JP2007261174A - Manufacturing process of copper cladding laminate - Google Patents

Manufacturing process of copper cladding laminate Download PDF

Info

Publication number
JP2007261174A
JP2007261174A JP2006091294A JP2006091294A JP2007261174A JP 2007261174 A JP2007261174 A JP 2007261174A JP 2006091294 A JP2006091294 A JP 2006091294A JP 2006091294 A JP2006091294 A JP 2006091294A JP 2007261174 A JP2007261174 A JP 2007261174A
Authority
JP
Japan
Prior art keywords
copper foil
insulating layer
copper
laminate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006091294A
Other languages
Japanese (ja)
Inventor
Shigeaki Tauchi
茂顕 田内
Natsuki Fukuda
夏樹 福田
Sho Kikuchi
翔 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006091294A priority Critical patent/JP2007261174A/en
Publication of JP2007261174A publication Critical patent/JP2007261174A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing process of a copper cladding laminate in which handleability in laminate manufacturing is improved, microfabrication of at most 30 μm pitch is possible, and which is excellent in flexibility and a foldability resistance. <P>SOLUTION: The manufacturing process of the copper cladding laminate by which an insulating layer made of an insulating resin is formed in one surface of a copper foil, is characterized by using a rolling copper foil with a thickness of 10 μm or more as the copper foil, applying a polyimide precursor resin solution to one surface of this copper foil directly, then forming a polyimide resin insulating layer by heat treating at 100-400°C, and carrying out chemical polishing of the surface which is not in contact with the insulating layer of the obtained laminate with a liquid which contains 0.5-10% of hydrogen peroxide and the range of concentration (wt.%) of 0.5-15% of sulfuric acid so that the thickness of the copper foil is removed in the range of 10-90%, and its surface roughness Rz becomes 2.5 μm or less. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は銅張積層体の製造方法に関するものであり、詳しくは、チップ・オン・フィルム(以下、COFという。)用途として微細加工が可能で、屈曲性(又はフレキシブル性)及び耐折性に優れたフレキシブルプリント基板用の銅張積層体の製造方法に関するものである。   The present invention relates to a method for producing a copper clad laminate, and more specifically, it can be finely processed as a chip-on-film (hereinafter referred to as COF) application, and has flexibility (or flexibility) and folding resistance. The present invention relates to a method for producing an excellent copper-clad laminate for a flexible printed circuit board.

電子機器の電子回路にはプリント基板が多く用いられているが、その中でも特にフレキシブルプリント基板(FPC)は、屈曲性を持つことと基板自体が薄いことから、テープキャリアにドライバICを実装するTAB方式(テープ・オートメイティッド・ボンディング)に適用されてきた。最近では、より小さいスペースで、より高密度の実装を行う実装方法として、裸のICチップをフィルムキャリアテープ上に直接搭載するCOF方式が開発され、配線の狭ピッチ化が進み、微細加工が可能であるフレキシブルプリント基板用の銅張積層体が必要とされている。   Printed circuit boards are often used for electronic circuits of electronic devices. Among them, flexible printed circuit boards (FPCs) are particularly flexible, and the board itself is thin, so a TAB for mounting a driver IC on a tape carrier. It has been applied to the system (tape automated bonding). Recently, a COF method has been developed in which a bare IC chip is directly mounted on a film carrier tape as a mounting method for mounting at higher density in a smaller space. There is a need for a copper-clad laminate for flexible printed circuit boards.

従来、微細加工が可能な銅張積層体を提供するための製造方法として主に、メタライジング法、ラミネート法、キャスト法がある。メタライジング法は、ポリイミドフィルムの表面にスパッタリングにより金属を薄く蒸着し、その上に所定の厚さに銅を無電解及び/又は電解メッキ法により形成する方法である。しかし、この製法ではピンホールと呼ばれる金属層に微小な穴が点在し、回路の耐エレクトロマイグレーション性に劣るといった微細回路形成において致命的な欠陥を有している。   Conventionally, there are mainly a metallizing method, a laminating method, and a casting method as a manufacturing method for providing a copper-clad laminate capable of fine processing. The metalizing method is a method in which a metal is thinly deposited on the surface of a polyimide film by sputtering, and copper is formed on the surface by a non-electrolytic and / or electrolytic plating method to a predetermined thickness. However, this manufacturing method has a fatal defect in the formation of a fine circuit in which minute holes are scattered in a metal layer called a pinhole and the circuit is inferior in electromigration resistance.

ラミネート法は、銅箔をポリイミドフィルムに直接積層する方法である。この方法については、高い屈曲性を有する銅張積層体を得るために、再結晶焼鈍した圧延銅箔を使用することが提案されている(例えば、特許文献1を参照。)。しかしながら、このような圧延銅箔は柔らかく、厚さが10μm以下の薄い銅箔では、積層体製造時のハンドリングで変形しやすい。また、回路形成時のエッチング性が良好なプリント基板用として、結晶配向性の小さい電解銅箔をプリント配線基板に使用することが提案されている(例えば、特許文献2を参照。)。しかしながら、このような銅箔は、結晶粒径が小さく、高い屈曲性及び耐折性が得られ難く、使用製品種の用途が限られてしまう。   The laminating method is a method of directly laminating a copper foil on a polyimide film. About this method, in order to obtain the copper clad laminated body which has high flexibility, it is proposed to use the rolled copper foil recrystallized annealing (for example, refer patent document 1). However, such a rolled copper foil is soft, and a thin copper foil having a thickness of 10 μm or less is likely to be deformed by handling during production of the laminate. In addition, it has been proposed to use an electrolytic copper foil having a small crystal orientation for a printed circuit board for a printed circuit board having good etching properties during circuit formation (see, for example, Patent Document 2). However, such a copper foil has a small crystal grain size, and it is difficult to obtain high flexibility and folding resistance, and the use of the product type used is limited.

キャスト法は、ポリイミド前駆体樹脂溶液を銅箔上に塗布した後、乾燥・硬化することによりポリイミドフィルム層を形成する方法である。この方法に限らず、良好な品質の積層体を製造するためには銅箔はある程度の厚みが必要であり、薄い銅箔層であることが要求される場合は、一旦中間体の積層体(化学研磨を行う前の積層体をいう)を作り、それをエッチングして目的の積層体を得ることが行われている。例えば、積層体製造における化学研磨による銅箔部の薄肉化において、化学研磨が均一に進み、かつ、化学研磨後の銅箔表面が平滑となる電解銅箔が提案されている(例えば、特許文献3を参照。)。しかしながら、電解銅箔では圧延銅箔ほどの十分な耐折性が得られていない。   The casting method is a method of forming a polyimide film layer by applying a polyimide precursor resin solution on a copper foil, followed by drying and curing. In addition to this method, in order to produce a laminate of good quality, the copper foil needs to have a certain thickness, and if it is required to be a thin copper foil layer, the intermediate laminate ( A layered product before chemical polishing is prepared) and etched to obtain a target layered product. For example, in thinning of a copper foil part by chemical polishing in laminate production, an electrolytic copper foil has been proposed in which chemical polishing proceeds uniformly and the surface of the copper foil after chemical polishing is smooth (for example, Patent Document) 3). However, electrolytic copper foil does not have sufficient folding resistance as much as rolled copper foil.

特開2000−256765号公報JP 2000-256765 A 特開平7−268678号公報JP-A-7-268678 特開平9−272994号公報Japanese Patent Laid-Open No. 9-272994

本発明は、斯かる実情に鑑み、積層体製造におけるハンドリング性を改善し、しかも30μmピッチ以下の微細加工が可能で、かつ、屈曲性及び耐折性に優れた銅張積層体の製造方法を提供しようとするものである。   In view of such circumstances, the present invention provides a method for producing a copper-clad laminate that improves handling properties in laminate production, enables fine processing of a pitch of 30 μm or less, and is excellent in flexibility and folding resistance. It is something to be offered.

本発明者等は、特定の厚み、及び所定の特性を有する圧延銅箔を使用し、その銅箔にキャスト方によりポリイミド樹脂絶縁層を所定の条件で形成した後、圧延銅箔面を一定条件で化学研磨し、銅箔の厚みを減少させると共に、その処理面の表面粗度Rzを一定範囲とすると、銅張積層体はその製造工程が改善し、プリント基板に使用した際の微細加工が可能で、かつ屈曲性及び耐折性が十分にあることを見出し、本発明に至ったものである。   The present inventors use a rolled copper foil having a specific thickness and predetermined characteristics, and after forming a polyimide resin insulating layer on the copper foil by a casting method under predetermined conditions, the rolled copper foil surface is maintained under certain conditions. When the thickness of the copper foil is reduced and the surface roughness Rz of the treated surface is kept within a certain range, the manufacturing process of the copper-clad laminate is improved, and fine processing when used for a printed circuit board is reduced. The present inventors have found that it is possible and has sufficient flexibility and folding resistance, and have reached the present invention.

即ち、本発明の銅張積層体の製造方法は、以下の構成或いは構造を特徴とするものである。   That is, the method for producing a copper clad laminate of the present invention is characterized by the following configuration or structure.

(1).銅箔の一方の面に絶縁性樹脂よりなる絶縁層が形成される銅張積層体の製造方法において、銅箔として、10μm以上の厚みを有した圧延銅箔を使用し、該銅箔の一方の面にポリイミド前駆体樹脂溶液を直接塗布した後、100〜400℃で熱処理してポリイミド樹脂絶縁層を形成し、過酸化水素を0.5〜10%及び硫酸を0.5〜15%の範囲濃度(wt%)で含有する液で、得られた積層体の絶縁層と接していない面を化学研磨し、該銅箔の厚みが10〜90%の範囲で除去されるようにすると共に、その表面粗度Rzが2.5μm以下となるようにすることを特徴とする銅張積層体の製造方法。   (1). In the method for producing a copper clad laminate in which an insulating layer made of an insulating resin is formed on one surface of a copper foil, a rolled copper foil having a thickness of 10 μm or more is used as the copper foil, and one of the copper foils The polyimide precursor resin solution was directly applied to the surface of the substrate, and then heat-treated at 100 to 400 ° C. to form a polyimide resin insulating layer. Hydrogen peroxide was 0.5 to 10% and sulfuric acid was 0.5 to 15%. The surface of the resulting laminate that is not in contact with the insulating layer is chemically polished with a solution containing a range concentration (wt%) so that the thickness of the copper foil is removed in the range of 10 to 90%. A method for producing a copper clad laminate, wherein the surface roughness Rz is 2.5 μm or less.

(2).該積層体の絶縁層と接していない面の化学研磨前における圧延銅箔の表面粗度Rzが、1.5μm以下であることを特徴とする上記(1)記載の銅張積層体の製造方法。
(3).ポリイミド樹脂絶縁層の形成前の圧延銅箔が、圧下率90%以上の圧延銅箔であることを特徴とする上記(1)又は(2)記載の銅張積層体の製造方法。
(4).ポリイミド樹脂絶縁層の形成前の圧延銅箔が、引張強度420MPa以上の圧延銅箔であることを特徴とする上記(1)〜(3)のいずれかの項に記載の銅張積層体の製造方法。
(5).ポリイミド樹脂絶縁層の形成前の圧延銅箔が、ポリイミド樹脂絶縁層の形成前の弾性率を100%とした場合、360℃、6分間の熱処理後に、60%以下の弾性率を有する圧延銅箔であることを特徴とする上記(1)〜(4)のいずれかの項に記載の銅張積層体の製造方法。
(6).該積層体が、半導体素子の実装に使用されるチップ・オン・フィルム用積層体であることを特徴とする上記(1)〜(5)のいずれかの項に記載の銅張積層体の製造方法。
上記手段によれば、以下のような効果が得られる。
(2). The method for producing a copper-clad laminate according to (1) above, wherein the surface roughness Rz of the rolled copper foil before chemical polishing of the surface not in contact with the insulating layer of the laminate is 1.5 μm or less. .
(3). The method for producing a copper-clad laminate according to (1) or (2) above, wherein the rolled copper foil before the formation of the polyimide resin insulating layer is a rolled copper foil having a reduction rate of 90% or more.
(4). The rolled copper foil before the formation of the polyimide resin insulating layer is a rolled copper foil having a tensile strength of 420 MPa or more, The production of a copper clad laminate according to any one of the above (1) to (3) Method.
(5). When the rolled copper foil before the formation of the polyimide resin insulating layer has a modulus of elasticity before the formation of the polyimide resin insulating layer of 100%, the rolled copper foil having an elastic modulus of 60% or less after heat treatment at 360 ° C. for 6 minutes. The method for producing a copper clad laminate according to any one of (1) to (4) above, wherein
(6). The laminated body is a chip-on-film laminated body used for mounting a semiconductor element, The production of a copper-clad laminated body according to any one of (1) to (5) above Method.
According to the above means, the following effects can be obtained.

本発明によれば、屈曲性に優れる圧延銅箔をベースに、導体と絶縁体の間の接着力が高く、耐エレクトロマイグレーション性に優れ、30μmピッチ以下の微細加工が可能で、かつ、屈曲性及び耐折性に優れる銅張積層体が得られる。これによりフレキシブルプリント基板用のCOF用途として有効に利用できる。   According to the present invention, based on a rolled copper foil having excellent flexibility, the adhesive strength between the conductor and the insulator is high, the electromigration resistance is excellent, fine processing of 30 μm pitch or less is possible, and the flexibility And the copper clad laminated body which is excellent in bending resistance is obtained. Thereby, it can utilize effectively as a COF use for flexible printed circuit boards.

以下、本発明の実施の形態を説明する。
本発明にかかる銅張積層体は、銅箔の一方の面にポリイミド樹脂よりなる絶縁層が形成された構造を有する。ここで、本発明で使用する銅箔は純銅又は銅合金のことであり、これらは圧延銅箔である。
Embodiments of the present invention will be described below.
The copper clad laminate according to the present invention has a structure in which an insulating layer made of polyimide resin is formed on one surface of a copper foil. Here, the copper foil used in the present invention is pure copper or a copper alloy, and these are rolled copper foils.

圧延銅箔は一般的に、高屈曲性を有する銅箔として知られており、その銅箔厚みが10μm未満になると、銅箔自体が柔らかくなり、積層体製造時のハンドリングで変形しやすくなる。また銅箔の圧延が困難となり、積層体製造に適用できる形状が得られにくくなる傾向にあり、例えば、銅箔の厚みの不均一、端部のたるみ、フレアの発生が生じる。更に、銅箔の厚みの不均一さは化学研磨の精度に悪影響を与える原因ともなり、回路加工性にも悪影響を与える。従って、本発明にかかる積層体製造時の銅箔の厚みは、10μm以上であることが必要である。好ましくは11〜35μmがよく、更に好ましくは12〜18μmがよい。銅箔の厚みが35μmより大きくなると、後述する化学研磨による薄肉化に時間がかかる。   The rolled copper foil is generally known as a highly flexible copper foil. When the thickness of the copper foil is less than 10 μm, the copper foil itself becomes soft and easily deformed by handling during production of the laminate. Moreover, it becomes difficult to roll copper foil, and it tends to be difficult to obtain a shape applicable to laminate production. For example, uneven copper foil thickness, sagging ends, and flare are generated. Furthermore, the uneven thickness of the copper foil causes a bad influence on the accuracy of chemical polishing and also adversely affects the circuit workability. Therefore, the thickness of the copper foil at the time of manufacturing the laminate according to the present invention needs to be 10 μm or more. Preferably it is 11-35 micrometers, More preferably, 12-18 micrometers is good. When the thickness of the copper foil is larger than 35 μm, it takes time to reduce the thickness by chemical polishing described later.

銅箔の絶縁層を設ける側の表面粗度Rzは3.0μm以下、好ましくは2.0μm以下、更に好ましくは1.2μm以下であることがよい。この表面粗度Rzが3.0μmより大きくなると、この上に絶縁層を形成し導体を除去し微細加工を行う際に、エッチング残りをおこし、回路の直線性が損なわれる。なお、表面粗度Rzは「10点平均粗さ」を表し、JIS B 0601に準じて測定される。以下、特にことわりなき場合、表面粗度Rzは同様にして測定されたときの値とする。   The surface roughness Rz on the side where the insulating layer of the copper foil is provided is 3.0 μm or less, preferably 2.0 μm or less, and more preferably 1.2 μm or less. When the surface roughness Rz is larger than 3.0 μm, an etching residue is generated when an insulating layer is formed thereon and the conductor is removed and fine processing is performed, and the linearity of the circuit is impaired. The surface roughness Rz represents “10-point average roughness” and is measured according to JIS B 0601. Hereinafter, unless otherwise specified, the surface roughness Rz is a value measured in the same manner.

積層体を形成する絶縁層については、ポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することにより形成する。ポリイミド前駆体樹脂溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができる。   About the insulating layer which forms a laminated body, after apply | coating a polyimide precursor resin solution, it forms by drying and hardening. The polyimide precursor resin solution can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent.

用いられるジアミンとしては、例えば、4,4´−ジアミノジフェニルエーテル、4,4´−ジアミノ−2´−メトキシベンズアニリド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2´−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2´−ジメチル−4,4´−ジアミノビフェニル、3,3´−ジヒドロキシ−4,4´−ジアミノビフェニル、4,4´-ジアミノベンズアニリド等が挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3´,4,4´−ビフェニルテトラカルボン酸二無水物、3,3´,4,4´−ジフェニルスルフォンテトラカルボン酸二無水物、4,4´−オキシジフタル酸無水物等が挙げられる。ジアミン、酸無水物はそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することも出来る。   Examples of the diamine used include 4,4′-diaminodiphenyl ether, 4,4′-diamino-2′-methoxybenzanilide, 1,4-bis (4-aminophenoxy) benzene, and 1,3-bis (4 -Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 Examples include '-diaminobiphenyl, 4,4'-diaminobenzanilide and the like. Examples of the acid anhydride include pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride. Products, 4,4′-oxydiphthalic anhydride and the like. Each of the diamine and acid anhydride may be used alone or in combination of two or more.

本発明にかかるポリイミド樹脂前駆体の製造で用いられる有機溶媒は特に限定されるものではないが、樹脂成分を均一に溶解可能なものならば、1種もしくは2種以上併用した混合溶媒であっても差し支えない。例えば、N,N−ジメチルアセトアミド(DMAc)、n−メチルピロリジノン、2−ブタノン、ジグライム、キシレン等がある。   The organic solvent used in the production of the polyimide resin precursor according to the present invention is not particularly limited, but may be a mixed solvent in which one or two or more kinds are used in combination as long as the resin component can be uniformly dissolved. There is no problem. For example, there are N, N-dimethylacetamide (DMAc), n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like.

上記ポリイミド前駆体樹脂溶液については、前駆体状態で銅箔層上に直接塗布して形成することが好ましく、重合された樹脂粘度を500cps〜35,000cpsの範囲とすることが好ましい。ポリイミド樹脂層は、単層のみから形成されるものでも、複数層からなるものでも良い。ポリイミド樹脂層を複数層とする場合、異なる構成成分からなるポリイミド前駆体樹脂層の上に他のポリイミド前駆体樹脂溶液を順次塗布、乾燥して形成することができるし、多層を同時に塗布することもできる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド前駆体樹脂を2層以上使用しても良い。   About the said polyimide precursor resin solution, it is preferable to apply | coat and form directly on a copper foil layer in a precursor state, and it is preferable to make the polymerized resin viscosity into the range of 500 cps-35,000 cps. The polyimide resin layer may be formed of only a single layer or may be formed of a plurality of layers. When a plurality of polyimide resin layers are used, other polyimide precursor resin solutions can be sequentially applied on a polyimide precursor resin layer composed of different components and dried, and multiple layers can be applied simultaneously. You can also. When the polyimide resin layer is composed of three or more layers, two or more polyimide precursor resins having the same configuration may be used.

ポリイミド前駆体樹脂液が銅箔層上に塗布されたのち、熱処理される。この熱処理は100〜150℃を2〜4分大気中で乾燥し、その後、真空加熱を9時間程行うのがよい。ここでの加熱温度は、150〜400℃であり、好ましくは200〜370℃であり、更に好ましくは280〜360℃である。上記温度に加熱することにより、ポリイミド前駆体樹脂はポリイミド樹脂となり、中間体の積層体が得られる。   After the polyimide precursor resin liquid is applied on the copper foil layer, heat treatment is performed. This heat treatment is preferably performed at 100 to 150 ° C. for 2 to 4 minutes in the air, and then vacuum heating is performed for about 9 hours. The heating temperature here is 150-400 degreeC, Preferably it is 200-370 degreeC, More preferably, it is 280-360 degreeC. By heating to the said temperature, a polyimide precursor resin turns into a polyimide resin and the laminated body of an intermediate body is obtained.

上記の熱処理によって得られる中間体の積層体は、銅箔層と絶縁層とからなる。この銅箔層を形成する銅箔は、上記のポリイミド前駆体樹脂液の熱処理工程の間に焼鈍又は再焼鈍され、積層前に比して柔軟になる。   The laminated body of the intermediate body obtained by said heat processing consists of a copper foil layer and an insulating layer. The copper foil that forms this copper foil layer is annealed or re-annealed during the heat treatment step of the polyimide precursor resin solution, and becomes softer than before lamination.

上記で製造した中間体の積層体については、絶縁層と直接接していない銅箔面を、過酸化水素0.5〜10%(wt%)及び硫酸0.5〜15%(wt%)の範囲にあるエッチング液で化学研磨することによって、銅箔厚みの10〜90%を除去して本発明にかかる銅張積層体とする。そして、最終的に得られる銅張積層体の銅箔の厚さは3〜18μm、好ましくは5〜12μmとすることがよい。銅箔の厚さが18μmよりも大きくなると、耐屈曲性、耐折性が低くなるばかりでなく、回路での微細加工が困難となる。銅箔の厚さが3μm未満になると、銅箔の機械的強度の低下による断線や、電流容量の減少を生じる傾向にある。   About the laminated body of the intermediate body manufactured above, the copper foil surface which is not in direct contact with the insulating layer is made of hydrogen peroxide 0.5 to 10% (wt%) and sulfuric acid 0.5 to 15% (wt%). By chemical polishing with an etching solution in the range, 10 to 90% of the copper foil thickness is removed to obtain a copper-clad laminate according to the present invention. And the thickness of the copper foil of the copper clad laminated body finally obtained is 3-18 micrometers, Preferably it is good to set it as 5-12 micrometers. When the thickness of the copper foil is larger than 18 μm, not only bending resistance and folding resistance are lowered, but also fine processing in a circuit becomes difficult. When the thickness of the copper foil is less than 3 μm, there is a tendency to cause disconnection due to a decrease in the mechanical strength of the copper foil and a decrease in current capacity.

化学研磨後の銅箔の表面粗度Rzは2.5μm以下である。好ましくは1.5μm以下であり、更に好ましくは1.0μm以下である。銅箔の表面粗度が2.5μmよりも大きくなると、回路での微細加工が困難となる。   The surface roughness Rz of the copper foil after chemical polishing is 2.5 μm or less. Preferably it is 1.5 micrometers or less, More preferably, it is 1.0 micrometers or less. When the surface roughness of the copper foil is larger than 2.5 μm, it becomes difficult to perform fine processing in the circuit.

また、本発明にかかる積層体の絶縁層と接していない面の化学研磨前における圧延銅箔の表面粗度Rzは1.5μm以下が好ましい。より好ましくは1.0μm以下、更に好ましくは0.8μm以下であることがよい。この表面粗度Rzが1.5μmより大きくなると、上記の化学研磨による表面粗度を制御しにくい。   Further, the surface roughness Rz of the rolled copper foil before chemical polishing of the surface not in contact with the insulating layer of the laminate according to the present invention is preferably 1.5 μm or less. More preferably, it is 1.0 micrometer or less, More preferably, it is 0.8 micrometer or less. When the surface roughness Rz is larger than 1.5 μm, it is difficult to control the surface roughness by the chemical polishing.

本発明にかかるポリイミド樹脂絶縁層の形成前の圧延銅箔は、圧下率90%以上の圧延銅箔であることが好ましい。圧下率を90%以上とすることで、銅結晶組織が十分に微細化され、均質となるため、必要な機械的強度が得られるようになる。より好ましくは90〜95%がよい。圧下率が90%未満であると、必要な機械的強度が得られにくく、その後の焼鈍工程の焼鈍時間を長くする必要がある。なお、圧下率は、圧延前の銅箔厚さ(Lo)と圧延後の銅箔厚さ(L)によって、圧下率(%)=L/Lo×100の式で算出されるものである。   The rolled copper foil before formation of the polyimide resin insulating layer according to the present invention is preferably a rolled copper foil having a rolling reduction of 90% or more. By setting the rolling reduction to 90% or more, the copper crystal structure is sufficiently refined and homogenized, so that necessary mechanical strength can be obtained. More preferably, it is 90 to 95%. If the rolling reduction is less than 90%, it is difficult to obtain the required mechanical strength, and it is necessary to lengthen the annealing time in the subsequent annealing step. The rolling reduction is calculated by the formula of rolling reduction (%) = L / Lo × 100, based on the copper foil thickness (Lo) before rolling and the copper foil thickness (L) after rolling.

本発明で使用する圧延銅箔は、420MPa以上の引張強度を有することが好ましい。より好ましくは450MPa以上がよく、更に好ましくは480MPa以上がよい。銅箔の引張強度が420MPaに満たないと、十分な強度が得られず、積層体製造時のしわや破断の問題が発生しやすい。   The rolled copper foil used in the present invention preferably has a tensile strength of 420 MPa or more. More preferably, it is 450 MPa or more, and more preferably 480 MPa or more. If the tensile strength of the copper foil is less than 420 MPa, sufficient strength cannot be obtained, and the problem of wrinkles and breakage during the production of the laminate tends to occur.

銅箔の屈曲性は焼鈍を行うことにより、圧延上がりよりも著しく向上する。本発明にかかる積層体の製造方法では、ポリイミド前駆体樹脂液を銅箔層上に塗布した後の熱処理工程を利用し、銅箔の焼鈍又は再焼鈍を行う。従って、ポリイミド樹脂絶縁層の形成前の圧延銅箔は、ポリイミド樹脂絶縁層の形成前の弾性率を100%とした場合、360℃、6分間の熱処理後に、60%以下の弾性率を有する圧延銅箔であることがよい。この弾性率が60%を超えた弾性率になると、ポリイミド前駆体樹脂液の塗布工程でのハンドリングで変形しやすくなる。   The flexibility of the copper foil is remarkably improved as compared with the rolling rise by annealing. In the manufacturing method of the laminated body concerning this invention, annealing or re-annealing of copper foil is performed using the heat treatment process after apply | coating a polyimide precursor resin liquid on a copper foil layer. Therefore, the rolled copper foil before the formation of the polyimide resin insulation layer has a modulus of elasticity of 60% or less after heat treatment at 360 ° C. for 6 minutes, assuming that the elastic modulus before the formation of the polyimide resin insulation layer is 100%. It is good that it is copper foil. If this elastic modulus exceeds 60%, it is likely to be deformed by handling in the polyimide precursor resin liquid coating process.

尚、本発明の銅張積層体の製造方法は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the manufacturing method of the copper clad laminated body of this invention is not limited to above-described embodiment, Of course, various changes can be added in the range which does not deviate from the summary of this invention.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、実施例における各種物性の測定は以下の方法による。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the measurement of the various physical properties in an Example is based on the following method.

[化学研磨後の銅箔厚みの測定]
本発明にかかる積層体において、ダイヤルゲージ(Mitutoyo製)を用いて、幅方向に10mm間隔で30点厚みを測定した。その後銅部分をエッチング(薄肉化)し、ポリイミド樹脂層の厚みを同様に測定した。積層体の厚みとポリイミド樹脂層の厚みの差より化学研磨後の銅箔の厚みを算出した。
[Measurement of copper foil thickness after chemical polishing]
In the laminate according to the present invention, the thickness at 30 points was measured at 10 mm intervals in the width direction using a dial gauge (manufactured by Mitutoyo). Thereafter, the copper portion was etched (thinned), and the thickness of the polyimide resin layer was measured in the same manner. The thickness of the copper foil after chemical polishing was calculated from the difference between the thickness of the laminate and the thickness of the polyimide resin layer.

[銅箔の引張強度の測定]
幅12.7mm×長さ254mmの短冊形状試験片を切り出し、引張試験機(東洋精機株式会社製、ストログラフ−R1)を用いて、クロスヘッドスピード50mm/min、チャック間距離50.8mmで測定を行い、引張試験中の変位(伸び)を求め、SS曲線から0.2%耐力を算出した。
[Measurement of tensile strength of copper foil]
A strip-shaped test piece having a width of 12.7 mm and a length of 254 mm was cut out and measured using a tensile testing machine (Toyo Seiki Co., Ltd., Strograph-R1) at a crosshead speed of 50 mm / min and a chuck distance of 50.8 mm. The displacement (elongation) during the tensile test was determined, and the 0.2% yield strength was calculated from the SS curve.

[銅箔の表面粗度の測定]
超深度形状測定顕微鏡(KEYENCE製、VK−8500)を用いて、2000倍で銅箔面の長さ方向に140μm測定した。
[Measurement of surface roughness of copper foil]
Using an ultra-deep shape measuring microscope (manufactured by KEYENCE, VK-8500), it was measured at a magnification of 2000 in the length direction of the copper foil surface by 140 μm.

[銅箔の弾性率の測定]
(株)東洋精機製作所製の万能試験機(STROGRAPH-R1)を使用し、23℃、50%RH環境下で測定した。
[Measurement of elastic modulus of copper foil]
Using a universal testing machine (STROGRAPH-R1) manufactured by Toyo Seiki Seisakusho Co., Ltd., measurement was performed in an environment of 23 ° C. and 50% RH.

積層体の作成にあたり、下記2種類の銅箔を準備した。
1).銅箔1:圧延銅箔、厚さ12μm、絶縁層側Rz1.0μm、レジスト面側Rz0.8μm、圧下率95%、引張強度510MPa、360℃、6分間の熱処理後の弾性率49%(積層体形成前の弾性率100%に対して)
2).銅箔1b:圧延銅箔、厚さ18μm、絶縁層側Rz1.0μm、レジスト面側Rz0.8μm、圧下率95%、引張強度510MPa、360℃、6分間の熱処理後の弾性率65%(積層体形成前の弾性率100%に対して)
3).銅箔2:電解銅箔、厚さ15μm、絶縁層側Rz0.8μm、レジスト面側Rz1.7μm
4).銅箔3:電解銅箔、厚さ12μm、絶縁層側Rz0.6μm、レジスト面側Rz0.8μm
5).銅箔4:圧延銅箔、厚さ18μm、絶縁層側Rz1.8μm、レジスト面側Rz1.8μm、圧下率90%、引張強度440MPa、360℃、6分間の熱処理後の弾性率65%(積層体形成前の弾性率100%に対して)
In creating the laminate, the following two types of copper foils were prepared.
1). Copper foil 1: Rolled copper foil, thickness 12 μm, insulating layer side Rz 1.0 μm, resist surface side Rz 0.8 μm, reduction ratio 95%, tensile strength 510 MPa, 360 ° C., elastic modulus 49% after 6 minutes heat treatment (lamination (For elastic modulus of 100% before body formation)
2). Copper foil 1b: Rolled copper foil, thickness 18 μm, insulating layer side Rz 1.0 μm, resist surface side Rz 0.8 μm, reduction ratio 95%, tensile strength 510 MPa, 360 ° C., elastic modulus 65% after 6 minutes heat treatment (lamination (For elastic modulus of 100% before body formation)
3). Copper foil 2: electrolytic copper foil, thickness 15 μm, insulating layer side Rz 0.8 μm, resist surface side Rz 1.7 μm
4). Copper foil 3: electrolytic copper foil, thickness 12 μm, insulating layer side Rz 0.6 μm, resist surface side Rz 0.8 μm
5). Copper foil 4: Rolled copper foil, thickness 18 μm, insulating layer side Rz 1.8 μm, resist surface side Rz 1.8 μm, rolling reduction 90%, tensile strength 440 MPa, 360 ° C., elastic modulus 65% after 6 minutes heat treatment (lamination (For elastic modulus of 100% before body formation)

積層体の化学研磨剤として、下記のエッチング液を用意した。
1).エッチング液:過酸化水素/硫酸系化学研磨液(硫酸濃度20g/L、過酸化水素濃度80g/L)
The following etching solution was prepared as a chemical abrasive for the laminate.
1). Etching solution: Hydrogen peroxide / sulfuric acid based chemical polishing solution (sulfuric acid concentration 20 g / L, hydrogen peroxide concentration 80 g / L)

(合成例1)
熱電対、攪拌機、窒素導入可能な反応容器に、n−メチルピロリジノンを入れる。この反応容器を氷水に浸けた後、反応容器に無水ピロメリット酸(PMDA)を投入し、その後、4,4’−ジアミノジフェニルエーテル、(DAPE)と2’−メトキシ4,4’−ジアミノベンズアニリド(MABA)を投入した。モノマーの投入総量が15wt%で、各ジアミンのモル比率は、MABA:DAPE=60:40となり、酸無水物とジアミンのモル比が0.98:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、15,000cpsであった。
(Synthesis Example 1)
N-methylpyrrolidinone is put into a reaction vessel capable of introducing a thermocouple, a stirrer and nitrogen. After soaking the reaction vessel in ice water, pyromellitic anhydride (PMDA) was charged into the reaction vessel, and then 4,4′-diaminodiphenyl ether (DAPE) and 2′-methoxy 4,4′-diaminobenzanilide. (MABA) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each diamine was MABA: DAPE = 60: 40, and the molar ratio of acid anhydride to diamine was 0.98: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 15,000 cps.

(合成例2)
n−メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器にPMDAと3,3’4,4’−ビフェニルテトラカルボン酸二無水物(BTDA)を投入し、その後、DAPEを投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、BTDA:PMDA=70:30となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、3,200cpsであった。
(Synthesis Example 2)
After the reaction vessel containing n-methylpyrrolidinone was immersed in ice water, PMDA and 3,3′4,4′-biphenyltetracarboxylic dianhydride (BTDA) were added to the reaction vessel, and then DAPE was added. . The total amount of monomers added was 15 wt%, the molar ratio of each acid anhydride was BTDA: PMDA = 70: 30, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 3,200 cps.

(合成例3)
n−メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器に3,3’4,4’−ジフェニルスルフォンテトラカルボン酸二無水物(DSDA)、PMDAを投入し、その後、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)を投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、DSDA:PMDA、90:10となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外した。室温のまま3時間攪拌を続け、得られたポリアミック酸の溶液粘度は、3,200cpsであった。
(Synthesis Example 3)
After immersing the reaction vessel containing n-methylpyrrolidinone in ice water, 3,3′4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA) and PMDA were introduced into the reaction vessel, and then 1,3 -Bis (4-aminophenoxy) benzene (TPE-R) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each acid anhydride was DSDA: PMDA, 90:10, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and the reaction vessel was removed from the ice water when the temperature in the reaction vessel was in the range of room temperature to ± 5 ° C. Stirring was continued for 3 hours at room temperature, and the solution viscosity of the resulting polyamic acid was 3,200 cps.

(実施例1)
銅箔として、銅箔1を使用した。この圧延銅箔上に合成例1、2及び3のポリアミック酸溶液をそれぞれ質量比3:14:3で塗布、乾燥を繰り返し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。この積層体を340℃で、8時間かけて熱処理し、ポリイミド樹脂の厚みが40μmである片面銅箔の中間体の積層体を得た。この積層体を上記のエッチング液で、化学研磨して銅箔導体厚を均一に8μmになるようにして、積層体を得た。このようにして得られた積層体において、絶縁層と接していない導体層の表面粗度Rzは0.9μmであった。
Example 1
Copper foil 1 was used as the copper foil. On this rolled copper foil, the polyamic acid solutions of Synthesis Examples 1, 2, and 3 were respectively applied at a mass ratio of 3: 14: 3 and dried, and a laminate in which a polyimide precursor resin layer was formed on the copper foil layer was obtained. Obtained. This laminated body was heat-treated at 340 ° C. for 8 hours to obtain a laminated body of a single-sided copper foil intermediate having a polyimide resin thickness of 40 μm. This laminate was chemically polished with the above etching solution so that the copper foil conductor thickness was uniformly 8 μm to obtain a laminate. In the laminated body thus obtained, the surface roughness Rz of the conductor layer not in contact with the insulating layer was 0.9 μm.

上記で得られた積層体に配線パターンを形成してCOFフィルムキャリアテープとした。この時、インナーリード部の回路パターンを40μmピッチで作製した。
また、上記で得られた積層体に、所定の回路加工を行い、MIT耐折性試験を行った。
A wiring pattern was formed on the laminate obtained above to obtain a COF film carrier tape. At this time, the circuit pattern of the inner lead portion was produced at a pitch of 40 μm.
Further, the laminated body obtained above was subjected to predetermined circuit processing and subjected to an MIT folding resistance test.

銅箔として、銅箔1bを使用し、実施例1と同様に中間体の積層体を作製した。この積層体をエッチング液で8μmまで化学研磨を実施した結果、レジスト面側Rz1.8μmの積層体を得た。実施例1と同様の回路加工、MIT試験を行った。   The copper foil 1b was used as the copper foil, and an intermediate laminate was produced in the same manner as in Example 1. This laminate was chemically polished to 8 μm with an etching solution, and as a result, a laminate having a resist surface side Rz of 1.8 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

(比較例1)
銅箔として、銅箔2を使用し、実施例1と同様に中間体の積層体を作製した。この積層体をエッチング液で8μmまで化学研磨を実施した結果、レジスト面側Rz0.8μmの積層体を得た。実施例1と同様の回路加工、MIT試験を行った。
(Comparative Example 1)
A copper foil 2 was used as the copper foil, and an intermediate laminate was produced in the same manner as in Example 1. As a result of chemically polishing this laminated body to 8 μm with an etching solution, a laminated body having a resist surface side Rz of 0.8 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

(比較例2)
銅箔として、銅箔3を使用し、実施例1と同様に中間体の積層体を作製した。この積層体をエッチング液で8μmまで化学研磨を実施した結果、レジスト面側Rz0.8μmの積層体を得た。実施例1と同様の回路加工、MIT試験を行った。
(Comparative Example 2)
A copper foil 3 was used as the copper foil, and an intermediate laminate was produced in the same manner as in Example 1. As a result of chemically polishing this laminated body to 8 μm with an etching solution, a laminated body having a resist surface side Rz of 0.8 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

(比較例3)
銅箔として、銅箔4を使用し、実施例1と同様に中間体の積層体を作製した。この積層体をエッチング液で8μmまで化学研磨を実施した結果、レジスト面側Rz3.2μmの積層体を得た。実施例1と同様の回路加工、MIT試験を行った。
(Comparative Example 3)
A copper foil 4 was used as the copper foil, and an intermediate laminate was produced in the same manner as in Example 1. As a result of performing chemical polishing of this laminated body to 8 μm with an etching solution, a laminated body having a resist surface side Rz of 3.2 μm was obtained. The same circuit processing and MIT test as in Example 1 were performed.

以上の結果をまとめて表1に示す。表1において、MIT耐折性は、R=0.8mm、1/2(mil)カバー材付きでの試験条件での結果である。   The above results are summarized in Table 1. In Table 1, MIT folding resistance is the result under the test conditions with R = 0.8 mm and 1/2 (mil) cover material.

Figure 2007261174
Figure 2007261174

表1の結果から、圧延銅箔の銅箔導体の化学研磨による薄肉化により、屈曲性および耐折性がより向上することがわかる。   From the results in Table 1, it can be seen that flexibility and folding resistance are further improved by thinning the copper foil conductor of the rolled copper foil by chemical polishing.

本発明の銅張積層体の製造方法は、銅箔のポリアミド樹脂絶縁層との積層化のハンドリング性も良く、また製造された銅張積層体は微細加工が可能であり、極めてフレキシブルな産業上の利用可能性の高いものである。   The method for producing a copper clad laminate of the present invention has good handleability for laminating a copper foil with a polyamide resin insulating layer, and the produced copper clad laminate can be finely processed. Is highly available.

Claims (6)

銅箔の一方の面に絶縁性樹脂よりなる絶縁層が形成される銅張積層体の製造方法において、銅箔として、10μm以上の厚みを有した圧延銅箔を使用し、該銅箔の一方の面にポリイミド前駆体樹脂溶液を直接塗布した後、100〜400℃で熱処理してポリイミド樹脂絶縁層を形成し、過酸化水素を0.5〜10%及び硫酸を0.5〜15%の範囲濃度(wt%)で含有する液で、得られた積層体の絶縁層と接していない面を化学研磨し、該銅箔の厚みが10〜90%の範囲で除去されるようにすると共に、その表面粗度Rzが2.5μm以下となるようにすることを特徴とする銅張積層体の製造方法。   In the method for producing a copper clad laminate in which an insulating layer made of an insulating resin is formed on one surface of a copper foil, a rolled copper foil having a thickness of 10 μm or more is used as the copper foil, and one of the copper foils The polyimide precursor resin solution was directly applied to the surface of the substrate, and then heat-treated at 100 to 400 ° C. to form a polyimide resin insulating layer. Hydrogen peroxide was 0.5 to 10% and sulfuric acid was 0.5 to 15%. The surface of the resulting laminate that is not in contact with the insulating layer is chemically polished with a solution containing a range concentration (wt%) so that the thickness of the copper foil is removed in the range of 10 to 90%. A method for producing a copper clad laminate, wherein the surface roughness Rz is 2.5 μm or less. 該積層体の絶縁層と接していない面の化学研磨前における圧延銅箔の表面粗度Rzが、1.5μm以下であることを特徴とする請求項1記載の銅張積層体の製造方法。   The method for producing a copper clad laminate according to claim 1, wherein the surface roughness Rz of the rolled copper foil before chemical polishing of the surface not in contact with the insulating layer of the laminate is 1.5 μm or less. ポリイミド樹脂絶縁層の形成前の圧延銅箔が、圧下率90%以上の圧延銅箔であることを特徴とする請求項1又は2記載の銅張積層体の製造方法。   The method for producing a copper-clad laminate according to claim 1 or 2, wherein the rolled copper foil before forming the polyimide resin insulating layer is a rolled copper foil having a reduction rate of 90% or more. ポリイミド樹脂絶縁層の形成前の圧延銅箔が、引張強度420MPa以上の圧延銅箔であることを特徴とする請求項1〜3のいずれかの項に記載の銅張積層体の製造方法。   The method for producing a copper-clad laminate according to any one of claims 1 to 3, wherein the rolled copper foil before the formation of the polyimide resin insulating layer is a rolled copper foil having a tensile strength of 420 MPa or more. ポリイミド樹脂絶縁層の形成前の圧延銅箔が、ポリイミド樹脂絶縁層の形成前の弾性率を100%とした場合、360℃、6分間の熱処理後に、60%以下の弾性率を有する圧延銅箔であることを特徴とする請求項1〜4のいずれかの項に記載の銅張積層体の製造方法。 When the rolled copper foil before the formation of the polyimide resin insulating layer has a modulus of elasticity before the formation of the polyimide resin insulating layer of 100%, the rolled copper foil having an elastic modulus of 60% or less after heat treatment at 360 ° C. for 6 minutes. The method for producing a copper-clad laminate according to any one of claims 1 to 4, wherein: 該積層体が、半導体素子の実装に使用されるチップ・オン・フィルム用積層体であることを特徴とする請求項1〜5のいずれかの項に記載の銅張積層体の製造方法。   The method for producing a copper-clad laminate according to any one of claims 1 to 5, wherein the laminate is a laminate for chip-on-film used for mounting a semiconductor element.
JP2006091294A 2006-03-29 2006-03-29 Manufacturing process of copper cladding laminate Withdrawn JP2007261174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091294A JP2007261174A (en) 2006-03-29 2006-03-29 Manufacturing process of copper cladding laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091294A JP2007261174A (en) 2006-03-29 2006-03-29 Manufacturing process of copper cladding laminate

Publications (1)

Publication Number Publication Date
JP2007261174A true JP2007261174A (en) 2007-10-11

Family

ID=38634630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091294A Withdrawn JP2007261174A (en) 2006-03-29 2006-03-29 Manufacturing process of copper cladding laminate

Country Status (1)

Country Link
JP (1) JP2007261174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366815A1 (en) * 2008-11-12 2011-09-21 Toyo Kohan Co., Ltd. Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366815A1 (en) * 2008-11-12 2011-09-21 Toyo Kohan Co., Ltd. Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
CN102209804A (en) * 2008-11-12 2011-10-05 东洋钢钣株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
EP2366815A4 (en) * 2008-11-12 2012-12-26 Toyo Kohan Co Ltd Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
JP5180814B2 (en) Laminated body for flexible wiring board
JP2007109982A (en) Method for manufacturing copper wired polyimide film
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
JP4907580B2 (en) Flexible copper clad laminate
JP2013129116A (en) Double-sided metal clad laminated sheet and method for manufacturing the same
TW200536628A (en) Flexible copper-cladlaminate and method for making the same
KR20070014067A (en) Process of high flexuous flexible copper clad laminate
JP2006142514A (en) Copper clad laminated sheet
JP2006269615A (en) Printed wiring board
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP2008135759A (en) Base substrate for printed wiring board and multilayer printed wiring board that use polyimide benzoxazole film as insulating layer
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP2007261174A (en) Manufacturing process of copper cladding laminate
JP2007266615A (en) Polyimide film for insulating inside of semiconductor package and laminated substrate
JP4790582B2 (en) Method for producing highly flexible flexible copper clad laminate
JP2005271449A (en) Laminate for flexible printed circuit board
JP4876396B2 (en) Printed wiring board
JP4721657B2 (en) Polyimide benzoxazole film
JP4911296B2 (en) Manufacturing method of metal wiring heat-resistant resin substrate
JP2008168582A (en) Manufacturing method of flexible laminated plate
JP2007136677A (en) Metal coated polyimide film
JP2006175634A (en) Metal-polyimide substrate
JP4810984B2 (en) Metal-coated polyimide film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602