JP4785340B2 - Polyimide metal laminate - Google Patents

Polyimide metal laminate Download PDF

Info

Publication number
JP4785340B2
JP4785340B2 JP2003384009A JP2003384009A JP4785340B2 JP 4785340 B2 JP4785340 B2 JP 4785340B2 JP 2003384009 A JP2003384009 A JP 2003384009A JP 2003384009 A JP2003384009 A JP 2003384009A JP 4785340 B2 JP4785340 B2 JP 4785340B2
Authority
JP
Japan
Prior art keywords
polyimide
ppm
thermoplastic polyimide
metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384009A
Other languages
Japanese (ja)
Other versions
JP2005144805A (en
Inventor
英二 大坪
将生 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2003384009A priority Critical patent/JP4785340B2/en
Publication of JP2005144805A publication Critical patent/JP2005144805A/en
Application granted granted Critical
Publication of JP4785340B2 publication Critical patent/JP4785340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明はフレキシブル配線基板などに広く使用されるポリイミド金属積層板に関するものである。   The present invention relates to a polyimide metal laminate widely used for flexible wiring boards and the like.

近年、電子機器の小型携帯化に伴い、回路基板材料として部品、素子の高密度実装が可能なポリイミド金属積層板の利用が増大している。そして、さらなる高密度化に対応するため、配線幅が10〜50μmとなる微細パターンの加工に適するポリイミド金属積層板が望まれ、このような微細加工や、微細加工上に部品、素子を実装する際に外観上の反りが小さなものがますます要求されてきている。   In recent years, with the downsizing and portability of electronic devices, the use of polyimide metal laminates capable of high-density mounting of components and elements as circuit board materials is increasing. In order to cope with higher density, a polyimide metal laminated board suitable for processing a fine pattern having a wiring width of 10 to 50 μm is desired, and components and elements are mounted on such fine processing and fine processing. In some cases, there is an increasing demand for a small amount of external warping.

従来より反りを小さくする方法については検討されており、例えば非特許文献1にあるように、銅箔上に銅箔と略同等の線膨張係数が18及び22.4ppm/℃となるポリイミドの前駆体であるポリアミック酸を塗布乾燥して得られるポリイミド金属積層板は略平板である事が示されている。しかしながら銅箔上にポリアミック酸を塗布乾燥する方法は、ポリイミド層の厚さを厚くする場合、乾燥に要する時間が極端に長くなる問題があった。   For example, as described in Non-Patent Document 1, a method for reducing the warpage has been studied. For example, as shown in Non-Patent Document 1, a polyimide precursor having a linear expansion coefficient of 18 and 22.4 ppm / ° C. is approximately equal to that of the copper foil. It is shown that a polyimide metal laminate obtained by applying and drying a polyamic acid as a body is a substantially flat plate. However, the method of applying and drying polyamic acid on the copper foil has a problem that the time required for drying becomes extremely long when the thickness of the polyimide layer is increased.

そこで厚さの範囲が広いポリイミドフィルムを金属箔と張り合わせる方法が有る。例えば特許文献1には線膨張係数15〜16ppm/℃である厚さ50μmのポリイミドフィルムに接着剤を塗布乾燥後、銅箔とラミネートすることで得られるポリイミド金属積層板が略平板であることが開示されている。しかしながらこの方法では耐熱性や絶縁性に劣る接着剤を使用しているため高い温度を必要とする鉛フリー半田を用いた最近の配線板用途や高絶縁特性を必要とするファインパターン用途には使用できない場合がある。   Therefore, there is a method in which a polyimide film having a wide thickness range is bonded to a metal foil. For example, Patent Document 1 discloses that a polyimide metal laminate obtained by applying an adhesive to a polyimide film having a linear expansion coefficient of 15 to 16 ppm / ° C. and a thickness of 50 μm and laminating with a copper foil is a substantially flat plate. It is disclosed. However, this method uses an adhesive that is inferior in heat resistance and insulation, so it is used for recent wiring board applications using lead-free solder that requires high temperatures and fine pattern applications that require high insulation characteristics. There are cases where it is not possible.

一方接着剤を用いない方法として、真空蒸着やスパッタリングによりポリイミドフィルム上に金属を形成する製法が知られている。例えば特許文献2にあるように、ポリイミドフィルムにスパッタリング法にて下地金属を形成し、その後メッキにより銅層を形成する方法により得られるポリイミド金属積層板等であり、これらは略平板である。その理由は、製造工程で高い温度を必要とせず、銅とポリイミドの線膨張係数の差から来る反りが殆ど無いためであると思われる。しかしながらこの方法では真空蒸着やスパッタリングといった特殊な設備が必要であるばかりか、メッキ前の下地金属層の電気抵抗が大きく銅のメッキ時にピンホールと呼ばれるメッキ不良が発生し易く、導通不良を発生する致命的問題があり、未だ解決に至っていない。   On the other hand, as a method that does not use an adhesive, a production method is known in which a metal is formed on a polyimide film by vacuum deposition or sputtering. For example, as disclosed in Patent Document 2, a polyimide metal laminated plate or the like obtained by a method in which a base metal is formed on a polyimide film by a sputtering method and then a copper layer is formed by plating, and these are substantially flat plates. The reason seems to be that a high temperature is not required in the production process and that there is almost no warpage resulting from the difference in coefficient of linear expansion between copper and polyimide. However, this method requires not only special equipment such as vacuum deposition and sputtering, but also the electrical resistance of the base metal layer before plating is large, and plating defects called pinholes are likely to occur during copper plating, resulting in poor conduction. There is a fatal problem that has not yet been resolved.

そこで銅箔と非熱可塑性ポリイミドフィルムを、接着剤として耐熱性のある熱可塑性ポリイミドを用いて張り合わせる方法が知られている。例えば、特許文献3にはポリイミドフィルムと銅箔とを熱可塑性ポリイミドにより加熱圧着して得られるポリイミド金属積層板が開示されている。しかしながら、使用するポリイミドフィルムが先行文献に示されるように、少なくとも反りの発生がないと予想される15〜22.4ppm/℃の範囲のものを使用した場合、ポリイミド金属積層板の反りが略平板であっても、金属層をエッチング除去した後の反りが大きく、更に、MDとTDで反りの異方性が発生する新たな問題が生じた。前述した通り、ポリイミド金属積層板の反りは金属層とポリイミド層との線膨張係数の差に起因して起こると考えられるが、金属を除去した際の反りを説明できない。また、通常使用されるポリイミド金属積層板の最終形態は、金属層が回路となり金属の大部分が除去されるため、ポリイミド金属積層板の金属層が除去された後の形状が最も重要であるが、従来の方法では満足な製品が得られなかった。
「Journal of Applied Polymer Science」 Vol.51,第1647頁-第1653頁 特許第3356560号公報 特開平6-29634号公報 特開平7-193349号公報
Therefore, a method is known in which a copper foil and a non-thermoplastic polyimide film are bonded together using a heat-resistant thermoplastic polyimide as an adhesive. For example, Patent Document 3 discloses a polyimide metal laminate obtained by thermocompression bonding a polyimide film and a copper foil with thermoplastic polyimide. However, as shown in the prior art, when the polyimide film to be used is in the range of 15 to 22.4 ppm / ° C., which is expected to have no warpage, the warpage of the polyimide metal laminate is substantially flat. Even so, the warp after the metal layer was removed by etching was large, and a new problem that warp anisotropy occurred in MD and TD occurred. As described above, the warpage of the polyimide metal laminate is considered to occur due to the difference in linear expansion coefficient between the metal layer and the polyimide layer, but the warpage when the metal is removed cannot be explained. Moreover, since the metal layer becomes a circuit and most of the metal is removed, the shape after the metal layer of the polyimide metal laminate is removed is the most important in the final form of the polyimide metal laminate usually used. However, a satisfactory product could not be obtained by the conventional method.
"Journal of Applied Polymer Science" Vol.51, pp. 1647-1653 Japanese Patent No. 3356560 Japanese Patent Laid-Open No. 6-23634 Japanese Unexamined Patent Publication No. 7-193349

本発明が解決しようとする課題は、ポリイミド金属積層板と金属を除去した後のポリイミド単体の反りが小さく、且つ、MD、TDに異方性のない、更には、耐熱性、微細加工性に優れるポリイミド金属積層板を効率的に提供することである。   The problem to be solved by the present invention is that the polyimide metal laminate and the polyimide alone after removing the metal are small in warpage, and there is no anisotropy in MD and TD. Furthermore, in heat resistance and fine workability It is to provide an excellent polyimide metal laminate efficiently.

本出願人は、上記課題を解決するために鋭意検討した結果、少なくとも1層以上の非熱可塑性ポリイミドフィルム層を含むポリイミドと金属の積層板において、非熱可塑性ポリイミドフィルムのTDとMDの線膨張係数差の絶対値が、特定値以内ものを用いることにより、上記課題を解決できることを見出し、本発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present applicant has found that a linear expansion of TD and MD of a non-thermoplastic polyimide film in a polyimide / metal laminate including at least one non-thermoplastic polyimide film layer. The inventors have found that the above problem can be solved by using an absolute value of the coefficient difference within a specific value, and have reached the present invention.

即ち、本発明は、以下に関するものである。
(1)少なくとも1層以上の非熱可塑性ポリイミドフィルム層を含むポリイミドと金属の積層板であって、該非熱可塑性ポリイミドフィルム層の幅方向(以下、TDと呼ぶ場合がある)と長さ方向(以下、MDと呼ぶ場合がある)の100℃〜200℃での平均線膨張係数差の絶対値が、0ppm/℃以上6ppm/℃以下であることを特徴とするポリイミド金属積層板。
(2)更に該非熱可塑性ポリイミドフィルム層の250℃〜350℃での平均線膨張係数が、−20ppm/℃以上1000ppm/℃以下である(1)記載のポリイミド金属積層板。
(3)ポリイミド金属積層板をMDおよびTDに35mm、長さを2mmの短冊とした測定サンプルを23℃、50%RH、24hr以上放置した場合の、反りがMD、TDともに3mm以下であり、且つ、金属をエッチング除去した後のポリイミド層全体の反りが同様の条件にてMD、TDともに3mm以下であることを特徴とするポリイミド金属積層板。
That is, the present invention relates to the following.
(1) A polyimide and metal laminate including at least one non-thermoplastic polyimide film layer, the width direction of the non-thermoplastic polyimide film layer (hereinafter sometimes referred to as TD) and the length direction ( The polyimide metal laminate is characterized in that the absolute value of the difference in average linear expansion coefficient at 100 ° C. to 200 ° C. is sometimes 0 ppm / ° C. or more and 6 ppm / ° C. or less.
(2) The polyimide metal laminate according to (1), wherein the non-thermoplastic polyimide film layer has an average linear expansion coefficient at 250 ° C. to 350 ° C. of −20 ppm / ° C. to 1000 ppm / ° C.
(3) When a measurement sample with a polyimide metal laminate plate of 35 mm in MD and TD and a strip of 2 mm in length is left at 23 ° C, 50% RH, 24 hr or longer, the warpage of both MD and TD is 3 mm or less. The polyimide metal laminate is characterized in that the warpage of the entire polyimide layer after removing the metal by etching is 3 mm or less for both MD and TD under the same conditions.

本発明により、得られるポリイミド金属積層板は、金属を除去した後のポリイミド層全体の反りが略平板で、MD、TDに異方性がないポリイミド金属積層板を効率的に提供でき、得られたポリイミド金属積層板はエポキシ系やアクリル系接着剤を用いないポリイミドからなるため耐熱性に優れ、更に、ピンホールのない金属箔を用いることにより微細加工性にも優れる。   According to the present invention, the obtained polyimide metal laminate can efficiently provide a polyimide metal laminate having a substantially flat warp of the entire polyimide layer after removing the metal and having no anisotropy in MD and TD. The polyimide metal laminate is excellent in heat resistance because it is made of polyimide that does not use an epoxy or acrylic adhesive, and is excellent in fine workability by using a metal foil having no pinhole.

以下、本発明を詳細に説明する。
本発明のポリイミド金属積層板は、少なくとも1層以上の非熱可塑性ポリイミドフィルム層を含むポリイミドと金属の積層板であり、該非熱可塑性ポリイミドフィルムの幅方向(以下、TDと呼ぶことがある)と長さ方向(以下、MDと呼ぶことがある)の100℃〜200℃での線膨張係数差の絶対値が、0ppm/℃以上6ppm/℃以下であることが必要であり、好ましくは0ppm/℃以上5ppm/℃以下である。この範囲内であれば反りの異方性は殆ど発生しない。
Hereinafter, the present invention will be described in detail.
The polyimide metal laminate of the present invention is a polyimide and metal laminate including at least one non-thermoplastic polyimide film layer, and the width direction of the non-thermoplastic polyimide film (hereinafter sometimes referred to as TD) and The absolute value of the linear expansion coefficient difference in the length direction (hereinafter sometimes referred to as MD) at 100 ° C. to 200 ° C. needs to be 0 ppm / ° C. or more and 6 ppm / ° C. or less, preferably 0 ppm / More than 5 ° C / ° C. If it is in this range, the anisotropy of warping hardly occurs.

ここで、幅方向、長さ方向の線膨張係数の測定法については、マック・サイエンス(現 ブルカー・エシエックスエス)社製TMA-4000を用い、幅4mm×長さ20mm程度の非熱可塑性ポリイミドフィルムを空気雰囲気、荷重0.049N、昇温速度10℃/minにて伸縮量を測定後、100−200℃、250−350℃の平均線膨張係数をそれぞれ算出した。   Here, regarding the method of measuring the linear expansion coefficient in the width direction and the length direction, a non-thermoplastic polyimide having a width of about 4 mm and a length of about 20 mm is used using TMA-4000 manufactured by McScience (currently Bruker XS). After measuring the amount of expansion and contraction of the film in an air atmosphere, a load of 0.049 N, and a temperature increase rate of 10 ° C./min, average linear expansion coefficients of 100 to 200 ° C. and 250 to 350 ° C. were calculated, respectively.

更に、非熱可塑性ポリイミドフィルム層の250℃〜350℃の平均線膨張係数が−20以上1000ppm/℃以下、好ましくは−15以上500ppm/℃以下、更に好ましくは−10以上100ppm/℃以下であることが金属層を除去した際の反りを小さくするのに好ましい。−20ppm/℃未満ではポリイミド内部に残留する歪が大きく、加熱により反りが生じ易くなり、1000ppm/℃超える非熱可塑性ポリイミドを用いると素子や部品実装する際の熱により変形する可能性がある為好ましくない。   Furthermore, the average linear expansion coefficient of 250 ° C. to 350 ° C. of the non-thermoplastic polyimide film layer is −20 to 1000 ppm / ° C., preferably −15 to 500 ppm / ° C., more preferably −10 to 100 ppm / ° C. It is preferable to reduce the warp when the metal layer is removed. If it is less than −20 ppm / ° C., the strain remaining inside the polyimide is large and warping is likely to occur due to heating, and if non-thermoplastic polyimide exceeding 1000 ppm / ° C. is used, it may be deformed by heat when mounting elements or components. It is not preferable.

金属と接するポリイミド層は熱可塑性ポリイミドであることが密着力の面で好ましく、そのガラス転移温度(Tg)が150〜350℃程度であれば特に限定されない。   The polyimide layer in contact with the metal is preferably a thermoplastic polyimide in terms of adhesion, and is not particularly limited as long as its glass transition temperature (Tg) is about 150 to 350 ° C.

また、熱可塑性ポリイミドの厚さは、0.1μm以上10μm以下が好ましく、より好ましくは0.1以上5μm以下、より更に好ましくは0.1以上3μm以下である。   The thickness of the thermoplastic polyimide is preferably 0.1 μm or more and 10 μm or less, more preferably 0.1 or more and 5 μm or less, and still more preferably 0.1 or more and 3 μm or less.

本発明のポリイミド金属積層板において、非熱可塑性ポリイミドフィルム層は、ジアミンが、フェニレンジアミンおよび/またはジアミノジフェニルエーテルを含み、酸二無水物が、ビフェニルテトラカルボン酸二無水物および/またはベンゾフェノンテトラカルボン酸二無水物および/またはピロメリット酸二無水物を含むものから製造されたポリイミドであることが好ましい。   In the polyimide metal laminate of the present invention, the non-thermoplastic polyimide film layer includes a diamine containing phenylenediamine and / or diaminodiphenyl ether, an acid dianhydride being biphenyltetracarboxylic dianhydride and / or benzophenonetetracarboxylic acid. It is preferable that it is a polyimide manufactured from what contains a dianhydride and / or pyromellitic dianhydride.

また、該非熱可塑性ポリイミドフィルム層の厚さは3μm以上250μm以下であることが好ましく、より好ましくは5μm以上100μm以下、より更に好ましくは10μm以上50μm以下である。   The thickness of the non-thermoplastic polyimide film layer is preferably 3 μm to 250 μm, more preferably 5 μm to 100 μm, and still more preferably 10 μm to 50 μm.

本発明の非熱可塑性ポリイミドと熱可塑性ポリイミドは、本発明の目的を損なわない範囲で他の化合物や樹脂、例えばマレイミド化合物、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリアリレート、ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニルスルフィド、変性ポリフェニレンオキシド、ポリアミドイミド、ポリエーテルイミド、エポキシ樹脂等を適当量配合することも可能である。   The non-thermoplastic polyimide and thermoplastic polyimide of the present invention can be used as long as they do not impair the purpose of the present invention, such as other compounds and resins such as maleimide compounds, polyethylene, polypropylene, polycarbonate, polyarylate, polyamide, polysulfone, polyethersulfone, poly An appropriate amount of ether ketone, polyether ether ketone, polyphenyl sulfide, modified polyphenylene oxide, polyamide imide, polyether imide, epoxy resin, or the like can be blended.

本発明のポリイミド金属積層板において、非熱可塑性ポリイミドフィルムは公知技術にて製造でき、その方法は特に制限されるものではなく、例えば、ポリアミック酸および/又は、ポリイミド溶液を、基材(ガラスプレート、金属プレートまたは耐熱性を有する樹脂フィルム)の上に塗布した後、基材から剥離し、加熱する方法が挙げられる。また、反応を促進させるために、公知の脱水剤や閉環剤を用いてもよい。特にイミド化や乾燥工程で発生する反応や体積収縮、更には配向や結晶化などの構造変化にとなう残留応力を極力小さくし、且つ、フィルム内で均一にするために剥離後のフィルムの乾燥温度と搬送時の張力を均一に管理することが望ましい。   In the polyimide metal laminate of the present invention, the non-thermoplastic polyimide film can be produced by a known technique, and the method is not particularly limited. For example, a polyamic acid and / or a polyimide solution is used as a base material (glass plate). , A metal plate or a heat-resistant resin film), and then peeled off from the substrate and heated. In order to accelerate the reaction, a known dehydrating agent or ring-closing agent may be used. In particular, in order to minimize the residual stress that causes structural changes such as reaction, volume shrinkage, and orientation and crystallization in the imidization and drying process, and to make it uniform in the film, It is desirable to uniformly manage the drying temperature and the tension during transportation.

また、出来上がったフィルムの残留応力を除去する目的で、加熱アニールすることも好ましい。加熱装置として、通常の加熱炉、オートクレーブ等が利用できる。加熱雰囲気として、空気、イナートガス(窒素、アルゴン)等が利用できる。加熱方法としては、フィルムを連続的に加熱する方法またはフィルムをコアに巻いた状態で加熱炉に放置する方法のどちらの方法も好ましい。加熱方式としては、伝導加熱方式、輻射加熱方式、及び、これらの併用方式等が好ましい。加熱温度は、200〜600℃の温度範囲が好ましい。加熱時間は、0.05〜5000分の時間範囲が好ましい。   Moreover, it is also preferable to heat anneal for the purpose of removing the residual stress of the finished film. As a heating device, a normal heating furnace, an autoclave, or the like can be used. As a heating atmosphere, air, inert gas (nitrogen, argon), or the like can be used. As the heating method, either a method of continuously heating a film or a method of leaving the film in a heating furnace while being wound around a core is preferable. As the heating method, a conductive heating method, a radiant heating method, a combination method thereof, and the like are preferable. The heating temperature is preferably in the temperature range of 200 to 600 ° C. The heating time is preferably in the time range of 0.05 to 5000 minutes.

本発明に用いる金属の種類は特に限定はないが、例として銅及び銅合金、ステンレス鋼及びその合金、ニッケル及びニッケル合金(42合金も含む)、アルミニウム及びアルミニウム合金等が挙げられる。好ましくは銅及び銅合金である。また、これらの金属表面に防錆層や耐熱層(例えば、クロム、亜鉛などのメッキ処理)、シランカップリング剤などを形成したものも利用できる。好ましくは銅および/または、ニッケル、亜鉛、鉄、クロム、コバルト、モリブテン、タングステン、バナジウム、ベリリウム、チタン、スズ、マンガン、アルミニウム、燐、珪素等のうち、少なくとも1種以上の成分と銅を含む銅合金であり、これらは回路加工上好まれて使用される。特に望ましい金属箔としては圧延または電解メッキ法によって形成された銅箔であり、その好ましい厚さは3〜150μm、更に好ましくは3〜35μm、より好ましくは3〜12μmである。   The type of metal used in the present invention is not particularly limited, and examples thereof include copper and copper alloys, stainless steel and alloys thereof, nickel and nickel alloys (including 42 alloys), aluminum and aluminum alloys, and the like. Copper and copper alloy are preferable. Moreover, what formed the antirust layer, the heat-resistant layer (for example, plating processing of chromium, zinc, etc.), a silane coupling agent, etc. on these metal surfaces can also be utilized. Preferably, copper and / or nickel, zinc, iron, chromium, cobalt, molybdenum, tungsten, vanadium, beryllium, titanium, tin, manganese, aluminum, phosphorus, silicon, etc. and at least one component and copper are included. These are copper alloys, which are preferred for use in circuit processing. A particularly desirable metal foil is a copper foil formed by rolling or electrolytic plating, and its preferred thickness is 3 to 150 μm, more preferably 3 to 35 μm, and more preferably 3 to 12 μm.

該金属箔は両面共に如何なる粗化処理も施されていないものであっても、片面若しくは両面に粗化処理が施されていても良いが、好ましくは低粗度または無粗化処理箔が好ましく、具体的に使用可能な市販品の例として、F1-WS、F0-WS(古河サーキットフォイル社製 商品名)、BHY、NK120(ジャパンエナジー社製 商品名)、SLP、USLP(日本電解社製 商品名)、TQ-VLP、SQ-VLP、FQ-VLP(三井金属鉱業社製 商品名)、C7025、B52(オーリン社製 商品名)等が挙げられる。   Even if the metal foil is not subjected to any roughening treatment on both sides, it may be subjected to roughening treatment on one side or both sides, but preferably a low-roughness or non-roughening treatment foil is preferred. Specific examples of commercial products that can be used include F1-WS, F0-WS (trade name, manufactured by Furukawa Circuit Foil), BHY, NK120 (trade name, manufactured by Japan Energy), SLP, USLP (manufactured by Nippon Electrolytic Co., Ltd.) Product name), TQ-VLP, SQ-VLP, FQ-VLP (trade name, manufactured by Mitsui Kinzoku Mining Co., Ltd.), C7025, B52 (trade name, manufactured by Olin), and the like.

非熱可塑性ポリイミドと金属の加熱圧着方法としては、非熱可塑性ポリイミドフィルムに熱可塑性ポリイミドの前駆体のポリアミック酸及び/またはポリイミド溶液を塗布・乾燥させた後金属と張り合わせるか、予め金属に熱可塑性ポリイミドを同様の方法で形成させた後、非熱可塑性ポリイミドフィルムと張り合わせる方法があり、張り合わせには加熱プレス法及び/又は連続ラミネート法が使用できる。加熱プレス法としては例えば、プレス機の所定のサイズに切りだした金属箔とポリイミドとを重ね合わせを行ない、加熱プレスにより熱圧着することにより製造できる。   Non-thermoplastic polyimide and metal can be thermocompression-bonded by applying a polyamic acid and / or polyimide solution of a thermoplastic polyimide precursor to a non-thermoplastic polyimide film and drying it, or pasting it on the metal in advance. After forming the plastic polyimide by the same method, there is a method of pasting with a non-thermoplastic polyimide film, and a hot press method and / or a continuous laminating method can be used for the pasting. As the hot press method, for example, the metal foil cut into a predetermined size of a press machine and polyimide can be superposed and thermocompression bonded by a hot press.

連続ラミネート法としては、特に制限は無いが、例えば、ロールとロール間に挟み込み、張り合わせを行なう方法がある。このロールは金属ロール、ゴムロール等が利用できる。材質に制限はないが、金属ロールとしては、鋼材やステンレス材料が使用される。表面にハードクロムメッキ、タングステンカーバイド等表面硬度を高めた処理ロールを使用することが好ましい。ゴムロールとしては、金属ロールの表面に耐熱性のあるシリコンゴム、フッ素系のゴムを使用することが好ましい。   Although there is no restriction | limiting in particular as a continuous laminating method, For example, there exists the method of pinching and sticking between rolls. As this roll, a metal roll, a rubber roll or the like can be used. Although there is no restriction | limiting in a material, Steel materials and stainless steel material are used as a metal roll. It is preferable to use a processing roll with increased surface hardness such as hard chrome plating or tungsten carbide on the surface. As the rubber roll, it is preferable to use heat-resistant silicon rubber or fluorine-based rubber on the surface of the metal roll.

また、ベルトラミネートと呼ばれる、上下2本の金属ロールを1組とし、それを1組以上直列に配置した上下ロール間に上下2つのシームレスのステンレスベルトを間に配置させ、そのベルトを金属ロールにより加圧し、更に、金属ロールやその他熱源により加熱させることで連続ラミネートしても良い。   In addition, two upper and lower metal rolls, called belt laminate, are combined into one set, and two or more seamless stainless steel belts are placed between the upper and lower rolls arranged in series. Pressurization and further laminating may be performed by heating with a metal roll or other heat source.

ラミネート温度としては、200〜400℃の温度範囲が好ましく、好ましい加熱方式は、伝導加熱方式の他、遠赤外等の輻射加熱方式、誘導加熱方式等も利用できる。
加熱プレス法及び/又は連続ラミネート後、前述した加熱アニールすることも好ましい。
As the laminating temperature, a temperature range of 200 to 400 ° C. is preferable. As a preferable heating method, a radiation heating method such as far infrared, an induction heating method, and the like can be used in addition to the conductive heating method.
It is also preferable to perform the heat annealing described above after the hot pressing method and / or continuous lamination.

塗布方法としてはポリアミック酸/ポリイミド組成物の溶液(以下、これらを総称してワニスという)を直接塗布・乾燥することにより製造することが出来る。ワニスは、作業性を考慮すると、ワニス中のポリアミック酸/ポリイミドの含有率は5〜70重量%が好ましい。また25℃での粘度は1〜100,000cpsが好ましい。   As a coating method, a polyamic acid / polyimide composition solution (hereinafter collectively referred to as varnish) can be directly applied and dried. In consideration of workability, the content of polyamic acid / polyimide in the varnish is preferably 5 to 70% by weight. The viscosity at 25 ° C. is preferably 1 to 100,000 cps.

また塗布する方法としては、ダイコーター、コンマコーター、ロールコーター、グラビアコーター、カーテンコーター、スプレーコーター等の公知の方法が採用できる。塗布する厚み、ワニスの粘度等に応じて適宜利用できる。   As a method for coating, a known method such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, or a spray coater can be employed. It can be suitably used depending on the thickness to be applied, the viscosity of the varnish, and the like.

塗布したワニスを乾燥・キュアする方法は、通常の加熱乾燥炉が利用できる。乾燥炉の雰囲気としては、空気、イナートガス(窒素、アルゴン)等が利用できる。乾燥の温度としては、溶媒の沸点により適宜選択するが、60〜600℃の温度範囲が好適に利用される。乾燥の時間は、厚み、濃度、溶媒の種類により適宜選択するが0.05〜500分程度で行なうのが望ましい。   As a method for drying and curing the applied varnish, a normal heating and drying furnace can be used. As the atmosphere of the drying furnace, air, inert gas (nitrogen, argon) or the like can be used. The drying temperature is appropriately selected depending on the boiling point of the solvent, but a temperature range of 60 to 600 ° C. is preferably used. The drying time is appropriately selected depending on the thickness, concentration, and type of solvent, but is preferably about 0.05 to 500 minutes.

また、出来上がったポリイミド金属積層板の外観は、回路加工時の搬送や、露光工程でピント合わせ時の不具合を回避するために、35mm、長さを2mmの短冊とした測定サンプルを23℃、50%RH、24hr以上放置した場合の、反りがMD、TDともに3mm以下であることが好ましい。更に、金属をエッチング除去した後のポリイミド層全体の反りは、部品や素子の実装や、携帯電話やビデオカメラ内へ組み込む際の作業を容易にするためにMD、TDともに3mm以下であることが好ましい。   In addition, the appearance of the finished polyimide metal laminate is measured at 23 ° C, 50 mm, with a strip of 35 mm and a length of 2 mm to avoid problems during transportation and focusing during the exposure process. It is preferable that the warpage of both MD and TD is 3 mm or less when left at% RH for 24 hours or more. Furthermore, the warpage of the entire polyimide layer after etching away the metal must be 3 mm or less for both MD and TD in order to facilitate the mounting of parts and devices, and the work for incorporation into mobile phones and video cameras. preferable.

以下実施例により本発明を説明するが、本発明はこれらに限定されるものではない。
なお、実施例中の物性は以下の方法により測定した。
(1)ガラス転移温度(Tg)
古河サーキットフォイル社製銅箔(銘柄名 F0−WS)に合成したワニスを乾燥後20μm程度になるように塗布し、50−270℃まで窒素パージしたオーブン中で7℃/minで昇温にて乾燥およびイミド化させた後、銅箔をエッチング除去したフィルムを固体粘弾性装置 RSAII(レオメトリックス社製)により窒素雰囲気、1Hz、昇温速度5℃/minにて得られた損失弾性率(E”)のピークにより求める。
(2)線膨張係数(ppm/℃)
マック・サイエンス(現 ブルカー・エシエックスエス)社製TMA-4000を用い、幅4mm×長さ20mm程度の非熱可塑性ポリイミドフィルムを空気雰囲気、荷重0.049N、昇温速度10℃/minにて伸縮量を測定後、100−200℃、250−350℃の平均線膨張係数をそれぞれ算出する。
(3)ピール強度(kN/m)
長さ50mm、幅1mmの導体を、金属箔を40℃に加熱した塩化第二鉄溶液でエッチングし、水洗後常温で乾燥することにより形成し、JIS C-6471に規定される方法に従い、短辺の端から金属導体側をポリイミド層から剥離し、剥離角度は90°、剥離速度を50mm/minとした時の応力を測定し算出する。
(4)反り(mm)
「銅エッチング前」
導体パターンが幅35mm×長さ2mmになるようにエッチングレジストを塗布・乾燥・露光・現像し、40℃の塩化第二鉄溶液(40ボーメ)を用いてエッチングし、その後余分なポリイミドフィルムをカットすることで測定サンプルを形成させ、23℃×50%RH雰囲気で24hr以上放置後、拡大投影機((株)ミツトヨ製 PJ−300)にて図1に示す様にサンプルを置き、最大反り量(R)を計測する。尚、反りの方向は図1の様に金属層を内側にして凸状態の時にプラスと定義した。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
In addition, the physical property in an Example was measured with the following method.
(1) Glass transition temperature (Tg)
The varnish synthesized on the copper foil (brand name F0-WS) manufactured by Furukawa Circuit Foil Co., Ltd. was applied to a dryness of about 20 μm and heated at 7 ° C / min in an oven purged with nitrogen to 50-270 ° C. After drying and imidization, the film obtained by etching away the copper foil was subjected to loss elastic modulus (E) obtained with a solid viscoelasticity device RSAII (manufactured by Rheometrics) at a nitrogen atmosphere, 1 Hz, and a heating rate of 5 ° C / min. ”) To obtain the peak
(2) Linear expansion coefficient (ppm / ° C)
Using TMA-4000 manufactured by Mac Science (currently Bruker XS), a non-thermoplastic polyimide film with a width of about 4 mm and a length of about 20 mm is placed in an air atmosphere, a load of 0.049 N, and a heating rate of 10 ° C./min. After measuring the amount of expansion and contraction, average linear expansion coefficients of 100 to 200 ° C. and 250 to 350 ° C. are calculated, respectively.
(3) Peel strength (kN / m)
A conductor with a length of 50 mm and a width of 1 mm is formed by etching a metal foil with a ferric chloride solution heated to 40 ° C., washing with water and drying at room temperature, and in accordance with the method prescribed in JIS C-6471 The metal conductor side is peeled off from the polyimide layer from the edge of the side, the peel angle is 90 °, and the stress when the peel speed is 50 mm / min is measured and calculated.
(4) Warpage (mm)
"Before copper etching"
Etching resist is applied, dried, exposed and developed so that the conductor pattern is 35mm wide x 2mm long, etched with 40 ° C ferric chloride solution (40 Baume), and then the excess polyimide film is cut. After forming a measurement sample and leaving it for 24 hours or more in an atmosphere of 23 ° C. × 50% RH, place the sample as shown in FIG. 1 with an magnifying projector (PJ-300 manufactured by Mitutoyo Corporation), and the maximum warpage Measure (R). The direction of warping was defined as positive when the metal layer was in the convex state as shown in FIG.

「銅エッチング後」
ポリイミド金属箔積層板の金属箔を40℃の塩化第二鉄溶液(40ボーメ)を用いてエッチングし、ポリイミドのみのフィルムとした後、幅35mm×長さ2mmになるようにフィルムをカットすることで測定サンプルを形成し、「銅エッチング前」サンプルと同様の条件で反り量を計測した。尚、反りの方向は金属層があった方を内側にして凸状態の時にプラスと定義した。
"After copper etching"
Etch the metal foil of the polyimide metal foil laminate with 40 ° C ferric chloride solution (40 Baume) to make a polyimide-only film, then cut the film to be 35mm wide x 2mm long Then, a measurement sample was formed, and the amount of warpage was measured under the same conditions as the “before copper etching” sample. The direction of warping was defined as positive when the metal layer was in the convex state with the metal layer inside.

また、実施例に用いた溶剤、酸二無水物、ジアミンの略称は以下の通りである。
DMAc:N,N−ジメチルアセトアミド
NMP:N−メチル−2−ピロリドン
PPD:p−フェニレンジアミン
ODA:4,4’−ジアミノジフェニルエーテル
m−BP:4,4’−ビス(3−アミノフェノキシ)ビフェニル
APB:1,3−ビス(3−アミノフェノキシ)ベンゼン
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BTDA:3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
Abbreviations for the solvents, acid dianhydrides, and diamines used in the examples are as follows.
DMAc: N, N-dimethylacetamide NMP: N-methyl-2-pyrrolidone PPD: p-phenylenediamine ODA: 4,4′-diaminodiphenyl ether m-BP: 4,4′-bis (3-aminophenoxy) biphenyl APB : 1,3-bis (3-aminophenoxy) benzene BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride BTDA: 3,3 ′, 4,4 '-Benzophenone tetracarboxylic dianhydride

合成例1
<熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、溶媒としてDMAc1718.6gを加え、これにAPB146.2gを加え、溶解するまで室温にて撹拌を行った。その後、BTDA157.1gを加え、60℃において撹拌を行い、ポリアミック酸溶液を得た。得られたポリアミック酸溶液はポリアミック酸の含有率が15重量%であり、25℃でのE型粘度は500mPa・sで、Tgは195℃であった。
Synthesis example 1
<Synthesis of thermoplastic polyimide precursor>
To a container equipped with a stirrer and a nitrogen introduction tube, DMAc 1718.6 g was added as a solvent, 146.2 g of APB was added thereto, and the mixture was stirred at room temperature until dissolved. Thereafter, 157.1 g of BTDA was added and stirred at 60 ° C. to obtain a polyamic acid solution. The obtained polyamic acid solution had a polyamic acid content of 15% by weight, an E-type viscosity at 25 ° C. of 500 mPa · s, and a Tg of 195 ° C.

合成例2
<熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、DMAc溶媒を714.9g加え、これにAPB24.86g(30mol%)とODA39.75g(70mol%)をで加え、溶解するまで室温にて撹拌を行った。その後、PMDAを総ジアミンモルを1とし、0.975モル分を60.3g加え、60℃において撹拌を行い、ポリアミド酸溶液を得た。得られたワニスに1,3−ビス(3−マレイミドフェノキシ)ベンゼンをポリアミド酸に対し10wt%になるように加え、室温にて2時間攪拌を行なった。得られたポリアミック酸溶液はポリアミック酸の含有率が15重量%であり、25℃でのE型粘度は300mPa・sで、Tgは313℃であった。
Synthesis example 2
<Synthesis of thermoplastic polyimide precursor>
In a vessel equipped with a stirrer and a nitrogen introduction tube, 714.9 g of DMAc solvent was added, and 24.86 g (30 mol%) of APB and 39.75 g (70 mol%) of ODA were added thereto, and stirred at room temperature until dissolved. It was. Thereafter, PMDA was added with a total diamine mole of 1, 60.3 g of 0.975 mole, and stirred at 60 ° C. to obtain a polyamic acid solution. 1,3-bis (3-maleimidophenoxy) benzene was added to the resulting varnish so as to be 10 wt% with respect to the polyamic acid, and the mixture was stirred at room temperature for 2 hours. The obtained polyamic acid solution had a polyamic acid content of 15% by weight, an E-type viscosity at 25 ° C. of 300 mPa · s, and a Tg of 313 ° C.

合成例3
<非熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、溶媒としてDMAc846.9gとNMP362.9gを加え、これにPPD16.2g(30mol%)、及び、ODA49.1g(49mol%)を加え、撹拌しながら50〜60℃に加熱して溶解させた。その後、氷で約30℃になるまで冷却した後、BPDA25.1gを加え60℃に加熱し約2時間撹拌を行った。さらに、m−BP38.7g(21mol%)を加え60℃に温度を保ちながら撹拌を行った。最後にPMDA84.4gを加え60℃で2時間撹拌を行い、ポリアミック酸溶液を得た。得られたポリアミック酸溶液はポリアミック酸の含有率が15重量%であり、25℃でのE型粘度は400mPa・sであった。
Synthesis example 3
<Synthesis of non-thermoplastic polyimide precursor>
To a container equipped with a stirrer and a nitrogen introducing tube, 846.9 g of DMAc and 362.9 g of NMP were added as solvents, and 16.2 g (30 mol%) of PPD and 49.1 g (49 mol%) of ODA were added thereto. Heated to ~ 60 ° C to dissolve. Then, after cooling to about 30 ° C. with ice, 25.1 g of BPDA was added, heated to 60 ° C. and stirred for about 2 hours. Furthermore, m-BP 38.7g (21mol%) was added, and it stirred, keeping temperature at 60 degreeC. Finally, 84.4 g of PMDA was added and stirred at 60 ° C. for 2 hours to obtain a polyamic acid solution. The obtained polyamic acid solution had a polyamic acid content of 15% by weight and an E-type viscosity at 25 ° C. of 400 mPa · s.

合成例4
<非熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、溶媒としてDMAc644gとNMP161gを加え、これにPPD40.5g(75mol%)、及び、ODA17.5g(17.5mol%)を加え、撹拌しながら50〜60℃に加熱して溶解させた。その後、氷で約30℃になるまで冷却した後、BPDA78.0gを加え60℃に加熱し約2時間撹拌を行った。さらに、m−BP13.8g(7.5mol%)を加え60℃に温度を保ちながら撹拌を行った。最後にPMDA51.3gを加え60℃で2時間撹拌を行い、ポリアミック酸溶液を得た。得られたポリアミック酸溶液はポリアミック酸の含有率が20重量%であり、25℃でのE型粘度は19000Pa・sであった。
Synthesis example 4
<Synthesis of non-thermoplastic polyimide precursor>
To a container equipped with a stirrer and a nitrogen introduction tube, 644 g of DMAc and 161 g of NMP are added as solvents, 40.5 g (75 mol%) of PPD and 17.5 g (17.5 mol%) of ODA are added thereto, and 50-60 with stirring. Heated to ° C to dissolve. Then, after cooling to about 30 ° C. with ice, 78.0 g of BPDA was added and heated to 60 ° C. and stirred for about 2 hours. Further, 13.8 g (7.5 mol%) of m-BP was added and stirring was performed while maintaining the temperature at 60 ° C. Finally, 51.3 g of PMDA was added and stirred at 60 ° C. for 2 hours to obtain a polyamic acid solution. The resulting polyamic acid solution had a polyamic acid content of 20% by weight and an E-type viscosity at 25 ° C. of 19000 Pa · s.

合成例5
<非熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、溶媒としてNMP199.5gを加え、これにPPD15.51gを加えて溶解するまで室温にて撹拌を行った。その後、BPDA41.99gを4回に別けて加え、60℃において撹拌を行ってポリアミック酸溶液を得た。得られたポリアミック酸溶液はポリアミック酸の含有率が23重量%であり、25℃でのE型粘は55000mPa・sであった。
Synthesis example 5
<Synthesis of non-thermoplastic polyimide precursor>
In a container equipped with a stirrer and a nitrogen introduction tube, 199.5 g of NMP was added as a solvent, and 15.51 g of PPD was added thereto and stirred at room temperature until dissolved. Thereafter, 41.99 g of BPDA was added in four portions and stirred at 60 ° C. to obtain a polyamic acid solution. The obtained polyamic acid solution had a polyamic acid content of 23% by weight, and an E-type viscosity at 25 ° C. of 55000 mPa · s.

合成例6
<非熱可塑性ポリイミド前駆体の合成>
撹拌機及び窒素導入管を備えた容器に、溶媒としてNMP189.9gを加え、これにPPD3.6g(25mol%)とODA20.0g(75mol%)を加えて溶解するまで室温にて撹拌を行った。その後、PMDA16.76g(58mol%)とBPDA16.37g(42mol%)を加え、60℃において撹拌を行ってポリアミック酸溶液を得た。得られたポリアミック酸溶液はポリアミック酸の含有率が23重量%であり、25℃でのE型粘は25900mPA・sであった。
実施例1
Synthesis Example 6
<Synthesis of non-thermoplastic polyimide precursor>
To a container equipped with a stirrer and a nitrogen introduction tube, 189.9 g of NMP was added as a solvent, and 3.6 g (25 mol%) of PPD and 20.0 g (75 mol%) of ODA were added thereto and stirred at room temperature until dissolved. . Thereafter, 16.76 g (58 mol%) of PMDA and 16.37 g (42 mol%) of BPDA were added and stirred at 60 ° C. to obtain a polyamic acid solution. The obtained polyamic acid solution had a polyamic acid content of 23% by weight and an E-type viscosity at 25 ° C. of 25900 mPA · s.
Example 1

合成例6のポリアミック酸溶液(以下ワニスと呼ぶ)をガラスにアプリケーターにて塗布し、約100℃30分間乾燥後、ポリアミック酸膜をガラスより剥離し、支持枠に固定後、約150℃10分、約200℃10分、約250℃10分、約300℃10分、約370℃10分間加熱することでイミド化反応と脱溶媒を行い、25μm厚さの非熱可塑性ポリイミドフィルムを得た。   The polyamic acid solution of Synthesis Example 6 (hereinafter referred to as varnish) is applied to glass with an applicator, dried at about 100 ° C. for 30 minutes, the polyamic acid film is peeled off from the glass, fixed to the support frame, and then about 150 ° C. for 10 minutes. About 200 ° C. for 10 minutes, about 250 ° C. for 10 minutes, about 300 ° C. for 10 minutes, and about 370 ° C. for 10 minutes for imidization reaction and solvent removal, thereby obtaining a 25 μm thick non-thermoplastic polyimide film.

その後、該非熱可塑性ポリイミドフィルムの第一面に合成例1のワニスをバーコーターにより乾燥後の厚さで2μmになるように塗布し、150℃2分乾燥後、第二面に合成例3のワニスをロールコーターにより乾燥後の厚さで2μmになるように塗布し、70℃5分、110℃5分乾燥後、140℃2分、180℃5分、265℃2分間乾燥炉にて乾燥を行い、第一面が熱可塑性ポリイミド樹脂層、第二面が非熱可塑性ポリイミド樹脂層であるポリイミドの絶縁フィルムを得た。その後、電解銅箔(古河サーキットフォイル社製 F0−WS 厚さ9μm)に、シリコンゴムをクッション材としてプレス機にて260℃で圧力2.5MPaの条件で、金属箔と絶縁フィルムを金属箔側に熱可塑性ポリイミド層が接するように張り合わせ、その後、バッチ式のオートクレーブにて温度300℃4時間窒素雰囲気下でアニールを行い、ポリイミド金属積層板を得た。非熱可塑性ポリイミドフィルムの線膨張係数、及び得られた、ポリイミド金属箔積層板を評価した結果は表1に示す。
実施例2
Then, the varnish of Synthesis Example 1 was applied to the first surface of the non-thermoplastic polyimide film by a bar coater so that the thickness after drying was 2 μm, dried at 150 ° C. for 2 minutes, and then the second surface of Synthesis Example 3 was applied. The varnish is applied with a roll coater so that the thickness after drying is 2 μm, dried at 70 ° C. for 5 minutes and 110 ° C. for 5 minutes, and then dried in a drying oven at 140 ° C. for 2 minutes, 180 ° C. for 5 minutes, and 265 ° C. for 2 minutes. The polyimide insulation film whose 1st surface is a thermoplastic polyimide resin layer and 2nd surface is a non-thermoplastic polyimide resin layer was obtained. Then, the metal foil and the insulating film were placed on the side of the metal foil under the condition of pressure of 2.5 MPa at 260 ° C. with a press machine using silicon rubber as a cushioning material on electrolytic copper foil (F0-WS thickness 9 μm manufactured by Furukawa Circuit Foil Co., Ltd.) Were laminated so that the thermoplastic polyimide layer was in contact with each other, and then annealed in a batch type autoclave at a temperature of 300 ° C. for 4 hours in a nitrogen atmosphere to obtain a polyimide metal laminate. Table 1 shows the linear expansion coefficient of the non-thermoplastic polyimide film and the evaluation results of the obtained polyimide metal foil laminate.
Example 2

実施例1と同様の銅箔に、合成例2のワニスを乾燥後の厚さで0.5μmになるようにバーコーターで塗布し、80℃10分乾燥し、更にその上に、合成例4のワニスを乾燥後の厚さで10μmになるようにアプリケーターで塗布し100℃15分乾燥し、更にその上に合成例1のワニスを乾燥後の厚さで2μmになるようにバーコーターで塗布し、80℃10分乾燥後、150℃10分、180℃10分、240℃10分、270℃10分乾燥後、窒素雰囲気下で450℃10分乾燥を行い、銅箔/熱可塑性ポリイミド/非熱可塑性ポリイミド/熱可塑性ポリイミドの構成となる積層板を得た。次に、実施例1と同様にして該非熱可塑性ポリイミドフィルムを作製し、先の積層板と実施例1と同様の方法でプレス、アニールを行い、ポリイミド金属積層板を得た。非熱可塑性ポリイミドフィルムの線膨張係数、及び得られたポリイミド金属箔積層板を評価した結果は表1に示す。
実施例3
On the same copper foil as in Example 1, the varnish of Synthesis Example 2 was applied with a bar coater so that the thickness after drying was 0.5 μm, dried at 80 ° C. for 10 minutes, and further, Synthesis Example 4 The dried varnish was applied with an applicator so that the thickness after drying was 10 μm, dried at 100 ° C. for 15 minutes, and further the varnish of Synthesis Example 1 was applied with a bar coater so that the thickness after drying was 2 μm. After drying at 80 ° C. for 10 minutes, drying at 150 ° C. for 10 minutes, 180 ° C. for 10 minutes, 240 ° C. for 10 minutes, 270 ° C. for 10 minutes, and then drying at 450 ° C. for 10 minutes in a nitrogen atmosphere, copper foil / thermoplastic polyimide / A laminated board having a configuration of non-thermoplastic polyimide / thermoplastic polyimide was obtained. Next, the non-thermoplastic polyimide film was produced in the same manner as in Example 1, and pressed and annealed in the same manner as in the previous laminate and Example 1, to obtain a polyimide metal laminate. The linear expansion coefficient of the non-thermoplastic polyimide film and the results of evaluating the obtained polyimide metal foil laminate are shown in Table 1.
Example 3

合成例5のワニスをガラスにアプリケーターにて塗布し、約100℃30分間乾燥後、ポリアミック酸膜をガラスより剥離し、支持枠に固定後、約150℃10分、約200℃10分、約250℃10分、約300℃10分、約370℃10分間加熱することでイミド化反応と脱溶媒を行い、その後、フィルムを支持枠より取り外し、更に窒素雰囲気下で350℃30分間ステンレス板に挟んだ状態でアニールし、25μm厚さの非熱可塑性ポリイミドフィルムを得た。   The varnish of Synthesis Example 5 was applied to glass with an applicator, dried at about 100 ° C. for 30 minutes, the polyamic acid film was peeled off from the glass, fixed to the support frame, and then fixed at about 150 ° C. for 10 minutes, about 200 ° C. for 10 minutes, about Heating at 250 ° C for 10 minutes, about 300 ° C for 10 minutes, and about 370 ° C for 10 minutes performs imidization reaction and desolvation, then removes the film from the support frame, and further puts it on a stainless steel plate at 350 ° C for 30 minutes under a nitrogen atmosphere Annealing was performed in a sandwiched state to obtain a non-thermoplastic polyimide film having a thickness of 25 μm.

その後銅箔との積層は実施例1と同様の方法で実施し、ポリイミド金属積層板を得た。非熱可塑性ポリイミドフィルムの線膨張係数、及び得られたポリイミド金属箔積層板を評価した結果は表1に示す。   Thereafter, lamination with copper foil was carried out in the same manner as in Example 1 to obtain a polyimide metal laminate. The linear expansion coefficient of the non-thermoplastic polyimide film and the results of evaluating the obtained polyimide metal foil laminate are shown in Table 1.

比較例1
合成例5のワニスをガラスにアプリケーターにて塗布し、約100℃30分間乾燥後、ポリアミック酸膜をガラスより剥離し、支持枠に固定後、約150℃10分、約200℃10分、約250℃10分、約300℃10分、約370℃10分間加熱することでイミド化反応と脱溶媒を行い、25μm厚さの非熱可塑性ポリイミドフィルムを得た。その後銅箔との積層は実施例1と同様の方法で実施し、ポリイミド金属積層板を得た。非熱可塑性ポリイミドフィルムの線膨張係数、及び得られたポリイミド金属箔積層板を評価した結果は表1に示す。
Comparative Example 1
The varnish of Synthesis Example 5 was applied to a glass with an applicator, dried at about 100 ° C. for 30 minutes, the polyamic acid film was peeled off from the glass, fixed to the support frame, and then fixed at about 150 ° C. for about 10 minutes, about 200 ° C. for about 10 minutes, about The imidization reaction and the solvent removal were carried out by heating at 250 ° C. for 10 minutes, about 300 ° C. for 10 minutes, and about 370 ° C. for 10 minutes to obtain a non-thermoplastic polyimide film having a thickness of 25 μm. Thereafter, lamination with copper foil was carried out in the same manner as in Example 1 to obtain a polyimide metal laminate. The linear expansion coefficient of the non-thermoplastic polyimide film and the results of evaluating the obtained polyimide metal foil laminate are shown in Table 1.

Figure 0004785340
Figure 0004785340

回路加工時や加工後の反りが小さく且つ、反りの異方性が小さいため、その後の素子や部品実装時の作業性が良好なポリイミド金属積層板が得られることから、フレキシブル配線基板に広く利用できる。   Widely used for flexible wiring boards, because the warpage during circuit processing and after processing is small and the anisotropy of warpage is small, so that a polyimide metal laminate can be obtained that has good workability during subsequent device and component mounting. it can.

反り測定方法を補足したものである。This is a supplement to the warpage measurement method.

Claims (2)

少なくとも1層以上の非熱可塑性ポリイミドフィルム層を含むポリイミドフィルムと、金属層と、前記ポリイミドフィルムと前記金属層とを接着する熱可塑性ポリイミド層と、を有する積層板であって、
前記非熱可塑性ポリイミドフィルム層は、
厚さが3〜25μmであって、かつ
幅方向と長さ方向の、100℃〜200℃での平均線膨張係数差の絶対値が、0ppm/℃以上6ppm/℃以下の範囲内に調整されており、
幅方向および長さ方向のいずれも、100℃〜200℃での平均線膨張係数が、11ppm/℃以上19.3ppm/℃以下の範囲内に調整されており、かつ
幅方向および長さ方向のいずれも、250℃〜350℃での平均線膨張係数が、−10ppm/℃以上100ppm/℃以下の範囲内に調整されたものを用いており、
前記熱可塑性ポリイミド層は、ガラス転移温度が150℃〜350℃である熱可塑性ポリイミドを含む、
ことを特徴とするポリイミド金属積層板。
A laminate having a polyimide film including at least one non-thermoplastic polyimide film layer, a metal layer, and a thermoplastic polyimide layer for bonding the polyimide film and the metal layer,
The non-thermoplastic polyimide film layer is
A thickness of 3~25Myuemu, and the width direction and length direction, the absolute value of the average linear expansion coefficient difference at 100 ° C. to 200 DEG ° C. is adjusted to 0 ppm / ° C. or higher 6 ppm / ° C. within the following ranges And
In both the width direction and the length direction, the average linear expansion coefficient at 100 ° C. to 200 ° C. is adjusted within the range of 11 ppm / ° C. to 19.3 ppm / ° C., and the width direction and the length direction In any case, the average linear expansion coefficient at 250 ° C. to 350 ° C. is adjusted within the range of −10 ppm / ° C. to 100 ppm / ° C.,
The thermoplastic polyimide layer includes a thermoplastic polyimide having a glass transition temperature of 150 ° C. to 350 ° C.,
A polyimide metal laminate characterized by that.
少なくとも1層以上の非熱可塑性ポリイミドフィルム層を含むポリイミドフィルムと、金属層と、前記ポリイミドフィルムと前記金属層とを接着する熱可塑性ポリイミド層と、を有する請求項1に記載のポリイミド金属積層板の製造方法であって、
非熱可塑性ポリイミドフィルムを準備するステップと、
前記非熱可塑性ポリイミドフィルムを、幅方向と長さ方向の、100℃〜200℃での平均線膨張係数差の絶対値が、0ppm/℃以上6ppm/℃以下となり;幅方向および長さ方向のいずれも、100℃〜200℃での平均線膨張係数が、11ppm/℃以上19.3ppm/℃以下となり;かつ幅方向および長さ方向のいずれも、250℃〜350℃での平均線膨張係数が、−10ppm/℃以上100ppm/℃以下となるように、加熱アニールするステップと、
前記加熱アニールされた非熱可塑性ポリイミドフィルムと金属箔とを、ガラス転移温度が150℃〜350℃である熱可塑性ポリイミド層を介して、200〜400℃の温度にてラミネートするステップと、を含むポリイミド金属積層板の製造方法。
The polyimide metal laminate according to claim 1, comprising a polyimide film including at least one non-thermoplastic polyimide film layer, a metal layer, and a thermoplastic polyimide layer that bonds the polyimide film and the metal layer. A manufacturing method of
Providing a non-thermoplastic polyimide film;
In the non-thermoplastic polyimide film, the absolute value of the difference in average linear expansion coefficient between 100 ° C. and 200 ° C. in the width direction and the length direction is 0 ppm / ° C. or more and 6 ppm / ° C. or less; In either case, the average linear expansion coefficient at 100 ° C. to 200 ° C. is 11 ppm / ° C. or more and 19.3 ppm / ° C. or less; and the average linear expansion coefficient at 250 ° C. to 350 ° C. in both the width direction and the length direction. Is a step of performing heat annealing so as to be −10 ppm / ° C. or more and 100 ppm / ° C. or less,
Laminating the heat-annealed non-thermoplastic polyimide film and the metal foil at a temperature of 200 to 400 ° C. through a thermoplastic polyimide layer having a glass transition temperature of 150 to 350 ° C. A method for producing a polyimide metal laminate .
JP2003384009A 2003-11-13 2003-11-13 Polyimide metal laminate Expired - Fee Related JP4785340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384009A JP4785340B2 (en) 2003-11-13 2003-11-13 Polyimide metal laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384009A JP4785340B2 (en) 2003-11-13 2003-11-13 Polyimide metal laminate

Publications (2)

Publication Number Publication Date
JP2005144805A JP2005144805A (en) 2005-06-09
JP4785340B2 true JP4785340B2 (en) 2011-10-05

Family

ID=34692571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384009A Expired - Fee Related JP4785340B2 (en) 2003-11-13 2003-11-13 Polyimide metal laminate

Country Status (1)

Country Link
JP (1) JP4785340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923678B2 (en) * 2006-03-31 2012-04-25 日立化成工業株式会社 Flexible substrate with metal foil and flexible printed wiring board

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926509B2 (en) * 1990-05-21 1999-07-28 鐘淵化学工業株式会社 Resin film and method for producing the same
JPH05114784A (en) * 1991-10-23 1993-05-07 Hitachi Chem Co Ltd Double sided flexible metal plated laminate board
JPH0725906B2 (en) * 1992-07-21 1995-03-22 宇部興産株式会社 Polyimide composite sheet
JP3235370B2 (en) * 1994-10-25 2001-12-04 宇部興産株式会社 Laminate
JPH08174659A (en) * 1994-12-22 1996-07-09 Kanegafuchi Chem Ind Co Ltd Production of tape for tab
JP4356184B2 (en) * 2000-03-28 2009-11-04 宇部興産株式会社 Flexible metal foil laminate
JP4665298B2 (en) * 2000-08-25 2011-04-06 東レ株式会社 TAPE WITH ADHESIVE FOR SEMICONDUCTOR DEVICE, COPPER-CLAD LAMINATE USING SAME, SEMICONDUCTOR CONNECTION BOARD AND SEMICONDUCTOR DEVICE
JP4504602B2 (en) * 2001-09-04 2010-07-14 三井化学株式会社 Polyimide copper clad laminate and method for producing the same
JP4006999B2 (en) * 2001-12-25 2007-11-14 宇部興産株式会社 Polyimide film and laminate

Also Published As

Publication number Publication date
JP2005144805A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US9232660B2 (en) Flexible metal clad laminate and manufacturing method thereof
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
TWI526125B (en) Flexible circuit boards for repeated buckling applications, using their electronic machines and mobile phones
JP2014195947A (en) Method of producing double-surface flexible metal-clad laminate sheet
US20210283882A1 (en) Polyimide film for metal lamination and polyimide metal laminate using same
KR102592679B1 (en) Method for producing metal-clad laminate, method for producing and recovering coated press roll
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4777206B2 (en) Method for producing flexible copper-clad laminate
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP4510506B2 (en) Method for producing polyimide metal laminate
JP4785340B2 (en) Polyimide metal laminate
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP6774285B2 (en) Metal-clad laminate
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same
JP5055244B2 (en) Polyimide metal laminate
WO2004073975A1 (en) Layered polyimide/metal product
TW200537996A (en) Method for producing substrate for flexible printed wiring board
JP2007050599A (en) Flexible metal-clad laminated plate excellent in dimensional stability and its production method
JP2008023760A (en) Method for producing heat-resistant polyimide/metal laminated sheet
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2006328407A (en) Polyimide film and substrate for electric and electronic apparatus using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees