JP4219721B2 - Manufacturing method of laminate - Google Patents

Manufacturing method of laminate Download PDF

Info

Publication number
JP4219721B2
JP4219721B2 JP2003096474A JP2003096474A JP4219721B2 JP 4219721 B2 JP4219721 B2 JP 4219721B2 JP 2003096474 A JP2003096474 A JP 2003096474A JP 2003096474 A JP2003096474 A JP 2003096474A JP 4219721 B2 JP4219721 B2 JP 4219721B2
Authority
JP
Japan
Prior art keywords
copper foil
insulating layer
laminate
layer
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096474A
Other languages
Japanese (ja)
Other versions
JP2004299305A (en
Inventor
裕一 徳田
克也 岸田
祐之 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2003096474A priority Critical patent/JP4219721B2/en
Priority to PCT/JP2004/004396 priority patent/WO2004088738A1/en
Priority to KR1020057013328A priority patent/KR20050113173A/en
Publication of JP2004299305A publication Critical patent/JP2004299305A/en
Application granted granted Critical
Publication of JP4219721B2 publication Critical patent/JP4219721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/16Inspection; Monitoring; Aligning
    • H05K2203/162Testing a finished product, e.g. heat cycle testing of solder joints

Description

【0001】
【発明の属する技術分野】
本発明は、ICあるいはLSIなどの電子部品を実装するフレキシブルプリント基板用の銅張り積層板に関するものである。
【0002】
【従来の技術】
テープキャリアにドライバICを実装するTAB方式(テープ・オートメイティッド・ボンディング)は、液晶表示素子(LCD)を使用する電子産業において、従来から用いられてきた。
【0003】
また、より小さいスペースで、より高密度の実装を行う実装方法として、裸のICチップをフィルムキャリアテープ上に直接搭載するCOF(チップ・オン・フィルム)が開発された。
【0004】
このCOFに用いられるフレキシブルプリント基板(FPC)は、TAB方式にて用いられてきたデバイスホールを有しないため、チップ実装時の相対位置の測定の際に、絶縁層を透過してドライバICチップの配線を認識する必要がある。
【0005】
このようなCOF用FPCに用いられる積層体としては、ポリイミドフィルムなどの絶縁フィルムにニッケルなどの密着強化層をスパッタした後、銅メッキを施した積層体がある。このような銅メッキ積層体では、ポリイミドフィルムが比較的透明であるので、IC搭載の際の位置合わせが容易であるが、導体と絶縁体の間の接着力が低い、耐エレクトロマイグレーション性に劣るという問題がある。
【0006】
このような問題のない積層体としては、銅箔にポリイミドフィルムを塗布法により積層したキャスティングタイプや、銅箔に熱可塑性樹脂や熱硬化性樹脂などを介し絶縁フィルムを熱圧着した熱圧着タイプの積層体がある。
【0007】
しかしながら、キャスティングタイプや熱圧着タイプの積層体は、銅箔をエッチングで除去した際に露出する絶縁層表面が光を乱反射してしまい、絶縁層を透過してドライバICチップの配線を認識できないという問題があった。
【0008】
このような背景から、粗度の小さな銅箔の製造方法が提案されている。特開2002−73188号公報では、電解析出面を研磨する方法が開示されている。特開2002−161394号公報では、銅箔の粗化層の製造方法が開示されている。特開平09−143785号公報には、メルカプト化合物によりRzの小さな低粗度銅箔が開示されている。特開2003−23046号公報には、光線透過率の規定された絶縁体が開示されている。
【特許文献1】
特開2002−73188号公報
【特許文献2】
特開2002−161394号公報
【特許文献3】
特開平09−143785号公報
【特許文献4】
特開2003−23046号公報
【0009】
これらの技術では、銅箔表面の粗度の規定方法としては、触針式の粗度計等から算出される、JIS B 0601−1994「表面粗さの定義と表示」の5.1十点平均荒さ(Rz)の定義に規定されたRzを使用する場合が多い。しかしながら、このRzは、光学散乱などの光学的特性との相関を規定するには不完全であり、実際にはドライバICチップの配線の認識が不可能である場合も見られた。このため、低粗度銅箔において、光学的特性から規定された導体表面形状を有する積層体の開発が望まれていた。
【0010】
【発明が解決しようとする課題】
絶縁層を透過してドライバICチップの配線を認識することが可能であり、導体と絶縁体の間の接着力が高く、耐エレクトロマイグレーション性に優れた、積層体を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者等は上記問題点を解決するために、検討した結果、積層体を構成する銅箔等の導体層に特定の特性を有するものを使用することで上記課題を解決し得ることを見出し、本発明を完成した。
【0012】
すなわち、本発明は、圧延銅箔又は電解銅箔からなる導体層の絶縁層側表面を原子間力顕微鏡にて3次元形状データをフルスケール3〜6μmにて測定して各点における高さの値からなる3次元形状データとして測定し、下記式1に示される二次元フーリエ変換を行って周波数の関数であるパワースペクトルを算出し、600nmに相当する周波数の強度が変換前の表面高さ値1.6μmに相当する強度以下である導体層を選定すること、この導体層上に絶縁層を積層することを特徴とする導体層と光透過性の絶縁層が積層された構造のフレキシブルプリント基板用の積層体の製造方法である。
上記の製造方法により、導体層と絶縁層が積層された積層体であって、導体層の絶縁層側表面を各点における高さの値からなる3次元形状データとして測定し、下記式1に示される二次元フーリエ変換を行って周波数の関数であるパワースペクトルを算出し、600nmに相当する周波数の強度が変換前の表面高さ値1.6μmに相当する強度以下である積層体を得ることができる。
【数2】

Figure 0004219721
但し、
F(u,v):変換によって得られた関数(パワースペクトル)
u,v:x,y方向の波数
f(x,y):変換対象の関数(3次元形状データ)
(x,y):平面座標
【0013】
ここで、1)原子間力顕微鏡にて3次元形状データを測定した積層体であること、2)3次元形状データをフルスケール3〜6μmにて測定した積層体であること、3)導体層が銅箔であり、絶縁層がポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することにより形成されたものであること、4)絶縁層が、導体層に熱圧着された熱可塑性樹脂層及び絶縁フィルムにより形成されたものであること、又は、5)絶縁層が、導体層に熱圧着された熱硬化性樹脂層及び絶縁フィルムにより形成されたものであることは本発明の好ましい態様である。
また、本発明は上記の積層体を用いたことを特徴とするCOFフィルムキャリアテープである。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の積層体は、導体層と絶縁層とから構成される。導体層としては、銅箔層が好ましいので、以下の説明において導体層を銅箔層で代表することがある。導体層は絶縁層の片面のみに設けられていてもよく、また両面に設けられていてもよい。
積層体を構成する導体層としては、導電性の各種金属箔等があるが、銅箔の場合は、圧延銅箔を使用してもよく、電解銅箔を使用してもよい。
【0015】
導体表面形状を規定する方法として、導体層の絶縁層側表面を各点における高さの値からなる3次元形状データを測定する。測定方法としては、触針式、レーザー顕微鏡、原子間力顕微鏡(AFM)などを用いることができる。このうち、AFMを用いる方法が最も本目的に適する。
【0016】
測定時のフルスケールは、6μmを超えると表面形状の詳細を計測することができない。また、3μm未満ではフルスケールを超える凹凸が多くなり、不適切である。このため、フルスケールを3μmから6μmに設定することで、後の処理に適した三次元形状データが得られる。
【0017】
3次元形状データは、式1に示される二次元フーリエ変換を行って周波数の関数であるパワースペクトルを算出する。この変換により得られるパワースペクトルは、三次元形状の持つ周期性を、正弦波成分として分解し、その波数と方向性を示す2次元画像として得られる。この2次元画像では、画像の中心からの距離が正弦波の波数を示し、画像の中心からの方向が正弦波の方向性に対応する。
【0018】
xy平面座標系で定義された関数f(x, y)、すなわち3次元形状データの二次元フーリエ変換は、式1で定義される。ここに、u, vはそれぞれ、x, y方向の波数を示す。F(u, v)は波数ベクトル(u, v)に対応したf(x, y)の空間周波数成分、すなわちフーリエ成分を示す。
【0019】
二次元フーリエ変換は、市販のソフトウエアで実行することが可能である。その際には、画像はf(x. y)といった連続した関数ではなく、有限な分解能を持つN×N個の画素(ピクセル)のディジタルデータを取り扱い、連続関数を用いた積分ではなく、有限和を用いた式を用いる。この際に用いるディジタルデータは、ディジタルカメラ、CCDカメラ、スキャナ、光学顕微鏡、金属顕微鏡、レーザー顕微鏡、走査型電子顕微鏡、原子間力顕微鏡等により得ることができる。
【0020】
二次元フーリエ変換によって得られるパワースペクトルは、画像の中心がuv座標系の原点としている。画像の各点における強度はフーリエ成分の大きさに対応し、原点より近い領域の成分は低周波数成分に対応し、原点より遠い領域の成分は高周波数成分に対応する。原点から最も遠い隅の位置の波数h(1/m)は下記式2で示される。
【数3】
Figure 0004219721
h:波数(1/m)
N:変換前の画像の画素数 (−)
Y:変換前の画像の実視野幅(m)
例えば、50μm×50μmの範囲を512ピクセル×512ピクセルで撮像し、二次元フーリエ変換して得られる512ピクセル×512ピクセルのパワースペクトルにおいて、4隅の位置は波数7.24×106、すなわち波長0.14μmに相当する。
【0021】
この二次元画像において、可視光波長に対応する380nm〜約780nmの正弦波成分の強度にて規定することができるが、特に、位置合わせ装置の光源に含まれる波長であり、ポリイミド等の高分子の吸収が少なく、分散されにくい比較的長波長で、かつ市販CCDカメラの感度が良好である600nmに相当する周期性成分の強度をもって規定することで、実用的な透明性を規定できることを見出した。
【0022】
絶縁層を透過してドライバICチップの配線を認識することが可能な積層体は、600nmに相当する周期性成分の強度が変換前の表面高さ値1.6μmに相当する強度以下である。また、1.5μm以下が更に好ましい。ここでいう、変換前の表面高さ値1.6μmに相当する強度とは、変換前の三次元形状データをフルスケール2μmで計測した場合には、変換後の強度で80%、フルスケールを4μmで計測した場合には、変換後の強度で40%、フルスケールを6μmで計測した場合には、変換後の強度で27%を示す。
【0023】
積層体を構成する絶縁層には、ポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することにより形成されたもの、熱可塑性樹脂層及び絶縁フィルムにより形成されたもの、熱硬化性樹脂層及び絶縁フィルムにより形成されたもののいずれを用いてもよい。
【0024】
これらの積層体を構成する絶縁層うち、ポリイミド前駆体樹脂溶液を塗布した後、乾燥・硬化することにより形成されたものが最も適するが、本発明はこれに限定されるものではない。
【0025】
ポリイミド前駆体樹脂溶液は、公知のジアミンと酸無水物とを溶媒の存在下で重合して製造することができる。
【0026】
用いられるジアミンとしては、例えば、4,4'-ジアミノジフェニルエーテル、2'-メトキシ4,4'-ジアミノベンズアニリド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、4,4'ジアミノベンズアニリド等が挙げられる。また、酸無水物としては、例えば、無水ピロメリット酸、3,3'4,4'-ビフェニルテトラカルボン酸二無水物、3,4'3,4'-ビフェニルテトラカルボン酸二無水物、3,3'4,4'-ジフェニルスルフォンテトラカルボン酸二無水物、4,4'-オキシジフタル酸無水物が挙げられる。ジアミン、酸無水物はそれぞれ、その1種のみを使用してもよく2種以上を併用して使用することもできる。
【0027】
溶媒は、ジメチルアセトアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、1種若しくは2種以上併用して使用することもできる。
【0028】
ポリイミド系樹脂層は、前駆体状態で銅箔層上に直接塗布して形成することが好ましく、重合された樹脂粘度を500cps〜35,000cpsの範囲とすることが好ましい。塗布された樹脂液は熱処理されるが、熱処理は100℃〜150℃で2分〜4分大気中で熱処理し、その後、真空加熱で室温-340℃-室温処理を9時間ほど行なうことがよい。ポリイミド樹脂層は、単層のみから形成されるものでも、複数層からなるものでもよい。ポリイミド系樹脂層を複数層とする場合、異なる構成成分からなるポリイミド系樹脂層の上に他のポリイミド樹脂を順次塗布して形成することができる。ポリイミド樹脂層が3層以上からなる場合、同一の構成のポリイミド樹脂を2回以上使用してもよい。
【0029】
本発明の積層板の代表例である銅張り積層板は、上記したように銅箔上にポリイミド樹脂を塗布することにより製造することができるが、1層以上のポリイミドフィルムを銅箔にラミネートして製造することもできる。このように製造された銅張り積層板は銅箔層を片面のみに有する片面銅張り積層板としてもよく、また、銅箔層を両面に有する両面銅張り積層板とすることもできる。両面銅張り積層体は、片面銅張り積層板を形成後、銅箔層を熱プレスにより圧着する方法、2枚の銅箔層間にポリイミドフィルムを挟み熱プレスにより圧着する方法等が挙げられる。
【0030】
【実施例】
以下、本発明を実施例により更に詳細に説明する。
積層体の作成にあたり、下記4種類の銅箔を準備した。
1)銅箔1:電解銅箔、Rz1.0μm
2)銅箔2:電解銅箔、Rz0.8μm
3)銅箔3:圧延銅箔、Rz2.0μm
4) 銅箔4:銅箔3を5%塩酸水溶液に1分浸漬したサンプル、Rz2.0μm
【0031】
合成例1
熱電対、攪拌機、窒素導入可能な反応容器に、n-メチルピロリジノンを入れる。この反応容器を容器に入った氷水に浸けた後、反応容器に無水ピロメリット酸(PMDA)を投入し、その後、4,4'-ジアミノジフェニルエーテル、(DAPE)と2'-メトキシ4,4'-ジアミノベンズアニリド(MABA)を投入した。モノマーの投入総量が15wt%で、各ジアミンのモル比率は、MABA:DAPE=60:40となり、酸無水物とジアミンのモル比が0.98:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外し、更に室温のまま3時間攪拌を続けた。得られたポリアミック酸の溶液粘度は、15,000cpsであった。
【0032】
合成例2
n-メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器にPMDA/3,4'3,4'-ビフェニルテトラカルボン酸二無水物(BTDA)を投入し、その後、4,4'-ジアミノジフェニルエーテル(DAPE)を投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、BTDA:PMDA=70:30となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外し、更に室温のまま3時間攪拌を続けた。得られたポリアミック酸の溶液粘度は、3,200cpsであった。
【0033】
合成例3
n-メチルピロリジノンを入れた反応容器を氷水に浸けた後、反応容器に3,3'4,4'-ジフェニルスルフォンテトラカルボン酸二無水物(DSDA)、PMDAを投入し、その後、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE‐R)を投入した。モノマーの投入総量が15wt%で、各酸無水物のモル比率は、DSDA:PMDA=90:10となり、酸無水物とジアミンのモル比が1.03:1.0となるよう投入した。その後、更に攪拌を続け、反応容器内の温度が、室温から±5℃の範囲となった時に反応容器を氷水から外し、更に室温のまま3時間攪拌を続けた。得られたポリアミック酸の溶液粘度は、3,200cpsであった。
【0034】
実施例1
銅箔として、銅箔1を使用した。この銅箔の表面を原子間力顕微鏡(デジタルインスツルメンツ製走査型プローブ顕微鏡NanoScope)を用い、50μm方形の範囲を、フルスケール4μm、256階調にて形状計測した。一階調は0.0156μmに相当する。
得られた画像を市販の汎用画像処理ソフトウエアにて二次元フーリエ変換しパワースペクトルを得た。このパワースペクトルより、波長600nmに相当する位置の強度を測定したところ、256階調中、93階調に相当し、強度は36%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.45μmに相当する。
【0035】
この電解銅箔上に合成例1から3のポリアミック酸溶液を塗布、乾燥を繰り返し、銅箔層上にポリイミド前駆体樹脂層が形成された積層体を得た。この積層体を340℃で、8時間かけて熱処理し、ポリイミド厚み40μmの片面銅箔の積層体を得た。
この積層体を塩化第二鉄水溶液にてエッチングし、40μmの絶縁層フィルムを得た。市販ボンダー機(新川(株)製ILT−110)を用いて、このフィムルと試験用に準備したドライバICチップを100μmの距離を保った状態で保持し、ボンダー機に装備された位置合わせ用のCCDカメラを用いて、模擬チップ上の200μmの大きさの検査パターンを観察したところ、良好な画像が得られた。
【0036】
比較例1
銅箔として、銅箔2を使用した。実施例1と同様に表面形状を測定したところ、波長600nmに相当する強度は、256階調中、108階調に相当し、強度としては42%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.68μmに相当する。
上記電解銅箔2を実施例1と同様に、積層体化し、フィルム化し、フィルムを透過してICチップを観察したところ、画像は認識できなかった。
【0037】
比較例2
銅箔として、銅箔1を使用した。対象波長を300nmとする以外は、実施例1と同様に表面形状を測定したところ、波長300nmに相当する強度は、256階調中、85階調に相当し、強度としては33%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.32μmに相当する。
【0038】
比較例3
銅箔として、銅箔2を使用し、比較例2と同様に表面形状を測定したところ、波長300nmに相当する強度は、256階調中、85階調に相当し、強度としては33%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.32μmに相当する。
【0039】
比較例4
銅箔として、銅箔3を使用し、実施例1と同様に表面形状を測定したところ、波長600nmに相当する強度は、256階調中、119階調に相当し、強度としては46%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.86μmに相当する。
この銅箔3を実施例1と同様に、積層体化し、フィルム化し、フィルムを透過してICチップを観察したところ、画像は認識できなかった。
【0040】
実施例2
銅箔として、銅箔4を使用し、実施例1と同様に表面形状を測定したところ、波長600nmに相当する強度は、256階調中、90階調に相当し、強度としては35%であった。またこれは、変換前の形状データのフルスケールが4μmであることから、1.41μmに相当する。
この酸洗済み圧延銅箔4を実施例1と同様に、積層体化し、フィルム化し、フィルムを透過してICチップを観察したところ、良好な画像が得られた。
結果をまとめて表1に示す。
【0041】
【表1】
Figure 0004219721
【0042】
【発明の効果】
絶縁層を透過してドライバICチップの配線を認識することが可能となり、導体と絶縁体の間の接着力が高く、耐エレクトロマイグレーション性に優れた積層体の製造を可能とする。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-clad laminate for a flexible printed circuit board on which an electronic component such as an IC or LSI is mounted.
[0002]
[Prior art]
A TAB method (tape automated bonding) in which a driver IC is mounted on a tape carrier has been conventionally used in the electronic industry using a liquid crystal display element (LCD).
[0003]
Further, COF (chip-on-film) in which a bare IC chip is directly mounted on a film carrier tape has been developed as a mounting method for mounting at a higher density in a smaller space.
[0004]
Since the flexible printed circuit board (FPC) used for this COF does not have a device hole that has been used in the TAB method, when measuring the relative position during chip mounting, the driver IC chip is transmitted through the insulating layer. It is necessary to recognize the wiring.
[0005]
As a laminated body used for such FPC for COF, there is a laminated body obtained by sputtering an adhesion reinforcing layer such as nickel on an insulating film such as a polyimide film and then performing copper plating. In such a copper plating laminate, since the polyimide film is relatively transparent, alignment during IC mounting is easy, but the adhesion between the conductor and the insulator is low, and the electromigration resistance is poor. There is a problem.
[0006]
As a laminate without such a problem, there are a casting type in which a polyimide film is laminated on a copper foil by a coating method, and a thermocompression bonding type in which an insulating film is thermocompression bonded to the copper foil via a thermoplastic resin or a thermosetting resin. There is a laminate.
[0007]
However, in the casting type or thermocompression type laminate, the surface of the insulating layer exposed when the copper foil is removed by etching diffuses light, and the wiring of the driver IC chip cannot be recognized through the insulating layer. There was a problem.
[0008]
Against this background, a method for producing a copper foil with a small roughness has been proposed. Japanese Patent Laid-Open No. 2002-73188 discloses a method for polishing an electrolytically deposited surface. Japanese Unexamined Patent Application Publication No. 2002-161394 discloses a method for manufacturing a roughened layer of copper foil. Japanese Patent Application Laid-Open No. 09-143785 discloses a low-roughness copper foil having a small Rz with a mercapto compound. Japanese Unexamined Patent Application Publication No. 2003-23046 discloses an insulator having a prescribed light transmittance.
[Patent Document 1]
JP 2002-73188 A [Patent Document 2]
JP 2002-161394 A [Patent Document 3]
Japanese Patent Laid-Open No. 09-143785 [Patent Document 4]
Japanese Patent Laid-Open No. 2003-23046
In these techniques, as a method for defining the roughness of the copper foil surface, JIS B 0601-1994 “Definition and Display of Surface Roughness”, calculated from a stylus-type roughness meter, etc. Rz defined in the definition of average roughness (Rz) is often used. However, this Rz is incomplete to define the correlation with optical characteristics such as optical scattering, and in some cases, it is actually impossible to recognize the wiring of the driver IC chip. For this reason, in the low-roughness copper foil, the development of a laminate having a conductor surface shape defined by optical characteristics has been desired.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a laminate that can recognize a wiring of a driver IC chip through an insulating layer, has high adhesion between a conductor and an insulator, and has excellent electromigration resistance. .
[0011]
[Means for Solving the Problems]
As a result of investigations to solve the above problems, the present inventors have found that the above-mentioned problems can be solved by using a conductor layer such as a copper foil constituting the laminated body having specific characteristics. The present invention has been completed.
[0012]
That is, in the present invention, the surface on the insulating layer side of a conductor layer made of rolled copper foil or electrolytic copper foil is measured with an atomic force microscope and three-dimensional shape data is measured at a full scale of 3 to 6 μm. Is measured as three-dimensional shape data consisting of values, a power spectrum as a function of frequency is calculated by performing a two-dimensional Fourier transform represented by the following formula 1, and the intensity of the frequency corresponding to 600 nm is the surface height value before the conversion. A flexible printed circuit board having a structure in which a conductive layer and a light-transmissive insulating layer are laminated, wherein a conductive layer having a strength equal to or less than 1.6 μm is selected and an insulating layer is laminated on the conductive layer It is a manufacturing method of the laminated body for use .
According to the manufacturing method described above, the conductor layer and the insulating layer are laminated, and the insulating layer side surface of the conductor layer is measured as three-dimensional shape data consisting of height values at each point. A power spectrum that is a function of frequency is calculated by performing the two-dimensional Fourier transform shown, and a laminated body in which the intensity of the frequency corresponding to 600 nm is equal to or less than the intensity corresponding to the surface height value of 1.6 μm before the conversion is obtained. Can do.
[Expression 2]
Figure 0004219721
However,
F (u, v): function obtained by conversion (power spectrum)
u, v: wave number f (x, y) in x, y direction: function to be converted (three-dimensional shape data)
(X, y): plane coordinates
Here, 1) a laminate obtained by measuring three-dimensional shape data with an atomic force microscope, 2) a laminate obtained by measuring three-dimensional shape data at a full scale of 3 to 6 μm, and 3) a conductor layer. Is a copper foil, and the insulating layer is formed by applying a polyimide precursor resin solution, followed by drying and curing; 4) a thermoplastic resin layer in which the insulating layer is thermocompression bonded to the conductor layer It is a preferable embodiment of the present invention that the insulating layer is formed of a thermosetting resin layer and an insulating film that are thermocompression bonded to the conductor layer. is there.
Moreover, this invention is a COF film carrier tape characterized by using the above laminate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The laminate of the present invention is composed of a conductor layer and an insulating layer. Since a copper foil layer is preferable as the conductor layer, the conductor layer may be represented by a copper foil layer in the following description. The conductor layer may be provided only on one side of the insulating layer, or may be provided on both sides.
As the conductor layer constituting the laminate, there are various conductive metal foils, but in the case of copper foil, rolled copper foil or electrolytic copper foil may be used.
[0015]
As a method for defining the conductor surface shape, three-dimensional shape data consisting of height values at respective points on the insulating layer side surface of the conductor layer is measured. As a measuring method, a stylus type, a laser microscope, an atomic force microscope (AFM), or the like can be used. Of these, the method using AFM is most suitable for this purpose.
[0016]
If the full scale at the time of measurement exceeds 6 μm, the details of the surface shape cannot be measured. On the other hand, if the thickness is less than 3 μm, irregularities exceeding full scale increase, which is inappropriate. Therefore, by setting the full scale from 3 μm to 6 μm, three-dimensional shape data suitable for later processing can be obtained.
[0017]
The three-dimensional shape data is subjected to the two-dimensional Fourier transform shown in Equation 1 to calculate a power spectrum that is a function of frequency. The power spectrum obtained by this conversion is obtained as a two-dimensional image indicating the wave number and directionality by decomposing the periodicity of the three-dimensional shape as a sine wave component. In this two-dimensional image, the distance from the center of the image indicates the wave number of the sine wave, and the direction from the center of the image corresponds to the directionality of the sine wave.
[0018]
The function f (x, y) defined in the xy plane coordinate system, that is, the two-dimensional Fourier transform of the three-dimensional shape data is defined by Equation 1. Here, u and v indicate wave numbers in the x and y directions, respectively. F (u, v) represents a spatial frequency component of f (x, y) corresponding to the wave vector (u, v), that is, a Fourier component.
[0019]
The two-dimensional Fourier transform can be executed with commercially available software. In that case, the image is not a continuous function such as f (x. Y), but digital data of N × N pixels (pixels) having a finite resolution is handled. The formula using the sum is used. Digital data used at this time can be obtained by a digital camera, a CCD camera, a scanner, an optical microscope, a metal microscope, a laser microscope, a scanning electron microscope, an atomic force microscope, or the like.
[0020]
In the power spectrum obtained by the two-dimensional Fourier transform, the center of the image is the origin of the uv coordinate system. The intensity at each point of the image corresponds to the magnitude of the Fourier component, the component in the region near the origin corresponds to the low frequency component, and the component in the region far from the origin corresponds to the high frequency component. The wave number h (1 / m) at the corner farthest from the origin is expressed by the following equation 2.
[Equation 3]
Figure 0004219721
h: Wave number (1 / m)
N: Number of pixels of image before conversion (-)
Y: Actual field width of the image before conversion (m)
For example, in a power spectrum of 512 pixels × 512 pixels obtained by imaging a range of 50 μm × 50 μm with 512 pixels × 512 pixels and two-dimensional Fourier transform, the positions of the four corners have a wavenumber of 7.24 × 106, that is, a wavelength of 0 .Corresponding to 14 μm.
[0021]
In this two-dimensional image, it can be defined by the intensity of a sine wave component of 380 nm to about 780 nm corresponding to the visible light wavelength. In particular, it is a wavelength included in the light source of the alignment device, and is a polymer such as polyimide. It has been found that practical transparency can be defined by defining the intensity of a periodic component corresponding to 600 nm, which has a relatively long wavelength that is difficult to disperse, is difficult to disperse, and has a good sensitivity of a commercially available CCD camera. .
[0022]
In the laminate that can recognize the wiring of the driver IC chip through the insulating layer, the intensity of the periodic component corresponding to 600 nm is equal to or less than the intensity corresponding to the surface height value 1.6 μm before conversion. Further, 1.5 μm or less is more preferable. Here, the intensity corresponding to the surface height value before conversion of 1.6 μm means that when the three-dimensional shape data before conversion is measured at 2 μm full scale, the intensity after conversion is 80%, and the full scale is When measured at 4 μm, the intensity after conversion is 40%, and when full scale is measured at 6 μm, the intensity after conversion is 27%.
[0023]
The insulating layer constituting the laminate is formed by applying a polyimide precursor resin solution, followed by drying and curing, a thermoplastic resin layer and an insulating film, a thermosetting resin layer, and Any of those formed of an insulating film may be used.
[0024]
Of the insulating layers constituting these laminates, those formed by applying a polyimide precursor resin solution and then drying and curing are most suitable, but the present invention is not limited to this.
[0025]
The polyimide precursor resin solution can be produced by polymerizing a known diamine and acid anhydride in the presence of a solvent.
[0026]
Examples of the diamine used include 4,4′-diaminodiphenyl ether, 2′-methoxy 4,4′-diaminobenzanilide, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4- Aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 2,2'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4 ' -Diaminobiphenyl, 4,4′diaminobenzanilide and the like. Examples of the acid anhydride include pyromellitic anhydride, 3,3′4,4′-biphenyltetracarboxylic dianhydride, 3,4′3,4′-biphenyltetracarboxylic dianhydride, 3 , 3'4,4'-diphenylsulfone tetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride. Each of the diamine and acid anhydride may be used alone or in combination of two or more.
[0027]
Examples of the solvent include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene and the like, and they can be used alone or in combination of two or more.
[0028]
The polyimide resin layer is preferably formed by directly coating on the copper foil layer in a precursor state, and the polymerized resin viscosity is preferably in the range of 500 cps to 35,000 cps. The applied resin solution is heat-treated, and heat treatment is preferably performed in air at 100 ° C. to 150 ° C. for 2 to 4 minutes, and then vacuum heating is performed at room temperature-340 ° C. for about 9 hours. . The polyimide resin layer may be formed of only a single layer or may be formed of a plurality of layers. In the case where a plurality of polyimide resin layers are used, other polyimide resins can be sequentially formed on a polyimide resin layer made of different components. When the polyimide resin layer is composed of three or more layers, the polyimide resin having the same configuration may be used twice or more.
[0029]
A copper-clad laminate, which is a representative example of the laminate of the present invention, can be produced by applying a polyimide resin on a copper foil as described above, but one or more polyimide films are laminated on the copper foil. Can also be manufactured. The copper-clad laminate thus produced may be a single-sided copper-clad laminate having a copper foil layer only on one side, or a double-sided copper-clad laminate having a copper foil layer on both sides. Examples of the double-sided copper-clad laminate include a method of forming a single-sided copper-clad laminate and then crimping the copper foil layer by hot pressing, a method of sandwiching a polyimide film between two copper foil layers, and crimping by hot pressing.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In creating the laminate, the following four types of copper foils were prepared.
1) Copper foil 1: Electrolytic copper foil, Rz1.0μm
2) Copper foil 2: Electrolytic copper foil, Rz0.8μm
3) Copper foil 3: Rolled copper foil, Rz 2.0 μm
4) Copper foil 4: Sample obtained by immersing copper foil 3 in 5% aqueous hydrochloric acid for 1 minute, Rz 2.0 μm
[0031]
Synthesis example 1
N-methylpyrrolidinone is placed in a thermocouple, a stirrer, and a reaction vessel into which nitrogen can be introduced. After immersing this reaction vessel in ice water contained in the vessel, pyromellitic anhydride (PMDA) was added to the reaction vessel, and then 4,4'-diaminodiphenyl ether, (DAPE) and 2'-methoxy 4,4 ' -Diaminobenzanilide (MABA) was introduced. The total monomer charge was 15 wt%, the molar ratio of each diamine was MABA: DAPE = 60: 40, and the molar ratio of acid anhydride to diamine was 0.98: 1.0. Thereafter, stirring was further continued, and when the temperature in the reaction vessel was within the range of room temperature to ± 5 ° C., the reaction vessel was removed from ice water, and stirring was further continued for 3 hours at room temperature. The solution viscosity of the obtained polyamic acid was 15,000 cps.
[0032]
Synthesis example 2
After soaking the reaction vessel containing n-methylpyrrolidinone in ice water, PMDA / 3,4'3,4'-biphenyltetracarboxylic dianhydride (BTDA) is charged into the reaction vessel, and then 4,4 ' -Diaminodiphenyl ether (DAPE) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each acid anhydride was BTDA: PMDA = 70: 30, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and when the temperature in the reaction vessel was within the range of room temperature to ± 5 ° C., the reaction vessel was removed from ice water, and stirring was further continued for 3 hours at room temperature. The solution viscosity of the obtained polyamic acid was 3,200 cps.
[0033]
Synthesis example 3
After immersing the reaction vessel containing n-methylpyrrolidinone in ice water, 3,3'4,4'-diphenylsulfonetetracarboxylic dianhydride (DSDA) and PMDA are added to the reaction vessel, and then 1,3 -Bis (4-aminophenoxy) benzene (TPE-R) was added. The total amount of monomers charged was 15 wt%, the molar ratio of each acid anhydride was DSDA: PMDA = 90: 10, and the molar ratio of acid anhydride to diamine was 1.03: 1.0. Thereafter, stirring was further continued, and when the temperature in the reaction vessel was within the range of room temperature to ± 5 ° C., the reaction vessel was removed from ice water, and stirring was further continued for 3 hours at room temperature. The solution viscosity of the obtained polyamic acid was 3,200 cps.
[0034]
Example 1
Copper foil 1 was used as the copper foil. Using an atomic force microscope (Scanning Probe Microscope NanoScope manufactured by Digital Instruments), the shape of the surface of the copper foil was measured at a full scale of 4 μm and 256 gradations. One gradation corresponds to 0.0156 μm.
The obtained image was subjected to two-dimensional Fourier transform using commercially available general-purpose image processing software to obtain a power spectrum. From this power spectrum, the intensity at a position corresponding to a wavelength of 600 nm was measured. As a result, it was equivalent to 93 gradations out of 256 gradations, and the intensity was 36%. This corresponds to 1.45 μm because the full scale of the shape data before conversion is 4 μm.
[0035]
The polyamic acid solutions of Synthesis Examples 1 to 3 were applied on this electrolytic copper foil and dried repeatedly to obtain a laminate in which a polyimide precursor resin layer was formed on the copper foil layer. This laminated body was heat-treated at 340 ° C. for 8 hours to obtain a single-sided copper foil laminated body having a polyimide thickness of 40 μm.
This laminate was etched with an aqueous ferric chloride solution to obtain a 40 μm insulating layer film. Using a commercially available bonder machine (ILT-110, manufactured by Shinkawa Co., Ltd.), this film and the driver IC chip prepared for the test are held at a distance of 100 μm and used for alignment equipped on the bonder machine. When an inspection pattern having a size of 200 μm on the simulated chip was observed using a CCD camera, a good image was obtained.
[0036]
Comparative Example 1
Copper foil 2 was used as the copper foil. When the surface shape was measured in the same manner as in Example 1, the intensity corresponding to the wavelength of 600 nm was equivalent to 108 gradations out of 256 gradations, and the intensity was 42%. This corresponds to 1.68 μm because the full scale of the shape data before conversion is 4 μm.
As in Example 1, the electrolytic copper foil 2 was laminated, formed into a film, passed through the film, and the IC chip was observed. As a result, no image could be recognized.
[0037]
Comparative Example 2
Copper foil 1 was used as the copper foil. The surface shape was measured in the same manner as in Example 1 except that the target wavelength was 300 nm. The intensity corresponding to the wavelength 300 nm was equivalent to 85 gradations out of 256 gradations, and the intensity was 33%. . This corresponds to 1.32 μm because the full scale of the shape data before conversion is 4 μm.
[0038]
Comparative Example 3
When copper foil 2 was used as the copper foil and the surface shape was measured in the same manner as in Comparative Example 2, the intensity corresponding to the wavelength of 300 nm was equivalent to 85 gradations in 256 gradations, and the intensity was 33%. there were. This corresponds to 1.32 μm because the full scale of the shape data before conversion is 4 μm.
[0039]
Comparative Example 4
When copper foil 3 was used as the copper foil and the surface shape was measured in the same manner as in Example 1, the intensity corresponding to the wavelength of 600 nm corresponds to 119 gradations out of 256 gradations, and the intensity was 46%. there were. This corresponds to 1.86 μm because the full scale of the shape data before conversion is 4 μm.
When this copper foil 3 was laminated and film-formed in the same manner as in Example 1 and the IC chip was observed through the film, no image could be recognized.
[0040]
Example 2
When copper foil 4 was used as the copper foil and the surface shape was measured in the same manner as in Example 1, the intensity corresponding to the wavelength of 600 nm was equivalent to 90 gradations in 256 gradations, and the intensity was 35%. there were. This corresponds to 1.41 μm because the full scale of the shape data before conversion is 4 μm.
When this pickled rolled copper foil 4 was laminated in the same manner as in Example 1 to form a film, and the IC chip was observed through the film, a good image was obtained.
The results are summarized in Table 1.
[0041]
[Table 1]
Figure 0004219721
[0042]
【The invention's effect】
It is possible to recognize the wiring of the driver IC chip through the insulating layer, and it is possible to manufacture a laminate having high adhesion between the conductor and the insulator and excellent in electromigration resistance.

Claims (1)

圧延銅箔又は電解銅箔からなる導体層の絶縁層側表面を原子間力顕微鏡にて3次元形状データをフルスケール3〜6μmにて測定して各点における高さの値からなる3次元形状データとして測定し、下記式1に示される二次元フーリエ変換を行って周波数の関数であるパワースペクトルを算出し、600nmに相当する周波数の強度が変換前の表面高さ値1.6μmに相当する強度以下である導体層を選定すること、この導体層上に絶縁層を積層することを特徴とする導体層と光透過性の絶縁層が積層された構造のフレキシブルプリント基板用の積層体の製造方法。
Figure 0004219721
F(u, v):変換によって得られた関数(パワースペクトル)
u, v:x, y方向の波数
f(x, y):変換対象の関数(3次元形状データ)
(x, y):平面座標
Three-dimensional shape consisting of height values at each point by measuring the surface of the insulating layer side of the conductor layer made of rolled copper foil or electrolytic copper foil with an atomic force microscope and measuring the three-dimensional shape data at a full scale of 3-6 μm. Measured as data, a two-dimensional Fourier transform represented by the following formula 1 is performed to calculate a power spectrum as a function of frequency, and the intensity of the frequency corresponding to 600 nm corresponds to the surface height value before conversion of 1.6 μm. Production of a laminate for a flexible printed circuit board having a structure in which a conductive layer and a light-transmissive insulating layer are laminated, wherein a conductive layer having a strength or lower is selected and an insulating layer is laminated on the conductive layer. Method.
Figure 0004219721
F (u, v): function obtained by conversion (power spectrum)
u, v: wave numbers in x and y directions f (x, y): function to be converted (three-dimensional shape data)
(X, y): plane coordinates
JP2003096474A 2003-03-31 2003-03-31 Manufacturing method of laminate Expired - Fee Related JP4219721B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003096474A JP4219721B2 (en) 2003-03-31 2003-03-31 Manufacturing method of laminate
PCT/JP2004/004396 WO2004088738A1 (en) 2003-03-31 2004-03-29 Laminate
KR1020057013328A KR20050113173A (en) 2003-03-31 2004-03-29 Laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096474A JP4219721B2 (en) 2003-03-31 2003-03-31 Manufacturing method of laminate

Publications (2)

Publication Number Publication Date
JP2004299305A JP2004299305A (en) 2004-10-28
JP4219721B2 true JP4219721B2 (en) 2009-02-04

Family

ID=33127481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096474A Expired - Fee Related JP4219721B2 (en) 2003-03-31 2003-03-31 Manufacturing method of laminate

Country Status (3)

Country Link
JP (1) JP4219721B2 (en)
KR (1) KR20050113173A (en)
WO (1) WO2004088738A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804806B2 (en) * 2005-06-13 2011-11-02 新日鐵化学株式会社 Copper-clad laminate and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477460B2 (en) * 2001-07-11 2003-12-10 三井金属鉱業株式会社 Laminated film for COF and COF film carrier tape

Also Published As

Publication number Publication date
JP2004299305A (en) 2004-10-28
WO2004088738A1 (en) 2004-10-14
KR20050113173A (en) 2005-12-01

Similar Documents

Publication Publication Date Title
JP4804806B2 (en) Copper-clad laminate and manufacturing method thereof
JP6320031B2 (en) Flexible copper clad laminate
US7211332B2 (en) Laminate
TWI599277B (en) Flexible copper-clad laminate
US20130071652A1 (en) Laminate for flexible wiring
JP4652020B2 (en) Copper-clad laminate
CN100468675C (en) Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate
JP2009018521A (en) Copper clad plate
KR102404294B1 (en) Flexible printed circuit board and electronic device
JP4219721B2 (en) Manufacturing method of laminate
JP5698585B2 (en) Metal-clad laminate
CN206644406U (en) Nano metal substrate for ultra fine-line FPC and COF material
TWI640424B (en) Nano metal substrate for FPC and COF materials
CN110871606B (en) Metal-clad laminate, adhesive sheet, adhesive polyimide resin composition, and circuit board
CN113493914A (en) Metal-clad polymer film and electronic device
JP7217122B2 (en) Metal-clad laminate and its manufacturing method
JP6915132B2 (en) Manufacturing method of copper-clad laminate
JP7050859B2 (en) Manufacturing method of copper-clad laminate
JP2006179666A (en) Laminated body, cof film carrier tape formed by using the laminated body and cof chip mounting method using the cof film carrier tape
JP6624756B2 (en) Flexible circuit board, method of using the same, and electronic equipment
JP2009018523A (en) Copper clad plate
JP2008211046A (en) Chip-on film
JP2020045549A (en) Electrolytic copper foil and manufacturing method therefor, copper-clad laminate, circuit board, electronic device and electronic apparatus
JP2016191698A (en) Copper-clad laminate and circuit board
JP2017015531A (en) Copper clad laminate sheet and circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4219721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees