JP3790250B2 - Continuous production method of double-sided conductor polyimide laminate - Google Patents

Continuous production method of double-sided conductor polyimide laminate Download PDF

Info

Publication number
JP3790250B2
JP3790250B2 JP2004009531A JP2004009531A JP3790250B2 JP 3790250 B2 JP3790250 B2 JP 3790250B2 JP 2004009531 A JP2004009531 A JP 2004009531A JP 2004009531 A JP2004009531 A JP 2004009531A JP 3790250 B2 JP3790250 B2 JP 3790250B2
Authority
JP
Japan
Prior art keywords
sided conductor
roll
polyimide
laminate
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004009531A
Other languages
Japanese (ja)
Other versions
JP2005199615A (en
Inventor
和弥 宮本
明 徳光
正一 井伊
義浩 重松
伊知郎 日笠山
勝浩 菅野
雄次郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004009531A priority Critical patent/JP3790250B2/en
Priority to PCT/JP2004/019523 priority patent/WO2005068183A1/en
Priority to KR1020067016383A priority patent/KR101027203B1/en
Priority to CN2004800404673A priority patent/CN1906027B/en
Priority to TW094101197A priority patent/TW200602191A/en
Publication of JP2005199615A publication Critical patent/JP2005199615A/en
Application granted granted Critical
Publication of JP3790250B2 publication Critical patent/JP3790250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1458Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined once, i.e. contour welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1464Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • B29C65/7894Means for handling of moving sheets or webs of continuously moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0342Cooling, e.g. transporting through welding and cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72321General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91441Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time
    • B29C66/91443Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile
    • B29C66/91445Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being non-constant over time following a temperature-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91945Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined lower than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73117Tg, i.e. glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/60In a particular environment
    • B32B2309/62Inert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、電子機器類の小型化、軽量化の要請に対応した配線材料としてのフレキシブルプリント基板等に好適な両面導体ポリイミド積層体の連続製造方法に関し、特に加熱プレスロールを利用したシワの発生のない、しかも品質バラツキもないロール巻き製品として安定生産が可能な両面導体ポリイミド積層体の連続製造方法に関する。   The present invention relates to a continuous production method of a double-sided conductor polyimide laminate suitable for a flexible printed circuit board as a wiring material in response to the demand for downsizing and weight reduction of electronic devices, and particularly wrinkle generation using a hot press roll. The present invention relates to a continuous production method for a double-sided conductor polyimide laminate that can be stably produced as a rolled product with no quality variation.

近年、高機能化する携帯電話やデシタルカメラ、ナビゲーター、その他の各種電子機器類の小型化、軽量化の進展に伴って、これらに使用される電子配線材料としてのフレキシブルプリント基板(配線基板)の小型高密度化、多層化、ファイン化、低誘電化等の要請が高まっている。このフレキシブルプリント配線基板については、以前はポリイミドフイルムと金属箔とを低温硬化可能な接着剤で張り合わせて製造されていたが、接着剤層が配線基板としての特性の低下、特にポリイミドベースフイルムの優れた耐熱性、難燃性等を損ねるという問題がある。さらに接着剤層を有する他の問題として配線の回路加工性が悪くなるという問題もある。   In recent years, with the progress of miniaturization and weight reduction of highly functional mobile phones, digital cameras, navigators, and other various electronic devices, flexible printed circuit boards (wiring boards) as electronic wiring materials used for them have been developed. There is an increasing demand for smaller, higher density, multilayer, finer, and lower dielectric constants. This flexible printed circuit board was previously manufactured by bonding polyimide film and metal foil together with an adhesive that can be cured at low temperature. However, the adhesive layer has reduced characteristics as a wiring board, especially the superiority of polyimide base film. There is a problem that the heat resistance and flame retardancy are impaired. Another problem with the adhesive layer is that the circuit processability of the wiring is deteriorated.

具体的には、スルーホール加工時のドリリングによる樹脂スミアの発生や、導体スルーホール加工時の寸法変化率が大きい等の問題が挙げられる。特に両面スルーホール構造の場合、絶縁体層であるベースフイルムを中心にその両面に接着剤を介して導体の銅箔等を貼り合わせて形成されたものは、片面構造のフレキシブルプリント基板と比較して一般的にその柔軟性が低いという問題がある。一方、ICの高密度化、プリント配線の微細化や高密度化に伴い、発熱が大きくなり、良熱伝導体を貼り合わせることが必要になる場合がある。また、よりコンパクトにするため、ハウジングと配線を一体化する方法もある。さらには、電気容量の異なった配線を必要としたり、より高温に耐える配線材を必要とすることもある。そこで、接着剤を使用しないで硬化前のポリアミック酸溶液を銅箔等の導体に直接塗布し、加熱して硬化させるフレキシブルプリント基板の製造方法が種々提案されている。   Specifically, there are problems such as generation of resin smear due to drilling during through-hole processing and a large dimensional change rate during conductor through-hole processing. In particular, in the case of a double-sided through-hole structure, what is formed by laminating copper foil, etc. of a conductor through an adhesive on both sides of the base film as an insulator layer is compared with a flexible printed board with a single-sided structure. In general, there is a problem that its flexibility is low. On the other hand, heat generation increases with the increase in the density of ICs and the miniaturization and density of printed wiring, and it may be necessary to attach a good heat conductor. There is also a method of integrating the housing and the wiring in order to make it more compact. Furthermore, wiring with different electric capacities may be required, or wiring materials that can withstand higher temperatures may be required. Therefore, various methods for producing a flexible printed board have been proposed in which a polyamic acid solution before curing is directly applied to a conductor such as a copper foil without using an adhesive, and is cured by heating.

例えば、硬化物の線膨張係数が3.0×10-5以下のジアミンとテトラカルボン酸無水物で合成されるポリアミック酸を金属箔に塗布し加熱硬化させるもの(例えば特許文献1参照)や、特定構造単位を有するボリアミドイミド前駆体化合物を含有する樹脂溶液を導体上に塗布してイミド化するもの(例えば特許文献2参照)、ジアミノベンズアニリド又はその誘導体を含むジアミン類と芳香族テトラカルボンサンとの反応で得られる構造単位を有する絶縁材の前駆体溶液を導体上に直接塗布して硬化させるもの(例えば特許文献3参照)等が挙げられる。さらに金属箔との密着性を高めるために導体上に複数のポリイミド前駆体樹脂溶液を用いて、複数回塗布と乾燥を行うことによって複数のポリイミド樹脂層を有するフレキシブルプリント配線用基板を製造する方法(例えば特許文献4参照)も提案されている。 For example, a polyamic acid synthesized with a diamine having a linear expansion coefficient of 3.0 × 10 −5 or less and a tetracarboxylic acid anhydride applied to a metal foil and cured by heating (for example, see Patent Document 1), A resin solution containing a polyamidoimide precursor compound having a specific structural unit is applied onto a conductor to imidize (see, for example, Patent Document 2), a diamine containing diaminobenzanilide or a derivative thereof, and an aromatic tetracarboxylicsan Examples include those in which a precursor solution of an insulating material having a structural unit obtained by the above reaction is directly applied on a conductor and cured (for example, see Patent Document 3). Further, a method for producing a flexible printed wiring board having a plurality of polyimide resin layers by applying and drying a plurality of times using a plurality of polyimide precursor resin solutions on a conductor in order to improve adhesion to a metal foil (For example, see Patent Document 4) has also been proposed.

これらのフレキシブルプリント配線基板は、導電性金属箔の片面側のみに接着剤なしで絶縁体層を加熱硬化にて接着させた片面構造に関するものである。一方、電子機器類の小型化、軽量化に対応して本発明者等は、先に導電性金属箔(M1)の片面に少なくとも三層のポリイミド層を有する片面導体積層体を使用し、そのポリイミド層に導電性金属箔(M2)を加熱加圧下に積層する両面導体ポリイミド積層体の製造方法(例えば特許文献5参照)を提案している。かかる両面導体積層体は特に基板の両面に配線回路を形成することが可能であり、高密度実装のために既に実用化されて近年では種々の分野で多く採用されている。
特開昭62−212140号公報 特開昭63−84188号公報 特開昭63−245988号公報 特公平6−49185号公報 特開平10−323935号公報
These flexible printed wiring boards relate to a single-sided structure in which an insulator layer is bonded to only one side of a conductive metal foil by heat curing without an adhesive. On the other hand, in response to the reduction in size and weight of electronic devices, the present inventors previously used a single-sided conductor laminate having at least three polyimide layers on one side of the conductive metal foil (M 1 ), The manufacturing method (for example, refer patent document 5) of the double-sided conductor polyimide laminated body which laminates | stacks electroconductive metal foil (M2) on the polyimide layer under heating and pressurization is proposed. Such double-sided conductor laminates can form wiring circuits particularly on both sides of a substrate, have already been put into practical use for high-density mounting, and have been widely used in various fields in recent years.
JP-A-62-212140 JP-A-63-84188 JP-A 63-245988 Japanese Examined Patent Publication No. 6-49185 Japanese Patent Laid-Open No. 10-323935

上記の特許文献5における両面導体ポリイミド積層体の製造方法では、熱プレス装置等を利用したバッチ方式の具体例を開示している。このバッチ方式の熱プレス装置等では熱板と呼ばれる台座の上に、片面導体積層体と導電性金属箔の組合わせを複数層同時に載せ加熱圧着するものである。通常の加熱は、熱板内に配置した電気ヒーターによって行われ、圧力は油圧により台座が押し上げられシートを通じて上部台座に圧力を伝達させて所定圧力を維持する。かかる熱板ではヒーターの温度ばらつきが大きいことから、種々の補正を行っても加熱不足や加熱過剰により部分的に不良箇所が発生する場合がある。   In the above-described method for producing a double-sided conductor polyimide laminate in Patent Document 5, a specific example of a batch method using a hot press apparatus or the like is disclosed. In a batch type hot press apparatus or the like, a combination of a single-sided conductor laminate and a conductive metal foil is simultaneously placed on a pedestal called a hot plate and heat-pressed. Normal heating is performed by an electric heater arranged in a hot plate, and the pressure is pushed up by hydraulic pressure to transmit the pressure to the upper base through the seat to maintain a predetermined pressure. In such a hot plate, since the temperature variation of the heater is large, even if various corrections are performed, a defective portion may be partially generated due to insufficient heating or excessive heating.

また複数層同時に処理する場合、長時間の加熱により積層樹脂層の劣化が促進され、品番毎の最適条件が狭い非常に不安定なプロセスであった。さらに積層基材は常温から加熱加圧して一定温度に達した後冷却するバッチ方式のサイクルを繰返して生産されるために生産効率が低いだけでなく、積層基材の裁断作業が必要であり、この時点で異物を巻き込みやすく、異物が付着した場合、積層したもの全てに異物の形状が転写する外観不良を起こすことが多かった。そこで連続方式による品質の安定した両面導体ポリイミド積層体の製造方法が強く要請されている。   Moreover, when processing several layers simultaneously, deterioration of the lamination resin layer was accelerated | stimulated by long-time heating, and it was a very unstable process with the narrow optimal conditions for every product number. Furthermore, since the laminated base material is produced by repeating a batch-type cycle in which it is heated and pressurized from room temperature to reach a certain temperature and then cooled, not only the production efficiency is low, but the laminated base material needs to be cut, At this time, foreign matters are easily caught, and when foreign matters adhere, there are many appearance defects in which the shape of the foreign matter is transferred to all the stacked layers. Therefore, there is a strong demand for a method for producing a double-sided conductor polyimide laminate with stable quality by a continuous method.

本発明者等は、先に提案した特許文献5における両面導体ポリイミド積層体の製造方法における熱プレス装置等を利用したバッチ方式に代えて、一対の加熱プレスロールによる加熱圧着により両面導体ポリイミド積層体を連続製造する方法について検討を進めた結果、プレスロール間への装入前における基材の搬送条件や予熱手段とプレスロール出口からの搬送条件や冷却手段が適切でないと基材が通過中に熱膨張・冷却収縮起因の格子じわ、集束じわ等の10種類近いシワの発生が見られること、またロール面があまりに平滑度が高い状態では基材とロール面との密着度が強くなって走行中に巻き付きによる複雑なシワ(以下、トラレと称する)や不純物に起因するピット(製品表面に数十ミクロンの打痕)等が多数発生しやすいこと等の種々の解決すべき課題のあることがわかった。   The present inventors, instead of the batch method using the hot press apparatus and the like in the method for producing a double-sided conductor polyimide laminate in Patent Document 5 previously proposed, are double-sided conductor polyimide laminate by thermocompression bonding with a pair of hot press rolls. As a result of studying the continuous production method, the base material is passing through if the transport conditions of the base material before charging between the press rolls, the preheating means and the transport conditions from the outlet of the press roll and the cooling means are not appropriate. Nearly 10 types of wrinkles such as lattice wrinkles and converging wrinkles due to thermal expansion / cooling shrinkage are observed, and when the roll surface is too smooth, the adhesion between the substrate and the roll surface becomes strong. As a result, a lot of complicated wrinkles (hereinafter referred to as “trails”) and pits (scratches of several tens of microns on the product surface) due to impurities are likely to occur during running. It was found that there is a problem to be solved by the people.

従って、本発明の目的は、ポリイミド系樹脂層の両面に接着剤を介することなく導電性金属層を積層した縦じわ等の外観不良のない品質の安定した両面導体ポリイミド系積層体の連続製造方法を提供することにある。また、本発明の他の目的は、特にユーザーからの要望の強い優れた配線回路加工性を有し、また、配線回路基板として優れた耐熱性や可撓性を有する両面導体ポリイミド積層体をロール巻き状態にて製造する方法を提供することにある。   Therefore, the object of the present invention is to continuously manufacture a double-sided conductor polyimide-based laminate having a stable quality without appearance defects such as vertical wrinkles in which conductive metal layers are laminated without using an adhesive on both sides of the polyimide-based resin layer. It is to provide a method. Another object of the present invention is to roll a double-sided conductor polyimide laminate having excellent heat resistance and flexibility as a printed circuit board, which has excellent wiring circuit workability that is particularly demanded by users. It is providing the method of manufacturing in a winding state.

本発明者らは、上記課題について鋭意検討した結果、加熱プレスロール間に導入直前の片面導体積層体と導電性金属箔(M2)を特定温度に予備加熱すること、プレスロール表面を特定の表面粗さ(Ra)に粗面化処理したものを使用することにより、上記の目的が達成されることを見出し本発明を完成した。 As a result of intensive studies on the above problems, the inventors of the present invention preliminarily heated the single-sided conductor laminate and the conductive metal foil (M 2 ) immediately before introduction between heated press rolls to a specific temperature, and specified the press roll surface. The present invention was completed by finding that the above-mentioned object was achieved by using a surface roughened surface roughness (Ra).

すなわち本発明は、
(1)導電性金属箔(M)上にベース層、中間メイン層、トップ層の少なくとも三層のポリイミド系樹脂層を有する片面導体積層体と導電性金属箔(Mからなるそれぞれの導入基材を連続的に一対の加熱プレスロール間に導入し、上記トップ層に導電性金属箔(M)を加熱圧着により積層一体化させる両面導体ポリイミド積層体の製造方法において、加熱プレスロール間に導入直前の片面導体積層体と導電性金属箔(M)をそれぞれ200℃以上〜トップ層のポリイミド系樹脂のガラス転移点以下に予備加熱後に、平均表面粗さ(Ra)が0.01μmよりも大きく、5μm以下に粗面化処理される加熱プレスロール表面に接触させることを特徴とする両面導体ポリイミド積層体の連続製造方法である。
That is, the present invention
(1) a conductive metal foil (M 1) base layer over the intermediate main layer, single-sided conductor laminate and the conductive metal foil having a polyimide resin layer of at least three layers of the top layer (M 2) and consisting, respectively In the method for producing a double-sided conductor polyimide laminate, the conductive substrate is continuously introduced between a pair of heated press rolls, and the conductive metal foil (M 2 ) is laminated and integrated on the top layer by thermocompression bonding. The average surface roughness (Ra) is 0 after preheating the single-sided conductor laminate and the conductive metal foil (M 2 ) immediately before introduction between the rolls to 200 ° C. or more and below the glass transition point of the polyimide resin of the top layer, respectively. It is a continuous production method of a double-sided conductor polyimide laminate, characterized by contacting with the surface of a hot press roll that is roughened to a surface roughness greater than 0.01 μm and 5 μm or less .

(2)上記本発明における一対のプレスロール表面は、不活性ガス雰囲気下にてプレスロール表面温度を340〜390℃、プレスロール間の線圧50Kg/cm〜300Kg/cm(490〜2940N/cm)、通過時間2〜5秒間の条件下で加熱圧着することが望ましい。 (2) The pair of press roll surfaces in the present invention has a press roll surface temperature of 340 to 390 ° C. under an inert gas atmosphere, and a linear pressure between the press rolls of 50 kg / cm to 300 kg / cm (490 to 2940 N / cm). ), It is desirable to heat-press under the conditions of a passage time of 2-5 seconds.

(3)上記本発明における片面導体積層体と導電性金属箔(M2)はロール巻き状態から引き出してそれぞれ中心軸の高さが異なる複数のガイドロールを経由させて窒素雰囲気下の平面性を高めた状態で予備加熱されることが望ましい。 (3) The single-sided conductor laminate and the conductive metal foil (M 2 ) in the present invention have a flatness in a nitrogen atmosphere through a plurality of guide rolls that are drawn from the roll winding state and have different central axis heights. It is desirable to preheat in an elevated state.

(4)上記本発明における予備加熱は基材が加熱プレスロール面に接触する位置に配置された加熱手段内蔵のガイドロールによって行うことが望ましい。 (4) The preheating in the present invention is preferably performed by a guide roll with a built-in heating means disposed at a position where the substrate comes into contact with the heated press roll surface.

(5)上記本発明におけるロール表面にセラミック皮膜が溶射されて表面粗さ(Ra)が形成されていることが望ましい。 (5) It is desirable that a ceramic film is sprayed on the roll surface in the present invention to form a surface roughness (Ra).

かかる本発明によれば、加熱プレスロール間に導入前の片面導体積層体と導電性金属箔(M2)をそれぞれ不活性ガス雰囲気下にて200℃以上〜ガラス転移点以下の温度(好ましくは200〜350℃)で予備加熱後に加熱プレスロール表面に接触させることで、加熱圧着時の急激な温度上昇が緩和される結果、両面導体積層体の表面への縦すじ等の外観不良が防止される。また加熱プレスロールの表面粗さを特定条件に保持することで基材とロール面との密着度が減少することで走行中に巻き付きによる複雑なシワ(以下、トラレと称する)やピット(製品表面に数十ミクロンの打痕)等の発生も防止される。 According to the present invention, the single-sided conductor laminate and the conductive metal foil (M 2 ) before being introduced between the hot press rolls are each at a temperature of 200 ° C. or more to a glass transition point or less (preferably in an inert gas atmosphere). 200 to 350 ° C.), after preheating at the surface of the heated press roll, the rapid temperature rise at the time of thermocompression bonding is alleviated. As a result, appearance defects such as vertical stripes on the surface of the double-sided conductor laminate are prevented. The Also, by maintaining the surface roughness of the heated press roll under specific conditions, the degree of adhesion between the base material and the roll surface is reduced, so that complicated wrinkles (hereinafter referred to as “trails”) and pits (product surface) due to winding during running Furthermore, the occurrence of dents of several tens of microns is also prevented.

以下に本発明を詳細に説明する。先ず本発明において使用される導電性金属箔(M1とM2)としては、厚みが5〜150μmである銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、亜鉛及びそれらの合金等を挙げることができ、好ましくは銅である。特に、剛性が低く加熱圧着による圧力制御が困難として使用が敬遠されていた圧延銅箔品も好適に使用できる。なお接着力の向上を目的として、その表面にサイディング、ニッケルメッキ、銅−亜鉛合金メッキ、あるいはアルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等による化学的又は機械的な表面処理を施してもよい。 The present invention is described in detail below. First, as the conductive metal foil (M 1 and M 2 ) used in the present invention, copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and their thicknesses of 5 to 150 μm are used. An alloy etc. can be mentioned, Preferably it is copper. In particular, a rolled copper foil product, which has low rigidity and is difficult to control pressure by thermocompression bonding, can be suitably used. For the purpose of improving the adhesion, the surface may be subjected to chemical or mechanical surface treatment with siding, nickel plating, copper-zinc alloy plating, aluminum alcoholate, aluminum chelate, silane coupling agent or the like.

ここでかかる導電性金属箔(M1)の片面に絶縁体層としてポリイミド系樹脂が接着剤なしに加熱硬化して接着させた片面導体積層体としては、前記特許文献1〜4や5で開示された公知のものを利用することができる。絶縁体層として使用されるポリイミド系樹脂とは、イミド環構造を有する樹脂の総称であり、例えばポリイミド、ポリアミドイミド、ポリエステルイミドなどが挙げられる。そして、ポリイミド系樹脂層としては、前記特許文献1〜4に記載したような低熱膨張性のものや、加熱すると溶融若しくは軟化する熱可塑性ポリイミド等が利用でき特に限定されない。しかし特に好ましい絶縁体層は、特許文献5に記載されたポリイミド前駆体樹脂溶液の加熱硬化で得られた熱可塑性ポリイミド系樹脂からなるベース層と低熱膨張性ポリイミド系樹脂からなる中間メイン層及び熱可塑性ポリイミド系樹脂からなるトップ層の少なくとも三層のポリイミド系樹脂層からなるものが望ましい。 The single-sided conductor laminate in which a polyimide resin is heated and cured without an adhesive as an insulator layer on one side of the conductive metal foil (M 1 ) is disclosed in Patent Documents 1 to 4 and 5 described above. Can be used. The polyimide resin used as the insulator layer is a general term for resins having an imide ring structure, and examples thereof include polyimide, polyamideimide, and polyesterimide. And as a polyimide-type resin layer, the thing of the low thermal expansion as described in the said patent documents 1-4, the thermoplastic polyimide etc. which fuse | melt or soften when heated can be utilized, and it is not specifically limited. However, particularly preferable insulator layers are a base layer made of a thermoplastic polyimide resin obtained by heat curing of a polyimide precursor resin solution described in Patent Document 5, an intermediate main layer made of a low thermal expansion polyimide resin, and a heat What consists of a polyimide-type resin layer of at least three layers of the top layer which consists of a plastic polyimide-type resin is desirable.

ここで中間メイン層を形成する低熱膨張ポリイミド系樹脂としては、その線膨張係数が30×10-6(1/℃)以下が好ましく、フイルムの耐熱性、可撓性において優れた性能を有するものがよい。ここで線膨張係数は、イミド化反応が十分に終了した試料を用い、サーモメカニカルアナライザー(TMA)を用いて250℃に昇温後、10℃/分の速度で冷却し、240〜100℃の範囲における平均の線膨張係数を求めたものである。このような性質を有する低熱膨張ポリイミド系樹脂の具体例としては、前記特許文献5に記載された下記一般式(I)で表される単位構造を有するポリイミド系樹脂が望ましい。 Here, the low thermal expansion polyimide resin forming the intermediate main layer preferably has a linear expansion coefficient of 30 × 10 −6 (1 / ° C.) or less, and has excellent performance in heat resistance and flexibility of the film. Is good. Here, the linear expansion coefficient is a sample having a sufficiently completed imidation reaction, heated to 250 ° C. using a thermomechanical analyzer (TMA), cooled at a rate of 10 ° C./min, and 240 to 100 ° C. The average linear expansion coefficient in the range is obtained. As a specific example of the low thermal expansion polyimide resin having such properties, a polyimide resin having a unit structure represented by the following general formula (I) described in Patent Document 5 is desirable.

Figure 0003790250
(但し、式中R1〜R4は低級アルキル基、低級アルコキシ基、ハロゲン基又は水素を示す)
Figure 0003790250
(Wherein R 1 to R 4 represent a lower alkyl group, a lower alkoxy group, a halogen group or hydrogen)

また、ベース層やトップ層に使用される熱可塑性ポリイミド系樹脂としては、そのガラス転移点温度が350℃以下のものであればいかなる構造のものであってもよいが、好ましくは加熱加圧下で圧着した際にその界面の接着強度が十分であるものがよい。ここでいう熱可塑性ポリイミド系樹脂とは、ガラス転移点以上の通常の状態で必ずしも十分な流動性を示さなくてもよく、加圧によって接着可能なものも含まれる。このような性質を有する熱可塑性ポリイミド系樹脂の具体例としては、前記特許文献5に記載された下記一般式(II)や一般式(III)で表される単位構造を有するものである。   The thermoplastic polyimide resin used for the base layer and the top layer may have any structure as long as its glass transition temperature is 350 ° C. or lower, but preferably under heat and pressure. What has sufficient adhesive strength of the interface when crimping | bonding is good. Here, the thermoplastic polyimide resin does not necessarily have sufficient fluidity in a normal state above the glass transition point, and includes those that can be bonded by pressurization. Specific examples of the thermoplastic polyimide resin having such properties have a unit structure represented by the following general formula (II) or general formula (III) described in Patent Document 5.

Figure 0003790250
(但し、式中Ar1は2価の芳香族基であってその炭素数が12以上である。)
Figure 0003790250
(但し、式中Ar2は2価の芳香族基であってその炭素数が12以上である。)
Figure 0003790250
(In the formula, Ar 1 is a divalent aromatic group having 12 or more carbon atoms.)
Figure 0003790250
(In the formula, Ar 2 is a divalent aromatic group having 12 or more carbon atoms.)

ここで、2価の芳香族基Ar1又Ar2の具体例としては例えば

Figure 0003790250
等を挙げることができ、好ましくは、
Figure 0003790250
である。 Here, specific examples of the divalent aromatic group Ar 1 or Ar 2 include
Figure 0003790250
Etc., preferably,
Figure 0003790250
It is.

また片面導体積層体の製造方法としては、前記特許文献5に記載されているようにポリイミド前駆体溶液又はポリイミド溶液に、公知の酸無水物系やアミン系硬化剤等の硬化剤、シランカップリング剤、チタネートカップリング剤、エポキシ化合物等の接着性付与剤、ゴム等の可撓性付与剤等の各種の添加剤や触媒を加えて導電性金属箔(M1)へ塗工し、次いで熱処理により熱硬化して片面導体積層体を得ることができる。なお片面導体積層体は、導電性金属箔(M1)にベース層として熱可塑性ポリイミド系樹脂層を、中間メイン層に低熱膨張性ポリイミド系樹脂層を、さらにトップ層(最表面層)として熱可塑性ポリイミド系樹脂層が積層されていることが好ましい。ここで、中間メイン層に低熱膨張性ポリイミド系樹脂層を含まない場合は、加熱硬化工程で得られる片面導体積層体の反りやカールが大きくなり、以後の工程での作業性が著しく低下する。また、トップ層(最表面層)に熱可塑性ポリイミド系樹脂層を含まないと、加熱圧着ロール工程での導電性金属箔との熱圧着による接着力が十分に発揮されないので好ましくない。 Moreover, as a manufacturing method of a single-sided conductor laminated body, as described in the said patent document 5, hardening agents, such as a well-known acid anhydride type | system | group and an amine type hardening | curing agent, a silane coupling, to a polyimide precursor solution or a polyimide solution. Various additives and catalysts such as adhesives, titanate coupling agents, epoxy compounds, and other adhesives, and rubbers, etc. are added to the conductive metal foil (M 1 ), followed by heat treatment Can be thermoset to obtain a single-sided conductor laminate. The single-sided conductor laminate is a conductive metal foil (M 1 ) with a thermoplastic polyimide resin layer as a base layer, a low thermal expansion polyimide resin layer as an intermediate main layer, and a top layer (outermost surface layer) as heat. It is preferable that a plastic polyimide resin layer is laminated. Here, when the intermediate main layer does not include the low thermal expansion polyimide resin layer, warpage and curl of the single-sided conductor laminate obtained in the heat curing step are increased, and workability in the subsequent steps is remarkably reduced. If the top layer (outermost surface layer) does not include a thermoplastic polyimide resin layer, it is not preferable because the adhesive force by thermocompression bonding with the conductive metal foil in the thermocompression-bonding roll process is not sufficiently exhibited.

その際、低熱膨張性ポリイミド系樹脂層の厚みt1と熱可塑性ポリイミド系樹脂層の厚みt2の厚さの比(t1/t2)は2〜100の範囲、好ましくは5〜20の範囲がよい。この厚さの比(t1/t2)が2より小さいと、ポリイミド系樹脂層全体の熱膨張係数が金属箔のそれに比べて高くなりすぎ、この第一の工程で得られる片面導体積層体の反りやカールが大きくなり、次の第二の工程での作業性が著しく低下する。また、熱可塑性ポリイミド系樹脂層の厚みt2が小さすぎ、厚さの比(t1/t2)が100を超えるほどに大きくなると、第二の工程の熱圧着による接着力が充分に、発揮されなくなる場合が生じる。 At that time, the ratio (t 1 / t 2 ) between the thickness t 1 of the low thermal expansion polyimide resin layer and the thickness t 2 of the thermoplastic polyimide resin layer is in the range of 2 to 100, preferably 5 to 20. The range is good. If the thickness ratio (t 1 / t 2 ) is smaller than 2, the thermal expansion coefficient of the entire polyimide resin layer becomes too high compared to that of the metal foil, and the single-sided conductor laminate obtained in this first step Warpage and curl increase, and workability in the next second step is remarkably reduced. Further, if the thickness t 2 of the thermoplastic polyimide resin layer is too small and the ratio of thickness (t 1 / t 2 ) increases to exceed 100, the adhesive force by the thermocompression bonding in the second step is sufficient, In some cases, it cannot be used.

導電性金属箔(M1)上へのこれら複数のポリイミド系樹脂の塗工は、その樹脂溶液の形で行うことができるが、好ましくは前記特許文献4や5に記載されているようにその前駆体溶液の形で、複数の前駆体溶液の一括又は逐次の塗工あるいはイミド閉環温度以下での脱溶剤処理の後、前駆体のポリイミドへの加熱変換を一括して行うのが好ましい。完全にポリイミドに変換された層の上にさらに別のポリイミド系前駆体溶液を塗工し、熱処理してイミド閉環させると、各ポリイミド系樹脂層間の接着力が充分に発揮されないことがあり、製品の両面積層体の品質を低下させる原因になる。 The application of the plurality of polyimide resins on the conductive metal foil (M 1 ) can be performed in the form of the resin solution, but preferably as described in Patent Documents 4 and 5 above. In the form of a precursor solution, it is preferable to perform batch conversion of a plurality of precursor solutions or a solvent removal treatment at a temperature equal to or lower than the imide ring-closing temperature, and then perform heat conversion of the precursors to polyimide in a batch. If another polyimide precursor solution is applied onto the layer that has been completely converted to polyimide and then heat-treated to cause imide ring closure, the adhesive strength between the polyimide resin layers may not be fully demonstrated. This causes the quality of the double-sided laminate to deteriorate.

導電性金属箔(M1)上にポリイミド系樹脂溶液あるいはその前駆体溶液(ポリアミック酸溶液)の塗工の方法としては、例えばナイフコーター、ダイコーター、ロールコーター、カーテンコーター等を使用して公知の方法により行うことができ、特に厚塗りを行う場合にはダイコーターやナイフコーターが適している。また、塗工に使用するポリイミド系前駆体溶液のポリマー濃度は、ポリマーの重合度にもよるが、通常5〜30重量%、好ましくは10〜20重量%である。ポリマー濃度が5重量%より低いと一回のコーティングで充分な膜厚が得られず、また、30重量%より高くなると溶液粘度が高くなりすぎて塗工しずらくなる。 As a method for coating a polyimide resin solution or a precursor solution (polyamic acid solution) on the conductive metal foil (M 1 ), for example, a knife coater, a die coater, a roll coater, a curtain coater or the like is used. In particular, when thick coating is performed, a die coater or a knife coater is suitable. The polymer concentration of the polyimide precursor solution used for coating is usually 5 to 30% by weight, preferably 10 to 20% by weight, although it depends on the degree of polymerization of the polymer. When the polymer concentration is lower than 5% by weight, a sufficient film thickness cannot be obtained by one coating, and when the polymer concentration is higher than 30% by weight, the solution viscosity becomes too high and coating becomes difficult.

導電性金属箔に均一な厚みに塗工されたポリアミック酸溶液は、次に熱処理によって溶剤が除去されさらにイミド閉環される。この場合、急激に高温で熱処理すると、樹脂表面にスキン層が生成して溶剤が蒸発しずらくなったり、発泡したりするので低温から徐々に高温まで上昇させながら熱処理していくのが望ましい。この際の最終的な熱処理温度としては、通常300〜400℃が好ましく、400℃以上ではポリイミドの熱分解が徐々に起こり始め、また、300℃以下ではポリイミド皮膜が導電性金属箔上に充分に配向せず、平面性の良い片面導体積層体が得られない。このようにして形成された絶縁体としてのポリイミド系樹脂層の全体の厚みは通常10〜150μmである。   The polyamic acid solution applied to the conductive metal foil with a uniform thickness is then subjected to heat treatment to remove the solvent and further imide ring closure. In this case, if the heat treatment is suddenly performed at a high temperature, a skin layer is formed on the resin surface, and the solvent does not easily evaporate or foams. The final heat treatment temperature at this time is usually preferably 300 to 400 ° C., and at 400 ° C. or higher, the thermal decomposition of the polyimide begins to occur gradually. A single-sided conductor laminate with good flatness cannot be obtained without orientation. The total thickness of the polyimide resin layer as an insulator thus formed is usually 10 to 150 μm.

以下、本発明を実施するための最良の形態を添付した図面に従って詳細に説明する。図1は、本発明の片面導体積層体と導電性金属箔(M2)を一対のプレスロール間に導入し、加熱圧着により積層一体化させる両面導体ポリイミド積層体の製造方法を示す概略フローである。図2は予備加熱用ガイドロールの一例を示す概略の縦断面図である。図3はプレスロールの一例を示す概略の縦断面図である。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic flow showing a method for producing a double-sided conductor polyimide laminate in which the single-sided conductor laminate of the present invention and a conductive metal foil (M 2 ) are introduced between a pair of press rolls and laminated and integrated by thermocompression bonding. is there. FIG. 2 is a schematic longitudinal sectional view showing an example of a preheating guide roll. FIG. 3 is a schematic longitudinal sectional view showing an example of a press roll.

図1において、前述した導電性金属箔(M1)の片面にポリイミド系樹脂からなる絶縁体層を加熱硬化して接着させた片面導体積層体1と導電性金属箔(M2)2とは、共にロール巻き状態から連続的に引き出されて中心軸の高さが異なる複数のガイドロール3、3’、4、4’等を経て平面性を高めた状態で予備加熱された後で、一対の加熱プレスロール5、6の表面に接触した状態でプレスロール同士による加圧点を通過させることで、上記片面導体積層体1のトップ層に導電性金属箔(M2)を加熱圧着により積層一体化させた両面導体ポリイミド積層体7を形成した後、適宜冷却用の不活性ガス吹き付け等の冷却手段cによって予備冷却し、以下、複数のガイドロール8、8’を経て外気中でさらに冷却されつつロール巻き製品9とされる。 In FIG. 1, a single-sided conductor laminate 1 and a conductive metal foil (M 2 ) 2 in which an insulating layer made of polyimide resin is heat-cured and bonded to one side of the conductive metal foil (M 1 ) described above are as follows. , After being preheated in a state in which the flatness is improved through a plurality of guide rolls 3, 3 ′, 4, 4 ′, etc., which are continuously drawn from the roll winding state and have different central axis heights, A conductive metal foil (M 2 ) is laminated on the top layer of the single-sided conductor laminate 1 by thermocompression bonding by passing a pressure point between the press rolls in contact with the surfaces of the heated press rolls 5 and 6. After the integrated double-sided conductor polyimide laminate 7 is formed, it is preliminarily cooled by cooling means c such as blowing an inert gas for cooling as appropriate, and further cooled in the outside air through a plurality of guide rolls 8 and 8 '. While being rolled product 9 .

ここで、複数のガイドロール3、3’、4、4’、8、8’等や一対の加熱プレスロール5、6は導電性金属箔の酸化を防ぐために大気圧以上の窒素ガス等の不活性ガス雰囲気下に保持された処理室10内に配置され、且つ基材導入口及び積層体の排出口にはシール機構(ラビリンスシール)11を設けることが望ましい。ここで、ロール巻き状態から連続的に引き出される片面導体積層体1と導電性金属箔(M2)2とは、図示されていないが処理室10内に導入される前に、それぞれ中心軸の高さが異なる複数のガイドロールを経由させて緊張状態で平面性を高めることが望ましい。また、処理室10から引き出された後の両面導体ポリイミド積層体も、図示されていないがロール巻き製品9とされる前に外気中にてそれぞれ中心軸の高さが異なる複数のガイドロールによる緊張状態で経由させて更に表面温度を下げることが望ましい。 Here, the plurality of guide rolls 3, 3 ′, 4, 4 ′, 8, 8 ′, etc. and the pair of heated press rolls 5, 6 are not used to prevent oxidation of the conductive metal foil. It is desirable that a seal mechanism (labyrinth seal) 11 is provided in the processing chamber 10 held in an active gas atmosphere and at the base material inlet and the stack outlet. Here, the single-sided conductor laminate 1 and the conductive metal foil (M 2 ) 2 that are continuously drawn from the roll winding state are not shown, but before being introduced into the processing chamber 10, It is desirable to improve the flatness in a tension state through a plurality of guide rolls having different heights. Further, the double-sided conductor polyimide laminate after being drawn out from the processing chamber 10 is also not shown, but is tensioned by a plurality of guide rolls having different central axis heights in the outside air before being made into a roll-wound product 9. It is desirable to further reduce the surface temperature through the state.

特に、本発明における平面性を高めた状態で予備加熱する手段としては、加熱プレスロール5.6の直前のガイドロール3’(4’)を加熱手段内蔵タイプとするか、又は加熱プレスロール直前に加熱ランプ又は輻射エネルギーを放出するヒーターh1やh2等を設置して予備加熱してもよく、或いは両方の予備加熱手段を併用してもよい。ここで特に好ましい加熱手段内蔵タイプの予備加熱用ガイドロールの一例を図2によって説明する。図2において、ガイドロール3’(4’)は内部が空洞の外周部と空洞の両端から突出される中心軸12とがロール外周部の両端内部に配置されたベアリング等の回転支持部材13を介して一体化され、且つロール外周部は中心軸12の回りを該回転支持部材13で自由回転させる構造である。 In particular, as a means for preheating in the state in which the flatness is improved in the present invention, the guide roll 3 ′ (4 ′) immediately before the heating press roll 5.6 is of a heating means built-in type, or immediately before the heating press roll. A heating lamp or a heater h 1 or h 2 that emits radiant energy may be installed for preliminary heating, or both preliminary heating means may be used in combination. Here, an example of a preheating guide roll with a built-in heating means that is particularly preferable will be described with reference to FIG. In FIG. 2, the guide roll 3 ′ (4 ′) has a rotation support member 13 such as a bearing in which the inner periphery of the hollow and the central shaft 12 protruding from both ends of the cavity are disposed inside the both ends of the outer periphery of the roll. And the outer peripheral part of the roll is configured to freely rotate around the central axis 12 by the rotation support member 13.

またロール内部における中心軸12には誘電加熱による加熱コイル、赤外線ヒータ、抵抗加熱コイル等から選ばれる輻射熱による加熱制御手段14が適宜分割又は一体化されて固定されており、これら加熱手段へ流す電流値を変えることでロールの内壁面へ照射する輻射熱エネルギーを制御する。また、ロール外表面付近には、加熱制御手段より照射される輻射熱エネルギーで表面温度を均一加熱化するための熱伝導性の良好な有機熱媒体が充填されたジャケット又はヒートパイプと呼ばれる熱伝導素子17が埋め込まれて配置されている。かかるヒートパイプは上記の中心軸12の加熱手段14からの熱伝達でロール外表面全体に瞬時に伝達されるので表面温度精度が高く、軸方向の温度差が殆ど生じない。   Further, a heating control means 14 by radiant heat selected from a heating coil by dielectric heating, an infrared heater, a resistance heating coil, etc. is fixed to the central axis 12 inside the roll appropriately divided or integrated, and a current flowing to these heating means. The radiant heat energy irradiated to the inner wall surface of the roll is controlled by changing the value. In addition, a heat conduction element called a jacket or heat pipe filled with an organic heat medium having good heat conductivity for uniformly heating the surface temperature with radiant heat energy irradiated from the heating control means in the vicinity of the outer surface of the roll 17 is embedded and arranged. Such a heat pipe is instantaneously transmitted to the entire outer surface of the roll by heat transfer from the heating means 14 of the central shaft 12, so that the surface temperature accuracy is high and the temperature difference in the axial direction hardly occurs.

ここで加熱プレスロール間に導入前の片面導体積層体1と導電性金属箔(M2)2の予備加熱温度としては、200℃以上でトップ層樹脂である熱可塑性ポリイミド系樹脂のガラス転移点以下の温度、好ましくは200〜350℃が望ましい。かかる予備加熱ロール外表面温度はロール表面に埋め込まれた温度センサーにて監視し常時所定温度を保持するように加熱制御手段14へ供給する電流値を制御することが望ましい。予備加熱しない場合、或いは予備加熱温度が200℃以下においては極めて薄い金属箔が加熱プレスロール間を通過時に急激に昇温されて圧着される結果、積層体の表面で多数の縦すじ、横シワや集束じわ等が発生することで外観不良につながるだけでなく、接着性が低くなる点で好ましくない。また、ガラス転移点以上ではポリイミド系樹脂が劣化するので好ましくない。 Here, the preheating temperature of the single-sided conductor laminate 1 and the conductive metal foil (M 2 ) 2 before being introduced between the heating press rolls is 200 ° C. or higher and the glass transition point of the thermoplastic polyimide resin that is the top layer resin. The following temperature is desirable, preferably 200 to 350 ° C. It is desirable to monitor the outer surface temperature of the preheating roll with a temperature sensor embedded in the roll surface, and to control the current value supplied to the heating control means 14 so as to always maintain a predetermined temperature. When preheating is not performed or when the preheating temperature is 200 ° C. or less, a very thin metal foil is rapidly heated and pressed when passing between heated press rolls, resulting in a large number of vertical stripes and wrinkles on the surface of the laminate. The generation of wrinkles and the like is not preferable because it not only leads to poor appearance but also lowers the adhesiveness. Moreover, since the polyimide resin deteriorates above the glass transition point, it is not preferable.

次に一対の加熱プレス5(6)は、図3に示すように、構造的には図2で説明した加熱手段内蔵タイプのガイドロール3’(4’)と同じで、図2で付した符号と同じものは、図2で説明したものと同一の意味であるが、その直径が大きく、且つ加熱手段が14、15、16と3分割されており、図示されていないが攪拌動力機構で強制回転させる構造である点が異なる。プレスロール外表面付近には、熱伝導性の良好な有機熱媒体が充填されているジャケット又はヒートパイプと呼ばれる熱伝導素子17が埋め込まれて表面温度を均一化する手段が設けられている。プレスロール外表面温度は、熱可塑性ポリイミド系樹脂のガラス転移点以上であることが望ましく、より好ましくは360〜390℃の範囲内の設定値に制御する。かかるプレスロール外表面温度はロール表面に埋め込まれた温度センサーにて監視し加熱手段14、15、16へ供給する電流値を制御することが望ましい。   Next, as shown in FIG. 3, the pair of heating presses 5 (6) are structurally the same as the heating means built-in type guide roll 3 ′ (4 ′) described in FIG. 2, and are attached in FIG. The same reference numerals have the same meaning as described in FIG. 2, but the diameter is large and the heating means is divided into three parts of 14, 15, 16 and is not shown, but is a stirring power mechanism. The difference is that the structure is forcibly rotated. In the vicinity of the outer surface of the press roll, a means for equalizing the surface temperature is provided by embedding a heat conduction element 17 called a jacket or a heat pipe filled with an organic heat medium having good heat conductivity. The outer surface temperature of the press roll is desirably equal to or higher than the glass transition point of the thermoplastic polyimide resin, and is more preferably controlled to a set value within a range of 360 to 390 ° C. It is desirable to monitor the outer surface temperature of the press roll with a temperature sensor embedded in the roll surface and control the current value supplied to the heating means 14, 15, 16.

また、上記一対の加熱プレスロール5、6は窒素雰囲気下において、図示されていないが上下に配置された少なくとも片方のプレスロールを中心軸12の両側で保持して所定の位置まで油圧又はギヤによる加圧手段で移動させて両者のギャップ調整を行わせることで、導入される基材1,2に対して相互にプレスロールから最適な加圧力が伝達される。この場合の加熱プレスロール間の線圧は50〜500Kg/cm(490N/cm〜4900N/cm)、好ましくは100〜300Kg/cm(980N/cm〜2940N/cm)、通過時間2〜5秒間の条件下で加熱圧着することが望ましい。   The pair of heating press rolls 5 and 6 are not shown in the figure, but hold at least one press roll arranged on both sides of the central shaft 12 in a nitrogen atmosphere. By moving the pressure by the pressure means and adjusting the gap between the two, the optimum pressurizing force is transmitted from the press roll to the substrates 1 and 2 to be introduced. In this case, the linear pressure between the heated press rolls is 50 to 500 kg / cm (490 N / cm to 4900 N / cm), preferably 100 to 300 kg / cm (980 N / cm to 2940 N / cm), and the passing time is 2 to 5 seconds. It is desirable to thermocompression bond under conditions.

さらに使用される一対の加熱プレスロールは、プレスロールの平均表面粗さ(Ra)を0.01μmよりも大きく、5μm以下、好ましくは0.1〜3μmの粗面化状態にて使用することが望ましい。プレスロールの表面粗さ(Ra)が0.01μm以下では加熱ロール間から出てくる両面導体ポリイミド積層体のロール密着によるトラレが発生して走行中にシワが発生したり、銅箔粉等の異物付着に起因するピット(製品表面に数十ミクロンの打痕、又は凹み)等の発生が避けられない。また5μm以上ではロール表面の凹凸が積層体表面に転写されるので好ましくない。ロール表面を上記範囲内の粗面とするにはセラミック皮膜を溶射することで調整することができる。なお、表面粗さ(Ra)はダイヤ針による触針式表面粗さ計にて求める。 Further, the pair of heated press rolls used has a press roll average surface roughness (Ra) larger than 0.01 μm and 5 μm or less , preferably 0.1 to 3 μm in a roughened state. desirable. When the surface roughness (Ra) of the press roll is 0.01 μm or less, the tray caused by the roll adhesion of the double-sided conductor polyimide laminate that comes out between the heating rolls will generate wrinkles during running, Occurrence of pits (a dent of several tens of microns or dents on the product surface) due to the adhesion of foreign substances is unavoidable. On the other hand, when the thickness is 5 μm or more, unevenness on the roll surface is transferred to the surface of the laminate, which is not preferable. In order to make the roll surface rough within the above range, it can be adjusted by spraying a ceramic film. The surface roughness (Ra) is obtained with a stylus type surface roughness meter using a diamond needle.

なお、図1において加熱プレスロール5と6にて片面導体積層体1のトップ層に導電性金属箔(M2)を加熱圧着により積層一体化させた両面導体ポリイミド積層体7を形成した後は、冷却用の不活性ガス吹き付け等の冷却手段cによって予備冷却するのが望ましいが、冷却手段cによる冷却温度は、あまりに急激に冷却した場合、積層体7に反りが発生し好ましくないので、前記した予備加熱温度と同等の200℃以上でトップ層樹脂である熱可塑性ポリイミド系樹脂のガラス転移点以下の温度、好ましくは200〜300℃が望ましい。 In addition, after forming the double-sided conductor polyimide laminate 7 in which the conductive metal foil (M 2 ) is laminated and integrated on the top layer of the single-sided conductor laminate 1 with the hot press rolls 5 and 6 in FIG. In addition, it is desirable to pre-cool by cooling means c such as blowing an inert gas for cooling, but the cooling temperature by the cooling means c is not preferable because the laminate 7 is warped when cooled too rapidly. A temperature equal to or higher than the preheated temperature of 200 ° C. and lower than the glass transition point of the thermoplastic polyimide resin that is the top layer resin, preferably 200 to 300 ° C.

本発明で得られる両面導体型ポリイミド積層体は、絶縁体としてのポリイミド系樹脂層の両面に導体としての導電性金属層を有し、外観が良好でシワの発生がないしかも品質バラツキもないロール巻き製品であり、高機能化する携帯電話やデシタルカメラ、ナビゲーター、その他の各種電子機器類の小型化、軽量化の進展に伴って、使用される電子配線材料として好適である。   The double-sided conductor-type polyimide laminate obtained by the present invention has a conductive metal layer as a conductor on both sides of a polyimide resin layer as an insulator, has a good appearance, is free from wrinkles, and has no quality variation It is a rolled product and is suitable as an electronic wiring material to be used with the progress of miniaturization and weight reduction of highly functional mobile phones, digital cameras, navigators, and other various electronic devices.

以下、実施例及び比較例に基づいて,本発明の実施の形態を具体的に説明する。なお、以下の実施例及び比較例において、線膨張係数、片面銅張品のカール及び接着力は以下の方法で測定した。   Hereinafter, based on an Example and a comparative example, embodiment of this invention is described concretely. In the following examples and comparative examples, the linear expansion coefficient, the curl of the single-sided copper-clad product, and the adhesive force were measured by the following methods.

すなわち、線膨張係数はセイコー電子工業株式会社製サーモメカニカルアナライザー(TMA100)を用いて、250℃に昇温後に10℃/分の速度で冷却し、240℃〜100℃の間における平均線膨張係数を算出して求めた。片面銅張品のカールとしては、熱処理してイミド化した後における100mm×100mmの寸法の銅張品の極率半径を測定した。   In other words, the linear expansion coefficient is an average linear expansion coefficient between 240 ° C. and 100 ° C. by using a thermomechanical analyzer (TMA100) manufactured by Seiko Denshi Kogyo Co., Ltd. Was calculated. As the curl of a single-sided copper-clad product, the radius of curvature of a copper-clad product having a size of 100 mm × 100 mm after heat treatment and imidization was measured.

片面銅張品の接着力は,JIS C5016:7.1項に順じ、導体幅3mmのパターンを使用し、銅箔を180°の方向に50mm/分の速度で引き剥がした時の値として求めた。   The adhesive strength of a single-sided copper-clad product is the value when the copper foil is peeled off at a speed of 50 mm / min in a 180 ° direction using a pattern with a conductor width of 3 mm in accordance with JIS C5016: Asked.

また、実施例及び比較例中では以下の略号を使用した。
PMDA:無水ピロメリット酸
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸無水物
DDE:4,4−ジアミノジフェニルエーテル
MABA:2’−メトキシ−4,4’−ジアミノベンズアニリド
In the examples and comparative examples, the following abbreviations were used.
PMDA: pyromellitic anhydride BTDA: 3,3 ′, 4,4′-benzophenone tetracarboxylic anhydride DDE: 4,4-diaminodiphenyl ether MABA: 2′-methoxy-4,4′-diaminobenzanilide

(合成例1)
ガラス製反応器に窒素を通じながらN,N−ジメチルアセトアミド2,532gを仕込み、続いて攪拌下に0.5モルのDDEと0.5モルのMABAとを仕込み、その後完全に溶解させた。この溶液を10℃に冷却し、反応液が30℃以下の温度に保たれるように1モルのPMDAを少量ずつ添加し、添加終了後引き続いて室温で2時間攪拌を行い、重合反応を完結させた。得られたポリイミド前駆体溶液はポリマー濃度15重量%及びB型粘度計による25℃でのみかけ粘度1000mPa・sであった。
(Synthesis Example 1)
2,532 g of N, N-dimethylacetamide was charged into a glass reactor through nitrogen, then 0.5 mol of DDE and 0.5 mol of MABA were charged with stirring, and then completely dissolved. The solution was cooled to 10 ° C., and 1 mol of PMDA was added little by little so that the reaction solution was kept at a temperature of 30 ° C. or lower. After the addition was completed, the mixture was stirred at room temperature for 2 hours to complete the polymerization reaction. I let you. The obtained polyimide precursor solution had a polymer concentration of 15% by weight and an apparent viscosity of 1000 mPa · s at 25 ° C. using a B-type viscometer.

(合成例2)
ジアミン成分としてDDEの1モルを使用し、酸無水物成分としてBTDAの1モルを使用した以外は、合成例1と同様にしてポリイミド前駆体溶液を調整した。得られたポリイミド前駆体溶液はポリマー濃度15重量%及びB型粘度計による25℃でのみかけ粘度300mPa・sであった。
(Synthesis Example 2)
A polyimide precursor solution was prepared in the same manner as in Synthesis Example 1 except that 1 mol of DDE was used as the diamine component and 1 mol of BTDA was used as the acid anhydride component. The resulting polyimide precursor solution had a polymer concentration of 15% by weight and an apparent viscosity of 300 mPa · s at 25 ° C. using a B-type viscometer.

(積層体の作製)
35μmロール状の電解銅箔(日鉱グールド社製)の粗化面にダイコーターを用いて合成例2で調整したポリイミド前駆体溶液2を12μmの厚みで均一に塗工した後、120℃の熱風乾燥炉で連続的に処理し溶剤を除去した。次にこのポリイミド前駆体層の上からリバース式ロールコーターを用いて合成例1で調整したポリイミド前駆体溶液1を200μmの厚みで均一に塗工し、120℃の熱風乾燥炉で連続的に処理し溶剤を除去した後、さらに合成例2で調整したポリイミド前駆体溶液2を15μmの厚みで均一に塗布し、次いで熱風乾燥炉で30分間かけて120℃から360℃まで昇温させて熱処理しイミド化させ、ポリイミド樹脂層の厚みが25μmで反りやカールのない平面性の良好な片面銅張品aを得た。この片面銅張品aの銅箔層とポリイミド樹脂層との間の180°引き剥がし強さ(JIS C−5016)を測定した結果は0.8kg/cmであり、エッチング後のフイルムの熱膨張係数は23.5×10-6(1/℃)であった。
(Production of laminate)
After the polyimide precursor solution 2 prepared in Synthesis Example 2 was uniformly applied to a roughened surface of a 35 μm roll-shaped electrolytic copper foil (manufactured by Nikko Gould Co., Ltd.) using a die coater with a thickness of 12 μm, hot air at 120 ° C. The solvent was removed by continuous treatment in a drying oven. Next, the polyimide precursor solution 1 prepared in Synthesis Example 1 is coated uniformly with a thickness of 200 μm on the polyimide precursor layer using a reverse roll coater, and continuously processed in a 120 ° C. hot air drying furnace. After the solvent was removed, the polyimide precursor solution 2 prepared in Synthesis Example 2 was uniformly applied with a thickness of 15 μm, and then heat-treated by raising the temperature from 120 ° C. to 360 ° C. in a hot air drying oven over 30 minutes. Imidization was performed to obtain a single-sided copper-clad product a having a flatness having a thickness of 25 μm and no warping or curling. The 180 ° peel strength (JIS C-5016) measured between the copper foil layer and the polyimide resin layer of this single-sided copper-clad product a was 0.8 kg / cm, and the thermal expansion of the film after etching The coefficient was 23.5 × 10 −6 (1 / ° C.).

(実施例1)
製造例で調整した片面絶縁体層の銅張品の横幅500mmのロール巻きシートの樹脂面と同じ横幅寸法の35μmのロール巻きシートである圧延銅箔の粗化面とを、それぞれ窒素雰囲気下のガイドロールを経由して、一対の加熱プレスロール(外径は300mm、幅800mmで、表面付近には均一加熱手段としてナフタリンを封入したジャケット式のヒートパイプが埋め込まれ、内部の中心軸には誘電加熱コイルを内蔵させた構造)間に導入する前で加熱手段内蔵タイプのガイドロール3’(4’)にて予備加熱後に、加熱プレスロール表面温度360〜390℃、プレスロール間の線圧150〜170kg/cm、通過時間2〜5秒間の範囲内で加熱圧着した。このとき、同じ基材材料、同じ加熱プレスロール条件下での予備加熱しない場合と、予備加熱温度を150℃、250℃及び340℃に変更した場合について、得られた両面銅張品の表面状態を目視にて調査した結果を表1に示す。
(Example 1)
The roughened surface of the rolled copper foil, which is a 35 μm roll wound sheet having the same width as the resin surface of the 500 mm wide roll wound sheet of the copper-clad product of the single-sided insulator layer prepared in the production example, respectively, under a nitrogen atmosphere Via a guide roll, a pair of heated press rolls (outer diameter is 300 mm, width is 800 mm, a jacket type heat pipe filled with naphthalene as a uniform heating means is embedded near the surface, and the inner central axis is dielectric. After the preheating with the guide roll 3 ′ (4 ′) of the heating means built-in type before being introduced between the heating coil and the heating coil, the surface temperature of the heated press roll is 360 to 390 ° C. and the linear pressure between the press rolls is 150. Thermocompression bonding was performed within a range of ˜170 kg / cm and a passage time of 2 to 5 seconds. At this time, the surface state of the obtained double-sided copper-clad product in the case of preheating under the same base material and the same hot press roll condition and when the preheating temperature is changed to 150 ° C., 250 ° C. and 340 ° C. Table 1 shows the result of visual inspection.

Figure 0003790250
Figure 0003790250

(実施例2)
上記の実施例1において、加熱プレスロール表面の設定温度360℃、プレスロール間の線圧150kg/cm、通過時間3秒間に設定し、且つ加熱プレスロール間へ導入される基材の予備加熱が無い場合と、予備加熱温度を250℃及び340℃とした場合のそれぞれについて、加熱プレスロールの表面粗さ(Ra)を0.01以下、0.05、0.20、10.0μmの4段間に変化させた場合に得られた両面銅張品の表面状態を目視にて調査した結果を表2に示す。
(Example 2)
In Example 1 above, the set temperature of the heated press roll surface is set to 360 ° C., the linear pressure between the press rolls is set to 150 kg / cm, the passing time is set to 3 seconds, and the preliminary heating of the base material introduced between the heated press rolls is performed. For each of the case where there is no surface heating and the preheating temperature of 250 ° C. and 340 ° C., the surface roughness (Ra) of the heated press roll is 0.01 or less, 0.05, 0.20, 10.0 μm in four stages. Table 2 shows the results of visual inspection of the surface state of the double-sided copper-clad product obtained when the distance was changed in between.

Figure 0003790250
Figure 0003790250

本発明の両面導体ポリイミド積層体の製造方法を示す概略フローである。It is a schematic flow which shows the manufacturing method of the double-sided conductor polyimide laminated body of this invention. 予備加熱用ガイドロールの一例を示す概略の縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of the guide roll for preheating. 加熱プレスロールの一例を示す概略の縦断面図である。It is a schematic longitudinal cross-sectional view which shows an example of a heating press roll.

符号の説明Explanation of symbols

1 片面導体積層体
2 導電性金属箔
3 ガイドロール
3’予備加熱用ガイドロール
4 ガイドロール
4’予備加熱用ガイドロール
5 加熱プレスロール
6 加熱プレスロール
7 両面導体ポリイミド積層体
8 ガイドロール
9 ロール巻き製品
10 窒素ガス雰囲気の処理室
11 窒素シール機構
12 中心軸
13 ベアリング等による回転支持部材
14 加熱手段
17 ヒートパイプ
DESCRIPTION OF SYMBOLS 1 Single-sided conductor laminated body 2 Conductive metal foil 3 Guide roll 3 'Pre-heating guide roll 4 Guide roll 4' Pre-heating guide roll 5 Heating press roll 6 Heating press roll 7 Double-sided conductor polyimide laminated body 8 Guide roll 9 Roll winding Product 10 Nitrogen gas atmosphere treatment chamber 11 Nitrogen seal mechanism 12 Center shaft 13 Rotating support member 14 by bearings, etc. Heating means 17 Heat pipe

Claims (5)

導電性金属箔(M1)上にベース層、中間メイン層、トップ層の少なくとも三層のポリイミド系樹脂層を有する片面導体積層体と導電性金属箔(M2)からなるそれぞれの導入基材を連続的に一対の加熱プレスロール間に導入し、上記トップ層に導電性金属箔(M2)を加熱圧着により積層一体化させる両面導体ポリイミド積層体の製造方法において、加熱プレスロール間に導入前の片面導体積層体と導電性金属箔(M2)をそれぞれ不活性ガス雰囲気下にて200℃以上〜トップ層のポリイミド系樹脂のガラス転移点以下に予備加熱後に、平均表面粗さ(Ra)が0.01μmよりも大きく、5μm以下に粗面化処理された加熱プレスロール表面に接触させることを特徴とする両面導体ポリイミド積層体の連続製造方法。 Conductive metal foil (M1) base layer over the intermediate main layer, each of the introduction substrate consisting single-sided conductor laminate and the conductive metal foil (M2) having a polyimide resin layer of at least three layers of the top layer In a method for producing a double-sided conductor polyimide laminate in which a conductive metal foil (M2) is laminated and integrated by thermocompression bonding continuously between a pair of heated press rolls, and before the introduction between the heated press rolls. The average surface roughness (Ra) is 0 after preheating the single-sided conductor laminate and the conductive metal foil (M2) to 200 ° C. or more and below the glass transition point of the polyimide resin of the top layer in an inert gas atmosphere. A method for continuously producing a double-sided conductor polyimide laminate, the method comprising contacting the surface of a heated press roll having a surface roughness greater than 0.01 μm and roughened to 5 μm or less . 上記一対の加熱プレスロールの表面温度を340〜390℃、プレスロール間の線圧50Kg/cm〜300Kg/cm、通過時間2〜5秒間の条件下で加熱圧着する請求項1に記載の両面導体ポリイミド積層体の連続製造方法。 Three hundred forty to three hundred ninety ° C. The front surface temperature of the pair of heating press rolls, both surfaces of claim 1, thermocompression bonding under the conditions of a linear pressure of 50Kg / cm~300Kg / cm, transit time 2-5 seconds between the press roll A continuous production method of a conductor polyimide laminate. 上記片面導体積層体と導電性金属箔(M2)はロール巻き状態から引き出してそれぞれ中心軸の高さが異なる複数のガイドロールを経由させて平面性を高めた状態で予備加熱される請求項1又は2に記載の両面導体ポリイミド積層体の連続製造方法。   The said single-sided conductor laminated body and electroconductive metal foil (M2) are preheated in the state which pulled out from the roll winding state, and improved the planarity through the several guide roll from which the height of a central axis each differs. Or the continuous manufacturing method of the double-sided conductor polyimide laminated body of 2. 予備加熱は加熱手段内蔵のガイドロールによって行う請求項1〜3のいずれかに記載の両面導体ポリイミド積層体の連続製造方法。   The method for continuously producing a double-sided conductor polyimide laminate according to any one of claims 1 to 3, wherein the preheating is performed by a guide roll with a built-in heating means. ロール表面にセラミック皮膜が溶射されて表面粗さ(Ra)が形成されている請求項に記載の両面導体ポリイミド積層体の連続製造方法。 Sided conductor continuous production method of the polyimide laminate according to claim 1, the ceramic coating is sprayed on the roll surface the surface roughness (Ra) is formed.
JP2004009531A 2004-01-16 2004-01-16 Continuous production method of double-sided conductor polyimide laminate Expired - Lifetime JP3790250B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004009531A JP3790250B2 (en) 2004-01-16 2004-01-16 Continuous production method of double-sided conductor polyimide laminate
PCT/JP2004/019523 WO2005068183A1 (en) 2004-01-16 2004-12-27 Continuous production method for both-sided conductor polyimide laminate
KR1020067016383A KR101027203B1 (en) 2004-01-16 2004-12-27 Continuous production method for both-sided conductor polyimide laminate
CN2004800404673A CN1906027B (en) 2004-01-16 2004-12-27 Continuous production method for both-sided conductor polyimide laminate
TW094101197A TW200602191A (en) 2004-01-16 2005-01-14 Continuous production method for both-sided conductor polyimide laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009531A JP3790250B2 (en) 2004-01-16 2004-01-16 Continuous production method of double-sided conductor polyimide laminate

Publications (2)

Publication Number Publication Date
JP2005199615A JP2005199615A (en) 2005-07-28
JP3790250B2 true JP3790250B2 (en) 2006-06-28

Family

ID=34792274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009531A Expired - Lifetime JP3790250B2 (en) 2004-01-16 2004-01-16 Continuous production method of double-sided conductor polyimide laminate

Country Status (5)

Country Link
JP (1) JP3790250B2 (en)
KR (1) KR101027203B1 (en)
CN (1) CN1906027B (en)
TW (1) TW200602191A (en)
WO (1) WO2005068183A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062103A1 (en) * 2022-09-23 2024-03-28 Basf Se Process for producing a composite component comprising at least one metal layer and one polymer layer

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062448A (en) * 2006-09-05 2008-03-21 Hitachi Chem Co Ltd Flexible laminate, its manufacturing method and flexible printed-wiring board
CN101670697B (en) * 2008-09-12 2012-06-27 财团法人工业技术研究院 Double-sided metal foil layer laminated board and manufacture method thereof
DE102013013495A1 (en) * 2013-08-16 2015-02-19 Thyssenkrupp Steel Europe Ag Method and device for producing a composite material
AR105821A1 (en) * 2015-09-09 2017-11-15 Lilly Co Eli USEFUL COMPOUNDS TO INHIBIT ROR-g-T
EP3206213A1 (en) * 2016-02-15 2017-08-16 Voestalpine Stahl GmbH Strip throughput method for producing an electrical strip wound into a coil
CN108247750A (en) * 2018-03-30 2018-07-06 苏州维洛克电子科技有限公司 A kind of diaphragm cutting machine
CN109594390A (en) * 2018-11-23 2019-04-09 浙江福斯特新材料研究院有限公司 A kind of hot-press equipment of semipermeable membrane support material material
JP7082206B2 (en) * 2019-08-08 2022-06-07 株式会社有沢製作所 Method of manufacturing a laminate
CN110911646B (en) * 2019-10-25 2022-05-10 合肥国轩高科动力能源有限公司 Composite current collector roll welding and die cutting integrated equipment and roll welding and die cutting method
CN115023311A (en) * 2019-12-04 2022-09-06 3M创新有限公司 Rotary acoustic horn

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102622B2 (en) * 1995-02-27 2000-10-23 宇部興産株式会社 Metal foil laminated polyimide film
JP3580128B2 (en) * 1998-04-17 2004-10-20 宇部興産株式会社 Manufacturing method of metal foil laminated film
JP2001310435A (en) * 2000-04-27 2001-11-06 Kanegafuchi Chem Ind Co Ltd Method for preparing heat-resistant flexible base
JP2001239585A (en) * 2000-02-28 2001-09-04 Kuraray Co Ltd Metal-clad laminate and manufacturing method therefor
JP4345187B2 (en) * 2000-03-28 2009-10-14 宇部興産株式会社 Method for producing flexible metal foil laminate
JP4193461B2 (en) * 2001-10-11 2008-12-10 宇部興産株式会社 Heat-sealable polyimide and laminate using the polyimide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024062103A1 (en) * 2022-09-23 2024-03-28 Basf Se Process for producing a composite component comprising at least one metal layer and one polymer layer

Also Published As

Publication number Publication date
TWI333895B (en) 2010-12-01
TW200602191A (en) 2006-01-16
CN1906027B (en) 2012-11-07
WO2005068183A1 (en) 2005-07-28
CN1906027A (en) 2007-01-31
JP2005199615A (en) 2005-07-28
KR101027203B1 (en) 2011-04-06
KR20060126561A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
TWI333895B (en)
JP5886027B2 (en) Double-sided metal-clad laminate and method for producing the same
JP2014195947A (en) Method of producing double-surface flexible metal-clad laminate sheet
KR102592679B1 (en) Method for producing metal-clad laminate, method for producing and recovering coated press roll
JP2008016603A (en) Substrate for flexible printed circuit board, and its manufacturing method
KR20050090139A (en) Bonding sheet and one-side metal-clad laminate
KR20060129081A (en) Flexible printed wiring board and manufacturing method thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP3675805B1 (en) Continuous production method of double-sided conductor polyimide laminate
JP4510506B2 (en) Method for producing polyimide metal laminate
WO2005090070A1 (en) Method for producing substrate for flexible printed wiring board
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP2008031448A (en) Manufacturing method of polyimide film and manufacturing method of laminated plate
JP3034838B2 (en) Method for producing double-sided conductor polyimide laminate
JP4785340B2 (en) Polyimide metal laminate
JP2009241484A (en) Flexible metal-clad laminate board for chip on film and its manufacturing method
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same
JP2007272941A (en) Method of manufacturing laminate for hdd suspension
JP2007250041A (en) Laminated body for hdd suspension
JP2009184256A (en) Metal-clad laminate
JP2004090247A (en) Method for producing flexible double-sided metal laminated plate
JP2009154447A (en) Metal-clad laminate
JP2005297471A (en) Flexible metal laminate
JP2007265561A (en) Layered material for hdd suspension

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Ref document number: 3790250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term