JP4371234B2 - Flexible metal foil polyimide laminate - Google Patents

Flexible metal foil polyimide laminate Download PDF

Info

Publication number
JP4371234B2
JP4371234B2 JP2005058932A JP2005058932A JP4371234B2 JP 4371234 B2 JP4371234 B2 JP 4371234B2 JP 2005058932 A JP2005058932 A JP 2005058932A JP 2005058932 A JP2005058932 A JP 2005058932A JP 4371234 B2 JP4371234 B2 JP 4371234B2
Authority
JP
Japan
Prior art keywords
polyimide
metal foil
thickness
polyamic acid
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005058932A
Other languages
Japanese (ja)
Other versions
JP2006240073A (en
Inventor
雅浩 薄
隼 浅妻
繁宏 星田
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005058932A priority Critical patent/JP4371234B2/en
Publication of JP2006240073A publication Critical patent/JP2006240073A/en
Application granted granted Critical
Publication of JP4371234B2 publication Critical patent/JP4371234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、耐熱性ポリイミドフィルムの片面に、接着層として耐熱性ポリイミド層を介して金属箔を積層させた、特には、ラミネート法によるオールポリイミドのフレキシブル金属箔ポリイミド積層板に関するものである。   The present invention relates to an all-polyimide flexible metal foil polyimide laminate obtained by laminating a metal foil on one surface of a heat-resistant polyimide film via a heat-resistant polyimide layer as an adhesive layer.

近年、携帯電話等の電子機器の薄肉化、小型化に伴い、これに使用されるフレキシブル基板には高い屈曲特性が求められてきており、具体的にはIPC屈曲試験(高温において繰り返し折り曲げる)を行った場合でも、回路が破断しないような高屈曲性能が必要となってきている。   In recent years, with the thinning and miniaturization of electronic devices such as mobile phones, flexible substrates used for them have been required to have high bending characteristics. Specifically, an IPC bending test (repeatedly bending at high temperatures) is required. Even when it is performed, high bending performance is required so that the circuit does not break.

従来、導体上にポリイミド前駆体樹脂溶液を直接塗付し、乾燥、硬化してフレキシブル基板を製造することは、特開昭59−232455号公報:特許文献1、特開昭61−275325号公報:特許文献2、特開昭62−212140号公報:特許文献3、特開平7−57540号公報:特許文献4に開示されている。また、導体上にポリイミド前駆体樹脂溶液を数回に分けて塗付する方法も、特開平2−180682号公報:特許文献5、特開平2−180679号公報:特許文献6、特開平1−245586号公報:特許文献7、特開平2−122697号公報:特許文献8に開示されている。   Conventionally, a flexible substrate is produced by directly applying a polyimide precursor resin solution onto a conductor, drying and curing, and disclosed in Japanese Patent Application Laid-Open No. 59-232455: Japanese Patent Application Laid-Open No. Sho 61-275325. : Patent Document 2, JP-A-62-212140: Patent Document 3, JP-A-7-57540: Patent Document 4. In addition, a method of applying the polyimide precursor resin solution onto the conductor in several times is also disclosed in JP-A-2-180682: Patent Document 5, JP-A-2-180679: Patent Document 6, JP-A-1- No. 245586: Patent Document 7 and Japanese Patent Application Laid-Open No. 2-12297: Patent Document 8.

しかしながら、導体上にポリイミド層が20μm以上となるように、1回ないし数回に分けて塗付する方法は、フレキシブル基板の最終的なポリイミド層が厚み方向と面方向ともに不連続な層となりやすいため、高温での屈曲に対して満足できるものではなかった。   However, the method of applying once or several times so that the polyimide layer is 20 μm or more on the conductor tends to make the final polyimide layer of the flexible substrate discontinuous in both the thickness direction and the surface direction. Therefore, it was not satisfactory for bending at high temperature.

そこで、導体上に熱可塑性ポリイミドを形成してからポリイミドフィルムを張り合わせる方法が、特開平1−244841号公報:特許文献9、特開平6−190967号公報:特許文献10に開示されている。   In view of this, methods for bonding a polyimide film after forming a thermoplastic polyimide on a conductor are disclosed in Japanese Patent Application Laid-Open No. 1-224441: Patent Document 9 and Japanese Patent Application Laid-Open No. 6-190967: Patent Document 10.

この方法によれば、熱可塑性ポリイミド層が圧着されるため、全体としてのポリイミド層の厚さは均一になることが分かっている。特に、特開平6−190967号公報:特許文献10に示されているように、ポリイミド又はポリアミド酸溶液を塗付、乾燥、硬化して熱可塑ポリイミド/金属箔積層板を作製し、その熱可塑ポリイミド側にポリイミドフィルムを加熱、圧着することにより、熱可塑ポリイミドが加熱により溶融して厚みが補正されるため、ポリイミドフィルムと張り合わせた後の全体としてのポリイミド層は均一な厚みとなることができる。但し、この方法では硬化したポリイミドを加熱、圧着することが必須のため、ポリイミドのガラス点(Tg)以上の温度で加熱できる特殊な装置が必要となり、経済的ではない。   According to this method, since the thermoplastic polyimide layer is pressure-bonded, the thickness of the polyimide layer as a whole is known to be uniform. In particular, as disclosed in JP-A-6-190967: Patent Document 10, a polyimide or polyamic acid solution is applied, dried and cured to produce a thermoplastic polyimide / metal foil laminate, and its thermoplasticity. By heating and pressure-bonding the polyimide film to the polyimide side, the thermoplastic polyimide is melted by heating and the thickness is corrected. Therefore, the entire polyimide layer after being bonded to the polyimide film can have a uniform thickness. . However, in this method, it is essential to heat and pressure-bond the cured polyimide, so that a special apparatus that can be heated at a temperature equal to or higher than the glass point (Tg) of the polyimide is required, which is not economical.

また、この方法で得られたフレキシブル基板は、ポリイミドフィルム層と熱可塑ポリイミド接着層とのフィルム特性(弾性率、伸び)が必然的に異なるため、何万回もの屈曲を繰り返した場合に、両層の界面又は金属箔と接着層の界面で剥離が起こる等の不都合(不利)があり、高温での屈曲に対して満足できるものではなかった。   In addition, since the film characteristics (elastic modulus, elongation) of the polyimide film layer and the thermoplastic polyimide adhesive layer are inevitably different from each other in the flexible substrate obtained by this method, both of them are subjected to repeated bending of tens of thousands of times. There are inconveniences (disadvantages) such as peeling at the interface of the layers or at the interface between the metal foil and the adhesive layer, and it is not satisfactory for bending at high temperatures.

特開昭59−232455号公報JP 59-232455 A 特開昭61−275325号公報JP-A 61-275325 特開昭62−212140号公報JP-A-62-212140 特開平7−57540号公報JP-A-7-57540 特開平2−180682号公報Japanese Patent Laid-Open No. 2-180682 特開平2−180679号公報JP-A-2-180679 特開平1−245586号公報JP-A-1-245586 特開平2−122697号公報Japanese Patent Laid-Open No. 2-122697 特開平1−244841号公報JP-A-1-2444841 特開平6−190967号公報JP-A-6-190967

本発明は、上記事情に鑑みなされたもので、優れた耐熱性・耐薬品性・難燃性・屈曲特性等を有する耐熱性ポリイミド樹脂フィルムの特性を十分に生かした、屈曲性が向上したオールポリイミドのフレキシブル金属箔ポリイミド積層板を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has improved flexibility by fully utilizing the characteristics of a heat-resistant polyimide resin film having excellent heat resistance, chemical resistance, flame retardancy, bending characteristics, and the like. It aims at providing the flexible metal foil polyimide laminated board of a polyimide.

本発明者らは、IPC屈曲試験(高温において繰り返し折り曲げる)を行った場合でも、回路が破断しないような高温において高い屈曲性を有するフレキシブル基板を得ることについて鋭意研究検討した結果、耐熱性ポリイミドフィルムの片面に、接着層を介して金属箔を積層してなるフレキシブル金属箔ポリイミド積層板であって、接着層がポリアミック酸を加熱イミド化したポリイミド接着層であり、80℃、屈曲半径1.5mmのIPC屈曲性が300万回以上であるフレキシブル金属箔ポリイミド積層板が、優れた耐熱性・耐薬品性・難燃性・屈曲特性等を有する耐熱性ポリイミド樹脂フィルムの特性を十分に生かした、屈曲性が向上したオールポリイミドのフレキシブル金属箔ポリイミド積層板となり得ることを見出し、本発明をなすに至った。   As a result of diligent research and study on obtaining a flexible substrate having high flexibility at a high temperature so that the circuit does not break even when the IPC bending test (repeated bending at a high temperature) is performed, the present inventors have found a heat-resistant polyimide film. A flexible metal foil polyimide laminate obtained by laminating a metal foil on one side of the adhesive layer, the adhesive layer being a polyimide adhesive layer obtained by heating imidization of polyamic acid, 80 ° C., bending radius 1.5 mm The flexible metal foil polyimide laminate having an IPC flexibility of 3 million times or more sufficiently utilizes the characteristics of a heat-resistant polyimide resin film having excellent heat resistance, chemical resistance, flame retardancy, bending characteristics, Found that the flexible metal foil polyimide laminate of all polyimide with improved flexibility, and found the present invention It came to be.

従って、本発明は、耐熱性ポリイミドフィルムの片面に、接着層を介して金属箔を積層してなるフレキシブル金属箔ポリイミド積層板であって、ポリイミドフィルムが4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物を反応させてなるポリアミック酸を加熱イミド化してなるものであり、接着層がポリイミドフィルムと同成分のポリイミドとなるポリアミック酸を50〜90質量%含有したポリアミック酸を加熱イミド化したポリイミド接着層であり、ポリイミド接着層の厚みが全ポリイミド層の厚みに対して10%未満で、耐熱性ポリイミドフィルムとポリイミド接着層とからなるポリイミド層の厚さが15〜50μmであり、80℃、屈曲半径1.5mmのIPC屈曲性が300万回以上であることを特徴とするフレキシブル金属箔ポリイミド積層板を提供する。 Accordingly, the present invention is a flexible metal foil polyimide laminate in which a metal foil is laminated on one side of a heat resistant polyimide film with an adhesive layer, and the polyimide film is 4,4′-diaminodiphenyl ether and pyromellitic acid. Polyimide acid that is formed by heating imidization of polyamic acid formed by reacting anhydride, and heat imidization of polyamic acid containing 50 to 90% by mass of polyamic acid that becomes polyimide having the same component as polyimide film. The thickness of the polyimide adhesive layer is less than 10% with respect to the thickness of the entire polyimide layer, the thickness of the polyimide layer comprising the heat-resistant polyimide film and the polyimide adhesive layer is 15 to 50 μm, 80 ° C., bent Flexible with an IPC flexibility with a radius of 1.5 mm of 3 million times or more A metal foil polyimide laminate is provided.

本発明の耐熱性ポリイミド接着剤を用いたオールポリイミドのフレキシブル金属箔ポリイミド積層板は、接着強度が高くかつ接着層の薄いものをより低い乾燥温度、ラミネート温度の条件で製造することができ、IPC屈曲試験(高温において繰り返し折り曲げる)を行った場合でも、回路が破断しないような高屈曲性能を有する。   An all-polyimide flexible metal foil polyimide laminate using the heat-resistant polyimide adhesive of the present invention can be produced under conditions of lower drying temperature and laminating temperature when the adhesive strength is high and the adhesive layer is thin. Even when a bending test (repeatedly bending at a high temperature) is performed, it has a high bending performance so that the circuit does not break.

本発明のフレキシブル金属箔ポリイミド積層板は、耐熱性ポリイミドフィルムの片面に、ポリアミック酸を加熱イミド化したポリイミド接着層を介して金属箔を積層してなるフレキシブル金属箔ポリイミド積層板である。   The flexible metal foil polyimide laminate of the present invention is a flexible metal foil polyimide laminate obtained by laminating a metal foil on one side of a heat-resistant polyimide film via a polyimide adhesive layer obtained by imidizing polyamic acid.

本発明に使用される耐熱性ポリイミドフィルムは特に限定されるものではなく、市販のものを用いることもできるが、4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物を反応させてなるポリアミック酸を熱硬化することで得られたものを用いることが好ましい。
この場合、4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物の反応方法は特に限定されず、常法に準じて行うことができる。
The heat-resistant polyimide film used in the present invention is not particularly limited, and a commercially available film can be used. However, a polyamic acid obtained by reacting 4,4′-diaminodiphenyl ether and pyromellitic anhydride is used. It is preferable to use what was obtained by thermosetting.
In this case, the reaction method of 4,4′-diaminodiphenyl ether and pyromellitic anhydride is not particularly limited, and can be performed according to a conventional method.

耐熱性ポリイミドフィルムは、上記ポリアミック酸を金属板、ガラス板又は回転ドラム上にキャストし、加熱することで溶剤乾燥及びイミド化させた後、板又は回転ドラムから剥離することにより得ることができる。ここで、ポリアミック酸のイミド化においては、加熱温度、触媒添加等について特に限定はなく、膜厚が均一になるようにイミド化されるものであればよい。
また、ポリイミドフィルムの接着面にプラズマ処理やエッチング処理を施してもよい。
The heat-resistant polyimide film can be obtained by casting the polyamic acid on a metal plate, a glass plate, or a rotating drum, drying the solvent and imidizing it by heating, and then peeling it from the plate or the rotating drum. Here, in the imidization of the polyamic acid, there are no particular limitations on the heating temperature, catalyst addition, etc., so long as the film is imidized so that the film thickness becomes uniform.
Moreover, you may perform a plasma process and an etching process to the adhesion surface of a polyimide film.

また、本発明に使用される接着剤層を形成する成分はポリアミック酸を硬化して得られたポリイミドであり、このポリアミック酸としては、上記ポリイミドフィルムと同成分のポリイミドとなるポリアミック酸を50質量%以上、特に50〜90質量%含有するポリアミック酸であることが好ましく、この場合、他の酸無水物とジアミンとから得られたポリアミック酸をブレンドして使用することが可能である。ポリイミドフィルムと同成分のポリイミドとなるポリアミック酸が50質量%未満では、組み合わせる他の成分のポリイミドによっては接着層の耐熱性やフィルム−接着層界面の接着強度が十分なものとならず、また、90質量%を超えると接着層の硬化速度を適切なものに調節するのが難しく、得られる積層板に反りが発生するおそれがある。   Moreover, the component which forms the adhesive bond layer used for this invention is the polyimide obtained by hardening | curing polyamic acid, As this polyamic acid, 50 masses of polyamic acids used as the polyimide of the said component and the said polyimide film are the same. % Or more, particularly 50 to 90% by mass of polyamic acid is preferable. In this case, it is possible to blend and use a polyamic acid obtained from another acid anhydride and a diamine. If the polyamic acid used as the polyimide of the same component as the polyimide film is less than 50% by mass, the heat resistance of the adhesive layer and the adhesive strength at the interface of the film-adhesive layer may not be sufficient depending on the other component polyimide to be combined, If it exceeds 90% by mass, it is difficult to adjust the curing rate of the adhesive layer to an appropriate one, and the resulting laminated board may be warped.

ここで、上述した4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物を反応させてなるポリアミック酸以外のポリアミック酸としては、下記テトラカルボン酸又はその無水物並びにその誘導体等と下記ジアミンとを反応させたものが挙げられる。   Here, as the polyamic acid other than the polyamic acid obtained by reacting the above-mentioned 4,4′-diaminodiphenyl ether and pyromellitic anhydride, the following tetracarboxylic acid or its anhydride, its derivative, etc. are reacted with the following diamine. Can be mentioned.

なお、ここではテトラカルボン酸として例示するが、これらのエステル化物、酸無水物、酸塩化物も勿論使用できる。即ち、ピロメリット酸(但し、4,4’−ジアミノジフェニルエーテルと反応させる場合を除く)、3,3’,4,4’−ビフェニルテトラカルボン酸、3,3’,4,4’−ベンゾフェノンテトラカルボン酸、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸、2,3,3’,4’−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3’,4,4’−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸等が挙げられる。また、トリメリット酸及びその誘導体等も挙げられる。更に、反応性官能基を有する化合物で変成し、架橋構造やラダー構造を導入することもできる。   In addition, although illustrated here as tetracarboxylic acid, these esterified products, acid anhydrides, and acid chlorides can of course be used. That is, pyromellitic acid (except when reacted with 4,4′-diaminodiphenyl ether), 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetra Carboxylic acid, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic acid, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic acid, 2,3,3 ′, 4′-benzophenone tetracarboxylic acid, 2 , 3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-diphenylmethanetetracarboxylic acid, 2,2-bis (3,4- Dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4,9,10-tetracarboxyperylene, 2, -Bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane, butanetetracarboxylic acid, cyclopentanetetracarboxylic An acid etc. are mentioned. Also included are trimellitic acid and its derivatives. Furthermore, it can be modified with a compound having a reactive functional group to introduce a crosslinked structure or a ladder structure.

一方、4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物を反応させてなるポリアミック酸以外のポリアミック酸に使用されるジアミンとしては、4,4’−ジアミノジフェニルエーテル(但し、ピロメリット酸と反応させる場合を除く)、p−フェニレンジアミン、m−フェニレンジアミン、2’−メトキシ−4,4’−ジアミノベンズアニリド、4,4’−ジアミノジフェニルエーテル、ジアミノトルエン、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエード、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4’−(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4’−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロプロパン、1,5−ビス(アニリノ)デカフルオロプロパン、1,7−ビス(アニリノ)テトラデカフルオロプロパン、2,2−ビス〔4−(p−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(2−アミノフェノキシ)フェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジメチルフェニル〕ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)−3,5−ジトリフルオロメチルフェニル〕ヘキサフルオロプロパン、p−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ベンゼン、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−3−トリフルオロメチルフェノキシ)ビフェニル、4,4’−ビス(4−アミノ−2−トリフルオロメチルフェノキシ)ジフェニルスルホン、4,4’−ビス(4−アミノ−5−トリフルオロメチルフェノキシ)ジフェニルスルホン、2,2−ビス〔4−(4−アミノ−3−トリフルオロメチルフェノキシ)フェニル〕ヘキサフルオロプロパン、ベンジジン、3,3’,5,5’−テトラメチルベンジジン、オクタフルオロベンジジン、3,3’−メトキシベンジジン、o−トリジン、m−トリジン、2,2’,5,5’,6,6’−ヘキサフルオロトリジン、4,4’’−ジアミノターフェニル、4,4’’’−ジアミノクォーターフェニル等のジアミン類、並びにこれらのジアミンとホスゲン等の反応によって得られるジイソシアネート類、更にジアミノシロキサン類等が挙げられる。   On the other hand, as a diamine used for polyamic acid other than polyamic acid obtained by reacting 4,4′-diaminodiphenyl ether and pyromellitic anhydride, 4,4′-diaminodiphenyl ether (provided to react with pyromellitic acid) Except for the case), p-phenylenediamine, m-phenylenediamine, 2′-methoxy-4,4′-diaminobenzanilide, 4,4′-diaminodiphenyl ether, diaminotoluene, 4,4′-diaminodiphenylmethane, 3, 3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2- Bis (anilino) ethane, diaminodiphenylsulfone, diaminobenz Nilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzo Trifluoride, 1,4-bis (p-aminophenoxy) benzene, 4,4 ′-(p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4′-bis (3-aminophenoxyphenyl) diphenylsulfone, 1, 3-bis (anilino) hexafluoropropane, 1,4-bis (anilino) octafluoropropane, 1,5-bis (anilino) decafluoropropane, 1,7-bis (anilino) tetradecafluoropropane, 2,2 -Bis [4- (p-aminophenoxy) pheny ] Hexafluoropropane, 2,2-bis [4- (3-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (2-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-dimethylphenyl] hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) -3,5-ditrifluoromethylphenyl] hexafluoropropane, p -Bis (4-amino-2-trifluoromethylphenoxy) benzene, 4,4'-bis (4-amino-2-trifluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-3-tri Fluoromethylphenoxy) biphenyl, 4,4'-bis (4-amino-2-trifluoromethylphenoxy) diphenyls Lufone, 4,4′-bis (4-amino-5-trifluoromethylphenoxy) diphenylsulfone, 2,2-bis [4- (4-amino-3-trifluoromethylphenoxy) phenyl] hexafluoropropane, benzidine 3,3 ′, 5,5′-tetramethylbenzidine, octafluorobenzidine, 3,3′-methoxybenzidine, o-tolidine, m-tolidine, 2,2 ′, 5,5 ′, 6,6′- Diamines such as hexafluorotolidine, 4,4 ″ -diaminoterphenyl, 4,4 ′ ″-diaminoquaterphenyl, diisocyanates obtained by reaction of these diamines with phosgene, and further diaminosiloxanes Can be mentioned.

本発明におけるポリアミック酸を調製する縮合反応は、極性溶媒としてNMP、DMAcそれぞれ単独液中又は混合液中で行い、反応温度10〜40℃、反応液の濃度30質量%以下、芳香族テトラカルボン酸無水物と芳香族ジアミンとのモル比が0.95:1.00〜1.05:1.00の範囲にてN2雰囲気下で反応させることが好ましい。なお、この反応における原料の溶解方法及び添加方法に特に限定はない。 The condensation reaction for preparing the polyamic acid in the present invention is carried out in a single solution or a mixed solution of NMP and DMAc as polar solvents, the reaction temperature is 10 to 40 ° C., the concentration of the reaction solution is 30% by mass or less, and the aromatic tetracarboxylic acid. the molar ratio of anhydride and aromatic diamine is 0.95: 1.00 to 1.05: preferably reacted under N 2 atmosphere at 1.00 range. In addition, there is no limitation in particular in the dissolution method and addition method of the raw material in this reaction.

また、種々の特性改良を目的として、無機質、有機質又は金属等の粉末、繊維等を混合して使用することもできるほか、導体の酸化を防ぐ目的で酸化防止剤等の添加剤や、接着性の向上を目的としてシランカップリング剤、塗工性を向上させる目的でレベリング剤を加えることも可能である。   In addition, for the purpose of improving various properties, it can be used by mixing inorganic, organic or metal powders, fibers, etc., and additives such as antioxidants and adhesives for the purpose of preventing conductor oxidation. It is also possible to add a silane coupling agent for the purpose of improving the coating property and a leveling agent for the purpose of improving the coatability.

本発明に用いられる金属箔としては、9〜35μmの厚さの圧延銅箔又は電解銅箔が好適に用いられる。銅箔の厚さが9μm未満であると、製造時のシワ、積層工程での強度等に問題が発生するおそれがあり、保護材を使用する必要があるためコスト上不利となる。   As the metal foil used in the present invention, a rolled copper foil or an electrolytic copper foil having a thickness of 9 to 35 μm is preferably used. If the thickness of the copper foil is less than 9 μm, there may be a problem in wrinkles during production, strength in the lamination process, and the like, and it is disadvantageous in cost because it is necessary to use a protective material.

本発明におけるフレキシブル金属箔ポリイミド積層板の製造方法においては、前記接着層ポリアミック酸を銅箔等の金属箔上にキャストし、イミド化が進行しない(イミド化率5%未満)温度で半乾燥後、ポリイミドフィルムを加熱ロールプレスにてラミネートし、更に接着層ポリアミック酸の溶剤乾燥及びイミド化を行うことで、従来問題であった接着剤の耐熱性等の諸特性が低下することなく、かつ屈曲性に優れたオールポリイミドフレキシブル金属箔積層板が製造できる。   In the method for producing a flexible metal foil polyimide laminate in the present invention, the adhesive layer polyamic acid is cast on a metal foil such as a copper foil, and after semi-drying at a temperature at which imidization does not proceed (imidation rate is less than 5%). By laminating the polyimide film with a heated roll press, and further performing solvent drying and imidization of the adhesive layer polyamic acid, various properties such as heat resistance of the adhesive, which has been a problem in the past, are not bent and bent. An all-polyimide flexible metal foil laminate having excellent properties can be produced.

本発明におけるフレキシブル金属箔ポリイミド積層板の製造方法においては、前記接着層ポリアミック酸のイミド化後の膜厚が、積層板の全ポリイミド層(即ち、耐熱性ポリイミドフィルム及びポリイミド接着層)の10%未満、特に4〜8%となるよう塗布することが好ましい。接着層の厚さが全ポリイミド樹脂層の厚みの10%以上であると、積層板のカールが大きくなるおそれがある。   In the manufacturing method of the flexible metal foil polyimide laminated board in this invention, the film thickness after imidation of the said adhesive layer polyamic acid is 10% of all the polyimide layers (namely, heat resistant polyimide film and polyimide adhesive layer) of a laminated board. It is preferable to apply so that it may become less than 4 to 8%. When the thickness of the adhesive layer is 10% or more of the thickness of the total polyimide resin layer, the curl of the laminated board may be increased.

更に、得られる積層板の特性上、全ポリイミド層(即ち、耐熱性ポリイミドフィルム及びポリイミド接着層)の厚みは15〜50μm、特に15〜30μmの範囲のものが好適に使用される。この厚みが15μm未満であると、ポリイミド接着層を全ポリイミド層の10%未満の厚みでポリアミック酸を銅箔上にキャストし、ポリイミドフィルムをラミネートするのが困難となる、又は得られる積層板の屈曲性が劣る場合がある。また、50μmを超えると、本発明の方法による接着層の溶剤除去、イミド化が困難となるおそれがある。   Furthermore, the thickness of the whole polyimide layer (namely, heat resistant polyimide film and polyimide adhesive layer) is preferably 15 to 50 μm, particularly preferably 15 to 30 μm in view of the characteristics of the obtained laminate. When this thickness is less than 15 μm, it is difficult to cast the polyimide adhesive layer on the copper foil with a thickness of less than 10% of the total polyimide layer, and it is difficult to laminate the polyimide film, or Flexibility may be inferior. Moreover, when it exceeds 50 micrometers, there exists a possibility that the solvent removal and imidation of the contact bonding layer by the method of this invention may become difficult.

本発明において、上記ポリアミック酸を銅箔等の金属箔の処理面に塗布、乾燥を行う装置及び方法は特に限定はなく、塗布はコンマコーター、ダイコーター、ロールコーター、ナイフコーター、リバースコーター、リップコーターなどを使用すればよく、また、乾燥は加熱ロールプレスに通す時点で、溶剤含量が3〜150質量%の半乾燥状態で、かつイミド化が進行しない(イミド化率5%未満)ポリアミック酸のままであるように、接着に供する120℃以下、好ましくは40〜100℃の温度で適宜乾燥させればよい。   In the present invention, there is no particular limitation on the apparatus and method for applying and drying the polyamic acid to the treated surface of a metal foil such as copper foil, and the application is a comma coater, die coater, roll coater, knife coater, reverse coater, lip. A coater or the like may be used, and the drying is performed at the time when it is passed through a heated roll press. The polyamic acid is in a semi-dry state with a solvent content of 3 to 150% by mass and imidization does not proceed (imidation rate is less than 5%). It may be appropriately dried at a temperature of 120 ° C. or lower, preferably 40 to 100 ° C., used for adhesion.

溶剤含量が150質量%を超えると、ロールプレス時に気泡や膨れを生じたり、接着剤のフローが起こりロールを汚す場合があり、また溶剤含量が3質量%未満でロールにかけると、熱ロールプレスにてラミネートする際に高温、高圧が必要となり、設備コストが高くなる場合が生じる。また、乾燥温度が120℃を超えると加熱ラミネート時に発泡する場合がある。   If the solvent content exceeds 150% by mass, bubbles or blisters may occur during roll pressing, or the adhesive may flow and soil the roll. If the solvent content is less than 3% by mass, the roll may be heated. When laminating at a high temperature and high pressure are required, equipment costs may increase. If the drying temperature exceeds 120 ° C., foaming may occur during heating lamination.

ロールプレスの加熱方法は、ロールを直接オイルやスチーム等で加熱する方法が挙げられ、最低金属箔が接触するロールは加熱する必要がある。また、ロール材質もカーボンスチール等の金属ロールや、耐熱性のNBRゴムやフッ素ゴム、シリコーンゴムからなるゴムロールが使用される。
ロールプレス条件についても特に限定はないが、ロール温度は、半乾燥後のポリアミック酸の軟化点以上で、かつ使用される溶剤の沸点以下である100〜150℃、線圧は5〜100kg/cmの範囲で行うことが好ましい。
Examples of the heating method of the roll press include a method in which the roll is directly heated with oil, steam, or the like. As the roll material, a metal roll such as carbon steel, or a rubber roll made of heat-resistant NBR rubber, fluorine rubber, or silicone rubber is used.
The roll press conditions are not particularly limited, but the roll temperature is 100 to 150 ° C. which is not lower than the softening point of the polyamic acid after semi-drying and not higher than the boiling point of the solvent used, and the linear pressure is 5 to 100 kg / cm. It is preferable to perform in the range.

ラミネート後の溶剤乾燥及びイミド化の方法については、溶剤乾燥温度はワニスに使用される溶剤の沸点以下、通常30〜200℃が好ましく、溶剤乾燥時間は貼り合わせたポリイミドフィルムを通して溶剤が除去されるため、適宜溶剤がなくなる時間、通常3〜30時間行えばよい。   Regarding the method of solvent drying and imidization after lamination, the solvent drying temperature is preferably not higher than the boiling point of the solvent used for the varnish, usually 30 to 200 ° C., and the solvent drying time is removed through the bonded polyimide film. Therefore, it is sufficient to carry out the time when the solvent runs out, usually 3 to 30 hours.

また、イミド化は溶剤除去後、引き続き行ってもよく、従来の方法通り、銅箔等の金属箔が酸化しない酸素濃度(2質量%以下)で減圧下又は窒素雰囲気下、250〜350℃で3〜20時間行えばよい。該溶剤除去及びイミド化を行う際の形態は、シート状でもロール状でもよく、ロールの巻き方についても特に限定はなく、銅箔等の金属箔を内側にしても外側にしてもよく、更にはスペーサーを挟んだロール状でもよい。   Moreover, imidation may be continued after removing the solvent. As in the conventional method, the metal foil such as copper foil is oxidized at an oxygen concentration (2% by mass or less) under reduced pressure or in a nitrogen atmosphere at 250 to 350 ° C. It may be performed for 3 to 20 hours. The form for performing the solvent removal and imidization may be a sheet or a roll, and there is no particular limitation on how to roll the roll, and a metal foil such as a copper foil may be inside or outside, May be in the form of a roll with a spacer in between.

この場合、本発明の方法においては、溶剤除去及びイミド化においてラミネート後の残溶剤やイミド化時の脱水分が発生するため、好ましくはゆる巻きを行うか、他の材質のスペーサーを挟んだロール状態で加熱処理を行うことが好ましい。   In this case, in the method of the present invention, a solvent remaining after lamination and dehydration at the time of imidization are generated in solvent removal and imidization, and therefore rolls are preferably performed by loosely winding or sandwiching spacers of other materials. It is preferable to heat-process in a state.

このようにして得られたフレキシブル金属箔ポリイミド積層板は、80℃、屈曲半径1.5mmのIPC屈曲性が300万回以上、好ましくは330万回以上、より好ましくは380万回以上と屈曲特性に優れ、回路が破断しないような高屈曲性能を有するものである。このような高屈曲性能を与える積層板は、上述したように、ポリイミドフィルムの成分、ポリイミド接着層の成分、金属箔の成分、ポリイミド接着層の厚み、総ポリイミド層の厚み、金属箔の厚み等を適宜選定することにより得ることができる。   The flexible metal foil polyimide laminate thus obtained has a bending property of 80 ° C. and an IPC flexibility with a bending radius of 1.5 mm of 3 million times or more, preferably 3.3 million times or more, more preferably 30.8 million times or more. It has excellent bending performance so that the circuit is not broken. As described above, the laminated plate that gives such a high bending performance is a polyimide film component, a polyimide adhesive layer component, a metal foil component, a polyimide adhesive layer thickness, a total polyimide layer thickness, a metal foil thickness, etc. Can be obtained by appropriately selecting.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1,2]
ポリアミック酸Aの合成
4,4’−ジアミノジフェニルエーテル202.5gをN,N−ジメチルアセトアミド1.5kgに溶解し、N2雰囲気下で攪拌し、10℃に保っているところへ、ピロメリット酸無水物218.5gを内温が15℃を超えないように除々に添加した。10〜15℃で2時間反応させた後、更に室温で6時間反応を行った。
[Examples 1 and 2]
Synthesis of polyamic acid A 202.5 g of 4,4′-diaminodiphenyl ether was dissolved in 1.5 kg of N, N-dimethylacetamide, stirred in an N 2 atmosphere, and maintained at 10 ° C. 218.5 g of the product was gradually added so that the internal temperature did not exceed 15 ° C. After reacting at 10 to 15 ° C. for 2 hours, the reaction was further performed at room temperature for 6 hours.

ポリアミック酸Bの合成
p−フェニレンジアミン108.5gをN,N−ジメチルアセトアミド2kgに溶解し、N2雰囲気下で攪拌し、10℃に保っているところへ、3,3’,4,4’−ビフェニルテトラカルボン酸無水物295.7gを内温が15℃を超えないように除々に添加した。10〜15℃で2時間反応させた後、更に室温で6時間反応を行った。
Synthesis of polyamic acid B 108.5 g of p-phenylenediamine was dissolved in 2 kg of N, N-dimethylacetamide, stirred in an N 2 atmosphere and kept at 10 ° C., 3, 3 ′, 4, 4 ′. -295.7 g of biphenyltetracarboxylic anhydride was gradually added so that the internal temperature did not exceed 15 ° C. After reacting at 10 to 15 ° C. for 2 hours, the reaction was further performed at room temperature for 6 hours.

ポリイミドフィルムの作製
鏡面仕上げを施したSUS板上に、アプリケーターによりポリアミック酸Aを厚さ130μm及び200μmとなるようにキャストし、それぞれ110℃で10分乾燥後、SUS板からフィルムを剥がし、鉄枠に固定し、N2イナートオーブンにて、250℃×3時間、350℃×3時間連続的に加熱イミド化を行い、5時間かけて100℃以下に冷却し、厚み25μm及び38μmのポリイミドフィルムを得た。
Polyimide film production Polyamic acid A was cast on an SUS plate with a mirror finish to a thickness of 130 μm and 200 μm using an applicator, dried at 110 ° C. for 10 minutes, and then peeled off from the SUS plate. fixed to at N 2 inert oven, 250 ° C. × 3 hours, subjected to 350 ° C. × 3 hours continuously heated imidization, over 5 hours and cooled to 100 ° C. or less, a polyimide film having a thickness of 25μm and 38μm Obtained.

積層板の作製
30cm×25cmにカットした厚さ18μm圧延銅箔に、表1に示したポリアミック酸AとBの混合比で、液の厚さで30μmとなるようにアプリケーターにより塗工し、オーブンで120℃×2分乾燥を行った。これに30cm×25cmにカットした表1に示した厚みのポリイミドフィルムを重ねて、西村マシナリー社のテストロールラミネート機、120℃×15kg/cm×4m/分でラミネートを行った。これをN2イナートオーブンにて、160℃×4時間、250℃×1時間、350℃×1時間連続的に加熱処理を行った。
Preparation of laminated plate Coated with an applicator so that the mixed thickness of the polyamic acid A and B shown in Table 1 is 30 μm, and the thickness of the liquid is 30 μm. Was dried at 120 ° C. for 2 minutes. This was overlaid with a polyimide film having a thickness shown in Table 1 cut to 30 cm × 25 cm and laminated with a test roll laminator manufactured by Nishimura Machinery Co., Ltd. at 120 ° C. × 15 kg / cm × 4 m / min. This was heat-treated continuously in an N 2 inert oven at 160 ° C. for 4 hours, 250 ° C. for 1 hour, and 350 ° C. for 1 hour.

[比較例1〜3]
表1に示したポリイミド層を形成し、ラミネート、キュアを行った以外は、実施例と同様に行った。
[Comparative Examples 1-3]
The same procedure as in Example was performed except that the polyimide layer shown in Table 1 was formed, laminated, and cured.

実施例1,2及び比較例1〜3の積層板を用いて、下記方法によりIPC屈曲性の測定を行った。結果を表1に併記する。   Using the laminates of Examples 1 and 2 and Comparative Examples 1 to 3, IPC flexibility was measured by the following method. The results are also shown in Table 1.

IPC屈曲性
得られた積層板の銅箔層に、IPC FC 241に定められた回路パターンを作製形成した。回路パターン形成面(回路パターン銅箔面)にカバーレイ(商品名:CN261 信越化学工業(株)製)を160℃、4.9MPaで30分熱プレスし、更に160℃×4時間アフターキュアを行い、IPC屈曲性試験片を作製した。このIPC屈曲性試験片を用いて、温度80℃、屈曲半径1.5mm、屈曲速度1500回/分、ストローク20mmで繰り返し屈曲を行い、回路の抵抗値が10%を超えた回数又は回路が破断した回数を屈曲回数とした。
IPC Flexibility A circuit pattern defined in IPC FC 241 was formed and formed on the copper foil layer of the obtained laminate. Coverlay (trade name: CN261, manufactured by Shin-Etsu Chemical Co., Ltd.) was hot-pressed at 160 ° C. and 4.9 MPa for 30 minutes on the circuit pattern forming surface (circuit pattern copper foil surface), and further after-curing at 160 ° C. for 4 hours. The IPC flexibility test piece was prepared. Using this IPC bendability test piece, repeated bending was performed at a temperature of 80 ° C., a bending radius of 1.5 mm, a bending speed of 1500 times / minute, and a stroke of 20 mm, and the circuit resistance value exceeded 10% or the circuit was broken. The number of bendings was defined as the number of bendings.

Figure 0004371234
Figure 0004371234

Claims (2)

耐熱性ポリイミドフィルムの片面に、接着層を介して金属箔を積層してなるフレキシブル金属箔ポリイミド積層板であって、ポリイミドフィルムが4,4’−ジアミノジフェニルエーテルとピロメリット酸無水物を反応させてなるポリアミック酸を加熱イミド化してなるものであり、接着層がポリイミドフィルムと同成分のポリイミドとなるポリアミック酸を50〜90質量%含有したポリアミック酸を加熱イミド化したポリイミド接着層であり、ポリイミド接着層の厚みが全ポリイミド層の厚みに対して10%未満で、耐熱性ポリイミドフィルムとポリイミド接着層とからなるポリイミド層の厚さが15〜50μmであり、80℃、屈曲半径1.5mmのIPC屈曲性が300万回以上であることを特徴とするフレキシブル金属箔ポリイミド積層板。 A flexible metal foil polyimide laminate in which a metal foil is laminated on one side of a heat-resistant polyimide film via an adhesive layer, the polyimide film reacting 4,4'-diaminodiphenyl ether and pyromellitic anhydride comprising a polyamic acid are those formed by thermal imidization, the adhesive layer is a polyimide adhesive layer heated imidized polyamic acid containing 50 to 90 wt% of the polyamic acid as a polyimide of the polyimide film and the same component, polyimide adhesive The thickness of the layer is less than 10% with respect to the total thickness of the polyimide layer, the thickness of the polyimide layer composed of the heat-resistant polyimide film and the polyimide adhesive layer is 15 to 50 μm, and the IPC has a bending radius of 1.5 mm at 80 ° C. Flexible metal foil polyimide characterized in that the flexibility is 3 million times or more Laminated board. 金属箔が厚さ9〜35μmの圧延銅箔又は電解銅箔である請求項記載のフレキシブル金属箔ポリイミド積層板。 Flexible metal foil polyimide laminate according to claim 1, wherein the metal foil is a rolled copper foil or electrolytic copper foil having a thickness of 9~35Myuemu.
JP2005058932A 2005-03-03 2005-03-03 Flexible metal foil polyimide laminate Expired - Fee Related JP4371234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058932A JP4371234B2 (en) 2005-03-03 2005-03-03 Flexible metal foil polyimide laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058932A JP4371234B2 (en) 2005-03-03 2005-03-03 Flexible metal foil polyimide laminate

Publications (2)

Publication Number Publication Date
JP2006240073A JP2006240073A (en) 2006-09-14
JP4371234B2 true JP4371234B2 (en) 2009-11-25

Family

ID=37046947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058932A Expired - Fee Related JP4371234B2 (en) 2005-03-03 2005-03-03 Flexible metal foil polyimide laminate

Country Status (1)

Country Link
JP (1) JP4371234B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221586A (en) * 2009-03-24 2010-10-07 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
KR20120123242A (en) 2009-06-26 2012-11-08 가부시키가이샤 아사히 러버 White color reflecting material and process for production thereof
EP2551929A4 (en) 2010-03-23 2013-08-14 Asahi Rubber Inc Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
EP2679384B1 (en) * 2011-03-31 2015-05-13 JX Nippon Mining & Metals Corporation Metallic foil composite, flexible printed circuit board using same, molded body, and manufacturing method for molded body
KR101529417B1 (en) 2011-05-13 2015-06-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, copper foil used for the same, formed product and method of producing the same
JP5822842B2 (en) 2012-01-13 2015-11-24 Jx日鉱日石金属株式会社 Copper foil composite, molded body and method for producing the same
WO2013105265A1 (en) 2012-01-13 2013-07-18 Jx日鉱日石金属株式会社 Copper foil composite, molded body, and method for producing same
JP6519126B2 (en) * 2014-09-18 2019-05-29 三菱ケミカル株式会社 Transfer film, method for producing polyimide laminate using the same, and polyimide laminate
CN116457211A (en) * 2020-11-27 2023-07-18 Ube株式会社 Polyimide precursor composition, polyimide film, and polyimide film/substrate laminate

Also Published As

Publication number Publication date
JP2006240073A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP4371234B2 (en) Flexible metal foil polyimide laminate
US7459047B2 (en) Preparation of flexible copper foil/polyimide laminate
JP5251508B2 (en) Heat-resistant film metal foil laminate and method for producing the same
JP7325899B2 (en) METHOD FOR MANUFACTURING METAL-CLAD LAMINATE, METHOD FOR MANUFACTURE AND REPAIR METHOD FOR COATED PRESSURE ROLL
TWI405522B (en) Flexible laminated board and its manufacturing method, and flexible printed circuit board
JP2009113475A (en) Method of producing flexible single-sided polyimide copper-clad laminate
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
WO2006129526A1 (en) Polyimide film, polyimide metal laminate and process for producing the same
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP4504602B2 (en) Polyimide copper clad laminate and method for producing the same
JP3952196B2 (en) Method for producing flexible metal foil polyimide laminate
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2005015596A (en) Polyimide-based precursor resin solution composition sheet
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JPH07193349A (en) Manufacture of polyimide metal foil laminated board
JP2007184405A (en) Manufacturing method of flexible polyimide plate laminated with metal foil
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JP2006245286A (en) Flexible printed circuit board and its manufacturing method
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
KR20060044672A (en) Flexible metal foil-polyimide laminate and making method
JP4923678B2 (en) Flexible substrate with metal foil and flexible printed wiring board
JP4379609B2 (en) Method for producing flexible metal foil polyimide laminate
JP2001270037A (en) Flexible metal foil laminate and manufacturing method for the same
JP2001270038A (en) Method for manufacturing flexible metal foil laminate
JP2005329641A (en) Substrate for flexible printed circuit board and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees