JP4804806B2 - Copper-clad laminate and manufacturing method thereof - Google Patents

Copper-clad laminate and manufacturing method thereof Download PDF

Info

Publication number
JP4804806B2
JP4804806B2 JP2005172060A JP2005172060A JP4804806B2 JP 4804806 B2 JP4804806 B2 JP 4804806B2 JP 2005172060 A JP2005172060 A JP 2005172060A JP 2005172060 A JP2005172060 A JP 2005172060A JP 4804806 B2 JP4804806 B2 JP 4804806B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
laminate
thickness
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005172060A
Other languages
Japanese (ja)
Other versions
JP2006346874A (en
Inventor
茂顕 田内
浩行 森田
大輔 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2005172060A priority Critical patent/JP4804806B2/en
Priority to TW095116743A priority patent/TW200700221A/en
Priority to CN2006100935743A priority patent/CN1880061B/en
Priority to KR1020060052691A priority patent/KR101009825B1/en
Publication of JP2006346874A publication Critical patent/JP2006346874A/en
Application granted granted Critical
Publication of JP4804806B2 publication Critical patent/JP4804806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating

Description

本発明は、銅張積層板及びその製造方法に関し、詳しくはCOF用途として微細加工が可能で、耐屈曲性に優れたフレキシブルプリント基板用の銅張積層板及びその製造方法に関するものである。   The present invention relates to a copper clad laminate and a method for producing the same, and more particularly to a copper clad laminate for a flexible printed circuit board that can be finely processed for COF use and has excellent bending resistance, and a method for producing the same.

電子機器の電子回路にはプリント基板が多く用いられているが、その中でも特にフレキシブルプリント基板(FPC)は、屈曲性を持つことと基板自体が薄いことから、テープキャリアにドライバICを実装するTAB方式(テープ・オートメイティッド・ボンディング)に適用されてきた。最近では、より小さいスペースで、より高密度の実装を行う実装方法として、裸のICチップをフィルムキャリアテープ上に直接搭載するCOF方式(チップ・オン・フィルム)が開発され、配線の狭ピッチ化が進み、微細加工が可能であるフレキシブルプリント基板が必要とされている。   Printed circuit boards are often used for electronic circuits of electronic devices. Among them, flexible printed circuit boards (FPCs) are particularly flexible, and the board itself is thin, so a TAB for mounting a driver IC on a tape carrier. It has been applied to the system (tape automated bonding). Recently, a COF method (chip-on-film), in which a bare IC chip is directly mounted on a film carrier tape, has been developed as a mounting method for mounting at a higher density in a smaller space, thereby reducing the pitch of wiring. Therefore, a flexible printed circuit board that can be finely processed is required.

従来、微細加工が可能な銅張積層板を提供するための製造方法として主に、メタライジング法、ラミネート法、キャスト法がある。メタライジング法は、ポリイミドフィルムの表面にスパッタリングにより金属を薄く蒸着し、その上に所定の厚さに銅を無電解及び/又は電解メッキ法により形成する方法であるが、該製法ではピンホールと呼ばれる金属層に微小な穴が点在し、回路の耐エレクトロマイグレーション性に劣るといった微細回路形成において致命的な欠陥を有している。   Conventionally, there are mainly a metallizing method, a laminating method, and a casting method as a manufacturing method for providing a copper-clad laminate capable of fine processing. The metalizing method is a method in which a metal is thinly deposited on the surface of a polyimide film by sputtering, and copper is formed on the surface by a non-electrolytic and / or electrolytic plating method. There are fatal defects in the formation of microcircuits, such as the presence of minute holes in the metal layer, which is inferior in the electromigration resistance of the circuit.

ラミネート法は、銅箔をポリイミドフィルムに直接積層する方法であるが、特許文献1では、高い耐屈曲性を有する銅張積層板を得るために、結晶粒径が大きい圧延銅箔を使用することが開示されている。しかしながら、このような圧延銅箔は柔らかく、厚さが35μm以下の薄い銅箔では、積層板製造時のハンドリングで変形しやすい。一方、特許文献2では、エッチング性が良好なプリント基板用として、結晶配向性の小さい、すなわち結晶粒径が小さい電解銅箔をプリント配線基板に使用することが開示されている。しかしながら、結晶粒径が小さいと、高い耐屈曲性が得られにくい。   The lamination method is a method of directly laminating a copper foil on a polyimide film. However, in Patent Document 1, in order to obtain a copper-clad laminate having high bending resistance, a rolled copper foil having a large crystal grain size is used. Is disclosed. However, such a rolled copper foil is soft, and a thin copper foil having a thickness of 35 μm or less is easily deformed by handling at the time of manufacturing a laminated plate. On the other hand, Patent Document 2 discloses that an electrolytic copper foil having a small crystal orientation, that is, a crystal grain size is used for a printed wiring board for a printed board having good etching properties. However, when the crystal grain size is small, it is difficult to obtain high bending resistance.

キャスト法は、ポリイミド前駆体樹脂溶液を銅箔上に塗布した後、乾燥・硬化することによりポリイミドフィルム層を形成する方法である。この方法に限らず、良好な品質の積層板を製造するためには銅箔はある程度の厚みが必要であり、薄い銅箔層であることが要求される場合は、一旦中間体の積層体(化学研磨を行う前の積層体をいう)を作り、それをエッチングして目的の積層板を得ることが行われている。例えば、特許文献3では、積層板製造における化学研磨による銅箔部の薄肉化において、化学研磨が均一に進み、かつ、化学研磨後の銅箔表面が平滑となる電解銅箔が公開されている。   The casting method is a method of forming a polyimide film layer by applying a polyimide precursor resin solution on a copper foil, followed by drying and curing. In addition to this method, in order to produce a laminate of good quality, the copper foil needs to have a certain thickness, and if it is required to be a thin copper foil layer, the intermediate laminate ( A laminated body before chemical polishing is prepared) and etched to obtain a target laminated plate. For example, Patent Document 3 discloses an electrolytic copper foil in which chemical polishing progresses uniformly and the surface of the copper foil after chemical polishing becomes smooth in the thinning of the copper foil portion by chemical polishing in the production of laminates. .

特開2000−256765号公報JP 2000-256765 A 特開平7−268678号公報JP-A-7-268678 特開平9−272994号公報Japanese Patent Laid-Open No. 9-272994

本発明は、積層板製造におけるハンドリング性を改善し、しかも30μmピッチ以下の微細加工が可能で、かつ、耐屈曲性に優れた積層板を提供することを目的とする。   An object of the present invention is to provide a laminate that improves the handling properties in the production of laminates, and can be finely processed with a pitch of 30 μm or less, and has excellent bending resistance.

本発明で製造しようとする銅張積層板は、銅箔の一方の面にポリイミド樹脂よりなる絶縁層が形成された銅張積層板において、該銅箔の結晶粒径が、熱処理前で2μm未満であり、340℃、9時間の熱処理後で2〜7μmとなる電解銅箔であって、2μm以上の結晶粒径を有し、かつ、該銅箔の厚さが3〜18μmであり、絶縁層と接していない面の表面粗度Rzが2.5μm以下であることを特徴とする銅張積層板である。
この銅張積層板は、半導体素子の実装に使用されるCOF用積層板として優れる。
The copper clad laminate to be produced in the present invention is a copper clad laminate in which an insulating layer made of polyimide resin is formed on one surface of the copper foil. The crystal grain size of the copper foil is less than 2 μm before heat treatment. An electrolytic copper foil having a thickness of 2 to 7 μm after heat treatment at 340 ° C. for 9 hours, a crystal grain size of 2 μm or more, and a thickness of the copper foil of 3 to 18 μm, The copper-clad laminate is characterized in that the surface roughness Rz of the surface not in contact with the layer is 2.5 μm or less.
This copper clad laminate is excellent as a laminate for COF used for mounting semiconductor elements.

本発明は、銅箔の一方の面に絶縁性樹脂よりなる絶縁層が形成された銅張積層板の製造方法において、銅箔として、5μm以上の厚みを有し、熱処理前の結晶粒径が2μm未満の電解銅箔を使用し、該銅箔の一方の面にポリイミド前駆体樹脂溶液を直接塗布した後、280〜400℃で熱処理してポリイミド樹脂絶縁層を形成するとともに、該銅箔の結晶粒径を2μm以上とした積層体を得た後、この積層体の絶縁層と接していない面を、過酸化水素を0.5〜10%及び硫酸を0.5〜15%の濃度(wt%)で含有するエッチング液で化学研磨して、銅箔厚みの10〜90%を除去すると共に、表面粗度Rzを2.5μm以下とすることを特徴とする銅張積層板の製造方法である。 The present invention relates to a method for producing a copper clad laminate in which an insulating layer made of an insulating resin is formed on one surface of a copper foil. The copper foil has a thickness of 5 μm or more and a crystal grain size before heat treatment. After using an electrolytic copper foil of less than 2 μm and directly applying the polyimide precursor resin solution to one surface of the copper foil, heat treatment at 280 to 400 ° C. to form a polyimide resin insulating layer, After obtaining a laminate having a crystal grain size of 2 μm or more, the surface of the laminate that is not in contact with the insulating layer has a concentration of 0.5 to 10% hydrogen peroxide and 0.5 to 15% sulfuric acid ( and 10% to 90% of the copper foil thickness is removed, and the surface roughness Rz is 2.5 μm or less. It is.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の銅張積層板は、銅箔の一方の面にポリイミド樹脂よりなる絶縁層が形成された構造を有する。ここで、銅張積層板を構成する銅箔は、340℃、9時間の熱処理の銅張積層板において、該銅箔の結晶粒径が、熱処理前で2μm未満であり、340℃、9時間の熱処理後で2〜7μmとなる電解銅箔である。ここで、熱処理前とは絶縁層が形成される前の状態が通常、該当する。例えば、市販の銅箔に絶縁層を形成して銅張積層板とする場合は、市販の銅箔が上記結晶粒径を有すればよい。そして、この銅箔に絶縁層を形成して積層体とする際又はその前若しくは後に、340℃、9時間程の熱処理を行えばよい。絶縁層を形成する際に熱処理が行われるが、この熱処理では結晶粒径を所望の粒径とするには不十分である場合は、その前又は後において、必要な熱処理を付加することができる。更に、本発明の銅張積層板の銅箔層を構成する銅箔は結晶粒径が2μm以上であり、厚さが3〜18μmであり、絶縁層と接していない面の表面粗度Rzが2.5μm以下である必要がある。かかる銅張積層板は、本発明の製造方法により得ることができるので、製造方法の説明をしつつ、本発明の銅張積層板について説明する。   The copper clad laminate of the present invention has a structure in which an insulating layer made of polyimide resin is formed on one surface of a copper foil. Here, the copper foil which comprises a copper clad laminated board is 340 degreeC, and the copper clad laminated board of 9 hours of heat processing WHEREIN: The crystal grain diameter of this copper foil is less than 2 micrometers before heat processing, 340 degreeC, 9 hours It is an electrolytic copper foil which becomes 2-7 micrometers after the heat processing of this. Here, the state before the heat treatment usually corresponds to the state before the insulating layer is formed. For example, when an insulating layer is formed on a commercially available copper foil to form a copper clad laminate, the commercially available copper foil may have the above crystal grain size. And when forming an insulating layer in this copper foil and making it a laminated body, what is necessary is just to perform the heat processing for about 340 degreeC and about 9 hours before or after that. When the insulating layer is formed, a heat treatment is performed. If this heat treatment is not sufficient to obtain a desired crystal grain size, a necessary heat treatment can be added before or after that. . Furthermore, the copper foil constituting the copper foil layer of the copper clad laminate of the present invention has a crystal grain size of 2 μm or more, a thickness of 3 to 18 μm, and a surface roughness Rz of the surface not in contact with the insulating layer. It is necessary to be 2.5 μm or less. Since such a copper clad laminate can be obtained by the production method of the present invention, the copper clad laminate of the present invention will be described while explaining the production method.

本発明の積層板を形成する銅箔には、電解銅箔を使用し、銅箔の結晶粒径は熱処理前で2μm未満であり、好ましくは1μm以下であり、更に好ましくは0.5μm以下である。銅箔の結晶粒径が2μm以上になると、銅箔自体が柔らかくなり、積層板製造時のハンドリングで変形しやすい。また、使用する銅箔の厚さは5〜35μm、好ましくは9〜18μm、更に好ましくは12〜18μmであることがよい。銅箔の厚さが35μmより大きくなると、化学研磨による薄肉化に時間がかかる。また、銅箔の厚さが5μm未満であると、積層板製造時のハンドリングで変形しやすい。かかる特性を有する銅箔は、市販品から選定することができる。   For the copper foil forming the laminate of the present invention, an electrolytic copper foil is used, and the crystal grain size of the copper foil is less than 2 μm, preferably 1 μm or less, more preferably 0.5 μm or less before the heat treatment. is there. When the crystal grain size of the copper foil is 2 μm or more, the copper foil itself becomes soft and easily deformed by handling at the time of manufacturing the laminate. Moreover, the thickness of the copper foil to be used is 5-35 micrometers, Preferably it is 9-18 micrometers, More preferably, it is good that it is 12-18 micrometers. When the thickness of the copper foil is larger than 35 μm, it takes time to reduce the thickness by chemical polishing. Further, when the thickness of the copper foil is less than 5 μm, the copper foil is easily deformed by handling at the time of manufacturing the laminate. A copper foil having such characteristics can be selected from commercially available products.

銅箔の絶縁層を設ける側の表面粗度Rzは3μm以下、好ましくは2μm以下、更に好ましくは1.2μm以下であることがよい。この表面粗度Rzが3μmより大きくなると、この上に絶縁層を形成し導体を除去し微細加工を行う際に、エッチング残りをおこし、回路の直線性が損なわれる。また、絶縁層と直接接していない銅箔の表面粗度Rzは3.5μm以下、好ましくは2.7μm以下、更に好ましくは1.5μm以下であることがよい。この表面粗度Rzが3.5μmより大きくなると、後記する化学研磨による表面粗度を制御しにくい。   The surface roughness Rz on the side where the insulating layer of the copper foil is provided is 3 μm or less, preferably 2 μm or less, and more preferably 1.2 μm or less. When the surface roughness Rz is larger than 3 μm, an etching residue is generated when an insulating layer is formed thereon, the conductor is removed, and fine processing is performed, and the linearity of the circuit is impaired. The surface roughness Rz of the copper foil not in direct contact with the insulating layer is 3.5 μm or less, preferably 2.7 μm or less, and more preferably 1.5 μm or less. When the surface roughness Rz is larger than 3.5 μm, it is difficult to control the surface roughness by chemical polishing described later.

積層板を形成する絶縁層については、ポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することにより形成する。ポリイミド前駆体樹脂溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができる。   About the insulating layer which forms a laminated board, after apply | coating a polyimide precursor resin solution, it forms by drying and hardening. The polyimide precursor resin solution can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent.

用いられるジアミンとしては、例えば、4'4−ジアミノジフェニルエーテル、2'−メトキシ4,4'−ジアミノベンズアニリド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2'−ジメチル−4,4'−ジアミノビフェニル、3,3'−ジヒドロキシ-4,4'−ジアミノビフェニル、4,4'-ジアミノベンズアニリド等が挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、3,3',4,4'−ジフェニルスルフォンテトラカルボン酸二無水物、4,4'−オキシジフタル酸無水物等が挙げられる。ジアミン、酸無水物はそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することも出来る。   Examples of the diamine used include 4′4-diaminodiphenyl ether, 2′-methoxy 4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, and 1,3-bis (4-amino). Phenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'- Diaminobiphenyl, 4,4′-diaminobenzanilide and the like can be mentioned. Examples of the acid anhydride include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride and the like. Each of the diamine and acid anhydride may be used alone or in combination of two or more.

溶媒は、ジメチルアセトアミド、n−メチルピロリジノン、2−ブタノン、ジグライム、キシレン等が挙げられ、1種若しくは2種以上併用して使用することもできる。   Examples of the solvent include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.

上記ポリイミド前駆体樹脂溶液については、前駆体状態で銅箔層上に直接塗布して形成することが好ましく、重合された樹脂粘度を500cps〜35,000cpsの範囲とすることが好ましい。ポリイミド樹脂層は、単層のみから形成されるものでも、複数層からなるものでも良い。ポリイミド樹脂層を複数層とする場合、異なる構成成分からなるポリイミド前駆体樹脂層の上に他のポリイミド前駆体樹脂溶液を順次塗布、乾燥して形成することができるし、多層を同時に塗布することもできる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド前駆体樹脂を2層以上使用しても良い。   About the said polyimide precursor resin solution, it is preferable to apply | coat and form directly on a copper foil layer in a precursor state, and it is preferable to make the polymerized resin viscosity into the range of 500 cps-35,000 cps. The polyimide resin layer may be formed of only a single layer or may be formed of a plurality of layers. When a plurality of polyimide resin layers are used, other polyimide precursor resin solutions can be sequentially applied on a polyimide precursor resin layer composed of different components and dried, and multiple layers can be applied simultaneously. You can also. When the polyimide resin layer is composed of three or more layers, two or more polyimide precursor resins having the same configuration may be used.

ポリイミド前駆体樹脂液が銅箔層上に塗布されたのち、熱処理される。この熱処理は100〜150℃を2〜4分大気中で乾燥し、その後、真空加熱を9時間程行うのがよい。ここでの加熱温度は、150〜400℃であり、好ましくは200〜370℃であり、更に好ましくは280〜360℃である。上記温度に加熱することにより、ポリイミド前駆体樹脂はポリイミド樹脂となり、中間体の積層体が得られる。   After the polyimide precursor resin liquid is applied on the copper foil layer, heat treatment is performed. This heat treatment is preferably performed at 100 to 150 ° C. for 2 to 4 minutes in the air, and then vacuum heating is performed for about 9 hours. The heating temperature here is 150-400 degreeC, Preferably it is 200-370 degreeC, More preferably, it is 280-360 degreeC. By heating to the said temperature, a polyimide precursor resin turns into a polyimide resin and the laminated body of an intermediate body is obtained.

上記の熱処理によって得られる中間体の積層体は、銅箔層と絶縁層とからなる。この熱処理条件を調整することにより、銅箔層を形成する銅箔の結晶粒径を2〜7μm、好ましくは2〜5μmとすることがよい。この銅箔の結晶粒径が2μm未満であると、高い耐屈曲性が得られにくい。   The laminated body of the intermediate body obtained by said heat processing consists of a copper foil layer and an insulating layer. By adjusting the heat treatment conditions, the crystal grain size of the copper foil forming the copper foil layer is 2 to 7 μm, preferably 2 to 5 μm. If the crystal grain size of the copper foil is less than 2 μm, it is difficult to obtain high bending resistance.

上記で製造した積層体については、絶縁層と直接接していない銅箔を、過酸化水素0.5〜10%(wt%)及び硫酸0.5〜15%(wt%)を含有するエッチング液で化学研磨することによって、銅箔厚みの10〜90%を除去して本発明の銅張積層体とする。そして、銅箔の厚さは3〜18μm、好ましくは5〜12μmとすることがよい。銅箔の厚さが18μmよりも大きくなると、耐屈曲性が低くなるばかりでなく、回路での微細加工が困難となる。銅箔の厚さが3μm未満になると、回路の耐エレクトロマイグレーション性が劣る。化学研磨後の銅箔の表面粗度Rzは2.5μm以下であり、好ましくは1.5μm以下であり、更に好ましくは1.0μm以下である。銅箔の表面粗度が2.5μmよりも大きくなると、回路での微細加工が困難となる。   About the laminated body manufactured above, the etching solution containing 0.5 to 10% (wt%) of hydrogen peroxide and 0.5 to 15% (wt%) of sulfuric acid is applied to the copper foil that is not in direct contact with the insulating layer. 10 to 90% of the copper foil thickness is removed by chemical polishing in order to obtain the copper-clad laminate of the present invention. And the thickness of copper foil is 3-18 micrometers, Preferably it is 5-12 micrometers. When the thickness of the copper foil is larger than 18 μm, not only the bending resistance is lowered, but also fine processing in the circuit becomes difficult. When the thickness of the copper foil is less than 3 μm, the electromigration resistance of the circuit is inferior. The surface roughness Rz of the copper foil after chemical polishing is 2.5 μm or less, preferably 1.5 μm or less, and more preferably 1.0 μm or less. When the surface roughness of the copper foil is larger than 2.5 μm, it becomes difficult to perform fine processing in the circuit.

屈曲性に優れる結晶粒径の大きな電解銅箔をベースに、導体と絶縁体の間の接着力が高く、耐エレクトロマイグレーション性に優れ、30μmピッチ以下の微細加工が可能で、かつ、耐屈曲性に優れる銅張積層板が得られる。これによりフレキシブルプリント基板用のCOF用途として有効に利用できる。   Based on electrolytic copper foil with large crystal grain size, which has excellent flexibility, high adhesion between conductor and insulator, excellent electromigration resistance, fine processing of 30μm pitch or less is possible, and bending resistance A copper-clad laminate with excellent resistance can be obtained. Thereby, it can utilize effectively as a COF use for flexible printed circuit boards.

以下、本発明を実施例により更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

積層板体の作成にあたり、下記4種類の銅箔を準備した。
1)銅箔1:電解銅箔、絶縁層側Rz0.6μm、レジスト面側Rz0.7μm、熱処理前の結晶粒径0.4μm、日本電解(株)製HLS箔12μm
2)銅箔2:電解銅箔、絶縁層側Rz1.3μm、レジスト面側Rz0.9μm、熱処理前の結晶粒径0.5μm、日本電解(株)製HLB箔12μm
3)銅箔3:電解銅箔、絶縁層側Rz0.6μm、レジスト面側Rz0.7μm、熱処理前の結晶粒径0.4μm、日本電解(株)製USLP−S箔12μm
4)銅箔4:電解銅箔、絶縁層側Rz0.8μm、レジスト面側Rz1.7μm、熱処理前の結晶粒径0.4μm、三井金属(株)製NA−VLP箔15μ
In preparing the laminated plate, the following four types of copper foils were prepared.
1) Copper foil 1: electrolytic copper foil, insulating layer side Rz 0.6 μm, resist surface side Rz 0.7 μm, crystal grain size 0.4 μm before heat treatment, HLS foil 12 μm manufactured by Nippon Electrolytic Co., Ltd.
2) Copper foil 2: Electrolytic copper foil, insulating layer side Rz 1.3 μm, resist surface side Rz 0.9 μm, crystal grain size 0.5 μm before heat treatment, Nippon Electrolytic Co., Ltd. HLB foil 12 μm
3) Copper foil 3: Electrolytic copper foil, insulating layer side Rz 0.6 μm, resist surface side Rz 0.7 μm, crystal grain size 0.4 μm before heat treatment, USLP-S foil 12 μm manufactured by Nihon Denki Co., Ltd.
4) Copper foil 4: electrolytic copper foil, insulating layer side Rz 0.8 μm, resist surface side Rz 1.7 μm, crystal grain size 0.4 μm before heat treatment, NA-VLP foil 15 μm manufactured by Mitsui Kinzoku Co., Ltd.

積層体の化学研磨剤として、下記のエッチング液を用意した。
エッチング液:過酸化水素/硫酸系化学研磨液(硫酸濃度20g/L、過酸化水素濃度80g/L)
The following etching solution was prepared as a chemical abrasive for the laminate.
Etching solution: Hydrogen peroxide / sulfuric acid chemical polishing solution (sulfuric acid concentration 20 g / L, hydrogen peroxide concentration 80 g / L)

合成例1
熱電対、攪拌機、窒素導入可能な反応容器に、n-メチルピロリジノンを入れる。この反応容器を氷水に浸けた後、反応容器に無水ピロメリット酸(PMDA)を投入し、その後、4,4'-ジアミノジフェニルエーテル、(DAPE)と2'-メトキシ4,4'-ジアミノベンズアニリド(MABA)を投入した。モノマーの投入総量が15wt%で、各ジアミンのモル比率は、MABA:DAPE=60:40となり、酸無水物とジアミンのモル比が0.98:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、15,000cpsであった。
Synthesis example 1
N-methylpyrrolidinone is placed in a thermocouple, a stirrer, and a reaction vessel into which nitrogen can be introduced. After soaking the reaction vessel in ice water, pyromellitic anhydride (PMDA) is added to the reaction vessel, and then 4,4'-diaminodiphenyl ether (DAPE) and 2'-methoxy 4,4'-diaminobenzanilide. (MABA) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each diamine was MABA: DAPE = 60: 40, and the molar ratio of acid anhydride to diamine was 0.98: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 15,000 cps.

合成例2
n-メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器にPMDAと3,4'3,4'-ビフェニルテトラカルボン酸二無水物(BTDA)を投入し、その後、DAPEを投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、BTDA:PMDA=70:30となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、3,200cpsであった。
Synthesis example 2
After immersing the reaction vessel containing n-methylpyrrolidinone in ice water, PMDA and 3,4'3,4'-biphenyltetracarboxylic dianhydride (BTDA) were added to the reaction vessel, and then DAPE was added. . The total amount of monomers added was 15 wt%, the molar ratio of each acid anhydride was BTDA: PMDA = 70: 30, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 3,200 cps.

合成例3
n-メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器に3,3'4,4'-ジフェニルスルフォンテトラカルボン酸二無水物(DSDA)、PMDAを投入し、その後、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)を投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、DSDA:PMDA、90:10となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、3,200cpsであった。
Synthesis example 3
After immersing the reaction vessel containing n-methylpyrrolidinone in ice water, 3,3'4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) and PMDA are added to the reaction vessel, and then 1,3 -Bis (4-aminophenoxy) benzene (TPE-R) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each acid anhydride was DSDA: PMDA, 90:10, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 3,200 cps.

銅箔として、銅箔1を使用した。この電解銅箔上に合成例1、2及び3のポリアミック酸溶液をそれぞれ質量比3:14:3で塗布、乾燥を繰り返し、銅箔層上にポリイミド前駆体樹脂層が形成された中間体の積層体を得た。この積層体を340℃で、8時間かけて熱処理し、ポリイミド樹脂の厚みが40μmである片面銅箔の積層体を得た。この熱処理後の銅箔の結晶粒径は2.2μmであった。この積層体をエッチング液で、化学研磨して導体厚8.0μmになるようにして、積層板を得た。
このようにして得られた積層板において、絶縁層と接していない導体層の表面粗度Rzは0.8μmであった。
Copper foil 1 was used as the copper foil. On the electrolytic copper foil, the polyamic acid solutions of Synthesis Examples 1, 2, and 3 were respectively applied at a mass ratio of 3: 14: 3 and dried, and an intermediate in which a polyimide precursor resin layer was formed on the copper foil layer. A laminate was obtained. This laminate was heat treated at 340 ° C. for 8 hours to obtain a laminate of single-sided copper foil having a polyimide resin thickness of 40 μm. The crystal grain size of the copper foil after this heat treatment was 2.2 μm. This laminate was chemically polished with an etching solution so as to have a conductor thickness of 8.0 μm to obtain a laminate.
In the laminate thus obtained, the surface roughness Rz of the conductor layer not in contact with the insulating layer was 0.8 μm.

上記で得られた積層板に配線パターンを形成してCOFフィルムキャリアテープとした。この時、インナーリード部の回路パターンを30μmピッチで作製した。
また、上記で得られた積層板に、所定の回路加工を行い、MIT耐折性試験を行った。
A wiring pattern was formed on the laminate obtained above to obtain a COF film carrier tape. At this time, the circuit pattern of the inner lead part was produced at a 30 μm pitch.
In addition, the laminated board obtained above was subjected to predetermined circuit processing, and an MIT folding resistance test was performed.

銅箔として、銅箔2を使用し、実施例1と同様に積層体を作製した。このときの結晶粒径は2.4μmであった。この積層体をエッチング液で8.0μmまで化学研磨を実施した結果、レジスト面側Rz0.6μmの積層板を得た。実施例1と同様の回路加工、MIT試験を行った。   A copper foil 2 was used as the copper foil, and a laminate was produced in the same manner as in Example 1. The crystal grain size at this time was 2.4 μm. As a result of chemically polishing this laminate to 8.0 μm with an etching solution, a laminate having a resist surface side Rz of 0.6 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

比較例1
銅箔として、銅箔3を使用し、実施例1と同様に積層体を作製した。このときの結晶粒径は0.9μmであった。この積層体をエッチング液で8.0μmまで化学研磨を実施した結果、レジスト面側Rz0.4μmの積層板を得た。実施例1と同様の回路加工、MIT試験を行った。
Comparative Example 1
A copper foil 3 was used as the copper foil, and a laminate was produced in the same manner as in Example 1. The crystal grain size at this time was 0.9 μm. As a result of chemically polishing this laminate to 8.0 μm with an etching solution, a laminate having a resist surface side Rz of 0.4 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

比較例2
銅箔として、銅箔4を使用し、実施例1と同様に積層体を作製した。このときの結晶粒径は0.8μmであった。この積層体をエッチング液で8.0μmまで化学研磨を実施した結果、レジスト面側Rz1.0μmの積層板を得た。実施例1と同様の回路加工、MIT試験を行った。
Comparative Example 2
A copper foil 4 was used as the copper foil, and a laminate was produced in the same manner as in Example 1. The crystal grain size at this time was 0.8 μm. As a result of chemically polishing this laminate to 8.0 μm with an etching solution, a laminate having a resist surface side Rz of 1.0 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

結果をまとめて表1に示す。表1において、MIT耐折性は、R=0.8mm、1/2milカバー材付きでの試験条件での結果である。   The results are summarized in Table 1. In Table 1, the MIT folding resistance is the result under test conditions with R = 0.8 mm and a 1/2 mil cover material.

Figure 0004804806
Figure 0004804806

Claims (2)

銅箔の一方の面に絶縁性樹脂よりなる絶縁層が形成された銅張積層板の製造方法において、銅箔として、5μm以上の厚みを有し、熱処理前の結晶粒径が2μm未満の電解銅箔を使用し、該銅箔の一方の面にポリイミド前駆体樹脂溶液を直接塗布した後、280〜400℃で熱処理してポリイミド樹脂絶縁層を形成するとともに、該銅箔の結晶粒径を2μm以上とした積層体を得た後、この積層体の絶縁層と接していない面を、過酸化水素を0.5〜10%及び硫酸を0.5〜15%の濃度(wt%)で含有するエッチング液で化学研磨して、銅箔厚みの10〜90%を除去すると共に、表面粗度Rzを2.5μm以下とすることを特徴とする銅張積層板の製造方法。 In a method for producing a copper clad laminate in which an insulating layer made of an insulating resin is formed on one surface of a copper foil, the copper foil has a thickness of 5 μm or more, and an electrolysis having a crystal grain size of less than 2 μm before heat treatment After using the copper foil and directly applying the polyimide precursor resin solution to one surface of the copper foil, the polyimide resin insulating layer is formed by heat treatment at 280 to 400 ° C., and the crystal grain size of the copper foil is changed. After obtaining a laminate having a thickness of 2 μm or more, the surface of the laminate that is not in contact with the insulating layer has a concentration (wt%) of 0.5 to 10% hydrogen peroxide and 0.5 to 15% sulfuric acid. A method for producing a copper-clad laminate, characterized in that 10 to 90% of the copper foil thickness is removed by chemical polishing with the contained etching solution and the surface roughness Rz is 2.5 μm or less. エッチング液で化学研磨して、銅箔厚みの10〜90%を除去した後の銅箔厚みが3〜18μmであることを特徴とする請求項1記載の銅張積板の製造方法。 The method for producing a copper clad plate according to claim 1, wherein the copper foil thickness is 3 to 18 µm after chemical polishing with an etching solution to remove 10 to 90% of the copper foil thickness .
JP2005172060A 2005-06-13 2005-06-13 Copper-clad laminate and manufacturing method thereof Active JP4804806B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005172060A JP4804806B2 (en) 2005-06-13 2005-06-13 Copper-clad laminate and manufacturing method thereof
TW095116743A TW200700221A (en) 2005-06-13 2006-05-11 Copper clad laminated sheet and its manufacturing method
CN2006100935743A CN1880061B (en) 2005-06-13 2006-06-06 Copper cladded laminates and its production method
KR1020060052691A KR101009825B1 (en) 2005-06-13 2006-06-12 Copper-clad laminated and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172060A JP4804806B2 (en) 2005-06-13 2005-06-13 Copper-clad laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006346874A JP2006346874A (en) 2006-12-28
JP4804806B2 true JP4804806B2 (en) 2011-11-02

Family

ID=37518512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172060A Active JP4804806B2 (en) 2005-06-13 2005-06-13 Copper-clad laminate and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP4804806B2 (en)
KR (1) KR101009825B1 (en)
CN (1) CN1880061B (en)
TW (1) TW200700221A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4440340B2 (en) * 2007-12-27 2010-03-24 日鉱金属株式会社 Method for producing two-layer copper-clad laminate and two-layer copper-clad laminate
KR100958976B1 (en) * 2008-02-01 2010-05-20 엘에스엠트론 주식회사 A High Flexuous Copper Foil And Method For Producing The Same
KR100965327B1 (en) * 2008-02-28 2010-06-22 엘에스엠트론 주식회사 Flexible copper clad laminate improved in vibration resistance property
TW201037105A (en) * 2009-03-23 2010-10-16 Nippon Mining Co Double layered flexible board, and copper electrolytic liquid for making the same
JP2010221586A (en) * 2009-03-24 2010-10-07 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
CN102298998A (en) * 2010-06-23 2011-12-28 比亚迪股份有限公司 Insulating material and preparation method for the same
JP6782561B2 (en) 2015-07-16 2020-11-11 Jx金属株式会社 Copper foil with carrier, laminate, manufacturing method of laminate, manufacturing method of printed wiring board and manufacturing method of electronic equipment
JP6058182B1 (en) 2015-07-27 2017-01-11 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6006445B1 (en) 2015-07-27 2016-10-12 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6200042B2 (en) 2015-08-06 2017-09-20 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6339636B2 (en) 2015-08-06 2018-06-06 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
JP6190500B2 (en) 2015-08-06 2017-08-30 Jx金属株式会社 Copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
CN108133886A (en) * 2017-12-11 2018-06-08 上海申和热磁电子有限公司 A kind of method of DBC substrate backs grinding
KR102288594B1 (en) 2021-02-26 2021-08-11 주식회사 이송이엠씨 Apparatus for manufacturing thin film flexible metal clad laminate and method of manufacturing thin film flexible metal clad laminate
CN115179638B (en) * 2022-06-29 2024-02-27 厦门爱谱生电子科技有限公司 Manufacturing method of flexible copper-clad plate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2985325B2 (en) * 1991-02-18 1999-11-29 三菱瓦斯化学株式会社 Manufacturing method of thin copper-clad circuit board
JPH06232553A (en) * 1993-01-29 1994-08-19 Hitachi Chem Co Ltd Single-sided flexible copper plated board for lamination
JP3210796B2 (en) * 1993-12-28 2001-09-17 株式会社日鉱マテリアルズ High temperature stretched copper foil for printed circuits
JPH09272994A (en) * 1996-04-05 1997-10-21 Furukawa Electric Co Ltd:The Electrolytic copper foil for fine pattern
JP3856582B2 (en) * 1998-11-17 2006-12-13 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board and method for producing the same
JP3271757B2 (en) * 1999-03-01 2002-04-08 日本電気株式会社 Method for manufacturing semiconductor device
JP3964073B2 (en) * 1999-04-27 2007-08-22 株式会社フジクラ Flexible printed circuit board and manufacturing method thereof
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP2004017571A (en) 2002-06-19 2004-01-22 Mitsui Chemicals Inc Polymide copper clad laminate and manufacturing method therefor
JP4219721B2 (en) * 2003-03-31 2009-02-04 新日鐵化学株式会社 Manufacturing method of laminate
JP4325337B2 (en) * 2003-09-19 2009-09-02 日立化成工業株式会社 Resin composition, prepreg, laminate and multilayer printed wiring board using the same

Also Published As

Publication number Publication date
KR101009825B1 (en) 2011-01-19
JP2006346874A (en) 2006-12-28
CN1880061B (en) 2011-07-20
CN1880061A (en) 2006-12-20
TW200700221A (en) 2007-01-01
TWI342827B (en) 2011-06-01
KR20060129965A (en) 2006-12-18

Similar Documents

Publication Publication Date Title
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
KR101078234B1 (en) Copper-clad laminate
JP5180814B2 (en) Laminated body for flexible wiring board
JP5031639B2 (en) Flexible copper clad laminate
US20100230142A1 (en) Method for manufacturing printed wiring board
JP2007109982A (en) Method for manufacturing copper wired polyimide film
JP5514897B2 (en) Laminate for flexible wiring
JP4907580B2 (en) Flexible copper clad laminate
KR100955552B1 (en) Polyimide film, polyimide metal laminate and process for producing the same
KR101169829B1 (en) Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate
KR101333808B1 (en) Laminate for wiring board
KR20060052481A (en) Copper-clad laminate for cof and carrier tape for cof
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP4231511B2 (en) Polyimide film, polyimide metal laminate and method for producing the same
JP2005271449A (en) Laminate for flexible printed circuit board
JP4828439B2 (en) Method for producing flexible laminate
JP4805173B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP5073801B2 (en) Method for producing copper-clad laminate
KR102521460B1 (en) Flexible metal clad laminate and printed circuit board containing the same and polyimide precursor composition
JP2024035266A (en) Manufacturing method for metal clad laminates
JP2009184131A (en) Multilayer laminate and method for producing flexible copper-clad laminate
JP2007261174A (en) Manufacturing process of copper cladding laminate
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
JP2009242676A (en) Method of manufacturing polyimide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250