JP5095142B2 - Flexible printed wiring board substrate and manufacturing method thereof - Google Patents

Flexible printed wiring board substrate and manufacturing method thereof Download PDF

Info

Publication number
JP5095142B2
JP5095142B2 JP2006185624A JP2006185624A JP5095142B2 JP 5095142 B2 JP5095142 B2 JP 5095142B2 JP 2006185624 A JP2006185624 A JP 2006185624A JP 2006185624 A JP2006185624 A JP 2006185624A JP 5095142 B2 JP5095142 B2 JP 5095142B2
Authority
JP
Japan
Prior art keywords
printed wiring
flexible printed
thickness
layer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006185624A
Other languages
Japanese (ja)
Other versions
JP2008016603A (en
Inventor
幹夫 古川
清治 瀬島
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2006185624A priority Critical patent/JP5095142B2/en
Publication of JP2008016603A publication Critical patent/JP2008016603A/en
Application granted granted Critical
Publication of JP5095142B2 publication Critical patent/JP5095142B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フレキシブルプリント配線板用基板及びその製造方法に関し、特に、回路を形成した後にカールやねじれや反り等を生ずることがなく、しかも屈曲耐性、耐熱性、寸法安定性、電気的特性等に優れたフレキシブルプリント配線板用基板およびその製造方法に関する。   The present invention relates to a substrate for a flexible printed wiring board and a method for manufacturing the same, and in particular, does not cause curling, twisting, warping, or the like after forming a circuit, and also has bending resistance, heat resistance, dimensional stability, electrical characteristics, and the like. The present invention relates to an excellent flexible printed wiring board substrate and a method for manufacturing the same.

従来、フレキシブルプリント配線板用基板としては、ポリイミドフィルムからなる絶縁層と導体層とをエポキシ樹脂、アクリル樹脂などの接着剤を介して貼り合わせたものが知られており、例えば、絶縁層の両面にエポキシ樹脂、アクリル樹脂などの接着剤を介して導体層が積層された5層構造の両面フレキシブルプリント配線板用基板(以下、「両面板」と称す。)が知られている。しかしながら、この両面板は、導体層と絶縁層との間に接着層が存在するために、耐熱性、難燃性、電気的特性などが低下するという問題があった。また、導体層にエッチングを施した際や、基板に何らかの熱処理を施した際の寸法変化率が大きく、その後の工程で支障をきたすという問題があった。   Conventionally, as a substrate for a flexible printed wiring board, an insulating layer made of a polyimide film and a conductive layer are known to be bonded via an adhesive such as an epoxy resin or an acrylic resin. For example, both surfaces of an insulating layer are known. A double-sided flexible printed circuit board (hereinafter referred to as “double-sided board”) having a five-layer structure in which a conductor layer is laminated with an adhesive such as an epoxy resin or an acrylic resin is known. However, this double-sided plate has a problem that heat resistance, flame retardancy, electrical characteristics and the like are deteriorated because an adhesive layer is present between the conductor layer and the insulating layer. In addition, there has been a problem that the rate of dimensional change is large when the conductor layer is etched or when the substrate is subjected to any heat treatment, which hinders subsequent processes.

このような問題を解決するために、ポリイミドフィルムからなる絶縁層と導体層とを接着する際に、熱圧着性を有する熱可塑性ポリイミドを接着層として用いることにより、上記問題を解決しようとする提案がなされている(例えば、特許文献1〜6)。しかしながら、この構成では、導体層上に直接接しているのは熱可塑性のポリマーであるため、やはり基板に何らかの熱処理を施した際の寸法変化率が大きくなり、上記の問題を十分に解決できるものではなかった。   In order to solve such problems, a proposal to solve the above problems by using thermoplastic polyimide having thermocompression bonding as an adhesive layer when bonding the insulating layer made of polyimide film and the conductor layer. (For example, Patent Documents 1 to 6). However, in this configuration, since the thermoplastic polymer is in direct contact with the conductor layer, the rate of dimensional change when the substrate is subjected to any heat treatment increases, and the above problem can be sufficiently solved. It wasn't.

加えて、導体層と絶縁層界面の接着強度を維持する為には一定の厚みの接着層が必要であり、絶縁層が薄くなると絶縁層に占める接着層の比率が大きくなってしまい、上記した5層構造の両面板同様、種々基板特性を維持することが難しくなるという問題がある。   In addition, in order to maintain the adhesive strength at the interface between the conductor layer and the insulating layer, a certain thickness of the adhesive layer is required. As the insulating layer becomes thinner, the ratio of the adhesive layer to the insulating layer increases, which is described above. Like the double-sided board with a five-layer structure, there is a problem that it is difficult to maintain various substrate characteristics.

特開2000−103010号公報JP 2000-103010 A 特開2001−270033号公報JP 2001-270033 A 特開2001−270034号公報JP 2001-270034 A 特開2001−270035号公報JP 2001-270035 A 特開2001−270037号公報JP 2001-270037 A 特開2001−270039号公報JP 2001-270039 A

本発明は上記課題を解決し、回路形成や熱処理によるカール、ねじれ、反り等の発生を抑制でき、しかも、絶縁層が薄い場合であっても屈曲耐性、耐熱性、難燃性、寸法安定性、電気的特性等に優れた両面に導体層を有するフレキシブルプリント配線板用基板およびその製造方法を提供することを目的とする。 The present invention solves the above problems, can suppress the occurrence of curling, twisting, warping, etc. due to circuit formation or heat treatment, and even when the insulating layer is thin, bending resistance, heat resistance, flame resistance, dimensional stability An object of the present invention is to provide a flexible printed wiring board substrate having a conductor layer on both surfaces excellent in electrical characteristics and the like, and a method for producing the same.

本発明者等は上記課題を解決するために鋭意研究を行った結果、接着層を介在させることなく導体層上に直接に特定の構成を有する絶縁層を形成するとともに、絶縁層同士を特定の接着層にて一体化することで上記課題が解決できることを見出し、本発明に至ったものである。   As a result of intensive studies to solve the above problems, the present inventors formed an insulating layer having a specific configuration directly on the conductor layer without interposing an adhesive layer, and specified the insulating layers to each other. The present inventors have found that the above-mentioned problems can be solved by integrating with an adhesive layer, and have reached the present invention.

すなわち本発明は、ガラス転移点が200℃未満である熱可塑性樹脂からなる接着層の両面にポリイミドフィルムがそれぞれ積層されて構成される絶縁層の両面に導体層を設けてなるフレキシブルプリント配線板用基板であって、前記接着層の厚みは絶縁層全体の厚みの%以下であり、かつ、導体層を全面エッチングした際の寸法変化率が−0.05〜0.05%の範囲内にあることを特徴とするフレキシブルプリント配線板用基板を要旨とするものである。 That is, the present invention is for a flexible printed wiring board in which a conductor layer is provided on both sides of an insulating layer formed by laminating polyimide films on both sides of an adhesive layer made of a thermoplastic resin having a glass transition point of less than 200 ° C. The thickness of the adhesive layer is not more than 9 % of the thickness of the entire insulating layer, and the dimensional change rate when the conductor layer is entirely etched is within a range of -0.05 to 0.05%. A gist of a substrate for a flexible printed wiring board, characterized in that it is present.

また、絶縁層と導体層間の接着強度が、1kN/m以上であることを特徴とする前記フレキシブルプリント配線板用基板を要旨とするものである。     The gist of the flexible printed wiring board substrate is characterized in that the adhesive strength between the insulating layer and the conductor layer is 1 kN / m or more.

また、導体層の片面にポリイミドフィルム、次いで接着層が形成された積層体同士を、接着層を向かい合わせに配置して加熱雰囲気下で接着層同士を圧着一体化することを特徴とする前記フレキシブルプリント配線板用基板の製造方法を要旨とするものである。   The flexible film is characterized in that a laminate in which a polyimide film and then an adhesive layer are formed on one side of a conductor layer are arranged so that the adhesive layers face each other and the adhesive layers are bonded together in a heated atmosphere. The gist of the method for manufacturing a printed wiring board substrate is as follows.

本発明によれば、絶縁層の層構成や接着層の厚みを規定することで、屈曲耐性、耐熱性、難燃性、電気的特性や寸法安定性に優れたフレキシブルプリント配線板に好適な両面に導体層が設けられた両面フレキシブルプリント配線板用基板が得られる。   According to the present invention, by specifying the layer configuration of the insulating layer and the thickness of the adhesive layer, both sides suitable for a flexible printed wiring board excellent in bending resistance, heat resistance, flame retardancy, electrical characteristics and dimensional stability. A substrate for a double-sided flexible printed wiring board in which a conductor layer is provided on the substrate is obtained.

また、本発明のフレキシブルプリント配線板用基板の製造方法によると、本発明のフレキシブルプリント配線板用基板を容易に実現できる。   Moreover, according to the manufacturing method of the board | substrate for flexible printed wiring boards of this invention, the board | substrate for flexible printed wiring boards of this invention is easily realizable.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は本発明のフレキシブルプリント配線板用基板の一例を示す断面図である。   FIG. 1 is a sectional view showing an example of a flexible printed wiring board substrate of the present invention.

本発明のフレキシブルプリント配線板用基板は、絶縁層の両面に導体層が配置された構成を有している。絶縁層は、ポリイミドフィルムと接着層からなる積層フィルムであって、接着層の両面にポリイミドフィルムを配置した積層フィルムである。この構成において接着層の厚みを絶縁層全体の厚みの%以下とすることが必要であり、接着層の厚みを絶縁層全体の厚みの%以下にすることが好ましく屈曲耐性、耐熱性、難燃性、電気的特性や寸法安定性に優れたフレキシブルプリント配線板用基板を得ることができる。 The flexible printed wiring board substrate of the present invention has a configuration in which conductor layers are disposed on both sides of an insulating layer. The insulating layer is a laminated film composed of a polyimide film and an adhesive layer, and is a laminated film in which a polyimide film is disposed on both surfaces of the adhesive layer. The thickness of the adhesive layer in the structure is required to be 9% or less of the total thickness of the insulating layer, it is preferred that the thickness of the adhesive layer to less than 8% of the total thickness of the insulating layer, bending resistance, heat resistance A flexible printed wiring board substrate having excellent flame retardancy, electrical characteristics, and dimensional stability can be obtained.

上記構成における絶縁層において、接着層の厚みが絶縁層の厚みの10%を超えると、耐熱性や電気的特性および寸法安定性に劣る傾向にあるため好ましくない。   In the insulating layer having the above configuration, it is not preferable that the thickness of the adhesive layer exceeds 10% of the thickness of the insulating layer because the heat resistance, electrical characteristics, and dimensional stability tend to be inferior.

絶縁層全体の厚みは特に限定されるものではないが、14μm以下であることが好ましく、より好ましくは12μm以下である。14μmを超えると、例えば屈曲耐性に劣る傾向にあり、特に繰り返しの屈曲耐性に劣る傾向にあるため好ましくない。   The thickness of the entire insulating layer is not particularly limited, but is preferably 14 μm or less, and more preferably 12 μm or less. If it exceeds 14 μm, for example, it tends to be inferior in bending resistance, and in particular tends to be inferior in repeated bending resistance.

なお、接着層の両面に設けられる各々のポリイミドフィルムの厚みは、絶縁層全体として上記の範囲であれば特に限定されるものではないが、カールやねじれや反りなどを防止する観点から同じ厚みであることが好ましい。   In addition, the thickness of each polyimide film provided on both surfaces of the adhesive layer is not particularly limited as long as the entire insulating layer is in the above range, but from the viewpoint of preventing curling, twisting, warping, etc. Preferably there is.

このように絶縁層が特定の構成を有することで、電気絶縁性や、繰り返しの屈曲耐性を含む機械的特性がより一層高まるだけでなく、寸法安定性がさらに向上するため、導体層に回路形成のためのエッチング処理を施したり、回路形成後の後工程における各種の加熱処理を施しても、カールやねじれや反りなどの発生をより一層抑制することができる。従って、本発明のフレキシブルプリント配線板用基板は、良好に電子部品などを実装できるだけでなく、高度な実装密度が実現できる。   Since the insulating layer has a specific configuration in this way, not only the electrical characteristics and mechanical properties including repeated bending resistance are further enhanced, but also the dimensional stability is further improved. The occurrence of curling, twisting, warping and the like can be further suppressed even when an etching process for the above is performed or various heat treatments are performed in the post-process after the circuit formation. Therefore, the flexible printed wiring board substrate of the present invention can not only satisfactorily mount electronic components and the like, but also realize a high mounting density.

寸法安定性はIPC−TM−650規格の2.2.4項に規定される方法Bで測定することが出来る。本発明のフレキシブルプリント配線板用基板は、この測定で得られる(導体層を全面エッチングした際の)寸法変化率が−0.05〜0.05%の範囲内にあることが必要である。   The dimensional stability can be measured by the method B defined in 2.2.4 of the IPC-TM-650 standard. The substrate for a flexible printed wiring board of the present invention needs to have a dimensional change rate obtained by this measurement (when the conductor layer is entirely etched) in the range of -0.05 to 0.05%.

また、両面に配置される導体層と、前記した絶縁層の間の接着強度は、例えばJIS−C6471規格に記載の銅はくの引きはがし強さ試験に規定される方法で測定することができる。本発明のフレキシブルプリント配線板用基板では、1kN/m以上であることが好ましい。接着強度が1kN/m未満であると、フレキシブルプリント配線板用基板としての実用性に乏しいものとなる。   Moreover, the adhesive strength between the conductor layer arrange | positioned on both surfaces and an above-described insulating layer can be measured by the method prescribed | regulated to the peeling strength test of the copper foil described, for example in JIS-C6471 standard. . In the flexible printed wiring board substrate of the present invention, it is preferably 1 kN / m or more. When the adhesive strength is less than 1 kN / m, the practicality as a flexible printed wiring board substrate is poor.

絶縁層を形成する接着層としては、ガラス転移点が200℃未満の樹脂を用いる必要があり、好ましくはガラス転移点が180℃以下の樹脂であり、より好ましくはガラス転移点が150℃以下の樹脂である。ガラス転移点が200℃未満であれば、加熱圧着時に熱流動性に基づく接着性が発現しやすくなり、接着層同士を圧着して容易に接着一体化することができる。一方、ガラス転移点が200℃以上であると、製造時の加熱雰囲気下で圧着する温度が高くなり、製造条件がより困難になる傾向にあるため好ましくない。また、圧着する温度が高くなると、素材固有の熱膨張率に応じて層間の熱膨張量の差が顕著となるが、特に導体層と絶縁層の間の熱膨張量の差が残留歪として絶縁層に内包される割合が大きくなる。そのため、圧着する温度が高温になると導体層を全面エッチングなどで除去した際、残留歪の開放によって発生する寸法変化が大きくなる傾向にある。よって、全面エッチングした際の寸法変化率を小さく抑えるには、より低温で圧着できる接着層を用いることが好ましいと考えられるのである。   As the adhesive layer for forming the insulating layer, it is necessary to use a resin having a glass transition point of less than 200 ° C., preferably a resin having a glass transition point of 180 ° C. or less, more preferably a glass transition point of 150 ° C. or less. Resin. If the glass transition point is less than 200 ° C., adhesiveness based on thermal fluidity is easily developed at the time of thermocompression bonding, and the adhesive layers can be easily bonded and integrated. On the other hand, if the glass transition point is 200 ° C. or higher, the temperature for pressure bonding in a heated atmosphere during production tends to be high, and the production conditions tend to be more difficult, which is not preferable. In addition, when the temperature at which crimping is increased, the difference in thermal expansion between the layers becomes significant depending on the thermal expansion coefficient specific to the material. In particular, the difference in thermal expansion between the conductor layer and the insulating layer is insulated as residual strain. The rate of inclusion in the layer increases. For this reason, when the temperature for pressure bonding becomes high, the dimensional change caused by the release of residual strain tends to increase when the conductor layer is removed by etching the entire surface. Therefore, in order to suppress the dimensional change rate when the entire surface is etched, it is considered preferable to use an adhesive layer that can be pressure-bonded at a lower temperature.

一方、低温で圧着できる接着層を用いた場合、耐熱性をはじめとする基板材料としての諸特性が劣化する傾向にあるが、本発明の構成においては、接着層の厚みを絶縁層の厚みの10%以下と薄くすることで、耐熱性をはじめとする諸特性が維持されることが判明したのである。   On the other hand, when an adhesive layer that can be pressure-bonded at a low temperature is used, various properties as a substrate material such as heat resistance tend to deteriorate. However, in the configuration of the present invention, the thickness of the adhesive layer is less than the thickness of the insulating layer. It has been found that by reducing the thickness to 10% or less, various characteristics including heat resistance are maintained.

接着層に用いられる樹脂は、熱可塑性樹脂とする必要がある。熱可塑性樹脂の具体例としては、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエステル類、ポリアリレート類、フッ素樹脂類などが挙げられる。 Tree fat used in the adhesive layer needs to be a thermoplastic resin. Specific examples of the thermoplastic resin include thermoplastic polyimide, polyamideimide, polyetherimide, polyetheretherketone, polyesters, polyarylates, and fluororesins.

絶縁層を形成するポリイミドフィルムとしては、特に限定されるものではないが、熱機械特性分析装置(TMA)で測定したガラス転移点が300℃以上の非熱可塑性である芳香族ポリイミドからなるフィルムが好ましく用いられる。   Although it does not specifically limit as a polyimide film which forms an insulating layer, The film which consists of an aromatic polyimide which is non-thermoplastic whose glass transition point measured with the thermomechanical property analyzer (TMA) is 300 degreeC or more. Preferably used.

なお、ポリイミドフィルムは上記した非熱可塑性ポリイミドの単一成分からなる単層であることが基板にした際の諸特性維持の観点から好ましいが、特定の機能を発現する目的から少なくとも上記した非熱可塑性ポリイミドフィルムを含む複数の成分からなる積層フィルムであってもよい。
上記した非熱可塑性芳香族ポリイミドとしては、下記構造式(1)で示す構造を有するものがあげられる。
The polyimide film is preferably a single layer composed of a single component of the above-mentioned non-thermoplastic polyimide, from the viewpoint of maintaining various characteristics when used as a substrate, but at least the above-mentioned non-heat for the purpose of developing a specific function. A laminated film comprising a plurality of components including a plastic polyimide film may be used.
Examples of the non-thermoplastic aromatic polyimide include those having a structure represented by the following structural formula (1).

ここで、Rは4価の芳香族残基を表し、Rは2価の芳香族残基を表す。 Here, R 1 represents a tetravalent aromatic residue, and R 2 represents a divalent aromatic residue.

導体層としては、銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン又はそれらの合金等の導体性材料からなる金属箔が挙げられ、銅箔が最も適している。   Examples of the conductor layer include metal foil made of a conductive material such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, or an alloy thereof, and copper foil is most suitable.

絶縁層と接する導体層表面には、絶縁層との接着性を向上させるために化学的あるいは機械的な表面処理が施されていてもよい。化学的な表面処理としては、ニッケルメッキ、銅−亜鉛合金メッキ等のメッキ処理、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤等の表面処理剤による処理やその他ポリマーを薄くコートすることなどが挙げられ、中でも、シランカップリング剤による表面処理が好ましい。シランカップリング剤としては、アミノ基を有するシランカップリング剤が好適に使用できる。一方、物理的な表面処理としては、粗面化処理などが挙げられる。   The surface of the conductor layer in contact with the insulating layer may be subjected to chemical or mechanical surface treatment in order to improve the adhesion with the insulating layer. Examples of chemical surface treatment include plating treatment such as nickel plating and copper-zinc alloy plating, treatment with a surface treatment agent such as aluminum alcoholate, aluminum chelate, and silane coupling agent, and other thin coatings with polymers. Of these, surface treatment with a silane coupling agent is preferred. As the silane coupling agent, a silane coupling agent having an amino group can be suitably used. On the other hand, examples of the physical surface treatment include a roughening treatment.

導体層の厚みは特に限定されるものではないが、5μm以上30μm以下のものが好ましい。   Although the thickness of a conductor layer is not specifically limited, The thing of 5 micrometers or more and 30 micrometers or less is preferable.

本発明のフレキシブルプリント配線板用基板は、導体層の片面にポリイミドフィルム、次いで接着層が形成された積層体同士を、接着層を向かい合わせに配置して加熱雰囲気下で圧着することで容易に得ることが出来る。   The substrate for a flexible printed wiring board of the present invention can be easily obtained by pressure-bonding a laminate in which a polyimide film and then an adhesive layer are formed on one side of a conductor layer, with the adhesive layers facing each other and heating in a heated atmosphere. Can be obtained.

導体層の片面にポリイミドフィルム、次いで接着層を形成させる方法としては、導体層上にポリイミド前駆体溶液を塗工したのち、乾燥および熱硬化することにより製造する方法が例示される。ここで、ポリイミド前駆体とは、熱硬化したのち、上記した構造式(1)となるものであり、そのような化合物であれば如何なるものも用いることができる。     Examples of the method for forming a polyimide film and then an adhesive layer on one surface of the conductor layer include a method in which a polyimide precursor solution is applied on the conductor layer and then dried and thermally cured. Here, the polyimide precursor is the one that becomes the above structural formula (1) after being thermally cured, and any compound can be used as long as it is such a compound.

硬化して非熱可塑性ポリイミドとなる前駆体溶液、次いで接着層を構成する樹脂溶液を順に銅箔などの導体層上へ塗工した後、まとめて熱硬化させても良いし、ポリイミド前駆体溶液を塗工したのち、乾燥および熱硬化させたポリイミドフィルム付き銅箔に接着層を構成する樹脂溶液を塗工し乾燥させても良い。   After the precursor solution that cures to become a non-thermoplastic polyimide and then the resin solution that constitutes the adhesive layer are sequentially applied onto a conductor layer such as a copper foil, it may be thermally cured together, or the polyimide precursor solution After coating, the resin solution constituting the adhesive layer may be applied to the dried and heat-cured copper foil with polyimide film and dried.

塗工は、工業的には、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ等が使用でき、塗布された前駆体を熱硬化するには、前駆体が塗布されて銅箔をロール状に巻き取った状態で不活性ガス雰囲気下に炉内で加熱する方法、製造ラインに加熱ゾーンを設ける方法等により行うことができる。   Industrially, a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater, or the like can be used industrially. It can be carried out by a method of heating in a furnace under an inert gas atmosphere while the foil is wound up in a roll shape, a method of providing a heating zone in the production line, or the like.

ポリイミド前駆体としては、例えば、下記構造式(2)で示すポリアミド酸またはそのアルキルエステルが挙げられる。ポリイミド前駆体溶液は、通常、ポリアミド酸と溶媒とからなる。 As a polyimide precursor, the polyamic acid shown by following Structural formula (2) or its alkylester is mentioned, for example. The polyimide precursor solution usually consists of a polyamic acid and a solvent.

ここで、Rは水素原子又はアルキル基である。 Here, R 3 is a hydrogen atom or an alkyl group.

ポリアミド酸からなる溶液は、下記構造式(3)で示す芳香族テトラカルボン酸二無水物と、下記構造式(4)で示す芳香族ジアミンとを、例えばN,N’−ジメチルアセトアミドなどの非プロトン性極性溶媒中で反応させることにより製造できる。 A solution comprising a polyamic acid is prepared by mixing an aromatic tetracarboxylic dianhydride represented by the following structural formula (3) and an aromatic diamine represented by the following structural formula (4) with a non-aqueous compound such as N, N′-dimethylacetamide. It can be produced by reacting in a protic polar solvent.

ここで、Rは4価の芳香族残基を表し、Rは2価の芳香族残基を表す。 Here, R 1 represents a tetravalent aromatic residue, and R 2 represents a divalent aromatic residue.

上記構造式(3)で示す芳香族テトラカルボン酸二無水物の具体例としては、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸、2,3,3′,4′−ジフェニルエーテルテトラカルボン酸、2,3,3′,4′−ベンゾフェノンテトラカルボン酸、2,3,6,7−ナフタレンテトラカルボン酸、1,4,5,7−ナフタレンテトラカルボン酸、1,2,5,6−ナフタレンテトラカルボン酸、3,3′,4,4′−ジフェニルメタンテトラカルボン酸、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン、3,4,9,10−テトラカルボキシペリレン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]プロパン、2,2−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパンの二無水物等が挙げられる。これらの芳香族テトラカルボン酸二無水物は、2種類以上を混合して用いることもできる。本発明においては、ピロメリット酸または3,3′,4,4′−ビフェニルテトラカルボン酸の二無水物またはこれらの混合物が特に好ましい。   Specific examples of the aromatic tetracarboxylic dianhydride represented by the structural formula (3) include pyromellitic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4 ′. -Benzophenone tetracarboxylic acid, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic acid, 2,3,3', 4'-diphenyl ether tetracarboxylic acid, 2,3,3 ', 4'-benzophenone tetracarboxylic acid Acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,4,5,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 3,3 ', 4,4' -Diphenylmethanetetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl) propane, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,4, , 10-tetracarboxyperylene, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] hexafluoropropane And the dianhydrides. These aromatic tetracarboxylic dianhydrides can be used in combination of two or more. In the present invention, pyromellitic acid, dianhydride of 3,3 ′, 4,4′-biphenyltetracarboxylic acid or a mixture thereof is particularly preferable.

上記構造式(4)で示す芳香族ジアミンの具体例としては、p−フェニレンジアミン、m−フェニレンジアミン、3,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルエーテル、4,4′−ジアミノジフェニルメタン、3,3′−ジメチル−4,4′−ジアミノジフェニルメタン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、1,2−ビス(アニリノ)エタン、ジアミノジフェニルスルホン、ジアミノベンズアニリド、ジアミノベンゾエート、ジアミノジフェニルスルフィド、2,2−ビス(p−アミノフェニル)プロパン、2,2−ビス(p−アミノフェニル)ヘキサフルオロプロパン、1,5−ジアミノナフタレン、ジアミノトルエン、ジアミノベンゾトリフルオライド、1,4−ビス(p−アミノフェノキシ)ベンゼン、4,4′−ビス(p−アミノフェノキシ)ビフェニル、ジアミノアントラキノン、4,4′−ビス(3−アミノフェノキシフェニル)ジフェニルスルホン、1,3−ビス(アニリノ)ヘキサフルオロプロパン、1,4−ビス(アニリノ)オクタフルオロブタン、1,5−ビス(アニリノ)デカフルオロペンタン、1,7−ビス(アニリノ)テトラデカフルオロヘプタン等が挙げられる。これらの芳香族ジアミンは、2種類以上を混合して用いることもできる。本発明においては、p−フェニレンジアミン、または4,4′−ジアミノジフェニルエーテルまたはこれらの混合物が特に好ましい。   Specific examples of the aromatic diamine represented by the structural formula (4) include p-phenylene diamine, m-phenylene diamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane. 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,2-bis (anilino) ethane, diaminodiphenylsulfone, diaminobenz Anilide, diaminobenzoate, diaminodiphenyl sulfide, 2,2-bis (p-aminophenyl) propane, 2,2-bis (p-aminophenyl) hexafluoropropane, 1,5-diaminonaphthalene, diaminotoluene, diaminobenzotrifluor Ride, 1,4-bis (p- Minophenoxy) benzene, 4,4′-bis (p-aminophenoxy) biphenyl, diaminoanthraquinone, 4,4′-bis (3-aminophenoxyphenyl) diphenyl sulfone, 1,3-bis (anilino) hexafluoropropane, Examples thereof include 1,4-bis (anilino) octafluorobutane, 1,5-bis (anilino) decafluoropentane, 1,7-bis (anilino) tetradecafluoroheptane and the like. These aromatic diamines can be used in combination of two or more. In the present invention, p-phenylenediamine, 4,4′-diaminodiphenyl ether or a mixture thereof is particularly preferable.

本発明においては、ポリイミド前駆体溶液中に重合性不飽和結合を有するアミン、ジアミン、ジカルボン酸、トリカルボン酸、テトラカルボン酸の誘導体を添加して、熱硬化時に橋かけ構造を形成させることもできる。具体的には、マレイン酸、ナジック酸、テトラヒドロフタル酸、エチニルアニリン等が使用できる。   In the present invention, an amine, diamine, dicarboxylic acid, tricarboxylic acid, or tetracarboxylic acid derivative having a polymerizable unsaturated bond may be added to the polyimide precursor solution to form a crosslinked structure during thermal curing. . Specifically, maleic acid, nadic acid, tetrahydrophthalic acid, ethynylaniline and the like can be used.

なお、ポリイミド前駆体の合成条件、乾燥条件、その他の理由等により、ポリイミド前駆体中に部分的にイミド化されたものが存在していても特に支障はない。   In addition, there is no particular problem even if the polyimide precursor is partially imidized due to synthesis conditions, drying conditions, and other reasons of the polyimide precursor.

また、これらのポリイミド前駆体の溶液中には、溶媒に可溶なポリイミド樹脂、ポリアミドイミド樹脂等、他の耐熱性樹脂を混合してもよい。さらに、接着性(密着性)向上やフィルム物性を向上させるため、シランカップリン剤や各種界面活性剤を微量添加することもできる。   Moreover, you may mix other heat resistant resins, such as a polyimide resin and a polyamide-imide resin, which are soluble in a solvent, in the solution of these polyimide precursors. Furthermore, in order to improve adhesiveness (adhesiveness) and film properties, a silane coupling agent and various surfactants can be added in minute amounts.

このようにして得られる導体層の片面にポリイミドフィルム、次いで接着層が形成された積層体同士を、接着層を向かい合わせに配置して加熱雰囲気下で接着層同士を圧着一体化するが、圧着する方法としては、バッチ式の真空プレス機や、連続式のロールプレス機もしくはベルトプレス機などを用いる方法が例示される。   The laminated body in which the polyimide film and then the adhesive layer are formed on one side of the conductor layer thus obtained are arranged with the adhesive layers facing each other, and the adhesive layers are bonded and integrated in a heated atmosphere. Examples of the method include a batch type vacuum press, a continuous roll press, a belt press, and the like.

加熱温度は特に制限されるものではないが、接着層を構成する樹脂の分解点温度より低く、接着層を構成する樹脂のガラス転移点を超える温度であることが好ましい。通常150〜250℃の範囲である。圧着力も特に制限されるものではないが、通常10〜1000N/cmの範囲で行えばよい。圧着力が10N/cmを下回ると、接着層同士の接着が不十分となったり、均一に圧着されなかったりする傾向にあるため好ましくなく、1000N/cmを超えると、例えば導体層が強い加圧力で材料破壊される傾向にあるなど好ましくない。 The heating temperature is not particularly limited, but is preferably lower than the decomposition point temperature of the resin constituting the adhesive layer and exceeding the glass transition point of the resin constituting the adhesive layer. Usually, it is in the range of 150 to 250 ° C. Although the pressure-bonding force is not particularly limited, it may be usually in the range of 10 to 1000 N / cm 2 . When the pressure is less than 10 N / cm 2 , it is not preferable because the adhesion between the adhesive layers tends to be insufficient or the pressure is not uniformly pressed. When the pressure exceeds 1000 N / cm 2 , for example, the conductor layer is strong. It is not preferable because the material tends to be destroyed by the applied pressure.

次に実施例に基づき本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下の実施例および比較例において、各種物性値の測定方法および原料は、次のとおりである。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited only to these Examples. In the following examples and comparative examples, methods for measuring various physical properties and raw materials are as follows.

[1]測定方法
(1)接着強度(kN/m):絶縁層と導体層間の接着強度を、テンシロンテスター(インテスコ社製、精密万能材料試験機2020型)を用いて測定した。測定に際しては、基板をJIS−C6471規格の銅はくの引きはがし強さ試験の項に記載の方法に従い、試験片を作製し、方法A(90°方向引きはがし)にて行った。
[1] Measuring method (1) Adhesive strength (kN / m): The adhesive strength between the insulating layer and the conductor layer was measured using a Tensilon tester (manufactured by Intesco, precision universal material testing machine 2020). In the measurement, a test piece was prepared according to the method described in the section of JIS-C6471 copper peel strength test, and the substrate was subjected to Method A (90 ° direction peel).

(2)はんだ耐熱性:作製した基板を40mm角に切り出した試験片を用いた。試験片を23℃、60±5%RHの雰囲気中に48時間静置して調湿を行った。調湿した雰囲気下で300℃に加熱溶融させたハンダ浴に試験片を5分間浮かせて取り出した。試験後に目視にて膨れの発生などの異常がないかを確認した。異常なしを○、膨れなどの異常が見られた場合を×とした。 (2) Solder heat resistance: A test piece obtained by cutting a produced substrate into a 40 mm square was used. The test piece was left to stand in an atmosphere of 23 ° C. and 60 ± 5% RH for 48 hours for humidity control. The test piece was floated and taken out for 5 minutes in a solder bath heated and melted at 300 ° C. in a conditioned atmosphere. After the test, it was confirmed visually that there was no abnormality such as swelling. No abnormality was indicated as ○, and abnormality such as swelling was observed as ×.

(3)寸法変化率(%):IPC−TM−650、2.2.4項に記載された方法に従い、幅270mm、長さ290mmに切り出した基板の四隅に孔径1mmの穴を開けた試験片を作成した。そして、方法Bに従い、エッチング時の寸法変化率を求めた。値は穴間の6点の測定値から得られる寸法変化率を平均して算出した。 (3) Dimensional change rate (%): A test in which holes having a hole diameter of 1 mm were formed in the four corners of a substrate cut out to a width of 270 mm and a length of 290 mm according to the method described in IPC-TM-650, item 2.2.4. Created a piece. Then, according to Method B, the dimensional change rate during etching was obtained. The value was calculated by averaging the dimensional change rate obtained from the measured values at 6 points between the holes.

(4)耐折強さ:繰り返しの屈曲耐性の指標となるものであり、JIS C−5016に記載の方法に準じて、折り曲げ面の耐折強さを曲率半径0.4mmで測定し、以下のように評価した。 (4) Folding strength: an index of repeated bending resistance. According to the method described in JIS C-5016, the bending strength of the bent surface is measured at a radius of curvature of 0.4 mm. It was evaluated as follows.

○:800回以上
△:600〜799回
×:1〜599回
○: 800 times or more Δ: 600 to 799 times ×: 1 to 599 times

(5)ガラス転移点(Tg):充分に乾燥させた厚み約10μmのフィルムを試料とし、熱機械特性分析装置(TMA、TAインスツルメント社製TMA2940)を用い、5℃/minの定速昇温、30mN引張りモードにて窒素中20℃から昇温させ、試料の初期長約12.5mm(20℃時)に対する寸法変化量を測定した。Tgは温度−寸法変化量プロット線の変曲点における温度とした。 (5) Glass transition point (Tg): Using a fully dried film having a thickness of about 10 μm as a sample, using a thermomechanical property analyzer (TMA, TMA2940 manufactured by TA Instruments), a constant speed of 5 ° C./min. The temperature was raised from 20 ° C. in nitrogen in a 30 mN tension mode, and the dimensional change with respect to the initial length of about 12.5 mm (at 20 ° C.) was measured. Tg was the temperature at the inflection point of the temperature-dimension change plot line.

[2]非熱可塑性ポリイミドの前駆体溶液の製造例
絶縁層を形成するために、非熱可塑性ポリイミドの前駆体溶液の合成を行った。なお、以下の説明において使用した用語は、以下のとおりである。
(反応成分)
BPDA:3,3′,4,4′−ビフェニルテトラカルボン酸二無水物
ODA :4,4′−オキシジアニリン
PDA :p−フェニレンジアミン
(溶媒)
DMAc:N,N−ジメチルアセトアミド
NMP :N−メチル−2−ピロリドン
[2] Production Example of Non-thermoplastic Polyimide Precursor Solution In order to form an insulating layer, a non-thermoplastic polyimide precursor solution was synthesized. The terms used in the following description are as follows.
(Reaction component)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride ODA: 4,4′-oxydianiline PDA: p-phenylenediamine (solvent)
DMAc: N, N-dimethylacetamide NMP: N-methyl-2-pyrrolidone

(合成例)
三つ口フラスコに窒素ガス気流下で、ODA30.03g(0.15mol)、PDA91.92g(0.85mol)、DMAc2330g及びNMP999gを採取し、このフラスコを氷水中に入れて、内容物を30分間攪拌した。次いで、BPDA294.22g(1.00mol)を加え、40℃の湯浴中で1時間攪拌を行い、ポリアミド酸からなる均一な溶液を得た。これをポリイミド前駆体溶液「P−1」と称する。
(Synthesis example)
In a three-necked flask, under a nitrogen gas stream, 30.03 g (0.15 mol) of ODA, 91.92 g (0.85 mol) of PDA, 2330 g of DMAc and 999 g of NMP were collected, and this flask was placed in ice water, and the contents were placed for 30 minutes. Stir. Next, 294.22 g (1.00 mol) of BPDA was added, and the mixture was stirred in a hot water bath at 40 ° C. for 1 hour to obtain a uniform solution composed of polyamic acid . This is referred to as a polyimide precursor solution “P-1”.

[3]熱可塑性ポリイミドの前駆体溶液の製造例
接着層を形成するために熱可塑性ポリイミドの前駆体溶液の合成を行った。なお、以下の説明において使用した用語は、以下のとおりである。
(反応成分)
ODPA:3,3′,4,4′−ジフェニルエーテルテトラカルボン酸二無水物
HMDA:ヘキサメチレンジアミン
(溶媒)
NMP:N−メチル−2−ピロリドン
[3] Production Example of Thermoplastic Polyimide Precursor Solution A thermoplastic polyimide precursor solution was synthesized in order to form an adhesive layer. The terms used in the following description are as follows.
(Reaction component)
ODPA: 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride HMDA: hexamethylenediamine (solvent)
NMP: N-methyl-2-pyrrolidone

(製造例)
三つ口フラスコに窒素ガス気流下で、HMDA18.36g(0.158mol)、NMP420gを採取し、このフラスコを氷水中に入れて、内容物を30分間攪拌した。次いで、ODPA49.04g(0.158mol)を加え、40℃の湯浴中で1時間攪拌を行い、ポリアミド酸からなる均一な溶液を得た。これをポリイミド前駆体溶液「P−2」とする。
(Production example)
Under a nitrogen gas stream, 18.36 g (0.158 mol) of HMDA and 420 g of NMP were collected in a three-necked flask, the flask was placed in ice water, and the contents were stirred for 30 minutes. Next, 49.04 g (0.158 mol) of ODPA was added, and the mixture was stirred in a hot water bath at 40 ° C. for 1 hour to obtain a uniform solution composed of polyamic acid . This is designated as polyimide precursor solution “P-2”.

ポリイミド前駆体溶液「P−1」および「P−2」を、それぞれ清浄なガラス基板上に熱硬化後の被膜の厚みが10μmになるようにバーコータによって塗布し、130℃で10分間乾燥した。次いで、窒素雰囲気下100℃から360℃まで2時間かけて昇温した後、360℃で2時間熱処理し、ポリイミド前駆体を熱硬化させてイミド化した後、ガラス基板から剥離してポリイミドフィルムを得た。   The polyimide precursor solutions “P-1” and “P-2” were applied on a clean glass substrate by a bar coater so that the thickness of the heat-cured film was 10 μm, and dried at 130 ° C. for 10 minutes. Next, the temperature was raised from 100 ° C. to 360 ° C. in a nitrogen atmosphere over 2 hours, and then heat-treated at 360 ° C. for 2 hours. After the polyimide precursor was thermoset and imidized, the polyimide film was peeled off from the glass substrate. Obtained.

ポリイミド前駆体溶液「P−1」より得られたフィルムをTMAで測定した結果、このポリイミドフィルムのTgは400℃以下の温度では観測されなかった。   As a result of measuring the film obtained from the polyimide precursor solution “P-1” by TMA, Tg of this polyimide film was not observed at a temperature of 400 ° C. or lower.

また、ポリイミド前駆体溶液「P−2」より得られたフィルムをTMAで測定した結果、このポリイミドフィルムのTgは125℃であった。   Moreover, as a result of measuring the film obtained from polyimide precursor solution "P-2" by TMA, Tg of this polyimide film was 125 degreeC.

参考例1
厚みが9μmの電解銅箔の粗化面に、ポリイミド前駆体溶液「P−1」を熱硬化後の被膜の厚みが6.3μmになるようにバーコータによって塗布し、130℃で10分間乾燥した。次いで、接着層を形成するため塗布面にポリイミド前駆体溶液「P−2」を熱硬化後の被膜の厚みが0.7μmになるようにバーコータによって塗布し、130℃で10分間乾燥した。金属枠に固定し窒素雰囲気下100℃から350℃まで2時間かけて昇温した後、350℃で5分間熱処理し、ポリイミド前駆体を熱硬化させてイミド化し、銅箔/非熱可塑性ポリイミドフィルム/熱可塑性ポリイミドフィルムの3層からなる積層フィルムを得た。
Reference example 1
The polyimide precursor solution “P-1” was applied to the roughened surface of the electrolytic copper foil having a thickness of 9 μm by a bar coater so that the thickness of the film after thermosetting was 6.3 μm, and dried at 130 ° C. for 10 minutes. . Next, in order to form an adhesive layer, the polyimide precursor solution “P-2” was applied to the coated surface by a bar coater so that the thickness of the heat-cured film became 0.7 μm, and dried at 130 ° C. for 10 minutes. After fixing to a metal frame and raising the temperature from 100 ° C. to 350 ° C. in a nitrogen atmosphere over 2 hours, heat treatment is performed at 350 ° C. for 5 minutes, the polyimide precursor is thermoset and imidized, and a copper foil / non-thermoplastic polyimide film / The laminated film which consists of three layers of a thermoplastic polyimide film was obtained.

次に、この積層フィルム2枚を熱可塑性ポリイミドフィルム同士が向かい合うように重ね合わせて圧力300N/cm、温度200℃で30分加圧加熱した。その後、70℃まで圧力を保持したまま降温することにより熱圧着させて一体化した。 Next, the two laminated films were superposed so that the thermoplastic polyimide films face each other, and heated under pressure at a pressure of 300 N / cm 2 and a temperature of 200 ° C. for 30 minutes. Thereafter, the pressure was kept down to 70 ° C., and the resultant was thermocompression-bonded and integrated.

得られた導体層(銅箔)/ポリイミドフィルム(非熱可塑性ポリイミド)/接着層(熱可塑性ポリイミド)/ポリイミドフィルム(非熱可塑性ポリイミド)/導体層(銅箔)の5層構造の基板は、導体層の厚みが各9μm、絶縁層の全体の厚みが14μm、絶縁層のうち接着層の厚みが1.4μmであり、全体の厚みが32μmであった。このフレキシブルプリント配線板用基板について測定した物性などを表1に示す。   The obtained conductor layer (copper foil) / polyimide film (non-thermoplastic polyimide) / adhesive layer (thermoplastic polyimide) / polyimide film (non-thermoplastic polyimide) / conductor layer (copper foil) has a five-layer structure. The thickness of each conductor layer was 9 μm, the total thickness of the insulating layer was 14 μm, the thickness of the adhesive layer among the insulating layers was 1.4 μm, and the total thickness was 32 μm. Table 1 shows the physical properties measured for this flexible printed wiring board substrate.

実施例2
ポリイミド前駆体溶液「P−1]を熱硬化後の被膜の厚みが5.5μmになるようにさらにポリイミド前駆体溶液「P−2」を熱硬化後の被膜の厚みが0.5μmになるように塗布した以外は参考例1と同様にして、導体層の厚みが各9μm、絶縁層の全体の厚みが12μm、絶縁層のうち接着層(熱可塑性ポリイミド)の厚みが1μmであり、全体の厚みが30μmであるフレキシブルプリント配線板用基板を得た。得られたフレキシブルプリント配線板用基板について測定した物性などを表1に示す。
Example 2
The thickness of the film after thermosetting the polyimide precursor solution “P-1” is 5.5 μm so that the thickness of the film after thermosetting the polyimide precursor solution “P-2” is 0.5 μm. The thickness of the conductor layer is 9 μm each, the total thickness of the insulating layer is 12 μm, and the thickness of the adhesive layer (thermoplastic polyimide) of the insulating layer is 1 μm, as in Reference Example 1 except that A flexible printed wiring board substrate having a thickness of 30 μm was obtained. Table 1 shows the physical properties measured for the obtained flexible printed wiring board substrate.

実施例3
ポリフッ化ビニリデン(略称:PVDF、ソルベイソレクシス社製SOLEF1010、Tg=178℃)を8重量%含むNMP溶液を調製して、これを接着層用樹脂溶液とした。参考例1記載の方法でポリイミド前駆体溶液「P−1」を用いて9μm厚みの電解銅箔の粗化面に厚みが5.5μmのポリイミドフィルムを形成した。次いで上記PVDF溶液を乾燥後の厚みが0.5μmとなるようにバーコータによって塗布し、180℃で10分間乾燥した。次に、この積層フィルム2枚をPVDF層同士が向かい合うように重ね合わせて圧力300N/cm、温度185℃で30分加圧加熱した。その後、70℃まで圧力を保持したまま降温することにより熱圧着させて一体化した。
Example 3
An NMP solution containing 8% by weight of polyvinylidene fluoride (abbreviation: PVDF, SOLEF1010 manufactured by Solvay Solexis, Tg = 178 ° C.) was prepared, and this was used as a resin solution for the adhesive layer. A polyimide film having a thickness of 5.5 μm was formed on the roughened surface of the 9 μm thick electrolytic copper foil using the polyimide precursor solution “P-1” by the method described in Reference Example 1. Next, the PVDF solution was applied by a bar coater so that the thickness after drying was 0.5 μm, and dried at 180 ° C. for 10 minutes. Next, the two laminated films were overlapped so that the PVDF layers face each other, and heated under pressure at a pressure of 300 N / cm 2 and a temperature of 185 ° C. for 30 minutes. Thereafter, the pressure was kept down to 70 ° C., and the resultant was thermocompression-bonded and integrated.

得られた5層構造の基板は、導体層の厚みが各9μm、絶縁層の全体の厚みが12μm、絶縁層のうち接着層(PVDF樹脂)の厚みが1μmであり、全体の厚みが30μmであった。得られたフレキシブルプリント配線板用基板について測定した物性などを表1に示す。   The obtained five-layer substrate has a conductor layer thickness of 9 μm, an insulating layer thickness of 12 μm, an adhesive layer (PVDF resin) thickness of 1 μm of the insulating layer, and an overall thickness of 30 μm. there were. Table 1 shows the physical properties measured for the obtained flexible printed wiring board substrate.

実施例4
ポリカーボネート樹脂とポリアリレート樹脂(ユニチカ製U−100)を1:1の重量比で溶融混練させた樹脂(略称:P3001、Tg=175℃)を8重量%含むNMP溶液を調製して、これを接着層用樹脂溶液とした。参考例1記載の方法でポリイミド前駆体溶液「P−1」を用いて9μm厚みの電解銅箔の粗化面に厚みが5.5μmのポリイミドフィルムを形成した。次いで上記P3001溶液を乾燥後の厚みが0.5μmとなるようにバーコータによって塗布し、180℃で30分間乾燥した。次に、この積層フィルム2枚をP3001層同士が向かい合うように重ね合わせて圧力300N/cm、温度220℃で30分加圧加熱した。その後、70℃まで圧力を保持したまま降温することにより熱圧着させて一体化した。
Example 4
An NMP solution containing 8% by weight of a resin (abbreviation: P3001, Tg = 175 ° C.) obtained by melt-kneading a polycarbonate resin and a polyarylate resin (U-100 manufactured by Unitika) at a weight ratio of 1: 1 was prepared. A resin solution for the adhesive layer was obtained. A polyimide film having a thickness of 5.5 μm was formed on the roughened surface of the 9 μm thick electrolytic copper foil using the polyimide precursor solution “P-1” by the method described in Reference Example 1. Next, the P3001 solution was applied by a bar coater so that the thickness after drying was 0.5 μm, and dried at 180 ° C. for 30 minutes. Next, the two laminated films were superposed so that the P3001 layers face each other, and heated under pressure at a pressure of 300 N / cm 2 and a temperature of 220 ° C. for 30 minutes. Thereafter, the pressure was kept down to 70 ° C., and the resultant was thermocompression-bonded and integrated.

得られた5層構造の基板は、導体層の厚みが各9μm、絶縁層の全体の厚みが12μm、絶縁層のうち接着層(P3001樹脂)の厚みが1μmであり、全体の厚みが30μmであった。得られたフレキシブルプリント配線板用基板について測定した物性などを表1に示す。   The obtained five-layered substrate has a conductor layer thickness of 9 μm, an insulating layer thickness of 12 μm, an insulating layer adhesive layer (P3001 resin) thickness of 1 μm, and an overall thickness of 30 μm. there were. Table 1 shows the physical properties measured for the obtained flexible printed wiring board substrate.

比較例1
ポリイミド前駆体溶液「P−2」を熱硬化後の被膜の厚みが1μmになるように塗布した以外は実施例2と同様にして、導体層の厚みが各9μm、絶縁層の全体の厚みが13μm、絶縁層のうち接着層(熱可塑性ポリイミド)の厚みが2μmであり、全体の厚みが31μmであるフレキシブルプリント配線板用基板を得た。得られたフレキシブルプリント配線板用基板について測定した物性などを表1に示す。
Comparative Example 1
In the same manner as in Example 2 except that the polyimide precursor solution “P-2” was applied so that the thickness of the film after thermosetting was 1 μm, the thickness of the conductor layer was 9 μm and the total thickness of the insulating layer was A flexible printed wiring board substrate having a thickness of 13 μm, an adhesive layer (thermoplastic polyimide) of 2 μm among the insulating layers, and an overall thickness of 31 μm was obtained. Table 1 shows the physical properties measured for the obtained flexible printed wiring board substrate.

比較例2
ポリイミド前駆体溶液「P−1」を熱硬化後の被膜の厚みが10μmになるようにバーコータによって塗布し、130℃で10分間乾燥した。次いで、塗布面にポリイミド前駆体溶液「P−2」を熱硬化後の被膜の厚みが2μmになるようにバーコータによって塗布した以外は参考例1と同様にして、導体層の厚みが各9μm、絶縁層の全体の厚みが24μm、絶縁層のうち接着層(熱可塑性ポリイミド)の厚みが4μmであり、全体の厚みが42μmであるフレキシブルプリント配線板用基板を得た。得られたフレキシブルプリント配線板用基板について測定した物性などを表1に示す。
Comparative Example 2
The polyimide precursor solution “P-1” was applied by a bar coater so that the thickness of the film after thermosetting was 10 μm, and dried at 130 ° C. for 10 minutes. Next, the thickness of the conductor layer was 9 μm each in the same manner as in Reference Example 1 except that the polyimide precursor solution “P-2” was applied to the coated surface by a bar coater so that the thickness of the film after thermosetting was 2 μm. A flexible printed wiring board substrate was obtained in which the total thickness of the insulating layer was 24 μm, the thickness of the adhesive layer (thermoplastic polyimide) of the insulating layer was 4 μm, and the total thickness was 42 μm. Table 1 shows the physical properties measured for the obtained flexible printed wiring board substrate.

実施例〜4は、いずれも本発明の要件を満たすものであり、優れたフレキシブルプリント配線板とすることができる基板が得られた Examples 2 to 4 all satisfy the requirements of the present invention, and a substrate that can be an excellent flexible printed wiring board was obtained.

比較例1および2は、絶縁層における接着層(熱可塑性ポリイミド)の厚み比率が大きく、本発明の要件を満たしておらず、導体層を全面エッチングした際の寸法変化率が本発明の要件を満たさないものであり、その他特性にも劣るものとなった。   In Comparative Examples 1 and 2, the thickness ratio of the adhesive layer (thermoplastic polyimide) in the insulating layer is large and does not satisfy the requirements of the present invention, and the dimensional change rate when the conductor layer is entirely etched satisfies the requirements of the present invention. It was not satisfied, and other characteristics were inferior.

また、比較例2は絶縁層全体の厚みが大きく、耐折強さに劣るものとなった。   In Comparative Example 2, the thickness of the entire insulating layer was large, and the bending resistance was inferior.

本発明のフレキシブルプリント配線板用基板の一例を示す断面図である。It is sectional drawing which shows an example of the board | substrate for flexible printed wiring boards of this invention.

符号の説明Explanation of symbols

1:導体層 2:絶縁層 3:ポリイミドフィルム 4:接着層
1: Conductor layer 2: Insulating layer 3: Polyimide film 4: Adhesive layer

Claims (3)

ガラス転移点が200℃未満である熱可塑性樹脂からなる接着層の両面にポリイミドフィルムがそれぞれ積層されて構成される絶縁層の両面に導体層を設けてなるフレキシブルプリント配線板用基板であって、前記接着層の厚みは絶縁層全体の厚みの%以下であり、かつ、導体層を全面エッチングした際の寸法変化率が−0.05〜0.05%の範囲内にあることを特徴とするフレキシブルプリント配線板用基板。 A substrate for a flexible printed wiring board in which a conductor layer is provided on both sides of an insulating layer formed by laminating polyimide films on both sides of an adhesive layer made of a thermoplastic resin having a glass transition point of less than 200 ° C., The thickness of the adhesive layer is 9 % or less of the total thickness of the insulating layer, and the dimensional change rate when the entire conductor layer is etched is in the range of -0.05 to 0.05%. Flexible printed wiring board substrate. 絶縁層と導体層間の接着強度が、1kN/m以上であることを特徴とする請求項1に記載のフレキシブルプリント配線板用基板。 The flexible printed wiring board substrate according to claim 1, wherein the adhesive strength between the insulating layer and the conductor layer is 1 kN / m or more. 導体層の片面にポリイミドフィルム、次いで接着層が形成された積層体同士を、接着層を向かい合わせに配置して加熱雰囲気下で接着層同士を圧着一体化することを特徴とする請求項1または2に記載のフレキシブルプリント配線板用基板の製造方法。 The laminated body in which the polyimide film and then the adhesive layer are formed on one side of the conductor layer are arranged so that the adhesive layers are opposed to each other, and the adhesive layers are bonded and integrated in a heated atmosphere. The manufacturing method of the board | substrate for flexible printed wiring boards of 2.
JP2006185624A 2006-07-05 2006-07-05 Flexible printed wiring board substrate and manufacturing method thereof Expired - Fee Related JP5095142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006185624A JP5095142B2 (en) 2006-07-05 2006-07-05 Flexible printed wiring board substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006185624A JP5095142B2 (en) 2006-07-05 2006-07-05 Flexible printed wiring board substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008016603A JP2008016603A (en) 2008-01-24
JP5095142B2 true JP5095142B2 (en) 2012-12-12

Family

ID=39073350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006185624A Expired - Fee Related JP5095142B2 (en) 2006-07-05 2006-07-05 Flexible printed wiring board substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5095142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047978A (en) * 2013-05-31 2018-05-18 株式会社钟化 Insulating coating material and its manufacturing method, dielectric cable and its manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577837B2 (en) * 2010-05-12 2014-08-27 日立化成株式会社 Metal foil-clad laminate, method for producing the same, and printed wiring board using the same
JP5693422B2 (en) * 2011-09-05 2015-04-01 三井化学株式会社 Heat-resistant double-sided metal laminate, heat-resistant transparent film using the same, and heat-resistant transparent circuit board
JP6031396B2 (en) * 2013-03-29 2016-11-24 新日鉄住金化学株式会社 Manufacturing method of double-sided flexible metal-clad laminate
WO2016084662A1 (en) 2014-11-27 2016-06-02 株式会社カネカ Insulating coating material having excellent wear resistance
CN107004474B (en) 2014-11-27 2019-11-29 株式会社钟化 The superior insulating coating material of abrasion performance
JP7446741B2 (en) * 2018-09-28 2024-03-11 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01173687A (en) * 1987-12-28 1989-07-10 Sumitomo Bakelite Co Ltd Flexible printed-circuit board
JPH0719939B2 (en) * 1988-09-19 1995-03-06 三井東圧化学株式会社 Flexible double-sided metal foil laminate
JPH05152699A (en) * 1991-11-26 1993-06-18 Nitto Denko Corp Double-sided substrate and manufacture thereof
JP2004189981A (en) * 2002-12-13 2004-07-08 Kanegafuchi Chem Ind Co Ltd Thermoplastic polyimide resin material and laminated body, and manufacturing method of printed wiring board
JP2005329641A (en) * 2004-05-20 2005-12-02 Unitika Ltd Substrate for flexible printed circuit board and its production method
JP4616682B2 (en) * 2005-03-31 2011-01-19 株式会社巴川製紙所 Double-sided metal plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108047978A (en) * 2013-05-31 2018-05-18 株式会社钟化 Insulating coating material and its manufacturing method, dielectric cable and its manufacturing method

Also Published As

Publication number Publication date
JP2008016603A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP4528093B2 (en) Multilayer substrate having at least two dissimilar polyamide layers and a conductive layer and useful for electronics-type applications, and compositions related thereto
KR100952796B1 (en) Novel polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
JP4625458B2 (en) Adhesive film and use thereof
US8338560B2 (en) Polyimide film and use thereof
KR102038135B1 (en) Flexible metal-clad laminate manufacturing method thereof
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
JP2009083498A (en) Copper clad laminated sheet and its manufacturing method
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP4371234B2 (en) Flexible metal foil polyimide laminate
JP2007098791A (en) Flexible one side copper-clad polyimide laminated plate
JP4917745B2 (en) High frequency substrate and manufacturing method thereof
JP6412012B2 (en) Multilayer flexible metal-clad laminate and manufacturing method thereof
KR100728150B1 (en) Bonding sheet and one-side metal-clad laminate
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2007062274A (en) Flexible laminated board cladded with copper layer on single site and manufacturing method of it
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP4694142B2 (en) Manufacturing method of substrate for flexible printed wiring board
JP4332739B2 (en) Method for producing flexible copper-clad laminate
JP5063257B2 (en) Method for producing metal laminated film and metal laminated film
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
TWI388260B (en) Single - sided soft copper foil laminated board and its manufacturing method
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2007091803A (en) Polyimide film and metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees