JP2005259790A - Flexible printed wiring board and its production method - Google Patents

Flexible printed wiring board and its production method Download PDF

Info

Publication number
JP2005259790A
JP2005259790A JP2004065854A JP2004065854A JP2005259790A JP 2005259790 A JP2005259790 A JP 2005259790A JP 2004065854 A JP2004065854 A JP 2004065854A JP 2004065854 A JP2004065854 A JP 2004065854A JP 2005259790 A JP2005259790 A JP 2005259790A
Authority
JP
Japan
Prior art keywords
layer
thickness
conductor
flexible printed
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004065854A
Other languages
Japanese (ja)
Inventor
Ichiro Higasayama
伊知郎 日笠山
Seiji Sato
誠治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004065854A priority Critical patent/JP2005259790A/en
Priority to CNA2005800075295A priority patent/CN1947476A/en
Priority to KR1020067020715A priority patent/KR20060129081A/en
Priority to PCT/JP2005/004100 priority patent/WO2005086547A1/en
Priority to TW094107193A priority patent/TW200536444A/en
Publication of JP2005259790A publication Critical patent/JP2005259790A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible printed wiring board having stabilized quality in which a film is not curled, even after a circuit is formed on the conductor side, and to provide its production method. <P>SOLUTION: In the flexible printed wiring board, a base layer composed of at least one kind of low thermal expansion polyimide based resin is interposed in between a bottom layer touching a conductor and a top layer on a side opposite to the conductor, wherein the bottom layer and the top layer are composed of thermoplastic polyimide based resin, exhibiting thermal expansion higher than that of the base layer, and a condition P<SB>1</SB><P<SB>2</SB>is satisfied between the thickness P<SB>1</SB>of the bottom layer and the thickness P<SB>2</SB>of the top layer. In the production process of a flexible printed wiring board, the bottom layer and the top layer are coated with polyimide precursor resin solution, convertible into thermoplasic polyimide based resin exhibiting thermal expansion higher than that of the base layer, such that the thickness P<SB>1</SB>of the bottom layer and the thickness P<SB>2</SB>of the top layer satisfy the condition P<SB>1</SB><P<SB>2</SB>and then they are dried and thermally set. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子機器類の小型化、軽量化の要請に対応したフレキシブルプリント配線用基板とその製造方法に関し、特に配線加工した後のポリイミドフイルム部に反りの発生のない高品質な片面導体のフレキシブルプリント配線用基板とその製造方法に関する。   The present invention relates to a flexible printed wiring board and a method for manufacturing the same in response to the demand for downsizing and weight reduction of electronic devices, and in particular, a high-quality single-sided conductor that does not warp in a polyimide film part after wiring processing. The present invention relates to a flexible printed wiring board and a method for manufacturing the same.

近年、高機能化する携帯電話やデシタルカメラ、ナビゲーター、その他各種電子機器類の小型化、軽量化の進展に伴って、これらに使用される電子配線材料としてのフレキシブルプリント基板(配線用基板)の小型高密度化、多層化、ファイン化、低誘電化等の要請が高まっている。このフレキシブルプリント配線用基板については、以前はポリイミドフイルムと金属箔とを低温硬化可能な接着剤で張り合わせて製造されていたが、接着剤層が配線基板としての特性の低下、特にポリイミドベースフイルムの優れた耐熱性、難燃性等を損ねるという問題がある。さらに接着剤層を有する他の問題として配線の回路加工性が悪くなるという問題もある。   In recent years, with the progress of miniaturization and weight reduction of highly functional mobile phones, digital cameras, navigators, and other various electronic devices, flexible printed circuit boards (wiring boards) used as electronic wiring materials are used. There is a growing demand for smaller, higher density, multilayer, finer, lower dielectric, etc. This flexible printed wiring board was previously manufactured by bonding polyimide film and metal foil together with an adhesive that can be cured at low temperature. However, the adhesive layer has deteriorated characteristics as a wiring board, especially polyimide base film. There is a problem that the excellent heat resistance and flame retardancy are impaired. Another problem with the adhesive layer is that the circuit processability of the wiring is deteriorated.

具体的には、スルーホール加工時のドリリングによる樹脂スミアの発生や、導体スルーホール加工時の寸法変化率が大きい等の問題が挙げられる。特に両面スルーホール構造の場合、絶縁体層であるベースフイルムを中心にその両面に接着剤を介して導体の銅箔等を貼り合わせて形成されたものは、片面構造のフレキシブルプリント基板と比較して一般的にその柔軟性が低いという問題がある。一方、ICの高密度化、プリント配線の微細化や高密度化に伴い、発熱が大きくなり、良熱伝導体を貼り合わせることが必要になる場合がある。また、よりコンパクトにするため、ハウジングと配線を一体化する方法もある。さらには、電気容量の異なった配線を必要としたり、より高温に耐える配線材を必要とすることもある。そこで、接着剤を使用しないで硬化前のポリアミック酸溶液を銅箔等の導体に直接塗布し、加熱して硬化させるフレキシブルプリント基板の製造方法が種々提案されている。   Specifically, there are problems such as generation of resin smear due to drilling during through-hole processing and a large dimensional change rate during conductor through-hole processing. In particular, in the case of a double-sided through-hole structure, a base film, which is an insulator layer, is formed by bonding a copper foil, etc., of a conductor with an adhesive on both sides compared to a single-sided flexible printed circuit board. In general, there is a problem that its flexibility is low. On the other hand, heat generation increases with the increase in the density of ICs and the miniaturization and density of printed wiring, and it may be necessary to attach a good heat conductor. There is also a method of integrating the housing and the wiring in order to make it more compact. Furthermore, wiring with different electric capacities may be required, and wiring materials that can withstand higher temperatures may be required. Therefore, various methods for producing a flexible printed board have been proposed in which a polyamic acid solution before curing is directly applied to a conductor such as a copper foil without using an adhesive and is cured by heating.

例えば、硬化物の線膨張係数が3.0×10-5以下のジアミンとテトラカルボン酸無水物で合成されるポリアミック酸を金属箔に塗布し加熱硬化させるもの(例えば特許文献1参照)や、特定構造単位を有するボリアミドイミド前駆体化合物を含有する樹脂溶液を導体上に塗布してイミド化するもの(例えば特許文献2参照)、ジアミノベンズアニリド又はその誘導体を含むジアミン類と芳香族テトラカルボン酸との反応で得られる構造単位を有する絶縁材の前駆体溶液を導体上に直接塗布して硬化させるもの(例えば特許文献3参照)等が挙げられる。さらに金属箔との密着性を高めるために導体上に複数のポリイミド前駆体樹脂溶液を用いて、複数回塗布と乾燥を行うことによって複数のポリイミド樹脂層を有するフレキシブルプリント配線用基板を製造する方法(例えば特許文献4参照)も提案されている。
特開昭62−212140号公報 特開昭63−84188号公報 特開昭63−245988号公報 特公平6−49185号公報
For example, a polyamic acid synthesized with a diamine having a linear expansion coefficient of 3.0 × 10 −5 or less and a tetracarboxylic acid anhydride applied to a metal foil and cured by heating (for example, see Patent Document 1), A resin solution containing a polyamidoimide precursor compound having a specific structural unit is applied onto a conductor and imidized (see, for example, Patent Document 2), a diamine containing diaminobenzanilide or a derivative thereof, an aromatic tetracarboxylic acid, Examples include those in which a precursor solution of an insulating material having a structural unit obtained by this reaction is directly applied onto a conductor and cured (see, for example, Patent Document 3). Further, a method for producing a flexible printed wiring board having a plurality of polyimide resin layers by applying and drying a plurality of times using a plurality of polyimide precursor resin solutions on a conductor in order to improve adhesion to a metal foil (For example, see Patent Document 4) has also been proposed.
JP-A-62-212140 JP-A-63-84188 JP-A 63-245988 Japanese Examined Patent Publication No. 6-49185

上記の特許文献4におけるフレキシブルプリント配線用基板の製造方法によれば,導体となる金属箔と樹脂との密着性と金属箔と樹脂との線膨張係数の差に起因して発生する基板のカールが抑制された良質のフレキシブルプリント配線用基板を得ることができる。しかしながら、このような基板であってもその金属箔の片面上における複数層のポリイミド樹脂の構成が特定の条件を満たさないものにあっては、実際に導体側に回路加工を施し、不要な金属箔を除去すると露出したポリイミドフイルムにカールが発生し易いという問題のあることがわかった。   According to the method for manufacturing a substrate for flexible printed wiring described in Patent Document 4, the curling of the substrate that occurs due to the difference in the adhesion between the metal foil and the resin as the conductor and the linear expansion coefficient between the metal foil and the resin. It is possible to obtain a high-quality flexible printed wiring board in which the above is suppressed. However, even with such a substrate, if the structure of the polyimide resin of the plurality of layers on one side of the metal foil does not satisfy specific conditions, circuit processing is actually performed on the conductor side, and unnecessary metal It has been found that there is a problem that the exposed polyimide film tends to curl when the foil is removed.

このような現象が起こる要因として、ポリイミド前駆体樹脂溶液を塗工・乾燥し加熱処理によりイミド化する過程において、形成されるポリイミド樹脂層の厚み方向にポリイミド分子の配向度に差が生じるのではないかと予想されたが、そのメカニズムについてはいまだ解明されていなかった。そこで本発明の目的は、導体側への回路加工後においてもフイルムにカールが発生しない品質の安定したフレキシブルプリント配線用基板とその製造方法を提供することである。   As a cause of this phenomenon, there is a difference in the degree of orientation of polyimide molecules in the thickness direction of the formed polyimide resin layer in the process of applying and drying the polyimide precursor resin solution and imidizing by heat treatment. Although it was expected, the mechanism was not yet elucidated. SUMMARY OF THE INVENTION An object of the present invention is to provide a flexible printed wiring board having a stable quality that does not cause curling in a film even after circuit processing on a conductor side, and a method for manufacturing the same.

本発明者らは、上記課題について鋭意検討した結果、多層からなるポリイミド層の厚さ方向のポリイミド分子の配向度の差から生じる、厚さ方向の線膨張係数の差を予測し、導体と接する層とトップ層には両者の中間に存在するベース層よりも熱膨張係数の高いポリイミド樹脂層を配置し、且つ、導体と接する層の厚みをトップ層の厚みよりも小さくすることで本発明の目的が達せられることを見出し本発明を完成した。   As a result of intensive studies on the above problems, the present inventors have predicted the difference in the linear expansion coefficient in the thickness direction resulting from the difference in the degree of orientation of the polyimide molecules in the thickness direction of the multilayer polyimide layer, and contacted the conductor A polyimide resin layer having a higher thermal expansion coefficient than the base layer present between the layers and the top layer is disposed, and the thickness of the layer in contact with the conductor is made smaller than the thickness of the top layer. The present invention has been completed by finding out that the object can be achieved.

すなわち、本発明のフレキシブルプリント配線用基板は、導体の片面上に線膨張係数の異なる多層のポリイミド層を有するフレキシブルプリント配線用基板であって、導体と接するボトム層及び導体と反対側のトップ層の中間に少なくとも一種の線膨張係数が30×10-6(1/℃)以下の低熱膨脹性ポリイミド系樹脂からなるベース層が配置され、且つ、ボトム層とトップ層がベース層よりも高熱膨脹性の熱可塑性ポリイミド系樹脂からなり、更にボトム層の厚みP1とトップ層の厚みP2が、P1<P2の条件を満足することを特徴するものである。 That is, the flexible printed wiring board of the present invention is a flexible printed wiring board having a multilayer polyimide layer having different linear expansion coefficients on one side of a conductor, and a bottom layer in contact with the conductor and a top layer opposite to the conductor. A base layer made of a low thermal expansion polyimide resin having a linear expansion coefficient of 30 × 10 −6 (1 / ° C.) or less is disposed in the middle of the base layer, and the bottom layer and the top layer have higher thermal expansion than the base layer. The bottom layer thickness P 1 and the top layer thickness P 2 satisfy the condition of P 1 <P 2 .

また、上記本発明おけるベース層の厚みPmに対するその両側のボトム層とトップ層の合計厚みとの比Pm/(P1+P2)が2〜100の範囲であることが望ましい。 Moreover, it is desirable that the ratio P m / (P 1 + P 2 ) of the total thickness of the bottom layer and the top layer on both sides to the thickness P m of the base layer in the present invention is in the range of 2-100.

更に、上記本発明おけるボトム層の厚みP1が0.2〜10μmの範囲であり、且つ、トップ層の厚みP2との比P1/P2が0.2〜0.8の範囲範囲であることが望ましい。 Furthermore, the thickness P 1 of the bottom layer in the present invention is in the range of 0.2 to 10 μm, and the ratio P 1 / P 2 to the thickness P 2 of the top layer is in the range of 0.2 to 0.8. It is desirable that

本発明のフレキシブルプリント配線用基板の製造方法は、導体の片面上に複数層のポリイミド前駆体樹脂溶液を直接塗工・乾燥した後加熱硬化することにより、線膨張係数の異なる多層のポリイミド層を有するフレキシブルプリント配線用基板を製造する方法において、導体と接するボトム層及び導体と反対側のトップ層の中間に少なくとも一種からなる線膨脹係数が30×10-6(1/℃)以下の低熱膨脹性ポリイミド系樹脂に変換可能なベース層を配置し、且つ、ボトム層とトップ層にはベース層よりも高熱膨脹性の熱可塑性ポリイミド系樹脂に変換可能なポリイミド前駆体樹脂溶液をボトム層の厚みP1とトップ層の厚みP2が、P1<P2の条件を満足するように塗工・乾燥した後加熱硬化することを特徴とするものである。 The method for producing a substrate for flexible printed wiring of the present invention comprises a method of forming a multilayer polyimide layer having different linear expansion coefficients by directly applying and drying a plurality of layers of a polyimide precursor resin solution on one side of a conductor, followed by heat curing. In the method for manufacturing a flexible printed wiring board, a low thermal expansion having a linear expansion coefficient of at least 30 × 10 −6 (1 / ° C.) or less between the bottom layer in contact with the conductor and the top layer opposite to the conductor. A base layer that can be converted into a functional polyimide resin is disposed, and a polyimide precursor resin solution that can be converted into a thermoplastic polyimide resin having a higher thermal expansion than the base layer is formed on the bottom layer and the top layer. P 1 and the thickness P 2 of the top layer are characterized by being heat-cured after coating and drying so as to satisfy the condition of P 1 <P 2 .

また上記本発明において、ベース層の厚みPmに対するその両側のボトム層及びトップ層の合計厚みとの比Pm/(P1+P2)が2〜100の範囲であることが望ましい。 In the present invention, the ratio P m / (P 1 + P 2 ) of the total thickness of the bottom layer and the top layer on both sides to the thickness P m of the base layer is preferably in the range of 2-100.

さらに上記本発明において、ボトム層の厚みP1が0.2〜10μmの範囲であり、且つ、トップ層の厚みP2との比P1/P2が0.2〜0.8の範囲を満足するようにポリイミド前駆体樹脂溶液を塗工することが望ましい。 Further, in the present invention, the thickness P 1 of the bottom layer is in the range of 0.2 to 10 μm, and the ratio P 1 / P 2 to the thickness P 2 of the top layer is in the range of 0.2 to 0.8. It is desirable to apply the polyimide precursor resin solution so as to satisfy.

本発明によれば、フレキシブルプリント配線用基板に回路加工を施して不要な金属箔を除去してもポリイミドフイルムにカールや反りが発生せず、結果として寸法安定性に優れたプリント配線板を製造することができる。   According to the present invention, even if circuit processing is performed on a flexible printed wiring board and unnecessary metal foil is removed, the polyimide film does not curl or warp, and as a result, a printed wiring board having excellent dimensional stability is manufactured. can do.

以下に本発明を実施するための最良の形態について詳細に説明する。先ず本発明において使用される導体としては、厚みが5〜150μmである銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、亜鉛及びそれらの合金等の導電性金属箔を挙げることができ、好ましくは銅である。銅の場合は圧延銅箔と電解銅箔があるがいずれも使用することができる。なお接着力の向上を目的として、その表面にサイディング、ニッケルメッキ、銅−亜鉛合金メッキ、あるいはアルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による化学的又は機械的な表面処理を施してもよい。   The best mode for carrying out the present invention will be described in detail below. First, examples of conductors used in the present invention include conductive metal foils such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and alloys thereof having a thickness of 5 to 150 μm. Preferably, it is copper. In the case of copper, there are a rolled copper foil and an electrolytic copper foil, but both can be used. For the purpose of improving the adhesion, the surface may be subjected to chemical or mechanical surface treatment with siding, nickel plating, copper-zinc alloy plating, aluminum alcoholate, aluminum chelate, silane coupling agent or the like.

導体である導電性金属箔の片面に複数のポリイミド系樹脂層を形成することにより絶縁体層を形成することができるが、絶縁体層として使用されるポリイミド系樹脂とは、イミド環構造を有する樹脂の総称であり、例えばポリイミド、ポリアミドイミド、ポリエステルイミドなどが挙げられる。そして、ポリイミド系樹脂層としては、前記特許文献1〜4に記載したような低熱膨張性のものや、加熱すると溶融若しくは軟化する熱可塑性ポリイミド等が利用でき特に限定されない。しかし特に好ましい絶縁体層は、熱膨張係数が30×10-6(1/k)の低熱膨脹性樹脂層をベース層として、その上下にベース層よりも高熱膨脹性性の熱可塑性ポリイミド系樹脂からなる2層(ボトム層とトップ層)を配置した少なくとも三層のポリイミド系樹脂層からなるものが望ましい。 An insulator layer can be formed by forming a plurality of polyimide resin layers on one side of a conductive metal foil that is a conductor, but the polyimide resin used as the insulator layer has an imide ring structure. A general term for resins, such as polyimide, polyamideimide, polyesterimide, and the like. And as a polyimide-type resin layer, the thing of the low thermal expansion as described in the said patent documents 1-4, the thermoplastic polyimide etc. which fuse | melt or soften when heated can be utilized, and it is not specifically limited. However, a particularly preferred insulator layer is a low thermal expansion resin layer having a thermal expansion coefficient of 30 × 10 −6 (1 / k) as a base layer, and a thermoplastic polyimide resin having a higher thermal expansion than the base layer above and below it. It is desirable to use at least three polyimide resin layers in which two layers (bottom layer and top layer) are arranged.

ここでベース層を形成する低熱膨張ポリイミド系樹脂としては、その線膨張係数が30×10-6(1/℃)以下が好ましく、フイルムの耐熱性、可撓性において優れた性能を有するものがよい。ここで線膨張係数は、イミド化反応が十分に終了した試料を用い、サーモメカニカルアナライザー(TMA)を用いて250℃に昇温後、10℃/分の速度で冷却し、240〜100℃の範囲における平均の線膨張係数を求めたものである。このような性質を有する低熱膨張ポリイミド系樹脂の具体例としては、下記一般式(I)で表される単位構造を有するポリイミド系樹脂が望ましい。 Here, the low thermal expansion polyimide resin forming the base layer preferably has a linear expansion coefficient of 30 × 10 −6 (1 / ° C.) or less, and has excellent performance in heat resistance and flexibility of the film. Good. Here, the linear expansion coefficient is a sample having a sufficiently completed imidation reaction, heated to 250 ° C. using a thermomechanical analyzer (TMA), cooled at a rate of 10 ° C./min, and 240 to 100 ° C. The average linear expansion coefficient in the range is obtained. As a specific example of the low thermal expansion polyimide resin having such properties, a polyimide resin having a unit structure represented by the following general formula (I) is desirable.

Figure 2005259790
(但し、式中R1〜R4は低級アルキル基、低級アルコキシ基、ハロゲン基又は水素を示す)
Figure 2005259790
(Wherein R 1 to R 4 represent a lower alkyl group, a lower alkoxy group, a halogen group or hydrogen)

また、ベース層の上下に使用されるボトム層とトップ層を形成する熱可塑性ポリイミド系樹脂としては、ベース層よりも高熱膨脹性であり、そのガラス転移点温度が350℃以下のものであればいかなる構造のものであってもよいが、好ましくは加熱加圧下で圧着した際にその界面の接着強度が十分であるものがよい。この場合ボトム層とトップ層の熱可塑性ポリイミド系樹脂種は上記の条件を満たす限り、同じものであってもよいし異なる単位構造を有するものであってもよい。ここでいう熱可塑性ポリイミド系樹脂とは、ガラス転移点以上の通常の状態で必ずしも十分な流動性を示さなくてもよく、加圧によって接着可能なものも含まれる。このような性質を有する熱可塑性ポリイミド系樹脂の具体例としては、下記一般式(II)や一般式(III)で表される単位構造を有するものである。   The thermoplastic polyimide resin forming the bottom layer and the top layer used above and below the base layer is higher in thermal expansion than the base layer and has a glass transition temperature of 350 ° C. or lower. Although it may have any structure, it is preferable that the adhesive strength at the interface is sufficient when pressure bonding is performed under heat and pressure. In this case, the thermoplastic polyimide resin species of the bottom layer and the top layer may be the same or have different unit structures as long as the above conditions are satisfied. Here, the thermoplastic polyimide resin does not necessarily have sufficient fluidity in a normal state above the glass transition point, and includes those that can be bonded by pressurization. Specific examples of the thermoplastic polyimide resin having such properties have a unit structure represented by the following general formula (II) or general formula (III).

Figure 2005259790
(但し、式中Ar1は2価の芳香族基であってその炭素数が12以上である。)
Figure 2005259790
(但し、式中Ar2は2価の芳香族基であってその炭素数が12以上である。)
Figure 2005259790
(In the formula, Ar 1 is a divalent aromatic group having 12 or more carbon atoms.)
Figure 2005259790
(In the formula, Ar 2 is a divalent aromatic group having 12 or more carbon atoms.)

ここで、2価の芳香族基Ar1又Ar2の具体例としては例えば

Figure 2005259790
等を挙げることができる。 Here, specific examples of the divalent aromatic group Ar 1 or Ar 2 include
Figure 2005259790
Etc.

また片面導体のフレキシブルプリント配線用基板を製造する方法としては、前記特許文献4に記載されているようにポリイミド前駆体溶液又はポリイミド溶液に、公知の酸無水物系やアミン系硬化剤等の硬化剤、シランカップリング剤、チタネートカップリング剤、エポキシ化合物等の接着性付与剤、ゴム等の可撓性付与剤等の各種の添加剤や触媒を加えて導電性金属箔の片面へ塗工し、次いで熱処理により熱硬化して片面導体積層体を得ることができる。なお片面導体の積層体は、導電性金属箔にボトム層としてベース層よりも高熱膨張性の熱可塑性ポリイミド系樹脂層を、中間のベース層に少なくとも一種の低熱膨張性ポリイミド系樹脂層を、さらに最外のトップ層としてベース層よりも高熱膨張性の熱可塑性ポリイミド系樹脂層の順に積層したものとすることが好ましい。   Moreover, as a method for producing a flexible printed wiring board having a single-sided conductor, as described in Patent Document 4, a polyimide precursor solution or a polyimide solution is cured with a known acid anhydride type or amine type curing agent. Applying various additives and catalysts such as adhesives, silane coupling agents, titanate coupling agents, adhesion imparting agents such as epoxy compounds, flexibility imparting agents such as rubber, etc., and coating on one side of conductive metal foil Then, it can be thermoset by heat treatment to obtain a single-sided conductor laminate. The single-sided conductor laminate has a conductive metal foil as a bottom layer with a higher thermal expansion thermoplastic polyimide resin layer than the base layer, an intermediate base layer with at least one low thermal expansion polyimide resin layer, The outermost top layer is preferably laminated in the order of a thermoplastic polyimide resin layer having a higher thermal expansion than the base layer.

ここで、中間のベース層はボトム層やトップ層の熱可塑性ポリイミド系樹脂層より低熱膨張性のポリイミド系樹脂層でなければならない。ベース層は製造されるフレキシブルプリント配線板用基板のカールや反りの発生を抑制する作用を有し、導体と接するボトム層は導電性金属箔との接着性を確保する作用を有し,トップ層はフイルム単体のカールを抑制する作用が期待して用いられる。また、場合によっては、トップ層に他の導電性金属箔を積層して加熱圧着させて両面導体のフレキシブルプリント配線板用基板として使用する場合の接着性を確保する作用も期待して用いられる。   Here, the intermediate base layer must be a polyimide resin layer having a lower thermal expansion than the thermoplastic polyimide resin layer of the bottom layer or the top layer. The base layer has the function of suppressing the occurrence of curling and warping of the substrate for the flexible printed wiring board to be manufactured, and the bottom layer in contact with the conductor has the function of ensuring the adhesiveness with the conductive metal foil. Is used in anticipation of curling the film itself. In some cases, another conductive metal foil is laminated on the top layer and thermocompression-bonded so that the adhesiveness when used as a substrate for a flexible printed wiring board with a double-sided conductor is also expected.

その際、低熱膨脹性ポリイミド系樹脂層(ベース層)の厚みPmに対するその両側の熱可塑性ポリイミド系樹脂層(ボトム層とトップ層)の合計厚みとの比Pm/(P1+P2)が2〜100の範囲、好ましくは5〜20の範囲がよい。この厚さの比が2より小さいと、ポリイミド系樹脂層全体の熱膨張係数が金属箔のそれに比べて高くなりすぎ、得られるフレキシブルプリント配線板用基板の反りやカールが大きくなり、回路加工時の作業性が著しく低下する。また、両側の熱可塑性ポリイミド系樹脂層の合計厚み(P1+P2)が小さすぎて、厚さの比が100を超えるほどに大きくなると、導電性金属箔との接着力が充分に発揮されなくなる場合が生じる。 At that time, the ratio P m / (P 1 + P 2 ) of the total thickness of the thermoplastic polyimide resin layers (bottom layer and top layer) on both sides of the thickness P m of the low thermal expansion polyimide resin layer (base layer) Is in the range of 2-100, preferably in the range of 5-20. If the thickness ratio is smaller than 2, the thermal expansion coefficient of the entire polyimide resin layer is too high compared to that of the metal foil, and the warp and curl of the resulting flexible printed wiring board substrate becomes large, so that during circuit processing The workability is significantly reduced. In addition, if the total thickness (P 1 + P 2 ) of the thermoplastic polyimide resin layers on both sides is too small and the ratio of the thickness exceeds 100, the adhesive strength with the conductive metal foil is sufficiently exerted. In some cases, it will disappear.

導体と接するボトム層の厚み(P1)と導体と反対側のトップ層の厚み(P2)の比はP1<P2であることが重要である。その厚さの割合は低熱膨脹性を有するベース層の厚さによって変わるが、P1/P2=0.2〜0.8、さらに好ましくは0.3〜0.7である。この範囲より小さいとフイルムカール修正効果が強すぎて逆にカールが生じるようになり、他方、この範囲より大きいとフイルムカール抑制効果が発現されない。又、導体層と接するボトム層の厚み(P1)は0.2〜10μmの範囲であることが好ましい。この範囲より薄いと導体層との接着力が確保できず、また厚いと耐熱性低下の原因となる。 It is important that the ratio of the thickness (P 1 ) of the bottom layer in contact with the conductor and the thickness (P 2 ) of the top layer opposite to the conductor is P 1 <P 2 . The ratio of the thickness varies depending on the thickness of the base layer having low thermal expansion, but P 1 / P 2 = 0.2 to 0.8, more preferably 0.3 to 0.7. If it is smaller than this range, the curl correcting effect is too strong, and conversely, curling occurs. On the other hand, if it is larger than this range, the film curl suppressing effect is not exhibited. The thickness (P 1 ) of the bottom layer in contact with the conductor layer is preferably in the range of 0.2 to 10 μm. If it is thinner than this range, the adhesive strength with the conductor layer cannot be secured, and if it is thick, heat resistance will be reduced.

導電性金属箔上へのこれら複数のポリイミド系樹脂に変換可能なポリイミド前駆体樹脂の塗工は、その樹脂溶液の形で行うことができるが、好ましくは前記特許文献4に記載されているようにその前駆体溶液の形で、複数の前駆体溶液の一括又は逐次の塗工あるいはイミド閉環温度以下での脱溶剤処理の後、前駆体のポリイミドへの加熱変換を一括して行うのが好ましい。完全にポリイミドに変換された層の上にさらに別のポリイミド系前駆体溶液を塗工し、熱処理してイミド閉環させると、各ポリイミド系樹脂層間の接着力が充分に発揮されないことがあり、製品の両面積層体の品質を低下させる原因になる。   The application of the polyimide precursor resin that can be converted into the plurality of polyimide resins on the conductive metal foil can be performed in the form of the resin solution, but preferably as described in Patent Document 4 above. In the form of the precursor solution, it is preferable to perform batch conversion of a plurality of precursor solutions or a solvent removal treatment at a temperature equal to or lower than the imide ring-closing temperature and then perform heat conversion of the precursors to polyimide in a batch. . If another polyimide precursor solution is applied onto the layer that has been completely converted to polyimide and then heat-treated to cause imide ring closure, the adhesive strength between the polyimide resin layers may not be fully demonstrated. This causes the quality of the double-sided laminate to deteriorate.

導電性金属箔上にポリイミド前駆体樹脂溶液(ポリアミック酸溶液)あるいはその前駆体化合物を含有する樹脂溶液の塗工の方法としては、例えばナイフコーター、ダイコーター、ロールコーター、カーテンコーター等を使用して公知の方法により行うことができ、特に厚塗りを行う場合にはダイコーターやナイフコーターが適している。また、塗工に使用するポリイミド系前駆体樹脂溶液のポリマー濃度は、ポリマーの重合度にもよるが、通常5〜30重量%、好ましくは10〜20重量%である。ポリマー濃度が5重量%より低いと一回のコーティングで充分な膜厚が得られず、また、30重量%より高くなると溶液粘度が高くなりすぎて塗工しずらくなる。 As a method of coating a polyimide precursor resin solution (polyamic acid solution) or a resin solution containing the precursor compound on a conductive metal foil, for example, a knife coater, a die coater, a roll coater, a curtain coater or the like is used. In particular, a die coater or a knife coater is suitable for thick coating. The polymer concentration of the polyimide precursor resin solution used for coating is usually 5 to 30% by weight, preferably 10 to 20% by weight, although it depends on the degree of polymerization of the polymer. When the polymer concentration is lower than 5% by weight, a sufficient film thickness cannot be obtained by one coating, and when the polymer concentration is higher than 30% by weight, the solution viscosity becomes too high and coating becomes difficult.

導電性金属箔に均一な厚みに塗工されたポリイミド前駆体樹脂溶液(ポリアミック酸溶液)は、次に熱処理によって溶剤が除去されさらにイミド閉環される。この場合、急激に高温で熱処理すると、樹脂表面にスキン層が生成して溶剤が蒸発しずらくなったり、発泡したりするので低温から徐々に高温まで上昇させながら熱処理していくのが望ましい。この際の最終的な熱処理温度としては、通常300〜400℃が好ましく、400℃以上ではポリイミドの熱分解が徐々に起こり始め、また、300℃以下ではポリイミド皮膜が導電性金属箔上に充分に配向せず、平面性の良い片面導体積層体が得られない。このようにして形成された絶縁体としてのポリイミド系樹脂層の全体の厚みは通常10〜150μmである。   Next, the polyimide precursor resin solution (polyamic acid solution) applied to the conductive metal foil with a uniform thickness is subjected to a heat treatment to remove the solvent and further imide ring closure. In this case, if the heat treatment is suddenly performed at a high temperature, a skin layer is formed on the resin surface, and the solvent hardly evaporates or foams. Therefore, it is desirable to perform the heat treatment while gradually raising the temperature from a low temperature to a high temperature. The final heat treatment temperature at this time is usually preferably 300 to 400 ° C., and at 400 ° C. or higher, the thermal decomposition of the polyimide begins to occur gradually, and at 300 ° C. or lower, the polyimide film is sufficiently deposited on the conductive metal foil. A single-sided conductor laminate with good flatness cannot be obtained without orientation. Thus, the whole thickness of the polyimide-type resin layer as an insulator formed is normally 10-150 micrometers.

以下、実施例及び比較例に基づいて、本発明の実施の形態を具体的に説明する。なお、以下の実施例において、熱膨張係数、片面銅張品のカール及び接着力、ならびにフイルムのカールは以下の方法で測定した。   Hereinafter, based on an Example and a comparative example, embodiment of this invention is described concretely. In the following examples, the coefficient of thermal expansion, the curl and adhesion of a single-sided copper-clad product, and the curl of the film were measured by the following methods.

すなわち、熱膨張係数はセイコー電子工業株式会社製サーモメカニカルアナライザー(TMA100)を用いて、250℃に昇温後に10℃/分の速度で冷却し、240℃〜100℃の間における平均の線膨張係数を算出して求めた。   That is, the coefficient of thermal expansion is an average linear expansion between 240 ° C. and 100 ° C. using a thermomechanical analyzer (TMA100) manufactured by Seiko Electronics Industry Co., Ltd., after cooling to 250 ° C. and cooling at a rate of 10 ° C./min. The coefficient was calculated and obtained.

片面銅張品のカールとしては、熱処理してイミド化した後における100mm×100mmの寸法の銅張品の極率半径を測定した。   As the curl of a single-sided copper-clad product, the radius of curvature of a copper-clad product having a size of 100 mm × 100 mm after heat treatment and imidization was measured.

片面銅張品の接着力は,JIS C5016:7.1項に準じ、導体幅3mmのパターンを使用し、銅箔を180°の方向に50mm/分の速度で引き剥がした時の値(kg/cm)として求めた。   The adhesive strength of the single-sided copper-clad product is the value when the copper foil is peeled off at a speed of 50 mm / min in the direction of 180 ° using a pattern with a conductor width of 3 mm according to JIS C5016: 7.1 (kg / Cm).

ハンダ耐熱性としては、JIS C5016の方法に準じて、260℃から10℃間隔で徐々にハンダ浴温度を上げ、最高400℃まで測定した。   As the solder heat resistance, the solder bath temperature was gradually increased from 260 ° C. at intervals of 10 ° C. according to the method of JIS C5016, and measured up to 400 ° C.

また、実施例及び比較例中では以下の略号を使用した。
PMDA:無水ピロメリット酸
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸無水物
DDE:4,4−ジアミノジフェニルエーテル
MABA:2’−メトキシ−4,4’−ジアミノベンズアニリド
In the examples and comparative examples, the following abbreviations were used.
PMDA: pyromellitic anhydride BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic anhydride DDE: 4,4-diaminodiphenyl ether MABA: 2′-methoxy-4,4′-diaminobenzanilide

(合成例1)
ガラス製反応器に窒素を通じながらN,N−ジメチルアセトアミド2532gを仕込み、続いて攪拌下に0.5モルのDDEと0.5モルのMABAとを仕込み、その後完全に溶解させた。この溶液を10℃に冷却し、反応液が30℃以下の温度に保たれるように1モルのPMDAを少量ずつ添加し、添加終了後引き続いて室温で2時間攪拌を行い、重合反応を完結させた。得られたポリイミド前駆体溶液はポリマー濃度15重量%及びB型粘度計による25℃でのみかけ粘度1000mPa・sであった。
(Synthesis Example 1)
While nitrogen was passed through a glass reactor, 2532 g of N, N-dimethylacetamide was charged, followed by stirring with 0.5 mol of DDE and 0.5 mol of MABA, and then completely dissolved. The solution was cooled to 10 ° C., and 1 mol of PMDA was added little by little so that the reaction solution was kept at a temperature of 30 ° C. or lower. After the addition was completed, the mixture was stirred at room temperature for 2 hours to complete the polymerization reaction. I let you. The obtained polyimide precursor solution had a polymer concentration of 15% by weight and an apparent viscosity of 1000 mPa · s at 25 ° C. using a B-type viscometer.

(合成例2)
ジアミン成分としてDDEの1モルを使用し、酸無水物成分としてBTDAの1モルを使用した以外は、合成例1と同様にしてポリイミド前駆体溶液を調整した。得られたポリイミド前駆体溶液はポリマー濃度15重量%及びB型粘度計による25℃でのみかけ粘度300mPa・sであった。
(Synthesis Example 2)
A polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of DDE was used as the diamine component and 1 mol of BTDA was used as the acid anhydride component. The resulting polyimide precursor solution had a polymer concentration of 15% by weight and an apparent viscosity of 300 mPa · s at 25 ° C. using a B-type viscometer.

実施例1
35μmロール状の電解銅箔(日鉱グールド社製)の粗化面にボトム層としてダイコーターを用いて合成例2で調整したポリイミド前駆体溶液2を20μmの厚みで均一に塗工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を除去した。次にこのポリイミド前駆体層の上からリバース式ロールコーターを用いて合成例1で調整したポリイミド前駆体溶液1をベース層として200μmの厚みで均一に塗工し、120℃の熱風乾燥炉で連続的に処理し溶剤を除去した後、さらに合成例2で調整したポリイミド前駆体溶液2をトップ層として40μmの厚みで均一に塗布し、次いで熱風乾燥炉で30分間かけて120℃から360℃まで昇温させて熱処理しイミド化させ、ポリイミド樹脂層の厚みが25μmで反りやカールのない平面性の良好な片面導体積層体(片面銅張品a)を得た。但し、ボトム層の厚みの基点は導体の粗面の表面粗さの1/2として測定した。この片面導体積層体aの銅箔層とポリイミド樹脂層との間の180°引き剥がし強さ(JIS C−5016)を測定した結果は1.8Kg/cmであった。次いでこの片面導体積層体aの導体側に回路加工を施し、不要な金属箔を除去した場合の露出したポリイミドフイルムにはカールが発生がなく、又エッチング後のフイルムの線膨張係数は23.5×10-6(1/℃)であった。
Example 1
After the polyimide precursor solution 2 prepared in Synthesis Example 2 was uniformly coated with a thickness of 20 μm on a roughened surface of a 35 μm roll-shaped electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) using a die coater as a bottom layer, 120 μm was applied. The solvent was removed by continuous treatment in a hot air drying oven at 0 ° C. Next, the polyimide precursor solution 1 prepared in Synthesis Example 1 using a reverse roll coater was applied on the polyimide precursor layer uniformly as a base layer with a thickness of 200 μm, and continuously in a hot air drying oven at 120 ° C. After the treatment, the solvent was removed and the polyimide precursor solution 2 prepared in Synthesis Example 2 was applied uniformly as a top layer to a thickness of 40 μm, and then heated from 120 ° C. to 360 ° C. over 30 minutes in a hot air drying oven. A single-sided conductor laminate (single-sided copper-clad product a) having a good flatness with no warpage and no curling when the polyimide resin layer had a thickness of 25 μm was heated and heated for imidization. However, the base point of the bottom layer thickness was measured as 1/2 the surface roughness of the rough surface of the conductor. The 180 ° peel strength (JIS C-5016) measured between the copper foil layer and the polyimide resin layer of the single-sided conductor laminate “a” was 1.8 kg / cm. Next, when the circuit side is applied to the conductor side of the single-sided conductor laminate a and the unnecessary metal foil is removed, the exposed polyimide film is not curled, and the linear expansion coefficient of the film after etching is 23.5. × 10 -6 (1 / ° C).

実施例2〜3及び比較例1〜3
実施例1におけるボトム層、ベース層及びトップ層のポリイミド樹脂層の厚みを種々変更して、同様に乾燥し、次いで熱風乾燥炉で30分間かけて120℃から360℃まで昇温させて片面導体積層体(片面銅張品)aを得た。この片面導体積層体aの反りやカールの発生状況、180°引き剥がし強さ、及び導体側に回路加工を施し、不要な金属箔を除去した場合の露出したポリイミドフイルムのカールが発生状況と又エッチング後のフイルムの線膨張係数等を表1と表2にまとめて示す。
Examples 2-3 and Comparative Examples 1-3
Various changes were made to the thicknesses of the polyimide resin layers of the bottom layer, base layer and top layer in Example 1, followed by drying in the same manner, followed by heating from 120 ° C. to 360 ° C. over 30 minutes in a hot air drying furnace. A laminate (single-sided copper-clad product) a was obtained. This single-sided conductor laminate a is warped and curled, 180 ° peel strength, and the conductor side is subjected to circuit processing to remove the undesired metal foil and curl of the exposed polyimide film. Tables 1 and 2 collectively show the linear expansion coefficient of the film after etching.

Figure 2005259790
Figure 2005259790

Figure 2005259790
Figure 2005259790

Claims (5)

導体の片面上に線膨張係数の異なる多層のポリイミド層を有するフレキシブルプリント配線用基板であって、導体と接するボトム層及び導体と反対側のトップ層の中間に少なくとも一種の線膨張係数が30×10-6(1/℃)以下の低熱膨脹性ポリイミド系樹脂からなるベース層が配置され、且つ、ボトム層とトップ層がベース層よりも高熱膨脹性の熱可塑性ポリイミド系樹脂からなり、更にボトム層の厚みP1とトップ層の厚みP2が、P1<P2の条件を満足することを特徴するフレキシブルプリント配線用基板。 A flexible printed wiring board having a multilayer polyimide layer having different linear expansion coefficients on one side of a conductor, wherein at least one kind of linear expansion coefficient is 30 × between the bottom layer in contact with the conductor and the top layer opposite to the conductor. A base layer made of a low thermal expansion polyimide resin having a temperature of 10 −6 (1 / ° C.) or less is disposed, and a bottom layer and a top layer are made of a thermoplastic polyimide resin having a higher thermal expansion than the base layer, and further a bottom layer A flexible printed wiring board characterized in that the layer thickness P 1 and the top layer thickness P 2 satisfy a condition of P 1 <P 2 . ベース層の厚みPmに対するその両側のボトム層とトップ層の合計厚みとの比Pm/(P1+P2)が2〜100の範囲を満足する請求項1に記載のフレキシブルプリント配線用基板。 2. The flexible printed wiring board according to claim 1, wherein a ratio P m / (P 1 + P 2 ) of a total thickness of the bottom layer and the top layer on both sides to the thickness P m of the base layer satisfies a range of 2 to 100. . ボトム層の厚みP1が0.2〜10μmの範囲であり、且つ、トップ層の厚みP2との比P1/P2が0.2〜0.8の範囲を満足する請求項1又は2に記載のフレキシブルプリント配線用基板。 The thickness P 1 of the bottom layer is in the range of 0.2 to 10 µm, and the ratio P 1 / P 2 to the thickness P 2 of the top layer satisfies the range of 0.2 to 0.8. 2. The flexible printed wiring board according to 2. 導体の片面上に複数層のポリイミド前駆体樹脂溶液を直接塗工・乾燥した後加熱硬化することにより、線膨張係数の異なる多層のポリイミド層を有するフレキシブルプリント配線用基板を製造する方法において、導体と接するボトム層及び導体と反対側のトップ層の中間に少なくとも一種からなる線膨脹係数が30×10-6(1/℃)以下の低熱膨脹性ポリイミド系樹脂に変換可能なベース層を配置し、且つ、ボトム層とトップ層にはベース層よりも高熱膨脹性の熱可塑性ポリイミド系樹脂に変換可能なポリイミド前駆体樹脂溶液をボトム層の厚みP1とトップ層の厚みP2が、P1<P2の条件を満足するように塗工・乾燥した後加熱硬化することを特徴とするフレキシブルプリント配線用基板の製造方法。 In a method for manufacturing a flexible printed wiring board having a multilayer polyimide layer having different linear expansion coefficients by directly applying and drying a plurality of layers of polyimide precursor resin solution on one side of the conductor, followed by heat curing, the conductor A base layer that can be converted into a low thermal expansion polyimide resin having a linear expansion coefficient of 30 × 10 −6 (1 / ° C.) or less is disposed between the bottom layer in contact with the conductor and the top layer opposite to the conductor. In addition, a polyimide precursor resin solution that can be converted into a thermoplastic polyimide resin having a higher thermal expansion than the base layer is formed on the bottom layer and the top layer. The thickness P 1 of the bottom layer and the thickness P 2 of the top layer are P 1. <method of manufacturing a substrate for a flexible printed circuit, characterized in that the heat curing after coating and drying so as to satisfy the condition P 2. ボトム層の厚みP1が0.2〜10μmの範囲であり、且つ、トップ層の厚みP2との比P1/P2が0.2〜0.8の範囲を満足するようにポリイミド前駆体樹脂溶液を塗工する請求項4に記載記載のフレキシブルプリント配線用基板の製造方法。 The polyimide precursor is such that the thickness P 1 of the bottom layer is in the range of 0.2 to 10 μm and the ratio P 1 / P 2 to the thickness P 2 of the top layer is in the range of 0.2 to 0.8. The manufacturing method of the board | substrate for flexible printed wiring of Claim 4 which coats a body resin solution.
JP2004065854A 2004-03-09 2004-03-09 Flexible printed wiring board and its production method Pending JP2005259790A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004065854A JP2005259790A (en) 2004-03-09 2004-03-09 Flexible printed wiring board and its production method
CNA2005800075295A CN1947476A (en) 2004-03-09 2005-03-09 Flexible printed wiring board and manufacturing method thereof
KR1020067020715A KR20060129081A (en) 2004-03-09 2005-03-09 Flexible printed wiring board and manufacturing method thereof
PCT/JP2005/004100 WO2005086547A1 (en) 2004-03-09 2005-03-09 Flexible printed wiring board and manufacturing method thereof
TW094107193A TW200536444A (en) 2004-03-09 2005-03-09 Flexible printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065854A JP2005259790A (en) 2004-03-09 2004-03-09 Flexible printed wiring board and its production method

Publications (1)

Publication Number Publication Date
JP2005259790A true JP2005259790A (en) 2005-09-22

Family

ID=34918279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065854A Pending JP2005259790A (en) 2004-03-09 2004-03-09 Flexible printed wiring board and its production method

Country Status (5)

Country Link
JP (1) JP2005259790A (en)
KR (1) KR20060129081A (en)
CN (1) CN1947476A (en)
TW (1) TW200536444A (en)
WO (1) WO2005086547A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291006B2 (en) * 2008-02-08 2013-09-18 新日鉄住金化学株式会社 Method for manufacturing circuit wiring board
JP2014070084A (en) * 2012-09-27 2014-04-21 Nippon Steel & Sumikin Chemical Co Ltd Polyamic acid composition, polyimide composition, laminate, circuit board, method of using the same, laminate manufacturing method and circuit board manufacturing method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439636B2 (en) * 2015-09-10 2018-12-19 株式会社デンソー Method for manufacturing printed circuit board
CN106113803A (en) * 2016-06-16 2016-11-16 常州市超顺电子技术有限公司 A kind of aluminum-based copper-clad plate and application thereof and preparation method
JP7212480B2 (en) * 2017-09-29 2023-01-25 日鉄ケミカル&マテリアル株式会社 Polyimide films, metal-clad laminates and circuit boards

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354900A (en) * 1998-06-05 1999-12-24 Sony Chem Corp Flexible printed-wiring board
JP2000188445A (en) * 1998-12-21 2000-07-04 Sony Chem Corp Flexible board

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2746555B2 (en) * 1995-11-13 1998-05-06 新日鐵化学株式会社 Flexible printed circuit board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354900A (en) * 1998-06-05 1999-12-24 Sony Chem Corp Flexible printed-wiring board
JP2000188445A (en) * 1998-12-21 2000-07-04 Sony Chem Corp Flexible board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291006B2 (en) * 2008-02-08 2013-09-18 新日鉄住金化学株式会社 Method for manufacturing circuit wiring board
JP2014070084A (en) * 2012-09-27 2014-04-21 Nippon Steel & Sumikin Chemical Co Ltd Polyamic acid composition, polyimide composition, laminate, circuit board, method of using the same, laminate manufacturing method and circuit board manufacturing method

Also Published As

Publication number Publication date
CN1947476A (en) 2007-04-11
WO2005086547A1 (en) 2005-09-15
TW200536444A (en) 2005-11-01
KR20060129081A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4755264B2 (en) Polyimide film and method for producing the same
JP5031639B2 (en) Flexible copper clad laminate
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JP6031396B2 (en) Manufacturing method of double-sided flexible metal-clad laminate
JP4544588B2 (en) Laminated body
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP7212515B2 (en) Metal-clad laminates and circuit boards
JP4907580B2 (en) Flexible copper clad laminate
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JPH0739161B2 (en) Double-sided conductor polyimide laminate and manufacturing method thereof
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4571043B2 (en) Laminated body and method for producing the same
JP3790250B2 (en) Continuous production method of double-sided conductor polyimide laminate
WO2005086547A1 (en) Flexible printed wiring board and manufacturing method thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4615401B2 (en) Laminated body
JP2005271449A (en) Laminate for flexible printed circuit board
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
WO2005090070A1 (en) Method for producing substrate for flexible printed wiring board
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP4593509B2 (en) Method for producing flexible laminate
JP4850560B2 (en) Flexible printed wiring board
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP3034838B2 (en) Method for producing double-sided conductor polyimide laminate
JP2018051900A (en) Metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615