TWI640424B - Nano metal substrate for FPC and COF materials - Google Patents

Nano metal substrate for FPC and COF materials Download PDF

Info

Publication number
TWI640424B
TWI640424B TW106143347A TW106143347A TWI640424B TW I640424 B TWI640424 B TW I640424B TW 106143347 A TW106143347 A TW 106143347A TW 106143347 A TW106143347 A TW 106143347A TW I640424 B TWI640424 B TW I640424B
Authority
TW
Taiwan
Prior art keywords
layer
nano metal
fpc
thickness
copper foil
Prior art date
Application number
TW106143347A
Other languages
Chinese (zh)
Other versions
TW201829182A (en
Inventor
林志銘
李韋志
李建輝
Original Assignee
亞洲電材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710074960.6A external-priority patent/CN108428673A/en
Priority claimed from CN201720283213.9U external-priority patent/CN206644406U/en
Application filed by 亞洲電材股份有限公司 filed Critical 亞洲電材股份有限公司
Publication of TW201829182A publication Critical patent/TW201829182A/en
Application granted granted Critical
Publication of TWI640424B publication Critical patent/TWI640424B/en

Links

Abstract

一種用於FPC及COF材料的奈米金屬基板,包括低熱膨脹係數聚醯亞胺層、形成於該低熱膨脹係數聚醯亞胺層上的粗化聚醯亞胺層及形成於粗化聚醯亞胺層上的超薄奈米金屬層,其中,該粗化聚醯亞胺層介於低熱膨脹係數聚醯亞胺層和超薄奈米金屬層之間。本發明的奈米金屬基板具有極佳的耐離子遷移性、尺寸安定性、耐藥品性、耐熱耐高溫性及接著力;適用於雷射加工盲孔及微孔,且不易產生針孔,適合細線路蝕刻,不易側蝕,滿足基板細線化發展的需求。 A nano metal substrate for FPC and COF materials, comprising a low thermal expansion coefficient polyimine layer, a rough polyimine layer formed on the low thermal expansion coefficient polyimine layer, and formed on a coarse polycondensation layer An ultra-thin nano metal layer on the imide layer, wherein the rough polyimine layer is interposed between the low thermal expansion coefficient polyimide layer and the ultra-thin nano metal layer. The nano metal substrate of the invention has excellent ion migration resistance, dimensional stability, chemical resistance, heat resistance and high temperature resistance and adhesion; suitable for laser processing blind holes and micropores, and is not easy to generate pinholes, suitable for Thin line etching, not easy to side erosion, to meet the needs of the development of thin-film substrate.

Description

用於FPC及COF材料的奈米金屬基板  Nano metal substrate for FPC and COF materials  

本發明係關於一種電子基板技術領域,特別是關於一種用於超細線路FPC及COF材料的奈米金屬基板。 The present invention relates to the field of electronic substrate technology, and more particularly to a nano metal substrate for ultrafine line FPC and COF materials.

軟性印刷線路板(Flexible Printed Circuit,FPC),俗稱「軟板」,具有輕、薄、短、小等優點,在手機、數位相機、數位攝影機等小型電子產品中被廣泛採用,而覆晶薄膜封裝(Chip On Film,COF)技術,是運用軟性電路板作封裝晶片載體將晶片與軟性電路板電路結合的技術。隨著電子產品趨向微小型化發展,FPC或COF軟性電路板在功能上均要求更強大且趨向高頻化、高密度和細線化的發展方向。 Flexible Printed Circuit (FPC), commonly known as "soft board", is light, thin, short, and small. It is widely used in small electronic products such as mobile phones, digital cameras, and digital cameras. Chip On Film (COF) technology is a technology that combines a chip with a flexible circuit board circuit using a flexible circuit board as a package wafer carrier. As electronic products tend to be miniaturized, FPC or COF flexible circuit boards are required to be more powerful in function and tend to be high-frequency, high-density and thin-line.

撓性覆銅板是FPC或COF加工的基板材料,而撓性覆銅板的高密度、細線化的性能很大程度取決於薄銅箔部分的加工製程。 The flexible copper clad laminate is a substrate material processed by FPC or COF, and the high density and thin line properties of the flexible copper clad laminate largely depend on the processing process of the thin copper foil portion.

目前基板廠商對薄銅箔金屬層部分的加工主要採用兩類製造方法,一是濺鍍法或鍍銅法,二是載體銅箔法。 At present, the substrate manufacturer mainly uses two types of manufacturing methods for the processing of the thin copper foil metal layer portion, one is a sputtering method or a copper plating method, and the other is a carrier copper foil method.

濺鍍法或鍍銅法,以聚醯亞胺(PI)膜為基材,在PI膜上濺鍍含鉻的合金作為中介層,再濺鍍銅金屬為晶種層,然後電鍍銅使銅層增厚。但是一般PI膜表面粗糙度在10至20nm,接著力不佳,需要對PI膜以電漿或短波長紫外 線進行表面處理,但是處理後的PI膜對後續熱處理要求高,否則接著力劣化剝離。另外,由於PI膜的表面具有一定的粗糙度,在薄銅箔金屬層電鍍時表面容易產生針孔;並且該方法製成的薄銅箔金屬層在COF或FPC蝕刻製程中常造成蝕刻不完全,線路根部殘留微量得鉻金屬會造成離子遷移的問題,而影響細線路化COF或FPC的品質。 Sputtering or copper plating method, using a polyimide film (PI) film as a substrate, sputtering a chromium-containing alloy as an interposer on the PI film, and then sputtering a copper metal as a seed layer, and then electroplating copper to make copper The layer is thickened. However, in general, the surface roughness of the PI film is 10 to 20 nm, and the force is not good. It is necessary to surface-treat the PI film with plasma or short-wavelength ultraviolet rays, but the treated PI film requires high heat treatment for subsequent heat treatment, otherwise the force is deteriorated and peeled off. In addition, since the surface of the PI film has a certain roughness, pinholes are easily generated on the surface of the thin copper foil metal layer; and the thin copper foil metal layer produced by the method often causes incomplete etching in the COF or FPC etching process. Residual traces of chromium metal at the root of the line can cause ion migration problems and affect the quality of fine-lined COF or FPC.

而載體銅箔法,雖然載體層可保護銅箔不折傷、墊傷,但是有難以剝離之問題,造成加工困難,而剝離時的應力殘留容易造成銅箔變形及尺寸漲縮變化。另外,超薄銅箔價格昂貴且難以取得,加上超薄銅箔加工不易,所以現有銅箔厚度難以低於6μm以下。 In the carrier copper foil method, although the carrier layer can protect the copper foil from being damaged or scratched, there is a problem that it is difficult to peel off, which causes difficulty in processing, and stress residual during peeling tends to cause deformation and dimensional change of the copper foil. Further, the ultra-thin copper foil is expensive and difficult to obtain, and it is difficult to process the ultra-thin copper foil, so the thickness of the conventional copper foil is hard to be less than 6 μm.

本發明提供一種用於超細線路FPC及COF材料的奈米金屬基板,具有極佳的耐離子遷移性、尺寸安定性、耐藥品性、耐熱耐高溫性及接著力;適用於雷射加工盲孔/微孔,且不易產生針孔,適合細線路蝕刻,不易側蝕。此外,本發明採用奈米銅設計,滿足基板細線化發展的需求。 The invention provides a nano metal substrate for ultra-fine line FPC and COF materials, which has excellent ion migration resistance, dimensional stability, chemical resistance, heat resistance and high temperature resistance and adhesion; suitable for laser processing blindness Hole/micro hole, and it is not easy to produce pinhole, suitable for fine line etching and not easy to side etching. In addition, the present invention adopts a nano copper design to meet the needs of the thin line development of the substrate.

為解決上述技術問題,本發明提供一種用於FPC及COF材料的奈米金屬基板,包括:厚度為12.5至100μm之低熱膨脹係數聚醯亞胺層,係具有相對之第一表面和第二表面,且其熱膨脹係數為4至19ppm/℃;厚度為2至5μm之粗化聚醯亞胺層,係形成於該低熱膨脹係數聚醯亞胺層之第一表面上;以及厚度為90至800nm之超薄奈米金屬層,係形成於該粗化聚醯亞胺層上,使該粗化聚醯亞胺層 位於該低熱膨脹係數聚醯亞胺層和超薄奈米金屬層之間,且與該超薄奈米金屬層接觸的該粗化聚醯亞胺層的表面為粗糙度(Rz)介於50至800nm之間的粗糙面。 In order to solve the above technical problems, the present invention provides a nano metal substrate for FPC and COF materials, comprising: a low thermal expansion coefficient polyimine layer having a thickness of 12.5 to 100 μm, having a first surface and a second surface opposite to each other And a coefficient of thermal expansion of 4 to 19 ppm/° C.; a roughened polyimine layer having a thickness of 2 to 5 μm formed on the first surface of the low thermal expansion coefficient polyimide layer; and a thickness of 90 to 800 nm The ultra-thin nano metal layer is formed on the rough polyimine layer, and the rough polyimine layer is located between the low thermal expansion coefficient polyimide layer and the ultra-thin nano metal layer. And the surface of the rough polyimine layer in contact with the ultra-thin nano metal layer is a rough surface having a roughness (Rz) of between 50 and 800 nm.

本發明用於FPC及COF材料的奈米金屬基板的有益效果至少具有以下幾點: The beneficial effects of the nano metal substrate of the present invention for FPC and COF materials have at least the following points:

一、本發明的低熱膨脹係數聚醯亞胺層和粗化聚醯亞胺層構成的多層疊構,可以降低奈米金屬基板的CTE(Coefficient of thermal expansion,熱膨脹係數)值,使得奈米金屬基板的尺寸漲縮更小,具有極佳的尺寸安定性,適用於超細線路的應用。 1. The multi-layer structure composed of the low thermal expansion coefficient polyimine layer and the rough polyimine layer of the invention can reduce the CTE (Coefficient of Thermal Expansion) value of the nano metal substrate, so that the nano metal The size of the substrate is smaller and smaller, and it has excellent dimensional stability and is suitable for applications in ultra-fine lines.

二、由於本發明的粗化聚醯亞胺(PI)層的表面粗糙度介於50至800nm之間,其係經過粗化處理的PI樹脂,可以增加與金屬層的接著力,並且其表面粗化處理後,含有無機物粉體或阻燃性之化合物,且復可經過表面電暈、電漿處理,提升表面能,增加粗化聚醯亞胺層與超薄奈米金屬層之間的接著力,無機物粉體或阻燃性之化合物還能提升其表面的硬度和阻燃性。 2. Since the roughened polyimine (PI) layer of the present invention has a surface roughness of between 50 and 800 nm, which is a roughened PI resin, can increase the adhesion to the metal layer, and the surface thereof After roughening treatment, it contains inorganic powder or flame retardant compound, and can be treated by surface corona and plasma treatment to increase surface energy and increase between coarsened polyimide layer and ultra-thin nano metal layer. The force, inorganic powder or flame retardant compound can also increase the hardness and flame retardancy of the surface.

三、本發明超薄奈米金屬層包括銅箔層與其他金屬層構成的多層合金金屬層時,合金層的設計有利於提高奈米金屬基板的耐離子遷移性,提高FPC或COF材料的細線化品質及絕緣性能。 3. When the ultra-thin nano metal layer of the invention comprises a multilayer alloy metal layer composed of a copper foil layer and other metal layers, the alloy layer is designed to improve the ion mobility resistance of the nano metal substrate and improve the fine line of the FPC or COF material. Quality and insulation properties.

四、本發明的保護層可選用載體層或乾膜層,載體膜或乾膜都適用於半加成法工藝,半加成法的技術更適用FPC或COF材料薄型高密度的細線化線路要求,並且載體 膜和乾膜都可以保護超薄奈米金屬層在FPC或COF半加成制程前不折傷、墊傷和氧化。 4. The protective layer of the present invention may be provided with a carrier layer or a dry film layer, and the carrier film or the dry film are suitable for the semi-additive process, and the semi-additive method is more suitable for the thin and high-density thin line requirements of the FPC or COF material. And both the carrier film and the dry film can protect the ultra-thin nano metal layer from damage, padding and oxidation before the FPC or COF semi-addition process.

當保護層選用載體層時,載體層由PET層和低黏著層構成,載體層通過低黏著層貼覆于超薄奈米金屬層表面,PET的耐溫性在180至220℃,耐熱耐高溫性好;低黏著層的離型力僅為1至5g/cm,因此載體層容易被剝離,剝離後不易造成奈米金屬基板沾黏銅顆粒於載體膜上,剝離時殘餘應力小,不會造成超薄奈米金屬層變形,不影響基板的尺寸安定性,有利於下游加工的使用與提升良率。 When the protective layer is selected from the carrier layer, the carrier layer is composed of a PET layer and a low adhesion layer, and the carrier layer is applied to the surface of the ultra-thin nano metal layer through a low adhesion layer, and the temperature resistance of the PET is 180 to 220 ° C, and the heat resistance and high temperature are high. Good adhesion; the release force of the low adhesion layer is only 1 to 5g/cm, so the carrier layer is easily peeled off, and it is not easy to cause the nano metal substrate to adhere to the carrier film after peeling, and the residual stress is small when peeling off. The deformation of the ultra-thin nano metal layer does not affect the dimensional stability of the substrate, which is beneficial to the use of downstream processing and improvement of yield.

當保護層選用乾膜層時,乾膜層包括感光樹脂層和透光層,感光樹脂層的一面覆蓋透光層且另一面貼覆于超薄奈米金屬層表面,通過紫外線的照射,感光樹脂層中部分樹脂發生交聯固化反應,形成一種穩定的物質附著於表面上,再顯影、脫膜,即得所需線路,因此使用乾膜成像可靠度高,可以減少下游加工工序,使之直接用於曝光顯影線路蝕刻,有利於實現機械化和自動化。 When the protective layer is a dry film layer, the dry film layer comprises a photosensitive resin layer and a light transmitting layer, one side of the photosensitive resin layer covers the light transmitting layer and the other surface is attached to the surface of the ultra-thin nano metal layer, and is exposed to ultraviolet light. A part of the resin in the resin layer undergoes a cross-linking curing reaction to form a stable substance attached to the surface, and then develops and removes the film, thereby obtaining a desired line. Therefore, the use of dry film imaging has high reliability, and the downstream processing process can be reduced. Directly used for exposure development line etching, facilitating mechanization and automation.

五、當低黏著層選用耐高溫矽膠黏著層或丙烯酸系黏著層時,其密著性極佳,高溫高濕環境下與超薄奈米金屬層的介面不會脫層/分離。 5. When the low adhesion layer is made of high temperature resistant adhesive layer or acrylic adhesive layer, the adhesion is excellent, and the interface between the ultra-thin nano metal layer and the ultra-thin nano metal layer will not be delaminated/separated under high temperature and high humidity environment.

六、本發明的奈米金屬基板不會發生捲曲,尺寸安定性優良,適合雷射加工,適用於微孔/盲孔及任何孔形要求;並且採用多次濺鍍或多層電鍍合金,鍍層面銅分布均勻,不易產生針孔,適合細線路蝕刻,不易側蝕。 6. The nano metal substrate of the invention does not curl, has excellent dimensional stability, is suitable for laser processing, is suitable for microporous/blind holes and any hole shape requirements; and is used for multiple sputtering or multi-layer plating alloy, plating layer The copper is evenly distributed, and it is not easy to produce pinholes. It is suitable for fine line etching and is not easy to be edge-etched.

七、本發明的超薄奈米金屬層的厚度較佳為90至 200nm,線寬/線距可至15/15μm,甚至10/10μm或更低線路要求,奈米銅的設計滿足FPC或COF基板的細線化要求。 7. The ultrathin nano metal layer of the present invention preferably has a thickness of 90 to 200 nm, a line width/line distance of 15/15 μm, or even a 10/10 μm or lower line requirement, and the nano copper is designed to satisfy FPC or COF. The thinning requirements of the substrate.

100‧‧‧低熱膨脹係數聚醯亞胺層 100‧‧‧Low thermal expansion coefficient polyimine layer

100a‧‧‧第一表面 100a‧‧‧ first surface

100b‧‧‧第二表面 100b‧‧‧ second surface

200‧‧‧粗化聚醯亞胺層 200‧‧‧ coarse polyimine layer

300‧‧‧超薄奈米金屬層 300‧‧‧Ultra-thin nano metal layer

301‧‧‧銅箔層 301‧‧‧copper layer

301a‧‧‧第一銅箔表面 301a‧‧‧First copper foil surface

301b‧‧‧第二銅箔表面 301b‧‧‧Second copper foil surface

302‧‧‧第一金屬子層 302‧‧‧First metal sublayer

303‧‧‧第二金屬子層 303‧‧‧Second metal sublayer

400‧‧‧保護層 400‧‧‧Protective layer

401‧‧‧PET層 401‧‧‧PET layer

402‧‧‧低黏著層 402‧‧‧Low adhesive layer

403‧‧‧感光樹脂層 403‧‧‧Photosensitive resin layer

404‧‧‧透光層 404‧‧‧Transparent layer

第1圖係本發明第一實施態樣之單面奈米金屬基板的結構示意圖;第2圖係本發明第二實施態樣之雙面奈米金屬基板的結構示意圖;第3圖係本發明載體層的結構示意圖;第4圖係本發明乾膜層的結構示意圖;第5圖係本發明超薄奈米金屬層的六種結構中的第一種示意圖;第6圖係本發明超薄奈米金屬層的六種結構中的第二種示意圖;第7圖係本發明超薄奈米金屬層的六種結構中的第三種示意圖;第8圖係本發明超薄奈米金屬層的六種結構中的第四種示意圖;第9圖係本發明超薄奈米金屬層的六種結構中的第五種示意圖;第10圖係本發明超薄奈米金屬層的六種結構中的第六種示意圖;以及第11圖係說明尺寸安定性的測試方法。 1 is a schematic structural view of a single-sided nano metal substrate according to a first embodiment of the present invention; FIG. 2 is a schematic structural view of a double-sided nano metal substrate according to a second embodiment of the present invention; FIG. 4 is a schematic view showing the structure of the dry film layer of the present invention; FIG. 5 is a first schematic view showing six structures of the ultrathin nano metal layer of the present invention; and FIG. 6 is an ultrathin of the present invention. The second schematic of the six structures of the nano metal layer; the seventh figure is the third schematic of the six structures of the ultrathin nano metal layer of the present invention; and the eighth figure is the ultrathin nano metal layer of the present invention. The fourth schematic of the six structures; the ninth is a fifth of the six structures of the ultrathin nano metal layer of the present invention; and the tenth is the six structures of the ultrathin nano metal layer of the present invention. The sixth schematic diagram; and the 11th diagram illustrate the test method for dimensional stability.

以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。 The other embodiments of the present invention will be readily understood by those skilled in the art from this disclosure.

須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「第一」、「第二」及「一」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。 It is to be understood that the structure, the proportions, the size, and the like of the present invention are intended to be used in conjunction with the disclosure of the specification, and are not intended to limit the invention. The conditions are limited, so it is not technically meaningful. Any modification of the structure, change of the proportional relationship or adjustment of the size should remain in this book without affecting the effects and the objectives that can be achieved by the present invention. The technical content disclosed in the invention can be covered. In the meantime, the terms "upper", "first", "second" and "one" are used in the description, and are not intended to limit the scope of the invention. Changes or adjustments in the relative relationship are considered to be within the scope of the present invention.

第一實施態樣 First embodiment

第1圖係顯示本發明第一實施態樣之奈米金屬基板,係包括厚度為12.5至100μm之低熱膨脹係數聚醯亞胺層100,係具有相對之第一表面100a和第二表面100b,且其熱膨脹係數為4至19ppm/℃;厚度為2至5μm之粗化聚醯亞胺層200,係形成於該低熱膨脹係數聚醯亞胺層100之第一表面100a上;以及厚度為90至800nm之超薄奈米金屬層300,係形成於該粗化聚醯亞胺層200上,使該粗化聚醯亞胺層200位於該低熱膨脹係數聚醯亞胺層100和超薄奈米金屬層300之間,且與該超薄奈米金屬層300接 觸的該粗化聚醯亞胺層200的表面為粗糙度介於50至800nm之間的粗糙面。 1 is a view showing a nano metal substrate according to a first embodiment of the present invention, comprising a low thermal expansion coefficient polyimine layer 100 having a thickness of 12.5 to 100 μm, having a first surface 100a and a second surface 100b opposite to each other, And a coefficient of thermal expansion of 4 to 19 ppm/° C.; a roughened polyimine layer 200 having a thickness of 2 to 5 μm formed on the first surface 100a of the low thermal expansion coefficient polyimide layer 100; and a thickness of 90 An ultra-thin nano metal layer 300 of 800 nm is formed on the rough polyimine layer 200 such that the rough polyimine layer 200 is located in the low thermal expansion coefficient polyimine layer 100 and ultrathin The surface of the rough polyimine layer 200 between the metal metal layers 300 and in contact with the ultra-thin nano metal layer 300 is a rough surface having a roughness of between 50 and 800 nm.

此外,該奈米金屬基板復包括厚度為6至60μm之保護層400,係形成於該超薄奈米金屬層300上,使該超薄奈米金屬層300位於該保護層400與粗化聚醯亞胺層200之間。此外,另一保護層400係形成於該低熱膨脹係數聚醯亞胺層100之第二表面100b上。 In addition, the nano metal substrate comprises a protective layer 400 having a thickness of 6 to 60 μm formed on the ultra-thin nano metal layer 300, and the ultra-thin nano metal layer 300 is located on the protective layer 400 and coarsened. Between the quinone imine layers 200. Further, another protective layer 400 is formed on the second surface 100b of the low thermal expansion coefficient polyimine layer 100.

第二實施態樣 Second embodiment

請參照第2圖,係顯示本發明第二實施態樣之奈米金屬基板。該奈米金屬基板復包括另一粗化聚醯亞胺層200、另一超薄奈米金屬層300及另一保護層400,係依序形成於該低熱膨脹係數聚醯亞胺層100之第二表面100b之上。 Referring to Fig. 2, there is shown a nano metal substrate according to a second embodiment of the present invention. The nano metal substrate further comprises another rough polyimine layer 200, another ultra-thin nano metal layer 300 and another protective layer 400, which are sequentially formed on the low thermal expansion coefficient polyimine layer 100. Above the second surface 100b.

於較佳實施例中,該低熱膨脹係數聚醯亞胺層100的厚度為12.5至50μm,該超薄奈米金屬層300的厚度為90至200nm,該保護層400的厚度為28至60μm,該低熱膨脹係數聚醯亞胺層100的熱膨脹係數為4至11ppm/℃,該粗糙面之表面粗糙度介於80至400nm。 In a preferred embodiment, the low thermal expansion coefficient polyimine layer 100 has a thickness of 12.5 to 50 μm, the ultra-thin nano metal layer 300 has a thickness of 90 to 200 nm, and the protective layer 400 has a thickness of 28 to 60 μm. The low thermal expansion coefficient polyimine layer 100 has a coefficient of thermal expansion of 4 to 11 ppm/° C. and the rough surface has a surface roughness of 80 to 400 nm.

該低熱膨脹係數聚醯亞胺層100和粗化聚醯亞胺層200的顏色可經由添加顏料於層體中而得到各種不同顏色,例如黑色、黃色、白色或透明色,但不限於此。於一具體實施態樣中,本發明的低熱膨脹係數聚醯亞胺層100和粗化聚醯亞胺層200皆採用黑色,粗化聚醯亞胺層與超薄奈米金屬層的接著力大於0.8kgf/cm。 The color of the low thermal expansion coefficient polyimine layer 100 and the rough polyimine layer 200 can be obtained by adding a pigment to the layer to obtain various colors such as black, yellow, white or transparent, but is not limited thereto. In one embodiment, the low thermal expansion coefficient polyimine layer 100 and the rough polyimine layer 200 of the present invention are both black, and the adhesion of the rough polyimine layer to the ultra-thin nano metal layer is used. More than 0.8kgf/cm.

構成該粗化聚醯亞胺層200的該粗糙面的結構可以是經過表面電暈或電漿處理,也可以是該粗化聚醯亞胺層200上(與超薄奈米金屬層300接觸的表面)形成有粉體粗化子層,該粉體粗化子層是由含有二氧化矽、二氧化鈦、氧化鋁、氫氧化鋁和碳酸鈣所組成群組中的至少一種的無機物粉體構成的材料層或含有鹵素、磷系、氮系和硼系中的至少一種阻燃性化合物粉體構成的材料層。 The structure constituting the rough surface of the rough polyimine layer 200 may be subjected to surface corona or plasma treatment, or may be on the rough polyimine layer 200 (contact with the ultra-thin nano metal layer 300). The surface is formed with a powder coarsening sublayer composed of an inorganic powder containing at least one of the group consisting of cerium oxide, titanium oxide, aluminum oxide, aluminum hydroxide and calcium carbonate. A material layer or a material layer composed of at least one flame retardant compound powder of a halogen, a phosphorus system, a nitrogen system, and a boron system.

該超薄奈米金屬層300是銅箔層或是至少二層金屬層構成的多層合金金屬層,該至少二層金屬層之一係為銅箔層,且該至少二層金屬層之另一者係選自銀層、鎳層、鉻層、鈀層、鋁層、鈦層、銅層、鉬層、銦層、鉑層或金層,其中,該銅箔層的厚度為90至150nm,該至少二層金屬層之另一者的厚度為5至15nm。 The ultra-thin nano metal layer 300 is a copper foil layer or a multilayer alloy metal layer composed of at least two metal layers, one of the at least two metal layers is a copper foil layer, and the other of the at least two metal layers Is selected from the group consisting of a silver layer, a nickel layer, a chromium layer, a palladium layer, an aluminum layer, a titanium layer, a copper layer, a molybdenum layer, an indium layer, a platinum layer or a gold layer, wherein the copper foil layer has a thickness of 90 to 150 nm, The other of the at least two metal layers has a thickness of 5 to 15 nm.

復參閱第3及4圖,係顯示本發明載體層的結構示意圖。 Referring to Figures 3 and 4, there is shown a schematic view of the structure of the carrier layer of the present invention.

如第3圖所示,該保護層400是載體層,該載體層由PET層401以及形成於該PET層401表面上的低黏著層402構成,該載體層通過該低黏著層402貼覆於該超薄奈米金屬層300表面(圖略),其中,該PET層401的厚度為23至50μm,該低黏著層402的厚度為5至10μm,該低黏著層402的離型力為1至5g/cm。 As shown in FIG. 3, the protective layer 400 is a carrier layer composed of a PET layer 401 and a low adhesion layer 402 formed on the surface of the PET layer 401. The carrier layer is pasted by the low adhesion layer 402. The surface of the ultra-thin nano metal layer 300 (not shown), wherein the PET layer 401 has a thickness of 23 to 50 μm, the low adhesion layer 402 has a thickness of 5 to 10 μm, and the low adhesion layer 402 has a release force of 1 Up to 5g/cm.

當低黏著層選用耐高溫矽膠黏著層或丙烯酸系黏著層時,其密著性極佳,高溫高濕環境下,與超薄奈米金屬層300的介面不會脫層/分離。 When the low adhesion layer is made of a high temperature resistant adhesive layer or an acrylic adhesive layer, the adhesion is excellent, and the interface with the ultrathin nano metal layer 300 does not delaminate/separate under high temperature and high humidity environment.

如第4圖所示,該保護層400是乾膜層,該乾膜層包括感光樹脂層403和透光層404,該感光樹脂層403的一面覆蓋該透光層404且另一面貼覆於該超薄奈米金屬層300表面。 As shown in FIG. 4, the protective layer 400 is a dry film layer including a photosensitive resin layer 403 and a light transmissive layer 404. One surface of the photosensitive resin layer 403 covers the light transmissive layer 404 and the other surface is attached to The surface of the ultra-thin nano metal layer 300.

復參閱第5至10圖,係舉例說明該超薄奈米金屬層300之六種結構。 Referring to Figures 5 through 10, the six structures of the ultra-thin nano metal layer 300 are illustrated.

如第5圖所示,該超薄奈米金屬層300係由單層銅箔層301構成,該銅箔層301的厚度為0.1至0.2μm。 As shown in Fig. 5, the ultra-thin nano metal layer 300 is composed of a single-layer copper foil layer 301 having a thickness of 0.1 to 0.2 μm.

第6至10圖係說明該超薄奈米金屬層300是至少二層金屬層構成的多層合金金屬層,該至少二層金屬層之一係為銅箔層,且該至少二層金屬層之另一者係選自銀層、鎳層、鉻層、鈀層、鋁層、鈦層、銅層、鉬層、銦層、鉑層或金層,其中,該銅箔層的厚度為90至150nm,該至少二層金屬層之另一者的厚度為5至15nm。 6 to 10 illustrate that the ultra-thin nano metal layer 300 is a multilayer alloy metal layer composed of at least two metal layers, one of the at least two metal layers being a copper foil layer, and the at least two metal layers The other one is selected from the group consisting of a silver layer, a nickel layer, a chromium layer, a palladium layer, an aluminum layer, a titanium layer, a copper layer, a molybdenum layer, an indium layer, a platinum layer or a gold layer, wherein the copper foil layer has a thickness of 90 to At 150 nm, the other of the at least two metal layers has a thickness of 5 to 15 nm.

如第6圖所示,該超薄奈米金屬層300係為兩層疊構,亦即由銅箔層301以及形成於銅箔層任一面的第一金屬子層302構成,其材質為鎳,該銅箔層301的厚度為90至150nm,該第一金屬子層302的厚度為5至15nm。 As shown in FIG. 6, the ultra-thin nano metal layer 300 is composed of a two-layer structure, that is, a copper foil layer 301 and a first metal sub-layer 302 formed on either side of the copper foil layer, and the material thereof is nickel. The copper foil layer 301 has a thickness of 90 to 150 nm, and the first metal sublayer 302 has a thickness of 5 to 15 nm.

如第7圖所示,該超薄奈米金屬層300係為兩層疊構,由銅箔層301以及形成於銅箔層任一面且材質為銀的第一金屬子層302構成,該銅箔層301的厚度為90至150nm,該第一金屬子層302的厚度為5至15nm。 As shown in FIG. 7, the ultra-thin nano metal layer 300 is a two-layer structure, and is composed of a copper foil layer 301 and a first metal sub-layer 302 formed of any one of the copper foil layers and made of silver. The layer 301 has a thickness of 90 to 150 nm, and the first metal sub-layer 302 has a thickness of 5 to 15 nm.

第8至10圖係進一步說明該超薄奈米金屬層300係包括:銅箔層301,係具有相對之第一銅箔表面301a及第 二銅箔表面301b;第一金屬子層302,係形成於該銅箔層301之第一銅箔表面301a上,且形成該第一金屬子層302之材質為鎳;以及第二金屬子層303,係形成於該銅箔層301之第二銅箔表面301b上,使該銅箔層301位於該第一金屬子層302及該第二金屬子層303之間,且形成該第二金屬子層303之材質係選自鎳、銀或銅。 8 to 10 further illustrate that the ultra-thin nano metal layer 300 includes: a copper foil layer 301 having a first copper foil surface 301a and a second copper foil surface 301b; and a first metal sub-layer 302 Formed on the first copper foil surface 301a of the copper foil layer 301, and the material of the first metal sub-layer 302 is made of nickel; and the second metal sub-layer 303 is formed by the second copper of the copper foil layer 301. The foil surface 301b is disposed between the first metal sub-layer 302 and the second metal sub-layer 303, and the second metal sub-layer 303 is made of nickel, silver or copper.

如第8圖所示,形成該第一金屬子層302之材質為鎳,該第二金屬子層303之材質為銀,該銅箔層301的厚度為90至150nm,該第一金屬子層302和該第二金屬子層303之材質的厚度各自為5至15nm。 As shown in FIG. 8, the material of the first metal sub-layer 302 is made of nickel, and the material of the second metal sub-layer 303 is silver. The thickness of the copper foil layer 301 is 90 to 150 nm, and the first metal sub-layer The thickness of the material of 302 and the second metal sub-layer 303 is each 5 to 15 nm.

如第9圖所示,形成該第一金屬子層302之材質為鎳,該第二金屬子層303之材質亦為鎳,該銅箔層301的厚度為90至150nm,該第一金屬子層302和該第二金屬子層303之材質的厚度各自為5至15nm。 As shown in FIG. 9, the material of the first metal sub-layer 302 is made of nickel, and the material of the second metal sub-layer 303 is also nickel. The thickness of the copper foil layer 301 is 90 to 150 nm. The thickness of the material of the layer 302 and the second metal sub-layer 303 is each 5 to 15 nm.

如第10圖所示,形成該第一金屬子層302之材質為鎳,該第二金屬子層303之材質為銅,該銅箔層301的厚度為90至150nm,該第一金屬子層302和該第二金屬子層303之材質的厚度各自為5至15nm。 As shown in FIG. 10, the material of the first metal sub-layer 302 is made of nickel, the second metal sub-layer 303 is made of copper, and the copper foil layer 301 has a thickness of 90 to 150 nm. The first metal sub-layer The thickness of the material of 302 and the second metal sub-layer 303 is each 5 to 15 nm.

所述的用於FPC及COF材料的奈米金屬基板的製造方法,所述製備方法為下列方法中的一種: The method for producing a nano metal substrate for FPC and COF materials, wherein the preparation method is one of the following methods:

於奈米金屬基板為單面板之態樣時,先提供一低熱膨脹係數聚醯亞胺層,在低熱膨脹係數聚醯亞胺層的一面壓合經表面粗化處理的粗化聚醯亞胺層,再以濺鍍或電鍍的方式在粗化聚醯亞胺層的另一面形成超薄奈米金屬層,隨 後在超薄奈米金屬層的表面和低熱膨脹係數聚醯亞胺層的另一面分別貼上保護層,即得成品。 When the nano metal substrate is in the form of a single panel, a low thermal expansion coefficient polyimine layer is first provided, and the roughened polyimine is subjected to surface roughening treatment on one side of the low thermal expansion coefficient polyimine layer. a layer, which is then sputtered or plated to form an ultra-thin nano metal layer on the other side of the roughened polyimide layer, followed by a surface of the ultra-thin nano metal layer and a layer of low thermal expansion coefficient polyimine layer A protective layer is attached to one side, that is, the finished product is obtained.

於奈米金屬基板為雙面板的態樣時,先提供一低熱膨脹係數聚醯亞胺層,在低熱膨脹係數聚醯亞胺層的兩面壓合經表面粗化處理的粗化聚醯亞胺層,再以濺鍍或電鍍的方式在兩層粗化聚醯亞胺層的另一面分別形成超薄奈米金屬層,隨後分別在兩層超薄奈米金屬層的表面貼上保護層,即得成品。 When the nano metal substrate is in the form of a double panel, a low thermal expansion coefficient polyimine layer is first provided, and the roughened polyimine is subjected to surface roughening treatment on both sides of the low thermal expansion coefficient polyimine layer. a layer, and then forming an ultra-thin nano metal layer on the other side of the two layers of the roughened polyimide layer by sputtering or electroplating, and then respectively applying a protective layer on the surface of the two layers of the ultra-thin nano metal layer. That is, the finished product.

按以下方法對實施例1至實施例5製得的奈米金屬基板進行尺寸安定性能測試,並與現有奈米金屬基板(比較例)(Sumitomo,S’perflex)進行比較,記錄如下表1:尺寸安定性的測試方法係按第11圖和以下步驟進行:1、基板裁取如第11圖尺寸後,以沖孔機在四周打出四個孔分別標以A、B、C、D;2、以二次元座標儀(Linear scale,GC92841)分別量測A至B,C至D,A至C,B至D孔中心之距離(I)並記錄之;3、將基板的銅完全蝕刻掉,以清水清洗1分鐘後,擦拭乾燥(23±2℃;50±5%RH),靜置24小時;4、以二次元座標儀分別量測A至B,C至D,A至C,B至D孔中心之距離(F1)並記錄之,以計算公式1算MD、TD的尺寸安定性資料,其為Method B之結果;5、將以上基板以150±2℃烘烤30±2分鐘,取出放入乾燥箱(23±2℃,50±5%RH)靜置24小時; 6、再以二次元座標儀分別量測A至B,C至D,A至C,B至D孔中心之距離(F2)並記錄之,以計算公式1計算MD、TD的尺寸安定性資料,其為Method C之結果,並以Method B之結果和Method C之結果計算其MD、TD變化率。 The dimensional stability properties of the nanometal substrates prepared in Examples 1 to 5 were tested in the following manner and compared with the existing nano metal substrates (Comparative Examples) (Sumitomo, S'perflex), and recorded as follows: The dimensional stability test method is carried out according to the 11th and following steps: 1. After the substrate is cut as shown in Figure 11, the four holes are punched around the punch by A, B, C, D; Calculate the distance (I) from A to B, C to D, A to C, B to the center of the D hole by a linear scale (GC92841) and record it. 3. Completely etch the copper of the substrate. After washing with water for 1 minute, wipe dry (23 ± 2 ° C; 50 ± 5% RH) and let stand for 24 hours; 4. Measure A to B, C to D, A to C with a quadruple coordinate meter, respectively. The distance from the center of B to D hole (F1) is recorded, and the dimensional stability data of MD and TD are calculated by Formula 1, which is the result of Method B. 5. The above substrate is baked at 150±2 °C for 30±2. Minutes, take it out and put it into a dry box (23±2°C, 50±5%RH) and let it stand for 24 hours. 6. Then measure A to B, C to D, A to C, B to D by the quadratic coordinate meter. The distance from the center of the hole (F2) and Record, the calculation formula to calculate the MD 1, the dimensional stability data TD, which, and to sum Results Method B Method C of the MD calculated, the change rate of the TD Method C as a result.

注:AB:A到B的距離 Note: AB: distance from A to B

CD:C到D的距離 CD: distance from C to D

AC:A到C的距離 AC: distance from A to C

BD:B到D的距離 BD: distance from B to D

MD:機械方向的變化量 MD: the amount of change in the mechanical direction

TD:產品方向的變化量 TD: The amount of change in product direction

I:初態測量值 I: initial state measurement

F(F1,F2):末態測量值 F(F1, F2): final state measurement

由表1可知,本發明的奈米金屬基板的尺寸漲縮率較小,尺寸安定性好,適用於超細線路的應用。以上所述僅為本發明的實施例,並非因此限制本發明的專利範圍,凡是利用本發明說明書及附圖內容所作的等效結構變換,或直接或間接運用在其他相關的技術領域,均同理包括在本發明的專利保護範圍內。 As can be seen from Table 1, the nano metal substrate of the present invention has a small size expansion ratio and good dimensional stability, and is suitable for use in ultrafine lines. The above is only the embodiment of the present invention, and thus does not limit the scope of the patent of the present invention. Any equivalent structural transformation made by using the specification and the drawings of the present invention, or directly or indirectly applied to other related technical fields, is the same. The scope of the invention is included in the scope of the patent protection of the present invention.

Claims (15)

一種用於軟性印刷線路板(FPC)及覆晶薄膜封裝(COF)材料的奈米金屬基板,係包括:厚度為12.5至100μm之低熱膨脹係數聚醯亞胺層,係具有相對之第一表面和第二表面,且其熱膨脹係數為4至19ppm/℃;厚度為2至5μm之粗化聚醯亞胺層,係形成於該低熱膨脹係數聚醯亞胺層之第一表面上;以及厚度為90至800nm之超薄奈米金屬層,係形成於該粗化聚醯亞胺層上,使該粗化聚醯亞胺層位於該低熱膨脹係數聚醯亞胺層和超薄奈米金屬層之間,且與該超薄奈米金屬層接觸的該粗化聚醯亞胺層的表面為粗糙度(Rz)介於50至800nm之間的粗糙面。A nano metal substrate for a flexible printed circuit board (FPC) and a flip chip package (COF) material, comprising: a low thermal expansion coefficient polyimine layer having a thickness of 12.5 to 100 μm, having a first surface opposite to And a second surface having a coefficient of thermal expansion of 4 to 19 ppm/° C.; a roughened polyimine layer having a thickness of 2 to 5 μm formed on the first surface of the low thermal expansion coefficient polyimide layer; and a thickness An ultrathin nano metal layer of 90 to 800 nm is formed on the rough polyimine layer such that the rough polythene layer is located in the low thermal expansion coefficient polyimide layer and ultrathin nano metal The surface of the roughened polyimine layer between the layers and in contact with the ultra-thin nanometal layer is a rough surface having a roughness (Rz) of between 50 and 800 nm. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,復包括厚度為6至60μm之保護層,係形成於該超薄奈米金屬層上,使該超薄奈米金屬層位於該保護層與粗化聚醯亞胺層之間。The nano metal substrate for FPC and COF materials according to claim 1 is further comprising a protective layer having a thickness of 6 to 60 μm formed on the ultrathin nano metal layer to make the ultrathin A metal layer of metal is positioned between the protective layer and the roughened polyimide layer. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該超薄奈米金屬層是經濺鍍或電鍍形成者。The nano metal substrate for FPC and COF materials according to claim 1, wherein the ultra-thin nano metal layer is formed by sputtering or electroplating. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,復包括另一粗化聚醯亞胺層、另一超薄奈米金屬層及另一保護層,係依序形成於該低熱膨脹係數聚醯亞胺層之第二表面之上。The nano metal substrate for FPC and COF materials according to claim 1 of the patent application includes another rough polyimine layer, another ultra-thin nano metal layer and another protective layer. The sequence is formed on the second surface of the low thermal expansion coefficient polyimide layer. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該低熱膨脹係數聚醯亞胺層的厚度為12.5至50μm。The nano metal substrate for FPC and COF materials according to claim 1, wherein the low thermal expansion coefficient polyimide layer has a thickness of 12.5 to 50 μm. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該超薄奈米金屬層的厚度為90至200nm。The nano metal substrate for FPC and COF materials according to claim 1, wherein the ultrathin nano metal layer has a thickness of 90 to 200 nm. 如申請專利範圍第2項所述的用於FPC及COF材料的奈米金屬基板,其中,該保護層的厚度為28至60μm。The nano metal substrate for FPC and COF materials according to claim 2, wherein the protective layer has a thickness of 28 to 60 μm. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該低熱膨脹係數聚醯亞胺層的熱膨脹係數為4至11ppm/℃。The nano metal substrate for FPC and COF materials according to claim 1, wherein the low thermal expansion coefficient polyimine layer has a thermal expansion coefficient of 4 to 11 ppm/° C. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該粗糙面之表面粗糙度介於80至400nm。The nano metal substrate for FPC and COF materials according to claim 1, wherein the rough surface has a surface roughness of 80 to 400 nm. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該粗化聚醯亞胺層具有粗化子層係由無機物粉體或阻燃性化合物粉體構成,且該粗化子層構成該粗化聚醯亞胺層之粗糙面。The nano metal substrate for FPC and COF materials according to claim 1, wherein the rough polyimine layer has a coarsened sublayer composed of an inorganic powder or a flame retardant compound powder. And the roughened sublayer constitutes a rough surface of the roughened polyimine layer. 如申請專利範圍第1項所述的用於FPC及COF材料的奈米金屬基板,其中,該超薄奈米金屬層是銅箔層或是至少二層金屬層構成的多層合金金屬層,該至少二層金屬層之一係為銅箔層,且該至少二層金屬層之另一者係選自銀層、鎳層、鉻層、鈀層、鋁層、鈦層、銅層、鉬層、銦層、鉑層或金層,其中,該銅箔層的厚度為90至150nm,該至少二層金屬層之另一者的厚度為5至15nm。The nano metal substrate for FPC and COF materials according to claim 1, wherein the ultra-thin nano metal layer is a copper foil layer or a multilayer alloy metal layer composed of at least two metal layers. One of the at least two metal layers is a copper foil layer, and the other of the at least two metal layers is selected from the group consisting of a silver layer, a nickel layer, a chromium layer, a palladium layer, an aluminum layer, a titanium layer, a copper layer, and a molybdenum layer. And an indium layer, a platinum layer or a gold layer, wherein the copper foil layer has a thickness of 90 to 150 nm, and the other of the at least two metal layers has a thickness of 5 to 15 nm. 如申請專利範圍第11項所述的用於FPC及COF材料的奈米金屬基板,其中,該超薄奈米金屬層是厚度為0.1至0.2μm之銅箔層。The nano metal substrate for FPC and COF materials according to claim 11, wherein the ultrathin nano metal layer is a copper foil layer having a thickness of 0.1 to 0.2 μm. 如申請專利範圍第11項所述的用於FPC及COF材料的奈米金屬基板,其中,該超薄奈米金屬層係包括:銅箔層,係具有相對之第一銅箔表面及第二銅箔表面;第一金屬子層,係形成於該銅箔層之第一銅箔表面上,且形成該第一金屬子層之材質為鎳;以及第二金屬子層,係形成於該銅箔層之第二銅箔表面上,使該銅箔層位於該第一金屬子層及該第二金屬子層之間,且形成該第二金屬子層之材質係選自鎳、銀或銅。The nano metal substrate for FPC and COF materials according to claim 11, wherein the ultra-thin nano metal layer comprises: a copper foil layer having a surface opposite to the first copper foil and a second a copper foil surface; a first metal sublayer formed on a surface of the first copper foil of the copper foil layer, and the material forming the first metal sublayer is nickel; and a second metal sublayer formed on the copper a surface of the second copper foil of the foil layer, the copper foil layer being located between the first metal sublayer and the second metal sublayer, and the material forming the second metal sublayer is selected from the group consisting of nickel, silver or copper . 如申請專利範圍第2項所述的用於FPC及COF材料的奈米金屬基板,其中,該保護層是載體層,該載體層由PET層以及形成於該PET層表面上的低黏著層構成,該載體層通過該低黏著層貼覆於該超薄奈米金屬層表面,其中,該PET層的厚度為23至50μm,該低黏著層的厚度為5至10μm,且該低黏著層的離型力為1至5g/cm。The nano metal substrate for FPC and COF materials according to claim 2, wherein the protective layer is a carrier layer composed of a PET layer and a low adhesion layer formed on the surface of the PET layer. The carrier layer is attached to the surface of the ultra-thin nano metal layer through the low adhesion layer, wherein the PET layer has a thickness of 23 to 50 μm, the low adhesion layer has a thickness of 5 to 10 μm, and the low adhesion layer The release force is 1 to 5 g/cm. 如申請專利範圍第2項所述的用於FPC及COF材料的奈米金屬基板,其中,該保護層是乾膜層,該乾膜層包括感光樹脂層和透光層,該感光樹脂層的一面覆蓋該透光層且另一面貼覆於該超薄奈米金屬層表面。The nano metal substrate for FPC and COF materials according to claim 2, wherein the protective layer is a dry film layer comprising a photosensitive resin layer and a light transmissive layer, the photosensitive resin layer The light transmissive layer is covered on one side and the other surface is attached to the surface of the ultra-thin nano metal layer.
TW106143347A 2017-02-13 2017-12-11 Nano metal substrate for FPC and COF materials TWI640424B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710074960.6A CN108428673A (en) 2017-02-13 2017-02-13 Nano metal base material and manufacturing method for ultra fine-line FPC and COF material
??201710074960.6 2017-02-13
CN201720283213.9U CN206644406U (en) 2017-03-22 2017-03-22 Nano metal substrate for ultra fine-line FPC and COF material
??201720283213.9 2017-03-22

Publications (2)

Publication Number Publication Date
TW201829182A TW201829182A (en) 2018-08-16
TWI640424B true TWI640424B (en) 2018-11-11

Family

ID=63960288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106143347A TWI640424B (en) 2017-02-13 2017-12-11 Nano metal substrate for FPC and COF materials

Country Status (1)

Country Link
TW (1) TWI640424B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719716B (en) * 2019-11-15 2021-02-21 輝能科技股份有限公司 Pcb structure with a silicone layer as adhesive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640663A (en) * 2005-01-07 2006-12-01 Ube Industries Polyimide-copper composite laminate
TW201442863A (en) * 2013-03-13 2014-11-16 Dainippon Ink & Chemicals Laminate, conductive pattern, and laminate production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200640663A (en) * 2005-01-07 2006-12-01 Ube Industries Polyimide-copper composite laminate
TW201442863A (en) * 2013-03-13 2014-11-16 Dainippon Ink & Chemicals Laminate, conductive pattern, and laminate production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI719716B (en) * 2019-11-15 2021-02-21 輝能科技股份有限公司 Pcb structure with a silicone layer as adhesive

Also Published As

Publication number Publication date
TW201829182A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
TWI526553B (en) Flexible laminates for flexible wiring
CN101351086B (en) Inside imbedded type line structural technique
JP2007194265A (en) Flexible printed wiring board, and its manufacturing method
CN101296562A (en) Copper foil substrates and method for making flexible printed circuit board of the same
CN108621513B (en) Nano metal substrate and manufacturing method for ultra fine-line FPC and COF material
TWI655095B (en) Nano metal substrate for FPC and COF materials
TWI655096B (en) Nano metal substrate for FPC and COF materials
WO2007097585A1 (en) Double side conductor laminates and its manufacture
TWI640424B (en) Nano metal substrate for FPC and COF materials
WO2006068000A1 (en) Stacked body for cof substrate, method for manufacturing such stacked body for cof substrate, and cof film carrier tape formed by using such stacked body for cof substrate
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
CN206644406U (en) Nano metal substrate for ultra fine-line FPC and COF material
TW584596B (en) Method for manufacturing a polyimide and metal compound sheet
JP2009031612A (en) Resin substrate
TWI724367B (en) Electromagnetic shielding film and manufacturing method thereof
US6800816B2 (en) Wiring circuit board having bumps and method of producing same
KR102138341B1 (en) Film type antenna using high ductility nickel/stannum plating and its manufacturing method
TWI694752B (en) Embedded passive device structure
JP2009241597A (en) Substrate material and substrate
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP2018062150A (en) Method for manufacturing metal-clad laminate and method for manufacturing circuit board
TW201902704A (en) White cover film for led substrate and led substrate using the same
CN106888550A (en) Metallization flexible base plate and the multilayer circuit board fabrication method using the substrate
JP2009241484A (en) Flexible metal-clad laminate board for chip on film and its manufacturing method