JP2009241597A - Substrate material and substrate - Google Patents

Substrate material and substrate Download PDF

Info

Publication number
JP2009241597A
JP2009241597A JP2009058320A JP2009058320A JP2009241597A JP 2009241597 A JP2009241597 A JP 2009241597A JP 2009058320 A JP2009058320 A JP 2009058320A JP 2009058320 A JP2009058320 A JP 2009058320A JP 2009241597 A JP2009241597 A JP 2009241597A
Authority
JP
Japan
Prior art keywords
layer
polyimide
substrate material
metal foil
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009058320A
Other languages
Japanese (ja)
Inventor
Masaki Takeuchi
雅記 竹内
Tomohisa Ota
共久 太田
Koichi Suzuki
浩一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009058320A priority Critical patent/JP2009241597A/en
Publication of JP2009241597A publication Critical patent/JP2009241597A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate material in which a thick film can be produced through a simple production process and which hardly causes sinks during the mounting of chips, resulting in reduction of warpage. <P>SOLUTION: In the substrate material, a metal foil 12, polyimide layer 11 and transparent resin layer 13 are laminated in this order. When the coefficient of the thermal expansion, thickness and module of the elasticity of the polyimide layer 11 are denoted by E<SB>1</SB>, T<SB>1</SB>and M<SB>1</SB>respectively, and the coefficient of the thermal expansion, thickness and module of the elasticity of the transparent resin layer 13 are denoted by E2, T2 and M2 respectively, the formula (1) is satisfied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、基板材料及び基板に関する。   The present invention relates to a substrate material and a substrate.

フレキシブル印刷配線板は、高分子絶縁フィルムの表面に導体回路を形成した可撓性のある配線板であり、近年電子機器の小型化、高密度を達成する手段として多用されている。なかでもCOF(Chip on Film)基板の需要が大幅に伸びている。   A flexible printed wiring board is a flexible wiring board in which a conductor circuit is formed on the surface of a polymer insulating film, and has recently been frequently used as a means for achieving miniaturization and high density of electronic devices. In particular, the demand for COF (Chip on Film) substrates is growing significantly.

COF基板材料は、通常のフレキシブル基板材料と比べ、絶縁材料厚みが厚く、透明性が求められ、COF実装工程においては、絶縁材料が高弾性を発揮する必要がある。従来のCOF基板材料は、このような条件を満たすために、ポリイミドフィルム上に蒸着やスパッタで金属層を形成する方法(以下「メタライズ法」という。)により製造されていた(特許文献1、2参照)。   The COF substrate material is thicker than the normal flexible substrate material, and is required to have transparency. In the COF mounting process, the insulating material needs to exhibit high elasticity. In order to satisfy these conditions, conventional COF substrate materials have been manufactured by a method of forming a metal layer on a polyimide film by vapor deposition or sputtering (hereinafter referred to as “metallization method”) (Patent Documents 1 and 2). reference).

特開2007−201216号公報JP 2007-201216 A 特開2006−278371号公報JP 2006-278371 A

しかしながら、メタライズ法では、透明性に優れるCOF基板が製造できる反面、銅等の金属層との接着性が不足し、蒸着やスパッタを行うための特殊な装置が必要であった。また、めっき工程や加温加熱処理が必要とする場合があるため、製造工程が複雑化する問題があった。さらに、ポリイミドフィルムの表面状態によっては、めっき付き性が左右され、回路不良の原因となっていた。   However, in the metallization method, a COF substrate having excellent transparency can be manufactured, but on the other hand, adhesion to a metal layer such as copper is insufficient, and a special apparatus for performing vapor deposition and sputtering is necessary. In addition, there is a problem that the manufacturing process becomes complicated because a plating process or heating and heating treatment may be required. Furthermore, depending on the surface state of the polyimide film, the ability to be plated is affected, causing a circuit failure.

近年では、銅箔を用いるFPC製造法であるキャスト法でCOF基板材料を製造する試みが試されているが(特開2006−346874号公報)、キャスト法での厚膜の作成は困難であり、かつポリイミド膜が厚くなるほど製造コストがかかるという問題があった。   In recent years, attempts have been made to produce a COF substrate material by a casting method, which is an FPC production method using copper foil (Japanese Patent Laid-Open No. 2006-346874), but it is difficult to produce a thick film by the casting method. In addition, there is a problem that the manufacturing cost increases as the polyimide film becomes thicker.

さらに、銅箔を熱可塑性ポリイミド接着剤や、エポキシ系接着剤等でポリイミドフィルムに接着したものは(特開2006−37083号公報、特開2006−83731号公報等)、表面の接着剤の弾性率の低さから、チップ実装時に沈み込みが発生し、実用に必ずしも適さないという問題があった。また、層構造を重ねることで基材に反りが生じ、部品実装が困難であるという問題があった。   Further, a copper foil bonded to a polyimide film with a thermoplastic polyimide adhesive or an epoxy adhesive (JP 2006-37083 A, JP 2006-83731 A, etc.) is the elasticity of the adhesive on the surface. Due to the low rate, sinking occurred when mounting the chip, which was not necessarily suitable for practical use. In addition, there is a problem that the base material is warped by stacking the layer structures, and component mounting is difficult.

そこで、本発明の目的は、単純な製造工程で厚膜が作成でき、チップ実装時に沈み込みが発生し難く、反りが低減された基板材料、及びそれを用いた基板を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a substrate material in which a thick film can be formed by a simple manufacturing process, subsidence hardly occurs during chip mounting, and warpage is reduced, and a substrate using the same.

本発明は以下に関する。
1.金属箔、ポリイミド層及び透明樹脂層がこの順に積層された基板材料であって、ポリイミド層の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとし、透明樹脂層の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとしたときに、下記式(1)を満たす、基板材料。

Figure 2009241597

2.ポリイミド層は、該層を構成するポリイミドの前駆体を金属箔上にキャストした後、ポリイミド化させた層である、前記の基板材料。
3.透明樹脂層は、上記ポリイミド層とは異なるポリイミドからなる、前記の基板材料。
4.金属箔を除く層全体の厚さが20〜50μmである、前記の基板材料。
5.金属箔を除く層全体の透過率が、波長600nmの光において60%以上である、前記の基板材料。
6.ポリイミド層と透明樹脂層との間に、接着剤層を備えており、接着剤層は、60℃以上200℃以下でポリイミド層と透明樹脂層を接着可能であり、5重量%分解温度が330℃以上であり、融点が300℃以上の接着剤からなる、前記の基板材料。
7.金属箔は、銅箔である、前記の基板材料。
8.前記の基板材料から形成される基板。 The present invention relates to the following.
1. A substrate material in which a metal foil, a polyimide layer and a transparent resin layer are laminated in this order, and the thermal expansion coefficient, thickness and elastic modulus of the polyimide layer are E 1 , T 1 and M 1 , respectively. A substrate material that satisfies the following formula (1) when the thermal expansion coefficient, thickness, and elastic modulus are E 2 , T 2, and M 2 , respectively.
Figure 2009241597

2. The polyimide layer is the substrate material described above, which is a layer obtained by casting a polyimide precursor constituting the layer onto a metal foil and then forming a polyimide.
3. The transparent resin layer is the substrate material described above, which is made of polyimide different from the polyimide layer.
4). The said board | substrate material whose thickness of the whole layer except metal foil is 20-50 micrometers.
5. The said board | substrate material whose transmittance | permeability of the whole layer except metal foil is 60% or more in the light of wavelength 600nm.
6). An adhesive layer is provided between the polyimide layer and the transparent resin layer, and the adhesive layer can bond the polyimide layer and the transparent resin layer at 60 ° C. or more and 200 ° C. or less, and the 5% by weight decomposition temperature is 330. Said board | substrate material which consists of an adhesive agent whose melting | fusing point is 300 degreeC or more.
7). The substrate material as described above, wherein the metal foil is a copper foil.
8). A substrate formed from the above substrate material.

単純な製造工程で厚膜が作成でき、チップ実装時に沈み込みが発生し難く、反りが低減された、COF(Chip on Film)基板に適した基板材料、及びそれを用いた基板が提供される。   Provided are a substrate material suitable for a COF (Chip on Film) substrate and a substrate using the same, in which a thick film can be formed by a simple manufacturing process, subsidence does not easily occur during chip mounting, and warpage is reduced. .

第1実施形態に係る基板材料の断面図である。It is sectional drawing of the board | substrate material which concerns on 1st Embodiment. 第2実施形態に係る基板材料の断面図である。It is sectional drawing of the board | substrate material which concerns on 2nd Embodiment. 第1実施形態に係る基板の断面図である。It is sectional drawing of the board | substrate which concerns on 1st Embodiment. 第2実施形態に係る基板の断面図である。It is sectional drawing of the board | substrate which concerns on 2nd Embodiment. 第3実施形態に係る基板の断面図である。It is sectional drawing of the board | substrate which concerns on 3rd Embodiment.

以下、図面を参照しながら、好適な実施形態を説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。また、図面は理解を容易にするため一部を誇張して描いており、寸法比率は説明のものとは必ずしも一致しない。本発明の基板材料及び基板は、COFに用いることができるため、COF基板材料、COF基板と表す場合がある。   Hereinafter, preferred embodiments will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the drawings are exaggerated for easy understanding, and the dimensional ratios do not necessarily match those described. Since the substrate material and the substrate of the present invention can be used for COF, they may be expressed as COF substrate materials and COF substrates.

図1は第1実施形態に係る基板材料の断面図であり、図2は第2実施形態に係る基板材料の断面図である。   FIG. 1 is a cross-sectional view of the substrate material according to the first embodiment, and FIG. 2 is a cross-sectional view of the substrate material according to the second embodiment.

図1に示す基板材料1aは、ポリイミド層11の一方面上に金属箔12が密着して設けられた金属箔付きポリイミドフィルム10の、ポリイミド層11面に透明樹脂層13が積層された構成を有する。   A substrate material 1a shown in FIG. 1 has a configuration in which a transparent resin layer 13 is laminated on the surface of a polyimide layer 11 of a polyimide film 10 with a metal foil in which a metal foil 12 is provided in close contact with one surface of a polyimide layer 11. Have.

図2に示す基板材料1bは、ポリイミド層11の一方面上に金属箔12が密着して設けられた金属箔付きポリイミドフィルム10の、ポリイミド層11面に接着剤層14により透明樹脂層13が接合された構成を有する。   The substrate material 1b shown in FIG. 2 is a polyimide film 10 with a metal foil in which a metal foil 12 is provided in close contact with one surface of a polyimide layer 11. It has a joined configuration.

金属箔付きポリイミドフィルム10は、キャスト法(ポリイミドの前駆体の溶液、例えばポリアミド酸溶液を金属箔12上にキャストした後、溶媒を除去するとともに反応を進行させ、ポリイミド化させることにより、金属箔12上にポリイミド層11を形成する方法をいう)により製造されたもの、メタライズ法やラミネート法により製造されるもの、また、キャスト法により製造されるが金属箔12とポリイミド層11間に弾性率の低い接着剤が挿入されるものであってもよい。   The polyimide film 10 with a metal foil is obtained by a casting method (after casting a solution of a precursor of a polyimide, for example, a polyamic acid solution onto the metal foil 12, removing the solvent and allowing the reaction to proceed, thereby forming a polyimide film. Of the metal foil 12 and the polyimide layer 11, manufactured by a metallization method or a laminate method, or manufactured by a cast method. A low adhesive may be inserted.

しかしながら、メタライズ法で製造されたものは銅箔引きはがし強さが弱くなる場合があり、また、接着剤を用いて銅箔と接着するものは、表面沈み込みが生じる場合があるため、キャスト法により製造されたものが好ましい。   However, those manufactured by the metallization method may have weak copper foil peeling strength, and those that adhere to the copper foil using an adhesive may cause surface sinking, so the casting method What was manufactured by is preferable.

キャスト法により製造された金属箔付きポリイミドフィルム10を用いることで、金属箔12の剥離強度を向上させ、また、透明樹脂をあわせて用いることで、キャスト法により製造される金属箔付きポリイミドフィルム10の製造上難点を克服するとともに、既存のCOF材料に比べフィルムの反発力の制御、搬送性の向上、透明性の向上、寸法安定性の向上、吸湿性のコントロール、チップ実装性の向上が可能である。   By using the polyimide film 10 with metal foil manufactured by the casting method, the peeling strength of the metal foil 12 is improved, and by using the transparent resin together, the polyimide film 10 with metal foil manufactured by the casting method is used. In addition to overcoming manufacturing difficulties, it is possible to control film repulsion, improve transportability, improve transparency, improve dimensional stability, control hygroscopicity, and improve chip mounting compared to existing COF materials It is.

ポリイミド層11の厚さは、通常1〜10μmである。金属箔12としては、銅、アルミ、鉄、金、銀、ニッケル、パラジウム、クロム、モリブデン又はこれらの合金の箔が好適に用いられる。この中でも銅箔が好ましい。   The thickness of the polyimide layer 11 is usually 1 to 10 μm. As the metal foil 12, a foil of copper, aluminum, iron, gold, silver, nickel, palladium, chromium, molybdenum or an alloy thereof is preferably used. Among these, copper foil is preferable.

金属箔12は、ポリイミド層11との接着力を高めるために、化学的粗化、コロナ放電、サンディング、めっき、アルミニウムアルコラート、アルミニウムキレート、シランカップリング剤などによってその表面を機械的又は化学的な処理したものであってもよい。   In order to increase the adhesive strength with the polyimide layer 11, the surface of the metal foil 12 is mechanically or chemically treated by chemical roughening, corona discharge, sanding, plating, aluminum alcoholate, aluminum chelate, silane coupling agent, or the like. It may be processed.

透明樹脂層13を形成する樹脂フィルムの例としては、ポリイミド(ポリイミド層を構成するポリイミドと同一でも異なっていてもよい)、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリベンゾオキサゾール等耐熱性樹脂より製造される透明なフィルムが挙げられる。   Examples of the resin film that forms the transparent resin layer 13 include heat resistant resins such as polyimide (which may be the same as or different from the polyimide constituting the polyimide layer), polyamideimide, polyetherimide, polyethersulfone, polybenzoxazole, and the like. The transparent film manufactured more is mentioned.

ポリイミド層11と透明樹脂層13の接着法は、直接接着でも、接着剤を用いた接着でもよい。直接接着する方法としては、プラズマ処理、紫外線処理、コロナ処理、火炎処理等によるポリイミド層11表面の活性化や、ポリイミド層11又は透明樹脂層13のガラス転移温度以上の高温での熱ラミネート等があげられる。金属箔12を除いた基板材料の厚さは合計で20〜50μmであることが好ましい。厚さが20μm未満あるいは50μm超では既存のCOF製造設備で搬送が困難になるおそれがある。   The bonding method between the polyimide layer 11 and the transparent resin layer 13 may be direct bonding or bonding using an adhesive. As a method of directly bonding, activation of the surface of the polyimide layer 11 by plasma treatment, ultraviolet treatment, corona treatment, flame treatment, etc., thermal lamination at a temperature higher than the glass transition temperature of the polyimide layer 11 or the transparent resin layer 13, etc. can give. The total thickness of the substrate material excluding the metal foil 12 is preferably 20 to 50 μm. If the thickness is less than 20 μm or more than 50 μm, it may be difficult to convey with existing COF manufacturing equipment.

接着剤を用いた、ポリイミド層11と透明樹脂層13の接着法としては、ポリイミド層11と透明樹脂層13の間に接着剤層13を挟んで熱ラミネートを行なう方法をあげることできる。この場合において、60〜200℃の範囲で加温することが好ましく、100℃〜150℃がより好ましい。60℃未満では十分な接着力を持って貼り合わせることが困難になり、200℃を超す場合、ポリイミド層11の熱変形を伴うことがある。また、貼り合せを行う部位が事前に25℃〜200℃に加温され、さらに、加熱圧着ロ−ルおよび貼り合せを行う部位が80℃〜200℃に保温することによって、効果的に貼り合せを行うことができる。加温と共に加圧することが好ましく、加圧は、1kN/m以上、好ましくは5kN/m以上50kN/m以下で行なうことが望ましい。   As a method for bonding the polyimide layer 11 and the transparent resin layer 13 using an adhesive, a method of performing heat lamination by sandwiching the adhesive layer 13 between the polyimide layer 11 and the transparent resin layer 13 can be used. In this case, it is preferable to heat in the range of 60-200 degreeC, and 100 to 150 degreeC is more preferable. If it is less than 60 ° C., it becomes difficult to bond with sufficient adhesive strength, and if it exceeds 200 ° C., the polyimide layer 11 may be thermally deformed. Further, the part to be bonded is preheated to 25 ° C. to 200 ° C., and the thermocompression-bonding roll and the part to be bonded are heated to 80 ° C. to 200 ° C. for effective bonding. It can be performed. It is preferable to pressurize together with heating, and the pressurization is performed at 1 kN / m or more, preferably 5 kN / m or more and 50 kN / m or less.

接着剤層14を形成させるときは、接着剤層14を構成する接着剤が、330℃以上の5重量%分解温度を有することが好ましい。330℃未満の5重量%分解温度を有する接着剤はチップ実装時の膨れの原因となりやすい。また、接着剤の融点(軟化して接着可能になる温度をいう。)は300℃以上であることが好ましく、300℃未満の融点を有する接着剤を用いると、チップ実装時の沈み込みの原因となる。また、60℃以上200℃以下のラミネートにおいてポリイミド層11及び透明樹脂層13との接着性を示すことが好ましい。60℃未満で接着可能な接着剤は、接着剤自体の保存安定性の問題が生じる場合がある。200℃を超えるラミネートはラミネート時の基材間の伸び量の差が大きくなり、MD方向の反りの原因となりやすい。   When forming the adhesive layer 14, it is preferable that the adhesive which comprises the adhesive layer 14 has 5 weight% decomposition temperature of 330 degreeC or more. An adhesive having a 5% by weight decomposition temperature of less than 330 ° C. tends to cause swelling during chip mounting. Further, the melting point of the adhesive (referred to as the temperature at which it can be softened and bonded) is preferably 300 ° C. or higher. If an adhesive having a melting point of less than 300 ° C. is used, it will cause sinking during chip mounting. It becomes. Moreover, it is preferable to show the adhesiveness with the polyimide layer 11 and the transparent resin layer 13 in the laminate of 60 degreeC or more and 200 degrees C or less. An adhesive that can be bonded at a temperature lower than 60 ° C. may cause a problem of storage stability of the adhesive itself. A laminate exceeding 200 ° C. tends to cause a warp in the MD direction because the difference in elongation between the substrates during lamination becomes large.

なお、基板材料は、ポリイミド層11の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとし、透明樹脂層13の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとしたときに、下記式(1)を満たす必要がある。

Figure 2009241597
The substrate material has the thermal expansion coefficient, thickness and elastic modulus of the polyimide layer 11 as E 1 , T 1 and M 1 , respectively, and the thermal expansion coefficient, thickness and elastic modulus of the transparent resin layer 13 as E 1 , respectively. When it is set to 2 , T 2 and M 2 , it is necessary to satisfy the following formula (1).
Figure 2009241597

式(1)を満たすことにより、単純な製造工程で厚膜が作成でき、反りが低減される。(E・T・M)/(E・T・M)の値は、0.7以上1.5以下がより好ましく、0.9以上1.5以下がさらに好ましい。 By satisfy | filling Formula (1), a thick film can be created with a simple manufacturing process, and curvature will be reduced. The value of (E 2 · T 2 · M 2 ) / (E 1 · T 1 · M 1 ) is more preferably from 0.7 to 1.5, and even more preferably from 0.9 to 1.5.

基板材料の金属箔(銅箔)をエッチングした後のカール(反り)が、材料を50mm角に切断したときに−1〜3mmの範囲で金属箔(銅箔)側にカールしていることが好ましい(数値がマイナスの場合は、金属箔の反対側にカールすることを意味する)。透明樹脂側に1mmを超えてカールするか、又は、金属箔(銅箔)側に3mmを超えてカールを示すとチップ実装時に不良の原因となりやすい。また、金属箔(銅箔)エッチング後のフィルムの透過率(すなわち、金属箔を除く層全体の透過率)が波長600nmの光において60%以上であることが好ましく、70%以上であることがより好ましい。60%未満では既存の製造設備でのCOF基板へのチップ接続が困難になるおそれがある。   The curl (warp) after etching the metal foil (copper foil) of the substrate material is curled to the metal foil (copper foil) side in the range of −1 to 3 mm when the material is cut into 50 mm square. Preferred (a negative number means curling to the opposite side of the metal foil). If the curl exceeds 1 mm on the transparent resin side or the curl exceeds 3 mm on the metal foil (copper foil) side, it tends to cause defects during chip mounting. Further, the transmittance of the film after etching the metal foil (copper foil) (that is, the transmittance of the entire layer excluding the metal foil) is preferably 60% or more, and 70% or more in light having a wavelength of 600 nm. More preferred. If it is less than 60%, it may be difficult to connect the chip to the COF substrate in an existing manufacturing facility.

上述した基板材料における金属箔の一部を除去して導体パターンを形成する方法等により、基板(COF基板)が得られる。   A substrate (COF substrate) can be obtained by a method of forming a conductor pattern by removing a part of the metal foil in the substrate material described above.

図3は基板の第1実施形態を示す断面図である。基板2aは、ポリイミドフィルム11と透明樹脂層13を貼り合せた絶縁層と、絶縁層の片面に形成された導体パターン20とを備える。導体パターン20は、基板材料1aが有する金属箔12の一部を除去して、これをパターン化することにより、形成される。金属箔12のパターン化は、フォトリソグラフィー等の方法により行われる。あるいは、基板材料1aから金属箔12を除去し、露出したポリイミド層11上に導電体材料を直接描画することにより導電パターンを形成させて、基板2aを得ることができる。   FIG. 3 is a sectional view showing the first embodiment of the substrate. The board | substrate 2a is provided with the insulating layer which bonded the polyimide film 11 and the transparent resin layer 13, and the conductor pattern 20 formed in the single side | surface of an insulating layer. The conductor pattern 20 is formed by removing a part of the metal foil 12 included in the substrate material 1a and patterning it. The metal foil 12 is patterned by a method such as photolithography. Alternatively, the metal foil 12 is removed from the substrate material 1a, and the conductive material is directly drawn on the exposed polyimide layer 11 to form a conductive pattern, whereby the substrate 2a can be obtained.

また、金属箔を一部除去して導体パターンを形成した後、導電パターン側に樹脂を接着することもできる。図4は、基板の第2実施形態を示す断面図である。図4に示す基板2bは、ポリイミド層11と透明樹脂層13を貼り合せた絶縁層と、絶縁層の片面に形成された導体パターン20と、導体パターン20を覆うようにポリイミド層11上に形成された樹脂フィルム14とを備える。基板2bは、基板2aと同様にパターン化した後、導電パターン20側から樹脂フィルム14を貼り合せ、形成される。   Moreover, after removing a part of metal foil and forming a conductor pattern, resin can also be adhere | attached on the conductive pattern side. FIG. 4 is a cross-sectional view showing a second embodiment of the substrate. A substrate 2b shown in FIG. 4 is formed on the polyimide layer 11 so as to cover the insulating layer obtained by bonding the polyimide layer 11 and the transparent resin layer 13, the conductor pattern 20 formed on one surface of the insulating layer, and the conductor pattern 20. The resin film 14 is provided. The substrate 2b is formed by patterning in the same manner as the substrate 2a, and then bonding the resin film 14 from the conductive pattern 20 side.

このとき、図4における樹脂フィルム14の代わりに、保護フィルム15の片面に透明樹脂層13が形成されている保護フィルムカバーレイ1cを用いてもよい。図5は、このような構成を有する、基板の第3実施形態を示す断面図である。図5に示す基板2cは、ポリイミド層11と透明樹脂層13を貼り合せた絶縁層と、絶縁層の片面に形成された導体パターン20と、導体パターン20を覆うようにポリイミド層11上に形成された透明樹脂層13と、透明樹脂層13上に形成された樹脂フィルム14とを備える。   At this time, instead of the resin film 14 in FIG. 4, a protective film cover lay 1 c in which the transparent resin layer 13 is formed on one surface of the protective film 15 may be used. FIG. 5 is a cross-sectional view showing a third embodiment of the substrate having such a configuration. A substrate 2c shown in FIG. 5 is formed on the polyimide layer 11 so as to cover the insulating layer obtained by bonding the polyimide layer 11 and the transparent resin layer 13, the conductor pattern 20 formed on one surface of the insulating layer, and the conductor pattern 20. The transparent resin layer 13 and the resin film 14 formed on the transparent resin layer 13 are provided.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(構成例1)
銅箔付きポリイミドフィルムであるMCF−5000IS(日立化成工業株式会社:Cu/PI=15μm/5μm)と、接着シートであるハイボン10−808(日立化成ポリマー株式会社:5μm)と、透明樹脂であるカプトンH(東レデュポン株式会社:25μm)を重ねて、プレスにて180℃4MPa、1時間の条件にてサンプルを成型した。
(Configuration example 1)
MCF-5000IS (Hitachi Chemical Industry Co., Ltd .: Cu / PI = 15 μm / 5 μm) which is a polyimide film with copper foil, Hibon 10-808 (Hitachi Chemical Polymer Co., Ltd .: 5 μm) which is an adhesive sheet, and a transparent resin. Kapton H (Toray DuPont Co., Ltd .: 25 μm) was stacked, and a sample was molded with a press at 180 ° C. and 4 MPa for 1 hour.

(構成例2)
銅箔付きポリイミドフィルムであるMCF−5000IS(日立化成工業株式会社:Cu/PI=15μm/10μm)と、透明樹脂であるウルテムB1000(GEプラスチックス株式会社:25μm)とを重ねて、プレスにて180℃4MPa、1時間の条件にてサンプルを成型した。
(Configuration example 2)
MCF-5000IS (Hitachi Chemical Industry Co., Ltd .: Cu / PI = 15 μm / 10 μm) which is a polyimide film with copper foil and Ultem B1000 (GE Plastics Co., Ltd .: 25 μm) which is a transparent resin are stacked and pressed. Samples were molded under conditions of 180 ° C., 4 MPa, and 1 hour.

(構成例3)
銅箔付きポリイミドフィルムであるMCF−5000IS(日立化成工業株式会社:Cu/PI=15μm/35μm)を用いた。
(Configuration example 3)
MCF-5000IS (Hitachi Chemical Industry Co., Ltd .: Cu / PI = 15 μm / 35 μm), which is a polyimide film with copper foil, was used.

(構成例4)
銅箔であるDFF(三井金属鉱業株式会社:Cu=15μm)と、接着シートであるハイボン10−808(日立化成ポリマー株式会社:5μm)と、透明樹脂であるカプトンH(東レデュポン株式会社:25μm)とを重ねて、プレスにて180℃4MPa、1時間の条件にてサンプルを成型した。
(Configuration example 4)
DFF (Mitsui Metal Mining Co., Ltd .: Cu = 15 μm) which is a copper foil, Hibon 10-808 (Hitachi Chemical Polymer Co., Ltd .: 5 μm) which is an adhesive sheet, and Kapton H (Toray DuPont Co., Ltd .: 25 μm) which is a transparent resin ), And a sample was molded by a press at 180 ° C. and 4 MPa for 1 hour.

(構成例5)
メタライズ法によるCOF基板材料であるエスパーフレックス(住友金属鉱山株式会社:Cu/PI=9μm/38μm)を用いた。
(Configuration example 5)
Esperflex (Sumitomo Metal Mining Co., Ltd .: Cu / PI = 9 μm / 38 μm), which is a COF substrate material by a metallization method, was used.

(実施例1〜2、比較例1〜3)
作製したサンプルの沈み込み試験および銅箔引きはがし試験を行い、結果を表1に示した。沈み込み試験の方法は次の通りである。
(Examples 1-2, Comparative Examples 1-3)
A subsidence test and a copper foil peeling test were performed on the manufactured samples, and the results are shown in Table 1. The method of the subsidence test is as follows.

(沈み込み試験)
銅箔をエッチングした5cm角のサンプルを、エッチング面を上にして400℃に加熱したホットプレートに載せ、2cm角の金属製治具にて10秒間、50gの力で加圧し、治具接触部の沈み込み量を測定した。
(Subduction test)
A sample of 5 cm square with etched copper foil was placed on a hot plate heated to 400 ° C. with the etching surface facing up, and pressed with a 2 cm square metal jig for 10 seconds with a force of 50 g, and the jig contact part The amount of subsidence was measured.

(銅箔引きはがし試験)
銅箔をソフトエッチングし、銅箔厚みを8μmとしたサンプルについて、さらに1mm幅の銅箔ラインパターンを切り、これを50mm/分の速度で引きはがしたときの銅箔引きはがし強さを測定した。

Figure 2009241597
(Copper foil peeling test)
Cut copper foil line pattern with a thickness of 8mm, cut copper foil line pattern, and measure the peel strength of copper foil when peeled off at a rate of 50mm / min. did.
Figure 2009241597

銅箔エッチング後の表面にポリイミドフィルム層を有する実施例1〜2、比較例1、3では沈み込み試験時の沈み込み量が少なかったが、銅箔エッチング後の表面に接着剤層を有する比較例2では、治具接触部の沈み込みが大きく実用には適さなかった。また、比較例3は銅箔引きはがし強さが低かった。   In Examples 1-2 and Comparative Examples 1 and 3 having a polyimide film layer on the surface after copper foil etching, the amount of subsidence during the subsidence test was small, but a comparison having an adhesive layer on the surface after copper foil etching In Example 2, the jig contact portion was greatly submerged and was not suitable for practical use. In Comparative Example 3, the copper foil peeling strength was low.

(構成例6〜10)
構成例1に従い、カプトンH(東レデュポン株式会社:25μm)の代わりにポリイミドA〜Eを用いてサンプルを作製した。なお、ポリイミドAはシリカハイブリッド系ポリイミド、ポリイミドBはシリカハイブリッド系ポリイミド、ポリイミドCはピロメリット酸系ポリイミド、ポリイミドDはビフェニル系ポリイミド、ポリイミドEはピロメリット酸/ビフェニル系ポリイミドである。
(Configuration examples 6 to 10)
According to the structural example 1, the sample was produced using polyimide AE instead of Kapton H (Toray DuPont Co., Ltd .: 25 micrometers). Polyimide A is a silica hybrid type polyimide, polyimide B is a silica hybrid type polyimide, polyimide C is a pyromellitic acid type polyimide, polyimide D is a biphenyl type polyimide, and polyimide E is a pyromellitic acid / biphenyl type polyimide.

(実施例3〜4、比較例1〜7)
作製したサンプルのエッチング後のカールの測定を行った。50mm角のサンプルの銅箔をエッチングし、水平面に置いたときの反りの大きさを測定し、表2に示した。弾性率、熱膨張係数は、以下の条件での測定値である。
(Examples 3-4, Comparative Examples 1-7)
The curl after etching of the produced sample was measured. The copper foil of a 50 mm square sample was etched and the warpage when placed on a horizontal surface was measured and is shown in Table 2. The elastic modulus and thermal expansion coefficient are measured values under the following conditions.

(弾性率測定及び熱膨張係数)
反り量は、銅箔エッチング面側への反り量を正で示した。現行流通品の比較例3では、反りがほとんど発生しなかったが、キャスト法で製作し透明樹脂を用いない比較例1の場合、フィルムはポリイミド側に大きく反り、実用に適さなかった。また、前記式(1)で算出される値の150%を超えるサンプルでは銅箔側に大きく反り、実用に適さなかった。

Figure 2009241597
(Elastic modulus measurement and thermal expansion coefficient)
As for the amount of warpage, the amount of warpage toward the etched surface of the copper foil was positive. In Comparative Example 3 of the current distribution product, almost no warping occurred, but in Comparative Example 1 produced by a cast method and using no transparent resin, the film warped greatly on the polyimide side and was not suitable for practical use. Moreover, the sample exceeding 150% of the value calculated by the formula (1) warped largely to the copper foil side and was not suitable for practical use.
Figure 2009241597

本発明の手段を用いれば、単純な製造工程で厚膜が作成でき、チップ実装時に沈み込みが発生し難く、反りが低減された、COF基板に適した基板材料を製造することが可能となった。   By using the means of the present invention, it becomes possible to produce a substrate material suitable for a COF substrate, which can produce a thick film by a simple manufacturing process, hardly cause sinking during chip mounting, and has reduced warpage. It was.

1a,1b…基板材料、2a,2b…基板、10…金属箔付きポリイミドフィルム、11…ポリイミド層、12…金属箔、13…透明樹脂層、14…樹脂フィルム、20…導体パターン。 DESCRIPTION OF SYMBOLS 1a, 1b ... board | substrate material, 2a, 2b ... board | substrate, 10 ... polyimide film with metal foil, 11 ... polyimide layer, 12 ... metal foil, 13 ... transparent resin layer, 14 ... resin film, 20 ... conductor pattern.

Claims (8)

金属箔、ポリイミド層及び透明樹脂層がこの順に積層された基板材料であって、ポリイミド層の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとし、透明樹脂層の熱膨張係数、厚さ及び弾性率を、それぞれE、T及びMとしたときに、下記式(1)を満たす、基板材料。
Figure 2009241597
A substrate material in which a metal foil, a polyimide layer and a transparent resin layer are laminated in this order, and the thermal expansion coefficient, thickness and elastic modulus of the polyimide layer are E 1 , T 1 and M 1 , respectively. A substrate material that satisfies the following formula (1) when the thermal expansion coefficient, thickness, and elastic modulus are E 2 , T 2, and M 2 , respectively.
Figure 2009241597
前記第1のポリイミド層は、該層を構成するポリイミドの前駆体を前記金属箔上にキャストした後、ポリイミド化させた層である、請求項1記載の基板材料。   2. The substrate material according to claim 1, wherein the first polyimide layer is a layer obtained by casting a polyimide precursor constituting the layer onto the metal foil and then forming a polyimide. 3. 前記透明樹脂層は、前記ポリイミド層とは異なるポリイミドからなる、請求項1又は2記載の基板材料。   The substrate material according to claim 1, wherein the transparent resin layer is made of polyimide different from the polyimide layer. 前記金属箔を除く層全体の厚さが20〜50μmである、請求項1〜3のいずれか一項に記載の基板材料。   The board | substrate material as described in any one of Claims 1-3 whose thickness of the whole layer except the said metal foil is 20-50 micrometers. 前記金属箔を除く層全体の透過率が、波長600nmの光において60%以上である、請求項1〜4のいずれか一項に記載の基板材料。   The board | substrate material as described in any one of Claims 1-4 whose transmittance | permeability of the whole layer except the said metal foil is 60% or more in the light of wavelength 600nm. 前記ポリイミド層と前記透明樹脂層との間に、接着剤層を備えており、
前記接着剤層は、
60℃以上200℃以下で前記ポリイミド層と前記透明樹脂層を接着可能であり、5重量%分解温度が330℃以上であり、融点が300℃以上の接着剤からなる、請求項1〜5のいずれか一項に記載の基板材料。
An adhesive layer is provided between the polyimide layer and the transparent resin layer,
The adhesive layer is
The polyimide layer and the transparent resin layer can be bonded at a temperature of 60 ° C or higher and 200 ° C or lower, the 5% by weight decomposition temperature is 330 ° C or higher, and the melting point is 300 ° C or higher. The board | substrate material as described in any one.
前記金属箔は、銅箔である、請求項1〜6のいずれか一項に記載の基板材料。   The substrate material according to any one of claims 1 to 6, wherein the metal foil is a copper foil. 請求項1〜7のいずれか一項に記載の基板材料から形成される基板。   The board | substrate formed from the board | substrate material as described in any one of Claims 1-7.
JP2009058320A 2008-03-12 2009-03-11 Substrate material and substrate Pending JP2009241597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009058320A JP2009241597A (en) 2008-03-12 2009-03-11 Substrate material and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008062571 2008-03-12
JP2009058320A JP2009241597A (en) 2008-03-12 2009-03-11 Substrate material and substrate

Publications (1)

Publication Number Publication Date
JP2009241597A true JP2009241597A (en) 2009-10-22

Family

ID=41304043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009058320A Pending JP2009241597A (en) 2008-03-12 2009-03-11 Substrate material and substrate

Country Status (1)

Country Link
JP (1) JP2009241597A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
TWI614108B (en) * 2010-12-20 2018-02-11 Sk新技術股份有限公司 Method for manufacturing thick polyimide flexible metal-clad laminate
WO2019177319A1 (en) * 2018-03-14 2019-09-19 주식회사 엘지화학 Embedded-type transparent electrode substrate and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134478A (en) * 2010-12-20 2012-07-12 Sk Innovation Co Ltd Method for manufacturing thick polyimide flexible metal-clad laminate
US9296015B2 (en) 2010-12-20 2016-03-29 Sk Innovation Co., Ltd. Method for manufacturing thick polyimide flexible metal-clad laminate
TWI614108B (en) * 2010-12-20 2018-02-11 Sk新技術股份有限公司 Method for manufacturing thick polyimide flexible metal-clad laminate
WO2019177319A1 (en) * 2018-03-14 2019-09-19 주식회사 엘지화학 Embedded-type transparent electrode substrate and method for manufacturing same
CN111295723A (en) * 2018-03-14 2020-06-16 株式会社Lg化学 Embedded transparent electrode substrate and manufacturing method thereof
US11259417B2 (en) 2018-03-14 2022-02-22 Lg Chem, Ltd. Embedded-type transparent electrode substrate and method for manufacturing same
CN111295723B (en) * 2018-03-14 2022-06-14 株式会社Lg化学 Embedded transparent electrode substrate and manufacturing method thereof
US11716818B2 (en) 2018-03-14 2023-08-01 Lg Chem, Ltd. Embedded-type transparent electrode substrate and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6016858B2 (en) Metal substrate and manufacturing method thereof
JP4972189B2 (en) Substrate manufacturing carrier member and substrate manufacturing method using the same
JP2007150002A (en) Substrate with built-in semiconductor ic and its manufacturing method
JPWO2008146448A1 (en) Laminated body having peelable properties and method for producing the same
JP4147298B2 (en) Flex-rigid printed wiring board and method for manufacturing flex-rigid printed wiring board
TWI387017B (en) Copper clad laminate for cof and carrier tape for cof
JP2009166404A (en) Laminate, method for manufacturing laminate, multilayer printed wiring board and semiconductor device
TWI655095B (en) Nano metal substrate for FPC and COF materials
JP5000310B2 (en) COF laminate, COF film carrier tape, and electronic device
US9818714B2 (en) Method of manufacturing substrate for chip packages and method of manufacturing chip package
JP2009241597A (en) Substrate material and substrate
TWI655096B (en) Nano metal substrate for FPC and COF materials
JP4577526B2 (en) Method for manufacturing flexible printed circuit board
JP2007013048A (en) Multilayer wiring board manufacturing method
TWI460076B (en) A substrate manufacturing method and a structure for simplifying the process
JP2010012750A (en) Method for manufacturing wiring circuit board base sheet
JP4616682B2 (en) Double-sided metal plate
JP4772424B2 (en) Circuit board manufacturing method
JP2005302924A (en) Wiring board and its manufacturing method
JP2003234564A (en) Printed circuit board provided with embedded type outer layer conductor
TW201021657A (en) Method for fabricating a coreless substrate, method for forming a thin circuit board and core for fabricating a coreless substrate
JP4894344B2 (en) Single-sided board manufacturing method and multilayer printed wiring board
KR20080041855A (en) Double side conductor laminates
JP2007069617A (en) Method for manufacturing flexible metal foil laminated plate
JP2008302696A (en) Method of manufacturing flexible metal foil laminated plate