric Co Ltd Flexible copper clad sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210036342A (en) 2018-07-25 2021-04-02 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal Clad Laminates and Circuit Boards
KR20230099675A (en) 2021-12-27 2023-07-04 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Layered resin product, metal-clad laminate, circuit substrate, electronic device and electronic apparatus

Also Published As

Publication number Publication date
CN103171190B (en) 2017-10-24
TWI547368B (en) 2016-09-01
JP2013129116A (en) 2013-07-04
CN103171190A (en) 2013-06-26
KR20130072145A (en) 2013-07-01
TW201338971A (en) 2013-10-01
KR101987038B1 (en) 2019-06-10

Similar Documents

Publication Publication Date Title
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JP4755264B2 (en) Polyimide film and method for producing the same
JP5180814B2 (en) Laminated body for flexible wiring board
JP6031396B2 (en) Manufacturing method of double-sided flexible metal-clad laminate
JP4544588B2 (en) Laminated body
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP7212515B2 (en) Metal-clad laminates and circuit boards
JP4907580B2 (en) Flexible copper clad laminate
KR101241265B1 (en) Process of high flexuous flexible copper clad laminate
JP2006068920A (en) Manufacturing method of flexible copper foil/polyimide laminate
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4571043B2 (en) Laminated body and method for producing the same
JP5133724B2 (en) Method for producing polyimide resin laminate and method for producing metal-clad laminate
JP7212518B2 (en) METAL-CLAD LAMINATE, METHOD FOR MANUFACTURING SAME AND CIRCUIT BOARD
JP4615401B2 (en) Laminated body
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2019186534A (en) Metal-clad laminate sheet and circuit board
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP4593509B2 (en) Method for producing flexible laminate
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP5063257B2 (en) Method for producing metal laminated film and metal laminated film
JP5009756B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal tension plate
JP2005259790A (en) Flexible printed wiring board and its production method
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2009154447A (en) Metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R150 Certificate of patent or registration of utility model

Ref document number: 5886027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250