JP4504602B2 - Polyimide copper clad laminate and method for producing the same - Google Patents

Polyimide copper clad laminate and method for producing the same Download PDF

Info

Publication number
JP4504602B2
JP4504602B2 JP2001267172A JP2001267172A JP4504602B2 JP 4504602 B2 JP4504602 B2 JP 4504602B2 JP 2001267172 A JP2001267172 A JP 2001267172A JP 2001267172 A JP2001267172 A JP 2001267172A JP 4504602 B2 JP4504602 B2 JP 4504602B2
Authority
JP
Japan
Prior art keywords
thermoplastic polyimide
copper foil
polyimide layer
carrier
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001267172A
Other languages
Japanese (ja)
Other versions
JP2003071984A (en
Inventor
幸治 廣田
峰寛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2001267172A priority Critical patent/JP4504602B2/en
Publication of JP2003071984A publication Critical patent/JP2003071984A/en
Application granted granted Critical
Publication of JP4504602B2 publication Critical patent/JP4504602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフレキシブル配線基板等に広く使用されている,ポリイミド銅張積層板及びその製造方法に関するものである。詳しくは,銅箔の回路加工特性が良好であり,高密度回路基板材料に適する銅張金属板及びその製造方法に関するものである。
【0002】
【従来の技術】
従来より,ポリイミド銅張積層板は主に回路基板材料として使用されてきた。特に近年の電子機器の小型,携帯化に伴い,部品,素子の高密度実装が可能な,ポリイミド金属積層板の利用が増大している。更に,高密度化に対応するため,配線幅が30μm以下の微細パターンの加工に適するポリイミド銅張積層板が望まれていた。
【0003】
従来,ポリイミド銅張積層板の製造方法として,ポリイミドフィルム上に,銅,クロム,ニッケル等を直接スパッタして,その後,銅をメッキ法で形成する方法が知られている。しかしながら,メッキ法で形成した銅とポリイミドフィルムの密着強度が十分ではなく,また,反りがあり,回路基板材料として満足できるものではなかった。そこで,銅とポリイミドの密着力が高く,反り等のないポリイミド金属積層板の製造方法が提案されている。
【0004】
例えば,特開平7-193349号公報には,非熱可塑性ポリイミド基材上熱可塑性ポリイミドワニス及び/または熱可塑性ポリイミドの前駆体であるポリアミック酸ワニスを直接塗布・乾燥を行ない熱可塑性ポリイミド層を形成し,ついで熱可塑性ポリイミドの表面に金属箔を加熱圧着するポリイミド金属積層体の製造方法が開示されている。該方法により得られるポリイミド金属積層体は,しわ,波うち,カール等の欠陥が無く,回路基板材料として優れた金属積層体である。しかしながら,銅箔の厚みが9μm以上のものを用いると,回路幅30μm以下のものが加工できず,微細な回路パターンを形成する高密度基板材料としては必ずしも満足できるものではなかった。
【0005】
【発明が解決しようとする課題】
本発明の目的は,上記の問題に鑑み,銅箔のエッチング特性が良好で,微細配線パターンを形成できる高密度回路基板材料に適するポリイミド金属積層板,及びその製造方法を提供することにある。
【0006】
【問題を解決するための手段】
本発明者らは,検討の結果,非熱可塑性ポリイミド層,熱可塑性ポリイミド層および金属箔を順次積層したポリイミド金属積層体において,銅箔の厚さに着目し,5μm以下の厚さで,キャリアーとなる銅箔が剥離層を介して積層された銅箔を用い,熱可塑性ポリイミド層と熱圧着を行い,キャリアーを剥離し,さらに熱圧着をして熱可塑性ポリイミド層とを積層することにより,上記課題が解決できることを見出し,本発明に至った。
【0007】
すなわち,本発明は,
(1) 非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミド層が形成され該熱可塑性樹脂層の表面に銅箔が積層された積層板であって,該銅箔の厚さが5μm以下であることを特徴とする金属積層板。
(2) キャリアーとなる銅箔上に剥離層を介して銅箔を積層した銅箔を使用することを特徴とする(1)記載の金属積層板。
(3) 非熱可塑性ポリイミド層の厚みが5μm〜250μmである(1)又は(2)に記載の金属積層板
(4) 熱可塑性ポリイミドが1,3-ビス(3-アミノフェノキシ)ベンゼン,4,4'-ビス(3-アミノフェノキシ)ビフェニル又は3,3'-ジアミノベンゾフェノンから選ばれた少なくとも一種のジアミンと,3,3',4,4’-ジフェニルエーテルテトラカルボン酸二無水物,3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物,ピロメリット酸二無水物から選ばれた少なくとも一種のテトラカルボン酸二無水物から得らたポリイミドであり,且つその厚みが0.5μm〜10μmである(1)又は(2)に記載の金属積層板。
(5) 非熱可塑性ポリイミド層の少なくとも片面に熱可塑性ポリイミドまたは該熱可塑性ポリイミドの前駆体であるワニスを塗布し,60℃〜600℃において乾燥・キュアして熱可塑性樹脂層を形成し,さらに熱可塑性樹脂層の表面に,キャリアー付き銅箔を150℃〜250℃において,熱圧着し,その後,キャリアー銅箔を剥離し,さらに,銅箔を 250℃〜600℃において熱圧着することを特徴とする(1)乃至(4)いずれかに記載の金属積層板の製造方法。
に関する。
【0008】
本発明によれば,金属箔のエッチング特性が良好なポリイミド金属箔積層板が得られる。そのため,本発明のポリイミド金属箔積層板は,特に高密度配線板材料として好適に使用される。
【0009】
【発明の実施の形態】
以下に本発明を詳しく説明する。
本発明のポリイミド金属箔積層板は,非熱可塑性ポリイミド層の片面または両面に熱可塑性ポリイミドまたは該熱可塑性ポリイミドの前駆体であるポリアミック酸を含むワニスを塗布し,乾燥・キュアして熱可塑性ポリイミド層を形成し,さらに熱可塑性ポリイミド層の表面に,特定の厚みを有する銅箔の該面を熱圧着することにより製造される。
【0010】
熱可塑性ポリイミド層と接合する面の銅箔の厚みは,銅箔の回路加工時の加工可能な最低回路ピッチに大きな影響を及ぼす。銅箔の厚さは5μm以下のものが好ましい。更に好ましくは3μm以下である。5μm以下の銅箔を用いることにより,綿幅30μm 以下の回路加工をすることが出来る。
【0011】
また,銅箔は,キャリアー付きものが好ましく、厚み以外には特に制限はない。例えば,三井金属鉱業株式会社製,商品名:MicroThin(電解銅箔)等が挙げられる。ポリイミド層を形成する熱可塑性ポリイミドとしては,特に制限はないが、ジアミンとして,1,3-ビス(3-アミノフェノキシ)ベンゼン(以下APB と略す),4,4'-ビス(3-アミノフェノキシ)ビフェニル(以下m-BP と略す)及び,3,3'-ジアミノベンゾフェノン(以下DABP と略す)から選ばれた少なくとも一種のジアミンが好ましく、テトラカルボン酸二無水物としては、3,3',4,4'-ジフェニルエーテルテトラカルボン酸二無水物(以下ODPA と略す),3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(以下BTDA と略す),ピロメリット酸二無水物(以下PMDAと略す)から選ばれる少なくとも一種のテトラカルボン酸二無水物が好ましい。
【0012】
ジアミン成分とテトラカルボン酸二無水物の反応モル比は,通常0.75〜1.25の範囲である。
非熱可塑ポリイミド層を形成する非熱可塑ポリイミドは,特に制限はないが、特定のジアミンと特定のテトラカルボン酸二無水物から合成されるポリイミドが好ましく利用できる。特定のジアミンとして,o-フェニレンジアミン,p-フェニレンジアミン,m-フェニレンジアミン,4,4'-ジアミノフェニルエーテル,3,4'-ジアミノジフェニルエーテル,3,4'-ジアミノジフェニルエーテル,3,3'-ジアミノジフェニルエーテルが挙げられる。これらは,単独または2種類以上使用しても良い。また,前記のアミン化合物を併用する場合,特定のジアミン成分の使用量は,少なくとも70モル%以上,好ましくは80モル%以上である。
【0013】
特定のテトラカルボン酸二無水物として,ピロメリット酸二無水物,3,3',4,4'-ビフェニルテトラカルボン酸二無水物,2,2',3,3'-ビフェニルテトラカルボン酸等が挙げられる。これらは,単独または,二種類以上使用してもよい。また,非熱可塑性ポリイミドとして市販の非熱可塑性ポリイミドフィルムが使用できる。例えば,ユーピレックスS,ユーピレックス SGA,ユーピレックス SN(宇部興産株式会社製,商品名),カプトン H,カプトン V,カプトン EN(東レ・デュポン株式会社製,商品名),アピカル AH,アピカル NP1,アピカル HP(鐘淵化学工業株式会社製,商品名)が挙げられる。非熱可塑性ポリイミドの表面はプラズマ処理,コロナ放電処理等を施してもよい。
【0014】
熱可塑性のポリイミド層の厚みは,目的により選択され制限はないが,0.5μm〜10μmの範囲、更に好ましくは1μm〜5μmが好適である。非熱可塑性ポリイミド層の厚みは,目的により制限はないが,5μm〜250μmの範囲、更に好ましくは12.5μm〜75μmが好適に利用できる。
【0015】
本発明のポリイミド銅張積層板の製造方法について詳細に述べる。本発明の方法は,非熱可塑性ポリイミド基体の片面または両面に熱可塑性ポリイミド層を形成し,該熱可塑性ポリイミド層を接着層とする。熱可塑性ポリイミド層に銅箔の厚さが5μm以下であるものを熱圧着する方法で製造できる。
【0016】
ここで,非熱可塑性ポリイミド基体の片面または,両面に熱可塑性ポリイミド層を形成する方法,すなわち,接着テープの製造方法について詳細に説明する。非熱可塑性ポリイミド基体上に熱可塑性ポリイミドの溶液,または,該熱可塑性ポリイミドの前駆体であるポリアミック酸溶液(以下,これらを総称してワニスという)を直接塗布,乾燥することにより製造することが出来る。 ワニスは,前記の特定のジアミンとテトラカルボン酸二無水物を溶媒中で重合して得られた溶液である。
【0017】
非熱可塑性ポリイミド基体上に直接塗布する方法としては,ダイコーター,コンマコータ、ロールコータ、グラビアコータ,カーテンコーター,スプレーコーター等の公知の方法が採用できる。塗布する厚み,ワニスの粘度等に応じて適宜利用できる。塗布したワニスを乾燥・キュアする方法は,通常の加熱乾燥炉が利用できる。乾燥炉の雰囲気としては,空気,イナートガス(窒素,アルゴン)等が利用できる。乾燥の温度としては,溶媒の沸点により適宜選択するが,60℃〜600℃の温度範囲が好適に利用される。乾燥の時間は,厚み,濃度,溶媒の種類により適宜選択するが0.05分〜500分程度で行なうのが望ましい。
【0018】
次いで,接着テープの熱可塑性ポリイミド層の表面に銅箔を熱圧着する方法について述べる。熱圧着する方法について制限はないが,例えば,代表的方法として,加熱プレス法及び/又は熱ラミネート法が挙げられる。加熱プレス法としては,例えば,接着テープとキャリアー付き銅箔をプレス機の所定のサイズに切りだし,重ね合わせを行ない加熱プレスにより熱圧着により仮接着し,その後,キャリアー銅箔を剥離,極薄銅箔のみをさらに,熱圧着することにより製造できる。仮熱圧着の加熱温度としては,150℃〜250℃の温度範囲が望ましい。加圧力としては,制限は無いが,好ましくは 0.1kg/cm2〜500kg/cm2で製造できる。加圧時間としては,特に制限はない。本熱圧着の加熱条件としては,250℃〜600℃の温度範囲が望ましい。加圧力としては,制限はないが,好ましくは 0.1kg/cm2〜500kg/cm2で製造できる。加圧時間としては,特に制限はない。
【0019】
ラミネート方法としては,特に制限は無いが,ロールとロール間に挟み込み,張り合わせを行なう方法が好ましい。ロールは金属ロール,ゴムロール等が利用できる。材質に制限はないが,金属ロールとしては,鋼材やステンレス材料が使用される。表面にクロムメッキ等が処理されたロールを使用することが好ましい。ゴムロールとしては,金属ロールの表面に耐熱性のあるシリコンゴム,フッ素系のゴムを使用することが好ましい。ラミネート温度としては,100℃〜250℃の温度範囲で仮接着する。その後,キャリアー銅箔を剥離し,極薄銅箔のみを加熱アニール,または,再びラミネートを行ない,本接着する。本接着のラミネート温度としては,250℃〜400℃の温度範囲が好ましい。加熱方式は,伝導加熱方式の他,遠赤外等の幅射加熱方式,誘導加熱方式等も利用できる。
【0020】
熱ラミネート後,本接着のため,加熱アニールすることも好ましい。加熱装置として,通常の加熱炉,オートクレーブ等が利用できる。加熱雰囲気として,空気,イナートガス(窒素,アルゴン)等が利用できる。加熱方法としては,フィルムを連続的に加熱する方法またはフィルムをコアに巻いた状態で加熱炉に放置する方法のどちらの方法も好ましい。加熱方式としては,伝導加熱方式,輻射加熱方式及び,これらの併用方式等が好ましい。加熱温度は,200℃〜600℃の温度範囲が好ましい。加熱時間は,0.05分〜6000分の時間範囲が好ましい。
【0021】
本発明により提供されるポリイミド銅張積層板は,銅箔のエッチング特性が優れ,また,銅箔と熱可塑性ポリイミド層のピール強度が強いことから,エッチング,穴あけ,メッキ等の加工を行ない10μm〜50μm の微細加工を形成しても,剥がれ等の問題の無い電子部品として高密度実装加工が可能となる。
【0022】
【実施例】
以下,本発明を実施例により更に詳細に説明する。エッチング後の回路幅は,100倍の光学顕微鏡で確認した。尚、実施例に示した銅箔と熱可塑性ポリイミド層とのピール強度,ポリイミド銅張積層板の反りは,下記の方法により測定した。
【0023】
(1)ピール強度(kg/cm) 長さ100mm,幅2mmの試料について,JIS C-6471に規定される方法に従い,短辺の端から金属箔と熱可塑性ポリイミド層を剥離し,その応力を測定する。剥離角度を90゜,剥離速度を50mm/minとした。
【0024】
(2)反り 長さ100mm,幅70mmのサンプルを切りだし,定盤のうえに凸となる面を上にしてサンプルをおき,任意の 2点の最大高さをレーザー測定器にて測定する。23±3℃,50±5%RHの環境下にて測定する。
【0025】
合成例1
<熱可塑性ポリイミド前駆体の合成>
ジアミン成分としてAPBを20モルとテトラカルボン酸成分としてBTDAを19.4モル秤量し,N,N-ジメチルアセトアミド溶媒中で混合した。混合温度及び時間は,23℃,8時間であった。 また,混合時の固形分濃度は17 重量 %で実施した。得られたポリアミック酸ワニスの粘度は 25℃において400cpsであり塗工に適したものであった。
【0026】
合成例2
<非熱可塑性ポリイミド前駆体の合成> ジアミン成分として,PPDを 7.7モル,ODAを1.15モル,m-BPを1.15モル秤量した。テトラカルボン酸成分として,BPDAを 5.4モル,PMDAを4.45モル秤量した。N、N-ジメチルアセトアミドとN-メチル-2-ピロリドン混合溶媒に溶解し混合した。溶媒の比率は,前者23重量%,後者77重量%であった。反応温度, 時間は,23℃,6時間であった。また,反応時の固形分濃度は,20 重量%である。
得られたポリアミック酸ワニスの粘度は 25℃において 20000cps であり,塗工に適したものであった。
【0027】
(実施例1)
<接着テープの製造>
非熱可塑性ポリイミド層として,市販のポリイミドフィルム(東レデュポン株式会社製,商品名:カプトン EN,厚み;50μm)を用い,その片面にコータードライヤー装置を用いて,合成例1のポリアミック酸ワニスを塗布し,乾燥を行なって,非熱可塑性ポリイミド層に熱可塑性ポリイミド層を形成した。塗布には,リバースロールコーターを使用し,塗布厚みは乾燥後の厚みで7μmであった。乾燥の最高温度は295℃で行なった。
【0028】
<ラミネートの実施>
金属箔として,市販の銅箔(三井金属鉱業社製,商品名:MicroThin,厚み:5μm,キャリアー銅の厚み:35μm)を使用した。銅箔,接着テープを重ね合わせ熱ラミネートを実施し,仮接着を行ない,キャリアー銅を剥離し,銅箔/熱可塑性ポリイミド/非熱可塑性ポリイミドの 3層からなるポリイミド金属箔積層板を製造した。熱ラミネートは,シリコンゴムラミネートを使用し,ロール内部加熱方式のラミネート機を使用した。ラミネートロールの表面温度を240℃に加熱した。
【0029】
<アニールの実施>
3層からなるポリイミド金属箔積層板をバッチ式オートクレーブ中でアニールを実施した。条件は,温度280℃において,4時間,窒素ガス雰囲気中で行った。
【0030】
<ポリイミド金属箔積層板の評価>
得られたポリイミド金属箔積層板の評価を上記方法により実施した。その結果,エッチングにより,回路幅が 30μm のものが加工できた。ピール強度は 1.0kgf/cmで良好であった。反りは1.1mm であった。以上の結果から,回路基板材料として適した材料であった。 結果を〔表1〕に示す。
【0031】
(実施例2)
<接着テープの製造>
非熱可塑性ポリイミド層として,市販のポリイミドフィルム(鐘淵化学株式会社製,商品名;アピカル NP1,厚み:25μm)を用い,その片面に合成例1のポリアミック酸ワニスを塗布した以外,実施例1と同様にして接着テープを製造した。
【0032】
<加熱圧着の実施>
金属箔として,市販の銅箔〔古河サーキットフォイル社製,商品名:DOUBLETHIN F-NP ),厚み5μm,キャリアー銅の厚み:35μm〕を使用した。接着テープの両面に,1辺が300mm の正方形の銅合金を重ね合わせたものを20 セット重ね合わせ,それをクッション材(金陽社製,商品名:キンヨーボードF200)で挟み,さらにその外側を鏡面板ではさみ加熱プレス機で 230℃,70kg/cm2 の条件下で,1時間加熱圧着して,仮接着した。その後,キャリアー銅を剥離し,加熱プレス機で 350℃,70kg/cm2の条件下で1時間加熱圧着して,銅合金箔/熱可塑性ポリイミド/非熱可塑性ポリイミドの3層からなるポリイミド金属箔積層板を製造した。
【0033】
<ポリイミド金属箔積層板の評価>
実施例1と同様にして評価した。その結果,回路幅が 30μm の回路がショートなく形成できた。ピール強度は両面とも1.3kgf/cm であった。また,反りは1.5mmであった。以上の結果,高密度基板材料として適した材料であった。結果を〔表1〕に示す。
【0034】
比較例1
<接着テープの製造>
実施例1と同様の方法で接着テープを製造した。
【0035】
<ラミネート,アニールの実施>
市販の銅箔〔古河サーキットフォイル株式会社製,商品名: F3-WS,厚み18μm,熱可塑性ポリイミド層側の表面形状:粗化面,粗化面の表面最大粗度(Rmax) 3.1μm〕を使用した以外は、実施例1と同様の方法でラミネート,アニールを実施し,銅箔/熱可塑性ポリイミド/非熱可塑性ポリイミドの 3層からなるポリイミド金属箔積層板を製造した。
【0036】
<ポリイミド金属箔積層板の評価>
実施例1と同様にして評価した。その結果,回路幅 30μm の加工をするとエッチング残りがあり,ショートした。ピール強度は1.3kgf/cm であった。また,反りは
2.3mmであった。 以上の評価結果から,回路幅 30μm が加工できず、微細回路を必要とする高密度回路基板材料としては不適当な材料であった。結果を表1に示す。
【表1】

Figure 0004504602
【0037】
【発明の効果】
本発明のポリイミド銅張積層板は,銅箔のエッチング特性が優れ,高いピール強度を発現する積層板である。そのため,高密度配線を必要とする,フレキシブルプリント配線板,ICパッケージ,LCD配線板等の配線基材として有効に利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyimide copper clad laminate and a method for producing the same, which are widely used for flexible wiring boards and the like. More specifically, the present invention relates to a copper-clad metal plate suitable for high-density circuit board materials and a method for producing the same, because the circuit processing characteristics of the copper foil are good.
[0002]
[Prior art]
Traditionally, polyimide copper clad laminates have been mainly used as circuit board materials. In particular, with the recent miniaturization and portability of electronic devices, the use of polyimide metal laminates that enable high-density mounting of components and elements is increasing. Furthermore, a polyimide copper clad laminate suitable for processing fine patterns with a wiring width of 30 μm or less has been desired in order to cope with higher density.
[0003]
Conventionally, as a method for producing a polyimide copper-clad laminate, a method of directly sputtering copper, chromium, nickel, etc. on a polyimide film and then forming copper by a plating method is known. However, the adhesion strength between copper and polyimide film formed by plating method is not sufficient, and there is warp, which is not satisfactory as a circuit board material. Then, the manufacturing method of the polyimide metal laminated board with the high adhesive force of copper and a polyimide and without a curvature etc. is proposed.
[0004]
For example, in JP-A-7-193349, a thermoplastic polyimide layer is formed by directly applying and drying a thermoplastic polyimide varnish and / or a polyamic acid varnish which is a precursor of a thermoplastic polyimide on a non-thermoplastic polyimide substrate. Then, a method for producing a polyimide metal laminate in which a metal foil is heat-pressed on the surface of a thermoplastic polyimide is disclosed. The polyimide metal laminate obtained by this method is free from defects such as wrinkles, waves, and curls, and is an excellent metal laminate as a circuit board material. However, when copper foil with a thickness of 9 μm or more was used, a circuit width of 30 μm or less could not be processed, and it was not always satisfactory as a high-density substrate material for forming fine circuit patterns.
[0005]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide a polyimide metal laminate suitable for a high-density circuit board material that has good etching characteristics of copper foil and can form a fine wiring pattern, and a method for manufacturing the same.
[0006]
[Means for solving problems]
As a result of the study, the present inventors paid attention to the thickness of the copper foil in a polyimide metal laminate in which a non-thermoplastic polyimide layer, a thermoplastic polyimide layer, and a metal foil were sequentially laminated. By using a copper foil with a copper foil laminated via a release layer, thermocompression bonding with the thermoplastic polyimide layer, peeling the carrier, and further thermocompression bonding to laminate the thermoplastic polyimide layer, The present inventors have found that the above problems can be solved and have reached the present invention.
[0007]
That is, the present invention
(1) A laminate in which a thermoplastic polyimide layer is formed on at least one surface of a non-thermoplastic polyimide layer and a copper foil is laminated on the surface of the thermoplastic resin layer, and the thickness of the copper foil is 5 μm or less The metal laminated board characterized by the above-mentioned.
(2) The metal laminate according to (1), wherein a copper foil obtained by laminating a copper foil on a copper foil serving as a carrier via a release layer is used.
(3) The metal laminate plate according to (1) or (2), wherein the non-thermoplastic polyimide layer has a thickness of 5 μm to 250 μm (4) The thermoplastic polyimide is 1,3-bis (3-aminophenoxy) benzene, 4 At least one diamine selected from 4,4'-bis (3-aminophenoxy) biphenyl or 3,3'-diaminobenzophenone and 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride, 3, A polyimide obtained from at least one tetracarboxylic dianhydride selected from 3 ', 4,4'-benzophenonetetracarboxylic dianhydride and pyromellitic dianhydride, and has a thickness of 0.5 μm to The metal laminate sheet according to (1) or (2), which is 10 μm.
(5) Apply a thermoplastic polyimide or varnish which is a precursor of the thermoplastic polyimide to at least one surface of the non-thermoplastic polyimide layer, and dry and cure at 60 ° C to 600 ° C to form a thermoplastic resin layer; A copper foil with a carrier is thermocompression bonded to the surface of the thermoplastic resin layer at 150 ° C to 250 ° C, then the carrier copper foil is peeled off, and the copper foil is further thermocompression bonded at 250 ° C to 600 ° C. (1) The manufacturing method of the metal laminated plate in any one of (4).
About.
[0008]
According to the present invention, it is possible to obtain a polyimide metal foil laminate having good metal foil etching characteristics. For this reason, the polyimide metal foil laminate of the present invention is suitably used particularly as a high-density wiring board material.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The polyimide metal foil laminate of the present invention is obtained by applying thermoplastic polyimide or a varnish containing polyamic acid which is a precursor of the thermoplastic polyimide on one side or both sides of a non-thermoplastic polyimide layer, and drying and curing the thermoplastic polyimide. It is manufactured by forming a layer and then thermocompression bonding the surface of a copper foil having a specific thickness to the surface of the thermoplastic polyimide layer.
[0010]
The thickness of the copper foil on the surface joined with the thermoplastic polyimide layer has a great influence on the minimum circuit pitch that can be processed during the circuit processing of the copper foil. The thickness of the copper foil is preferably 5 μm or less. More preferably, it is 3 μm or less. By using a copper foil of 5 μm or less, circuit processing with a cotton width of 30 μm or less can be performed.
[0011]
The copper foil is preferably one with a carrier, and there is no particular limitation other than the thickness. For example, trade name: MicroThin (electrolytic copper foil) manufactured by Mitsui Mining & Smelting Co., Ltd. can be mentioned. The thermoplastic polyimide for forming the polyimide layer is not particularly limited, but diamines include 1,3-bis (3-aminophenoxy) benzene (hereinafter abbreviated as APB), 4,4'-bis (3-aminophenoxy). ) At least one diamine selected from biphenyl (hereinafter abbreviated as m-BP) and 3,3′-diaminobenzophenone (hereinafter abbreviated as DABP) is preferred, and tetracarboxylic dianhydride includes 3,3 ′, 4,4'-diphenyl ether tetracarboxylic dianhydride (hereinafter abbreviated as ODPA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (hereinafter abbreviated as BTDA), pyromellitic dianhydride ( Hereinafter, at least one tetracarboxylic dianhydride selected from PMDA) is preferred.
[0012]
The reaction molar ratio of diamine component and tetracarboxylic dianhydride is usually in the range of 0.75-1.25.
The non-thermoplastic polyimide forming the non-thermoplastic polyimide layer is not particularly limited, but a polyimide synthesized from a specific diamine and a specific tetracarboxylic dianhydride can be preferably used. Specific diamines include o-phenylenediamine, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminophenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'- Diaminodiphenyl ether is mentioned. These may be used alone or in combination of two or more. When the amine compound is used in combination, the amount of the specific diamine component used is at least 70 mol% or more, preferably 80 mol% or more.
[0013]
Specific tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic acid, etc. Is mentioned. These may be used alone or in combination of two or more. Moreover, a commercially available non-thermoplastic polyimide film can be used as the non-thermoplastic polyimide. For example, Upilex S, Upilex SGA, Upilex SN (Ube Industries, product name), Kapton H, Kapton V, Kapton EN (Toray DuPont, product name), Apical AH, Apical NP1, Apical HP ( Kaneka Chemical Co., Ltd., trade name). The surface of the non-thermoplastic polyimide may be subjected to plasma treatment, corona discharge treatment or the like.
[0014]
The thickness of the thermoplastic polyimide layer is selected depending on the purpose and is not limited, but is preferably in the range of 0.5 μm to 10 μm, more preferably 1 μm to 5 μm. The thickness of the non-thermoplastic polyimide layer is not limited depending on the purpose, but a range of 5 μm to 250 μm, more preferably 12.5 μm to 75 μm can be suitably used.
[0015]
The method for producing the polyimide copper clad laminate of the present invention will be described in detail. In the method of the present invention, a thermoplastic polyimide layer is formed on one or both sides of a non-thermoplastic polyimide substrate, and the thermoplastic polyimide layer is used as an adhesive layer. It can be produced by a method of thermocompression bonding a thermoplastic polyimide layer having a copper foil thickness of 5 μm or less.
[0016]
Here, a method for forming a thermoplastic polyimide layer on one side or both sides of a non-thermoplastic polyimide substrate, that is, a method for producing an adhesive tape will be described in detail. It can be produced by directly applying a solution of thermoplastic polyimide on a non-thermoplastic polyimide substrate or a polyamic acid solution (hereinafter collectively referred to as varnish) that is a precursor of the thermoplastic polyimide, followed by drying. I can do it. A varnish is a solution obtained by polymerizing the specific diamine and tetracarboxylic dianhydride in a solvent.
[0017]
As a method of directly coating on the non-thermoplastic polyimide substrate, known methods such as a die coater, a comma coater, a roll coater, a gravure coater, a curtain coater, and a spray coater can be employed. It can be appropriately used depending on the thickness to be applied, the viscosity of the varnish, and the like. A normal heating and drying furnace can be used to dry and cure the applied varnish. Air, inert gas (nitrogen, argon), etc. can be used as the atmosphere of the drying furnace. The drying temperature is appropriately selected depending on the boiling point of the solvent, but a temperature range of 60 ° C to 600 ° C is preferably used. The drying time is appropriately selected depending on the thickness, concentration, and type of solvent, but it is desirable that the drying time be about 0.05 to 500 minutes.
[0018]
Next, a method for thermocompression bonding a copper foil to the surface of the thermoplastic polyimide layer of the adhesive tape will be described. Although there is no restriction | limiting about the method of thermocompression bonding, For example, a heat press method and / or a heat laminating method are mentioned as a typical method. For example, the hot pressing method is to cut the adhesive tape and the copper foil with carrier into a predetermined size of the press machine, superimpose them, temporarily bond them by thermocompression with a hot press, and then peel off the carrier copper foil, Only copper foil can be further manufactured by thermocompression bonding. As the heating temperature of the temporary thermocompression bonding, a temperature range of 150 ° C to 250 ° C is desirable. The pressure, the limit is not preferably be prepared in 0.1kg / cm 2 ~500kg / cm 2 . There is no particular limitation on the pressurization time. As a heating condition for the thermocompression bonding, a temperature range of 250 ° C. to 600 ° C. is desirable. The pressure, without limitation, preferably prepared at 0.1kg / cm 2 ~500kg / cm 2 . There is no particular limitation on the pressurization time.
[0019]
The laminating method is not particularly limited, but a method of sandwiching and laminating between rolls is preferable. A metal roll, a rubber roll, etc. can be used for the roll. The material is not limited, but steel or stainless steel is used as the metal roll. It is preferable to use a roll whose surface is treated with chrome plating or the like. As the rubber roll, it is preferable to use heat-resistant silicon rubber or fluorine-based rubber on the surface of the metal roll. The lamination temperature is temporarily bonded in the temperature range of 100 ° C to 250 ° C. After that, the carrier copper foil is peeled off, and only the ultrathin copper foil is heat-annealed or laminated again and finally bonded. The laminating temperature for main bonding is preferably in the range of 250 ° C to 400 ° C. As the heating method, in addition to the conduction heating method, a far-infrared heating method such as far infrared, an induction heating method, etc. can be used.
[0020]
It is also preferable to heat anneal for the final adhesion after thermal lamination. As a heating device, a normal heating furnace, an autoclave, etc. can be used. Air, inert gas (nitrogen, argon), etc. can be used as the heating atmosphere. As a heating method, either a method of continuously heating a film or a method of leaving the film in a heating furnace while being wound around a core is preferable. As the heating method, a conductive heating method, a radiant heating method, a combination of these methods, and the like are preferable. The heating temperature is preferably in the temperature range of 200 ° C to 600 ° C. The heating time is preferably in the range of 0.05 minutes to 6000 minutes.
[0021]
The polyimide copper clad laminate provided by the present invention is excellent in etching characteristics of copper foil, and since the peel strength of the copper foil and the thermoplastic polyimide layer is strong, it performs processing such as etching, drilling, plating, etc. Even if fine processing of 50μm is formed, high-density mounting processing is possible as an electronic component without problems such as peeling.
[0022]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The circuit width after etching was confirmed with a 100 times optical microscope. The peel strength between the copper foil and the thermoplastic polyimide layer and the warp of the polyimide copper clad laminate shown in the examples were measured by the following methods.
[0023]
(1) Peel strength (kg / cm) For a sample with a length of 100 mm and a width of 2 mm, the metal foil and the thermoplastic polyimide layer were peeled from the edge of the short side according to the method specified in JIS C-6471, and the stress was measured. taking measurement. The peeling angle was 90 ° and the peeling speed was 50 mm / min.
[0024]
(2) Warpage Cut a sample with a length of 100 mm and a width of 70 mm, place the sample on a surface plate with the convex surface facing up, and measure the maximum height at any two points with a laser measuring instrument. Measure at 23 ± 3 ℃, 50 ± 5% RH.
[0025]
Synthesis example 1
<Synthesis of thermoplastic polyimide precursor>
20 mol of APB as diamine component and 19.4 mol of BTDA as tetracarboxylic acid component were weighed and mixed in N, N-dimethylacetamide solvent. The mixing temperature and time were 23 ℃, 8 hours. The solid content concentration during mixing was 17% by weight. The resulting polyamic acid varnish had a viscosity of 400 cps at 25 ° C. and was suitable for coating.
[0026]
Synthesis example 2
<Synthesis of non-thermoplastic polyimide precursor> As the diamine component, 7.7 mol of PPD, 1.15 mol of ODA and 1.15 mol of m-BP were weighed. As tetracarboxylic acid components, 5.4 mol of BPDA and 4.45 mol of PMDA were weighed. The mixture was dissolved and mixed in a mixed solvent of N, N-dimethylacetamide and N-methyl-2-pyrrolidone. The proportion of solvent was 23% by weight of the former and 77% by weight of the latter. The reaction temperature and time were 23 ℃ for 6 hours. The solid concentration during the reaction is 20% by weight.
The viscosity of the resulting polyamic acid varnish was 20000 cps at 25 ° C, which was suitable for coating.
[0027]
(Example 1)
<Manufacture of adhesive tape>
Use a commercially available polyimide film (trade name: Kapton EN, thickness: 50 μm) as a non-thermoplastic polyimide layer, and apply the polyamic acid varnish of Synthesis Example 1 on one side using a coater dryer. And dried to form a thermoplastic polyimide layer on the non-thermoplastic polyimide layer. A reverse roll coater was used for coating, and the coating thickness was 7 μm after drying. The maximum drying temperature was 295 ° C.
[0028]
<Lamination>
As the metal foil, a commercially available copper foil (manufactured by Mitsui Metal Mining Co., Ltd., trade name: MicroThin, thickness: 5 μm, thickness of carrier copper: 35 μm) was used. Copper foil and adhesive tape were laminated and heat-laminated to perform temporary bonding, carrier copper was peeled off, and a polyimide metal foil laminate consisting of three layers of copper foil / thermoplastic polyimide / non-thermoplastic polyimide was produced. For thermal lamination, silicon rubber laminate was used, and a roll-internal heating type laminating machine was used. The surface temperature of the laminate roll was heated to 240 ° C.
[0029]
<Implementation of annealing>
The polyimide metal foil laminate composed of three layers was annealed in a batch type autoclave. The condition was performed in a nitrogen gas atmosphere at a temperature of 280 ℃ for 4 hours.
[0030]
<Evaluation of polyimide metal foil laminate>
Evaluation of the obtained polyimide metal foil laminated board was implemented by the said method. As a result, a 30 μm circuit width could be processed by etching. The peel strength was good at 1.0 kgf / cm. The warpage was 1.1 mm. The above results indicate that the material is suitable as a circuit board material. The results are shown in [Table 1].
[0031]
(Example 2)
<Manufacture of adhesive tape>
Example 1 except that a commercially available polyimide film (trade name; Apical NP1, thickness: 25 μm) was used as the non-thermoplastic polyimide layer, and the polyamic acid varnish of Synthesis Example 1 was applied to one side thereof. In the same manner, an adhesive tape was produced.
[0032]
<Implementation of thermocompression bonding>
A commercially available copper foil (Furukawa Circuit Foil, trade name: DOUBLETHIN F-NP), thickness 5 μm, carrier copper thickness: 35 μm was used as the metal foil. Twenty sets of square copper alloy with 300mm sides are laminated on both sides of the adhesive tape. 230 ° C. with scissors hot press under the conditions of 70 kg / cm 2, and thermocompression bonding 1 hour, was temporarily adhered. After that, the carrier copper is peeled off and heat-pressed for 1 hour under conditions of 350 ° C and 70 kg / cm 2 with a heating press machine, and a polyimide metal foil consisting of three layers of copper alloy foil / thermoplastic polyimide / non-thermoplastic polyimide. A laminate was produced.
[0033]
<Evaluation of polyimide metal foil laminate>
Evaluation was performed in the same manner as in Example 1. As a result, a circuit with a circuit width of 30 μm could be formed without short circuit. The peel strength was 1.3 kgf / cm on both sides. And the warpage was 1.5mm. As a result, the material is suitable as a high-density substrate material. The results are shown in [Table 1].
[0034]
Comparative Example 1
<Manufacture of adhesive tape>
An adhesive tape was produced in the same manner as in Example 1.
[0035]
<Lamination and annealing>
Commercially available copper foil (Furukawa Circuit Foil Co., Ltd., trade name: F3-WS, thickness 18 μm, surface shape on the thermoplastic polyimide layer side: roughened surface, roughened surface maximum roughness (Rmax) 3.1 μm) Except for the use, lamination and annealing were performed in the same manner as in Example 1 to produce a polyimide metal foil laminate composed of three layers of copper foil / thermoplastic polyimide / non-thermoplastic polyimide.
[0036]
<Evaluation of polyimide metal foil laminate>
Evaluation was performed in the same manner as in Example 1. As a result, when processing with a circuit width of 30 μm, there was an etching residue and a short circuit occurred. The peel strength was 1.3 kgf / cm 2. Also, the warpage is
It was 2.3 mm. From the above evaluation results, a circuit width of 30 μm could not be processed, and it was unsuitable as a high-density circuit board material that required fine circuits. The results are shown in Table 1.
[Table 1]
Figure 0004504602
[0037]
【The invention's effect】
The polyimide copper clad laminate of the present invention is a laminate that exhibits excellent etching characteristics of copper foil and exhibits high peel strength. Therefore, it can be effectively used as a wiring substrate for flexible printed wiring boards, IC packages, LCD wiring boards, etc. that require high-density wiring.

Claims (3)

非熱可塑性ポリイミド層の片面または両面に熱可塑性ポリイミド層が形成され、該熱可塑性ポリイミド層のすべての表面に厚さ5μm以下の銅箔が積層された積層板であって,
前記銅箔は、キャリアー付き銅箔からキャリアーを剥離した銅箔であり、
前記熱可塑性ポリイミドは、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4’−ビス(3−アミノフェノキシ)ビフェニル又は3,3’−ジアミノベンゾフェノンから選ばれた少なくとも一種のジアミンと、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物から選ばれた少なくとも一種のテトラカルボン酸二無水物とから得られたポリイミドであり、かつ該熱可塑性ポリイミド層の厚みは0.5μm〜10μmであることを特徴とする金属積層板。
A laminate in which a thermoplastic polyimide layer is formed on one or both sides of a non-thermoplastic polyimide layer, and a copper foil having a thickness of 5 μm or less is laminated on all surfaces of the thermoplastic polyimide layer,
The copper foil is a copper foil obtained by peeling a carrier from a copper foil with a carrier,
The thermoplastic polyimide includes at least one diamine selected from 1,3-bis (3-aminophenoxy) benzene, 4,4′-bis (3-aminophenoxy) biphenyl, or 3,3′-diaminobenzophenone; At least one tetra selected from 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, pyromellitic dianhydride A metal laminate comprising a polyimide obtained from a carboxylic dianhydride, and the thermoplastic polyimide layer having a thickness of 0.5 μm to 10 μm.
非熱可塑性ポリイミド層の厚みが5μm〜250μmである請求項1に記載の金属積層板。  The metal laminate according to claim 1, wherein the non-thermoplastic polyimide layer has a thickness of 5 μm to 250 μm. フレキシブルプリント配線板用の金属積層板の製造方法であって、
5μm以下の厚さを有する銅箔と、前記銅箔に剥離層を介して積層されたキャリアーとを含む、キャリアー付き銅箔を準備する工程と、
非熱可塑性ポリイミド層の片面または両面に、熱可塑性ポリイミドまたは前記熱可塑性ポリイミドの前駆体であるワニスを塗布する工程と、
前記ワニスを60℃〜600℃において乾燥・キュアして熱可塑性ポリイミド層を形成する工程と、
前記熱可塑性ポリイミド層の全ての表面に、前記キャリアー付き銅箔を積層して、150℃〜250℃で仮熱圧着する工程と、
前記キャリアーを剥離する工程と、
前記銅箔を250℃〜600℃で本熱圧着する工程と、を含む請求項1乃至2いずれかに記載の金属積層板の製造方法。
A method for producing a metal laminate for a flexible printed wiring board,
A step of preparing a copper foil with a carrier, including a copper foil having a thickness of 5 μm or less and a carrier laminated on the copper foil via a release layer;
On one or both sides of the non-thermoplastic polyimide layer, a step of applying a varnish which is a thermoplastic polyimide or a precursor of the thermoplastic polyimide,
Drying and curing the varnish at 60 ° C. to 600 ° C. to form a thermoplastic polyimide layer;
Laminating the copper foil with a carrier on all surfaces of the thermoplastic polyimide layer, and preliminarily thermocompression bonding at 150 ° C. to 250 ° C .;
Peeling the carrier;
Method for producing a metal laminate according to any one of claims 1 to 2 and a step of the thermocompression bonding the copper foil at 250 ° C. to 600 ° C..
JP2001267172A 2001-09-04 2001-09-04 Polyimide copper clad laminate and method for producing the same Expired - Fee Related JP4504602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267172A JP4504602B2 (en) 2001-09-04 2001-09-04 Polyimide copper clad laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267172A JP4504602B2 (en) 2001-09-04 2001-09-04 Polyimide copper clad laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003071984A JP2003071984A (en) 2003-03-12
JP4504602B2 true JP4504602B2 (en) 2010-07-14

Family

ID=19093345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267172A Expired - Fee Related JP4504602B2 (en) 2001-09-04 2001-09-04 Polyimide copper clad laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4504602B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI298988B (en) * 2002-07-19 2008-07-11 Ube Industries Copper-clad laminate
JP2007216688A (en) * 2002-07-19 2007-08-30 Ube Ind Ltd Copper clad laminated sheet and its manufacturing method
JP4785340B2 (en) * 2003-11-13 2011-10-05 三井化学株式会社 Polyimide metal laminate
JP2005205731A (en) * 2004-01-22 2005-08-04 Kaneka Corp Flexible laminated sheet and its manufacturing method
TW200701852A (en) * 2005-03-31 2007-01-01 Nippon Steel Chemical Co Method for producing flexible copper-clad laminated substrate and multi-layer laminate
JP4762742B2 (en) * 2006-02-08 2011-08-31 新日鐵化学株式会社 Method for producing flexible copper-clad laminate
JP4699261B2 (en) * 2005-03-31 2011-06-08 新日鐵化学株式会社 Multilayer laminate and flexible copper-clad laminate
KR100965441B1 (en) 2005-04-04 2010-06-24 우베 고산 가부시키가이샤 Copper clad laminate
JP2008087254A (en) * 2006-09-29 2008-04-17 Nippon Steel Chem Co Ltd Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP5162379B2 (en) * 2008-08-29 2013-03-13 株式会社有沢製作所 Polyamic acid and non-thermoplastic polyimide resin
JP5632426B2 (en) * 2012-07-31 2014-11-26 株式会社有沢製作所 Polyamic acid and non-thermoplastic polyimide resin
CN113858603A (en) * 2021-09-13 2021-12-31 深圳市信维通信股份有限公司 Preparation method of polymer flexible copper clad laminate
CN116033678B (en) * 2022-12-15 2024-03-08 福莱盈电子股份有限公司 Processing method for soft and hard combined plate for improving asymmetric structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298114A (en) * 1998-04-14 1999-10-29 Mitsui Chem Inc Manufacture of polyimide-metal laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2000345119A (en) * 1999-06-02 2000-12-12 Ajinomoto Co Inc Adhesive film and production of multilayered printed circuit board by using the same
JP2001089892A (en) * 1999-09-21 2001-04-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
JP2001102693A (en) * 1999-09-30 2001-04-13 Arisawa Mfg Co Ltd Substrate for flexible printed wiring board using ultrathin copper foil and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298114A (en) * 1998-04-14 1999-10-29 Mitsui Chem Inc Manufacture of polyimide-metal laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2000345119A (en) * 1999-06-02 2000-12-12 Ajinomoto Co Inc Adhesive film and production of multilayered printed circuit board by using the same
JP2001089892A (en) * 1999-09-21 2001-04-03 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
JP2001102693A (en) * 1999-09-30 2001-04-13 Arisawa Mfg Co Ltd Substrate for flexible printed wiring board using ultrathin copper foil and manufacturing method therefor

Also Published As

Publication number Publication date
JP2003071984A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
KR100955552B1 (en) Polyimide film, polyimide metal laminate and process for producing the same
JP4504602B2 (en) Polyimide copper clad laminate and method for producing the same
JP4371234B2 (en) Flexible metal foil polyimide laminate
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP2009113475A (en) Method of producing flexible single-sided polyimide copper-clad laminate
JP4757645B2 (en) Method for producing double-sided metal-clad laminate
JP4231511B2 (en) Polyimide film, polyimide metal laminate and method for producing the same
JP4473833B2 (en) Polyimide metal laminate and manufacturing method thereof
JP2005014353A (en) Method for manufacturing flexible metal foil/polyimide laminated sheet
JP2007118477A (en) Double-sided metal foil lamination plate and method for manufacturing the same
JP4763964B2 (en) Method for producing polyimide metal laminate
JP4510506B2 (en) Method for producing polyimide metal laminate
JP4052876B2 (en) Polyimide metal laminate having excellent dimensional stability and manufacturing method thereof
JP4187465B2 (en) Polyimide copper clad laminate using ultra-thin copper foil and method for producing the same
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JP4554839B2 (en) Polyimide metal foil laminate and method for producing the same
JP2003127276A (en) Polyimide metal foil laminated plate and its production method
JP5055244B2 (en) Polyimide metal laminate
KR20120134666A (en) Manufacturing method of thick polyimide flexible metal clad laminate
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP4409024B2 (en) Adhesive conductor-polyimide laminate
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP4056299B2 (en) Polyimide copper clad laminate using ultra-thin copper foil and method for producing the same
JP2004017571A (en) Polymide copper clad laminate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees