JP2003193211A - Rolled copper foil for copper-clad laminate - Google Patents

Rolled copper foil for copper-clad laminate

Info

Publication number
JP2003193211A
JP2003193211A JP2001395774A JP2001395774A JP2003193211A JP 2003193211 A JP2003193211 A JP 2003193211A JP 2001395774 A JP2001395774 A JP 2001395774A JP 2001395774 A JP2001395774 A JP 2001395774A JP 2003193211 A JP2003193211 A JP 2003193211A
Authority
JP
Japan
Prior art keywords
copper foil
rolled
recrystallized
rolled copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001395774A
Other languages
Japanese (ja)
Inventor
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nikko Materials Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nikko Materials Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001395774A priority Critical patent/JP2003193211A/en
Publication of JP2003193211A publication Critical patent/JP2003193211A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide rolled copper foil which is used as copper foil most suitable for a flexible printed wiring board to be subjected to ultra-fine-pitch processing and by which smooth surface can be obtained when etching treatment for thickness reduction is applied. <P>SOLUTION: The rolled copper foil is recrystallized and temper-rolled copper foil in which the (200) plane diffraction intensity (I) determined by applying X-ray diffraction to the rolling surface of rolled copper foil of ≤20 μm thickness and the (200) plane diffraction intensity (I<SB>0</SB>) determined by applying X-ray diffraction to fine copper powder under the conditions identical with those for the rolled copper foil satisfy the relation of I/I<SB>0</SB>>50. The above recrystallized structure can be obtained by subjecting rolled copper foil having recrystallized structure of ≤20 μm grain size to finish rolling at ≥90% draft. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は極ファインピッチ加
工が施されるフレキシブル基板の導電材として用いられ
る圧延銅箔に関するものである。より詳しく述べるなら
ば、本発明は、圧延銅箔の銅張積層板用再結晶調質もし
くは圧延仕上り圧延銅箔に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled copper foil used as a conductive material for a flexible substrate which is subjected to extremely fine pitch processing. More specifically, the present invention relates to a recrystallized tempered or rolled finished rolled copper foil for a copper clad laminate of rolled copper foil.

【0002】[0002]

【従来の技術】電子機器の電子回路にはプリント配線板
が多く用いられる。プリント配線板は,基材となる樹脂
の種類によって,硬質積層板(リジット基板)と可撓性
積層板(フレキシブル基板)とに大別される。フレキシ
ブル基板は可撓性に優れるため可動部の配線に用いら
れ,また電子機器内で折り曲げた状態で収納することが
可能なため省スペース配線材料としても用いられてい
る。また,基板自体が薄いことから,半導体パッケージ
のインターポーザー用途あるいは液晶ディスプレイ(LC
D)のICテープキャリアとしても用いられている。
2. Description of the Related Art Printed wiring boards are often used in electronic circuits of electronic equipment. The printed wiring board is roughly classified into a hard laminated board (rigid board) and a flexible laminated board (flexible board) depending on the type of resin as a base material. Flexible substrates are used for wiring of movable parts because of their excellent flexibility, and are also used as space-saving wiring materials because they can be stored in a bent state in electronic equipment. In addition, since the substrate itself is thin, it can be used for semiconductor package interposers or liquid crystal displays (LC
It is also used as an IC tape carrier for D).

【0003】本発明が関係するフレキシブル基板の基材
となる樹脂にはポリイミドが用いられることが多く,導
電材には導電性の点から一般に銅が用いられている。フ
レキシブル基板にはその構造から三層フレキシブル基板
と二層フレキシブル基板がある。三層フレキシブル基板
は,ポリイミドなどの樹脂フィルムと導電材となる銅箔
とを,エポキシ樹脂やアクリル樹脂などの接着剤で貼り
合わせた構造となっている。一方,二層フレキシブル基
板はポリイミドなどの樹脂と導電材となる銅箔が直接接
合された構造となっている。
Polyimide is often used as the resin that is the base material of the flexible substrate to which the present invention relates, and copper is generally used as the conductive material from the viewpoint of conductivity. Flexible substrates include three-layer flexible substrates and two-layer flexible substrates due to their structure. The three-layer flexible substrate has a structure in which a resin film such as polyimide and a copper foil serving as a conductive material are bonded together with an adhesive such as epoxy resin or acrylic resin. On the other hand, the two-layer flexible substrate has a structure in which a resin such as polyimide and a copper foil which is a conductive material are directly bonded.

【0004】銅箔はその製造方法により電解銅箔と圧延
銅箔に分類される。電解銅箔は硫酸銅めっき浴からチタ
ンやステンレスのドラム上に銅を電解析出して製造さ
れ,圧延銅箔は圧延ロールにより塑性加工して製造され
る。本発明は後者に関する。箔製造後,銅箔の片方の表
面には,樹脂との接着性を改善するために,Cu,Cu-N
i,Cu-Co等の粒子を電気めっきで形成する粗化処理が施
される。これは、銅箔の表面に凹凸を形成し樹脂に銅箔
を食い込ませて機械的な接着強度を得る,いわゆるアン
カー効果で接着性を改善するものである。
Copper foil is classified into electrolytic copper foil and rolled copper foil according to the manufacturing method. Electrolytic copper foil is manufactured by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath, and rolled copper foil is manufactured by plastic working with rolling rolls. The present invention relates to the latter. After the foil is manufactured, on one surface of the copper foil, in order to improve the adhesiveness with the resin, Cu, Cu-N
A roughening treatment is performed to form particles of i, Cu-Co, etc. by electroplating. This is to improve adhesiveness by a so-called anchor effect, in which unevenness is formed on the surface of the copper foil and the copper foil is made to dig into the resin to obtain mechanical adhesive strength.

【0005】プリント配線板は,フレキシブル基板の銅
箔をエッチングして種々の配線パターンを形成し,電子
部品をハンダで接続して実装することにより製造され
る。近年,電子機器の小型化,軽量化,高機能化に伴な
い,プリント配線板に対する高密度実装の要求が高ま
り,銅配線の幅と配線間隔がますます小さくなってい
る。このような銅配線のファインピッチ化を進めるため
には,銅箔を薄くすることが不可欠である。すなわち,
従来,フレキシブル基板に用いられていた銅箔の厚みは
18μmまたは12μmが主流であったが,9μmあるいはこれ
より薄い銅箔に要求されるようになった。
A printed wiring board is manufactured by etching a copper foil of a flexible substrate to form various wiring patterns, connecting electronic components with solder, and mounting them. In recent years, as electronic devices have become smaller, lighter, and more sophisticated, the demand for high-density mounting on printed wiring boards has increased, and the width and spacing of copper wiring have become smaller and smaller. In order to promote finer pitches for such copper wiring, it is essential to thin the copper foil. That is,
Conventionally, the thickness of copper foil used for flexible substrates is
18 μm or 12 μm was the mainstream, but it has come to be required for copper foil of 9 μm or thinner.

【0006】しかしながら,電解銅箔と圧延銅箔とも,
厚さが10μm以下のものを工業的に安定して製造するこ
とは困難である。例えば,厚み10μmを境に,銅箔を貫
通する穴(ピンホール)の頻度が著しく上昇する等の問
題があるためである。また,銅箔の厚さが10μm以下に
なると,フレキシブル基板の製造プロセスにおいて,銅
箔と樹脂フィルムを接着剤で貼り合わせること(三層基
板),あるい銅箔上に樹脂層を形成すること(二層基
板)も難しくなる。薄くなることによって銅箔が変形し
やすくなり,銅箔にしわが発生したり銅箔が切れたりす
る等,銅箔の取り扱いが難しくなるためである。
However, both the electrolytic copper foil and the rolled copper foil are
It is difficult to industrially manufacture a product having a thickness of 10 μm or less. This is because, for example, there is a problem that the frequency of holes (pinholes) penetrating the copper foil increases significantly when the thickness is 10 μm. Also, when the thickness of the copper foil is less than 10 μm, the copper foil and the resin film are bonded with an adhesive (three-layer substrate) or the resin layer is formed on the copper foil in the manufacturing process of the flexible substrate. (Two-layer substrate) is also difficult. This is because the thinner the copper foil is, the more easily the copper foil is deformed and wrinkles are generated on the copper foil, or the copper foil is cut, making it difficult to handle.

【0007】したがって,例えばCu回路の厚みが9μmの
フレキシブル基板は,まず18μmまたは12μmの銅箔を
用いたフレキシブル基板を製造し,酸化性の酸を用い
たエッチングにより銅箔の厚みを9μmに減肉する,とい
うプロセスにより製造されることが多い。このエッチン
グ処理(以下,「減肉エッチング」と言う)に対し,銅
箔表面において均一にエッチングが進行することが要求
される。エッチングが不均一に進むとエッチング後の表
面に凹凸が生じ,回路のエッチング(以下,「回路エッ
チング」と言う)に先立ちレジストを銅箔表面に塗布す
る際に,銅箔とレジスト膜との間に気泡が発生し,エッ
チング後の回路形状が劣化するためである。
Therefore, for example, for a flexible substrate having a Cu circuit thickness of 9 μm, a flexible substrate using a copper foil of 18 μm or 12 μm is first manufactured, and the thickness of the copper foil is reduced to 9 μm by etching with an oxidizing acid. Often manufactured by the process of meat. In response to this etching process (hereinafter, referred to as “thinning etching”), it is required that the etching progresses uniformly on the surface of the copper foil. When the etching progresses unevenly, unevenness occurs on the surface after etching, and when the resist is applied to the copper foil surface prior to the etching of the circuit (hereinafter referred to as "circuit etching"), the gap between the copper foil and the resist film is increased. This is because bubbles are generated in the surface and the circuit shape after etching deteriorates.

【0008】一方,ファインピッチ化のためには,樹脂
と銅箔との接合面における銅箔の表面粗さが小さいこと
も望まれる。これは銅箔の粗さが大きいと,回路エッチ
ングの際に樹脂に銅が残るエッチング残が生じ,またエ
ッチング後の回路の直線性が低下し回路幅が不均一にな
るためである。さらに,パソコンや移動体通信等の電子
機器では電気信号が高周波化しているが,電気信号の周
波数が1 GHz以上になると,電流が導体の表面にだけ流
れる表皮効果の影響が顕著になり,表面の凹凸で電流伝
送経路が変化してインピーダンスが増大する影響が無視
できなくなる。この点からも銅箔の表面粗さが小さいこ
とが望まれる。
On the other hand, in order to achieve a fine pitch, it is also desired that the surface roughness of the copper foil on the joint surface between the resin and the copper foil is small. This is because if the roughness of the copper foil is large, an etching residue will remain in the resin when the circuit is etched, and the linearity of the circuit after etching will decrease and the circuit width will become uneven. Furthermore, in electronic devices such as personal computers and mobile communications, the frequency of electrical signals has increased, but when the frequency of electrical signals exceeds 1 GHz, the effect of the skin effect, in which current flows only on the surface of the conductor, becomes noticeable. The effect that the current transmission path changes due to the unevenness of and the impedance increases cannot be ignored. From this point as well, it is desired that the surface roughness of the copper foil is small.

【0009】電解銅箔の表面は銅の電着粒によって形成
され,圧延銅箔の表面は圧延ロールとの接触によって形
成されるため,圧延銅箔の表面粗さは電解銅箔の表面粗
さより小さい。この粗さの差は粗化処理を行なった後に
も残る。近年,表面粗さを小さくした電解銅箔も開発さ
れているが,依然,圧延銅箔の粗さに到達できておら
ず,また平均的に粗さを小さくすることができたとして
も,異常電着により粗さが大きい部分が局部的に生じる
という問題が残っている。以上のように,表面粗さの点
では,圧延銅箔は電解銅箔よりも有利である。
Since the surface of the electrolytic copper foil is formed by electrodeposited copper particles and the surface of the rolled copper foil is formed by contact with a rolling roll, the surface roughness of the rolled copper foil is smaller than that of the electrolytic copper foil. small. This difference in roughness remains even after the roughening process. In recent years, electrolytic copper foils with reduced surface roughness have also been developed, but the roughness of rolled copper foils has not yet been reached, and even if the roughness can be reduced on average, it is abnormal. The problem remains that a portion with a large roughness locally occurs due to electrodeposition. As described above, the rolled copper foil is more advantageous than the electrolytic copper foil in terms of surface roughness.

【0010】しかし,圧延銅箔では,減肉エッチングに
おいて,エッチングが不均一に進み,エッチング後の表
面に大きな凹凸が生じるという問題がある。これに対
し,電解銅箔での減肉エッチング後の表面凹凸は,圧延
銅箔での凹凸と比較して小さく,実用上問題ないレベル
である。このため圧延銅箔は電解銅箔よりも表面粗さが
小さいという利点を持ちながらも,減肉エッチング処理
が施されるフレキシブル基板の用途には,主に電解銅箔
が用いられていた。
However, the rolled copper foil has a problem that in the thickness reduction etching, the etching progresses unevenly and large irregularities are generated on the surface after the etching. On the other hand, the surface unevenness of the electrolytic copper foil after the thinning etching is smaller than that of the rolled copper foil, which is practically no problem. For this reason, rolled copper foil has the advantage that it has a smaller surface roughness than electrolytic copper foil, but electrolytic copper foil was mainly used for the application of flexible substrates to which thinning etching treatment is applied.

【0011】[0011]

【発明が解決しようとする課題】本発明は、 極ファイ
ンピッチ加工が施されるフレキシブル基板に最適な銅箔
として,減肉のためのエッチング処理を施したときに平
滑な表面が得られる圧延銅箔を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention provides a copper foil which is suitable for a flexible substrate which is subjected to extremely fine pitch processing, and which has a smooth surface when subjected to an etching treatment for thinning. Intended to provide foil.

【0012】[0012]

【課題を解決するための手段】本発明者らは,圧延銅箔
表面を減肉エッチングした際に生じる凹凸が,次の理由
によって生じることを見出した。 圧延銅箔は多くの結晶粒より構成されており,各結晶
粒により結晶方位が異なる。銅のエッチング速度は結晶
方位に依存して変化するため,結晶粒単位で段差が生じ
る。 各結晶粒の境界(結晶粒界)では,原子の配列が乱れ
原子の密度が低いため,結晶粒内よりもエッチング速度
が大きく,このため結晶粒界に溝が生じる。 大きな介在物(銅と異なる相)が存在すると,介在物
と銅とでエッチング速度が異なるため,介在物が溶け残
って凸を形成したり,介在物が銅より先に溶けて凹を形
成したりする。
The inventors of the present invention have found that the unevenness produced when the surface of a rolled copper foil is subjected to thinning etching is caused by the following reasons. Rolled copper foil is composed of many crystal grains, and the crystal orientation differs depending on each crystal grain. Since the etching rate of copper changes depending on the crystal orientation, a step is created in each crystal grain. At the boundaries (grain boundaries) of each crystal grain, the arrangement of atoms is disturbed and the density of atoms is low, so the etching rate is higher than that in the crystal grains, and therefore a groove is formed at the grain boundaries. When a large inclusion (a phase different from copper) exists, the inclusion and copper have different etching rates, so that the inclusion remains unmelted to form a protrusion, or the inclusion melts before copper to form a recess. Or

【0013】したがって,表面凹凸を小さくするために
は,に対しては各結晶粒の結晶方位を揃えることが有
効である。また,に対しても,方位が近い結晶粒間の
粒界では原子配列の乱れが小さいため,結晶方位を揃え
ることが有効である。に対しては大きな介在物の生成
を防止することが有効である。
Therefore, in order to reduce the surface unevenness, it is effective to align the crystal orientations of the respective crystal grains. Also, with respect to the grain boundaries between crystal grains having close orientations, the disorder of the atomic arrangement is small, so it is effective to align the crystal orientations. It is effective to prevent the formation of large inclusions.

【0014】高い加工度で圧延した銅を再結晶焼鈍する
と,その再結晶集合組織として,立方体方位が発達する
ことが知られている。立方体方位とは,結晶の〈001〉
方向が圧延方向,圧延面法線および幅方向と平行になる
方位であり,この場合,圧延面(エッチング面)には(1
00)面が配向する。立方体方位が発達するに従い立方体
方位を有する結晶粒の存在比率が大きくなり,立方体方
位を極度に発達させると,ほとんどの結晶粒が立方体方
位を示すようになる。この場合,それぞれの結晶粒が同
じ方向に配向しているため,結晶粒界における原子の乱
れが非常に小さくなり,あたかも単結晶のような組織構
造を呈する。本発明では,減肉エッチング後の表面を平
滑にする手段として,銅箔の立方体方位を極度に発達さ
せることに着目した。
It is known that when recrystallization annealing is performed on copper rolled with a high degree of workability, a cubic orientation develops as a recrystallization texture. The cubic orientation is the crystal <001>
The direction is parallel to the rolling direction, the rolling surface normal, and the width direction. In this case, the rolling surface (etching surface) is (1
The (00) plane is oriented. The abundance ratio of crystal grains having a cubic orientation increases as the cubic orientation develops, and when the cubic orientation is extremely developed, most of the crystal grains exhibit the cubic orientation. In this case, since the respective crystal grains are oriented in the same direction, the disorder of the atoms at the crystal grain boundaries becomes extremely small, and the texture structure appears as if it were a single crystal. In the present invention, attention was paid to the extreme development of the cubic orientation of the copper foil as a means for smoothing the surface after the thinning etching.

【0015】立方体集合組織が発達した銅箔は,高サイ
クル疲労特性に優れることが知られており,この種の銅
箔を屈曲変形が繰り返し加えられるフレキシブル基板に
利用することが提案されている(特許第3009383号)。
しかし,この種の銅箔を,減肉エッチング後に極ファイ
ンピッチの回路エッチングが施されるフレキシブル基板
に適用する試みは従来なかった。
It is known that a copper foil having a developed cubic texture has excellent high cycle fatigue properties, and it has been proposed to use this kind of copper foil for a flexible substrate to which bending deformation is repeatedly applied ( Patent No. 3009383).
However, there has been no attempt to apply this type of copper foil to a flexible substrate that is subjected to extremely fine pitch circuit etching after thinning etching.

【0016】さらに,銅箔の表面性状と減肉エッチング
面の平滑性との関係を検討した結果,表面に腐食の起点
を分散させることが有効であることを見出した。この方
策は特に腐食力の弱いエッチング液を用いる場合に有効
であった。
Furthermore, as a result of studying the relationship between the surface properties of the copper foil and the smoothness of the thinned etching surface, it was found that it is effective to disperse the starting points of corrosion on the surface. This measure was particularly effective when an etchant having a weak corrosive power was used.

【0017】銅を冷間圧延すると,圧延後の表面に亀裂
状のくぼみが発生することがある。このくぼみは圧延方
向と直交する方向に伸びた形状を呈し,圧延油膜による
銅表面の自由変形がその生成に関与することから,オイ
ルピットと呼ばれることがある。従来,フレキシブル基
板では,くぼみがクラック発生の起点になり屈曲性を低
下させることから,くぼみの存在は嫌われる傾向にあっ
た(特開2001-58203)。しかし,減肉エッチングに対し
ては,このくぼみが腐食の起点となりエッチング面が平
滑化することが明らかになったのである。なお,本発明
が対象とするフレキシブル基板は,主として,折り曲げ
た状態で電子機器内に収納され,さらなる屈曲変形は加
えられないタイプである。仮に屈曲変形が行われたとし
ても,減肉エッチングされた後の銅箔が非常に薄いた
め,曲げ部外周に生じる歪が小さく,これにより十分な
屈曲性を確保できる。
When copper is cold-rolled, crack-like depressions may occur on the surface after rolling. This depression has a shape extending in a direction orthogonal to the rolling direction, and the free deformation of the copper surface due to the rolling oil film is involved in its formation, so it is sometimes called an oil pit. Conventionally, in the case of a flexible substrate, the presence of a dent tends to be disliked because the dent becomes a starting point of crack generation and reduces the flexibility (Japanese Patent Laid-Open No. 2001-58203). However, it has been clarified that, for thin-wall etching, this recess serves as the starting point of corrosion and smoothes the etched surface. The flexible substrate to which the present invention is applied is mainly of a type that is housed in an electronic device in a bent state and is not further bent and deformed. Even if bending deformation occurs, since the copper foil after the thickness reduction etching is very thin, the strain generated at the outer circumference of the bending portion is small, and thus sufficient bending property can be secured.

【0018】本発明は以上の知見に基づいて成されたも
のであり,(1) 20μm以下の厚さを有する圧延銅箔の圧
延面をX線回折することにより求めた(200)面の回折強度
(I)が,微粉末銅を圧延銅箔と同一条件下でX線回折す
ることにより求めた(200)面の回折強度(I0)に対しI/
I0>50であることを特徴とする均一エッチング減肉性に
優れた再結晶調質圧延銅箔,(2) 圧延加工組織が、半軟
化温度より50℃高い温度で焼鈍することにより、I/I0
>50(ただし、Iは圧延銅箔の圧延面をX線回折するこ
とによって求めた(200)面の回折強度であり、I0は微
粉末銅を前記圧延銅箔と同一条件下でX線回折すること
によって求めた(200)面の回折強度である)で表され
る再結晶組織を誘起し得ることを特徴とする圧延仕上が
りの圧延銅箔,(3) 圧延加工組織が、結晶粒径が20μm
以下の再結晶組織を有する圧延銅箔を、90%以上の加工
度で仕上げ圧延することにより形成されたものである
(2)記載の厚さが20μm以下の圧延仕上がりの圧延銅箔,
(4) Cu,Ag,O,Hおよび希ガス類元素以外の元素の合
計量が40mass ppm以下であるタフピッチ銅からなる
(1),(2)または(3)記載の再結晶調質または圧延仕上が
り圧延銅箔,(5) Cu,Ag,O,Hおよび希ガス類元素以外
の元素の合計量が20mass ppm以下である無酸素銅からな
る(1),(2)または(3)記載の再結晶調質または圧延仕上
がり圧延銅箔、(6) 100〜700mass ppmのAgを含有し、C
u,Ag,O,Hおよび希ガス類元素以外の元素の合計量が4
0mass ppm以下であるタフピッチ銅からなる(1),(2)ま
たは(3)記載の再結晶調質または圧延仕上がり圧延銅
箔。(7) 100〜700mass ppmのAgを含有し、Cu,Ag,O,
Hおよび希ガス類元素以外の元素の合計量が20mass ppm
以下である無酸素銅からなる(1),(2)または(3)記載の
再結晶調質または圧延仕上がり圧延銅箔、(8) 20μm以
下の厚さを有する圧延銅箔の圧延面をX線回折すること
により求めた(200)面の回折強度(I)が,微粉末銅を前
記圧延銅箔と同一条件下でX線回折することによって求
めた(200)面の回折強度(I0)に対しI/I0>50であり、
さらに結晶の[100]方向と圧延方向との成す角度(θ)
が10°以内(θ≦10°)である結晶の全結晶個数に対す
る割合(α)が60%以上(α≧60%)であることを特徴と
する均一エッチング減肉性に優れた再結晶調質圧延銅
箔,(9) 圧延加工組織が、半軟化温度より50℃高い温度
で焼鈍することにより、I/I0>50(ただし、Iは圧延銅
箔の圧延面をX線回折することによって求めた(200)面
の回折強度であり、I0は微粉末銅を前記圧延銅箔と同一
条件下でX線回折することによって求めた(200)面の回
折強度である)およびα≧60%(ただし、αは、結晶の
[100]方向と圧延方向との成す角度が10°以内である結
晶の全結晶個数に対する割合)で表される再結晶組織を
誘起し得ることを特徴とする圧延仕上がり圧延銅箔、(1
0) 圧延加工組織が、結晶粒径が20μm以下の再結晶組
織を有する圧延銅箔を、90%以上の加工度で仕上げ圧延
することにより形成されたものである(9)項記載の厚さ
が20μm以下の圧延仕上がりの圧延銅箔,(11) 前記αが
80%以上(α≧80%)であることを特徴とする(8)、(9)ま
たは(10)記載の再結晶調質または圧延仕上がり圧延銅
箔、(12)Cu,Ag,O,Hおよび希ガス類元素以外の元素の
合計量が30mass ppm以下であるタフピッチ銅からなる
(8),(9)、(10)または(11)記載の再結晶調質または圧延仕
上がり圧延銅箔、(13) Cu,Ag,O,Hおよび希ガス類元
素以外の元素の合計量が20mass ppm以下である無酸素銅
からなる(8),(9)、(10)または(11)記載の再結晶調質また
は圧延仕上がり圧延銅箔、(14) 100〜700mass ppmのAg
を含有し、Cu,Ag,O,Hおよび希ガス類元素以外の元素
の合計量が40mass ppm以下であるタフピッチ銅からなる
(8),(9),(10)または(11)記載の再結晶調質または圧延仕
上がり圧延銅箔、(15) 100〜700mass ppmのAgを含有
し、Cu,Ag,O,Hおよび希ガス類元素以外の元素の合計
量が20mass ppm以下である無酸素銅からなる(8),(9)、(1
0)または(11)記載の再結晶調質または圧延仕上がり圧延
銅箔,(16) 圧延方向と直交する方向に延びた亀裂状の
くぼみが表面に分散し、そのくぼみが次の寸法および形
状を有することを特徴とする(1)から(15)までのいずれ
か1項記載の再結晶調質または圧延仕上がり圧延銅箔,
0.2≦D≦2,W/D≦15,N≧500,L≦50(D:くぼみの深
さ(μm),W:くぼみの圧延方向の幅(μm),N:
くぼみの頻度(個/mm2),L:隣接するくぼみ間の距離
(μm))(17)圧延面と平行な断面の組織観察にて検出
される,厚みが5μmを越える介在物の個数が、0.5個/mm
2未満であることを特徴とする(1)から(16)までのいずれ
か1項記載の再結晶調質または圧延仕上がり圧延銅箔,
(18) 銅箔を樹脂フィルムと張り合わせた後、銅箔の厚
みが10μm以下になるようにエッチングし、その後、幅3
0μm以下の電極リードをエッチング加工により形成する
積層板に用いられることを特徴とする(1)から(17)まで
のいずれか1項記載の再結晶調質または圧延仕上がり圧
延銅箔,(19) 二層フレキシブル積層板用の素材として
用いられる(18)記載の再結晶調質または圧延仕上がり圧
延銅箔を提供するものである。
The present invention has been made based on the above findings. (1) Diffraction of (200) plane obtained by X-ray diffraction of a rolled surface of a rolled copper foil having a thickness of 20 μm or less. intensity (I) is a diffraction intensity of the fine powder of copper was determined by X-ray diffraction under the same conditions as rolled copper foil (200) plane (I 0) to I /
A recrystallized tempered rolled copper foil excellent in uniform etching thinning property, characterized in that I 0 > 50, (2) By rolling at a temperature higher than the semi-softening temperature by 50 ° C, / I 0
> 50 (where I is the diffraction intensity of the (200) plane obtained by X-ray diffraction of the rolled surface of the rolled copper foil, and I 0 is the fine copper powder under the same conditions as the rolled copper foil under X-rays). A rolled copper foil with a rolling finish characterized by being capable of inducing a recrystallized structure represented by (diffraction intensity of (200) plane obtained by diffracting), Is 20 μm
A rolled copper foil having the following recrystallized structure is formed by finish rolling with a workability of 90% or more.
(2) Rolled copper foil with a rolled thickness of 20 μm or less as described,
(4) Cu, Ag, O, H, and tough pitch copper whose total content of elements other than rare gas elements is 40 mass ppm or less
Recrystallization tempered or rolled rolled copper foil as described in (1), (2) or (3), (5) The total amount of elements other than Cu, Ag, O, H and rare gas elements is 20 mass ppm or less None (1), (2) or (3) recrystallized tempered or rolled finished rolled copper foil consisting of oxygen copper, (6) containing 100 to 700 mass ppm Ag, and C
The total amount of elements other than u, Ag, O, H and rare gas elements is 4
A recrystallized heat-treated or roll-finished rolled copper foil according to (1), (2), or (3), which is made of tough pitch copper having a content of 0 mass ppm or less. (7) Contains 100 to 700 mass ppm Ag, Cu, Ag, O,
The total amount of elements other than H and rare gas elements is 20 mass ppm
(1) consisting of oxygen-free copper which is, (2) or (3) recrystallized temper or rolled finish rolled copper foil, (8) rolled surface of rolled copper foil having a thickness of 20 μm or less X The diffraction intensity (I) of the (200) plane obtained by line diffraction is the diffraction intensity (I 0 ) of the (200) plane obtained by X-ray diffraction of fine copper powder under the same conditions as the rolled copper foil. ), I / I 0 > 50,
Furthermore, the angle between the [100] direction of the crystal and the rolling direction (θ)
Recrystallization tone with excellent uniform wall thickness reduction, characterized in that the ratio (α) of the crystals whose angle is within 10 ° (θ ≦ 10 °) to the total number of crystals is 60% or more (α ≧ 60%) Quality rolled copper foil, (9) I / I 0 > 50 (where I means X-ray diffraction of the rolled surface of the rolled copper foil by annealing the rolled texture at a temperature 50 ° C higher than the semi-softening temperature. Is the diffraction intensity of the (200) plane, and I 0 is the diffraction intensity of the (200) plane obtained by X-ray diffraction of fine copper powder under the same conditions as the rolled copper foil) and α ≧ 60% (where α is the crystal
The angle between the [100] direction and the rolling direction forms a recrystallized structure represented by the ratio of the crystals within 10 ° to the total number of crystals, and the rolled finished rolled copper foil, (1
0) Rolling processing structure, the crystal grain size is a rolled copper foil having a recrystallized structure of 20μm or less, is formed by finish rolling at a processing degree of 90% or more (9) thickness Is a rolled copper foil with a rolling finish of 20 μm or less, (11) where α is
80% or more (α ≧ 80%), recrystallized tempered or rolled finished rolled copper foil according to (8), (9) or (10), (12) Cu, Ag, O, H And tough pitch copper whose total content of elements other than rare gas elements is 30 mass ppm or less
(8), (9), (10) or (11) recrystallized temper or rolled finish rolled copper foil, (13) Cu, Ag, O, H and the total amount of elements other than rare gas elements is 20 mass ppm (8), (9), consisting of oxygen-free copper that is the following, (10) or (11) recrystallized temper or rolled finished rolled copper foil, (14) 100-700 mass ppm Ag
And tough pitch copper containing Cu, Ag, O, H and the total amount of elements other than rare gas elements is 40 mass ppm or less.
(8), (9), (10) or (11) recrystallized tempered or rolled finished rolled copper foil, (15) containing 100 to 700 mass ppm Ag, Cu, Ag, O, H and noble gases (8), (9), (1
0) or (11) recrystallized temper or rolled finished rolled copper foil, (16) crack-like depressions extending in the direction orthogonal to the rolling direction are dispersed on the surface, and the depressions have the following size and shape. (1) to (15), wherein the recrystallized tempered or rolled finished rolled copper foil,
0.2 ≦ D ≦ 2, W / D ≦ 15, N ≧ 500, L ≦ 50 (D: Depth of recess (μm), W: Width of recess in rolling direction (μm), N:
Dimple frequency (number / mm 2 ), L: Distance between adjacent dimples (μm) (17) The number of inclusions with a thickness of more than 5 μm detected by microscopic observation of the cross section parallel to the rolling surface , 0.5 pieces / mm
The recrystallized tempered or rolled finished rolled copper foil according to any one of (1) to (16), which is less than 2 .
(18) After attaching the copper foil to the resin film, etching is performed so that the thickness of the copper foil is 10 μm or less, and then the width of 3
A recrystallized tempered or rolled rolled copper foil according to any one of (1) to (17), characterized in that it is used for a laminated plate having an electrode lead of 0 μm or less formed by etching, (19) The recrystallized tempered or rolled finished rolled copper foil according to (18), which is used as a material for a two-layer flexible laminate, is provided.

【0019】以下、上記発明(1)〜(19)の限定理由を以
下に説明する。 (1)立方体集合組織 特許第3009383号は,立方体集合組織を,屈曲性の向上
の観点から圧延面に配向する(200)面((100)面と等価)
の程度として規定している。すなわち,X線回折を用い
て銅箔の圧延面における(200)面の回折強度(I)を測定
し,同一条件で粉末銅(ランダム方位)の(200)面の回
折強度(I0)を求め、これらの比が,I/I0>20である
と、満足できる屈曲性が得られる条件としている。一
方,満足できる減肉エッチング性を得るためには,I/I
0>20では不十分であり, I/I0>50のレベルまで立方
体集合組織を発達させる必要がある。より好ましくはI
/I0>60のレベルが望まれる。I/I0値は圧延面に配向
する(100)面の割合を規定するものであり,この条件を
満足すれば,深さ方向のエッチング速度が各結晶粒で等
しくなる(発明(1),(2),(8),(9))。
The reasons for limiting the inventions (1) to (19) will be described below. (1) Cube Texture Patent No. 3009383 has a (200) plane (equivalent to the (100) plane) in which the cubic texture is oriented in the rolling plane from the viewpoint of improving flexibility.
Is defined as the degree of. That is, the diffraction intensity (I) of the (200) plane on the rolled surface of the copper foil was measured using X-ray diffraction, and the diffraction intensity (I 0 ) of the (200) plane of powdered copper (random orientation) was measured under the same conditions. When the ratio of these is I / I 0 > 20, the condition is that satisfactory flexibility can be obtained. On the other hand, in order to obtain a satisfactory thinning etching property, I / I
0> 20, is insufficient, there is a need to develop cubic texture to a level of I / I 0> 50. More preferably I
A level of / I 0 > 60 is desired. The I / I 0 value defines the ratio of the (100) plane oriented to the rolled surface. If this condition is satisfied, the etching rate in the depth direction will be equal for each crystal grain (Invention (1), (2), (8), (9)).

【0020】発明(8)においては,エッチングによっ
て生じる結晶粒界の段差をも問題にする。すなわち、圧
延面に(100)面が配向していても,結晶が圧延面法線を
中心に回転している場合があり,このような回転が生じ
ると結晶粒界における原子配列の乱れが大きくなり,粒
界が粒内に対して選択的にエッチングされ粒界に溝がで
きる。そこで,この回転を抑制するために,結晶の[10
0]方向と圧延方向とが成す角度を規定した。すなわち,
全結晶個数に対して[100]方向と圧延方向とが成す角度
が10°以内(θ≦10°)の結晶の個数割合を60%以上(α
≧60%)にすることで結晶粒界の段差が小さくなり,80%
以上(α≧80%)にすることで結晶粒界の段差はほとんど
認められなくなる。さらに好ましい割合は90%以上であ
る(発明(11))。
In the invention (8), the step of the crystal grain boundary caused by etching is also a problem. That is, even if the (100) plane is oriented on the rolling surface, the crystal may rotate around the normal to the rolling surface. If such rotation occurs, the disorder of the atomic arrangement at the crystal grain boundaries is large. Then, the grain boundary is selectively etched with respect to the inside of the grain, and a groove is formed at the grain boundary. Therefore, in order to suppress this rotation, the [10
The angle between the [0] direction and the rolling direction was defined. That is,
If the angle between the [100] direction and the rolling direction is within 10 ° (θ ≦ 10 °), the percentage of the number of crystals is 60% or more (α
≧ 60%) reduces the step of the crystal grain boundary,
By setting the above (α ≧ 80%), almost no step of the crystal grain boundary is recognized. A more desirable ratio is 90% or more (Invention (11)).

【0021】[100]方向と圧延方向とが成す角度が10°
以内の結晶の割合は,EBSP(Electron Backscattering
Pattern)法を用いて測定できる。EBSP法では,試料表
面に電子線を入射させ,このときに発生する反射電子か
ら菊地パターンを得る。この菊池パターンを解析するこ
とにより,電子線入射位置の結晶方位を知ることができ
る。電子線を試料表面に2次元で走査させ,所定のピッ
チごとに結晶方位を測定することにより,試料表面の方
位分布を測定する(石橋直哉:材料科学,Vol.37,No.3
(2000),pp.116-122)。
The angle formed by the [100] direction and the rolling direction is 10 °
The ratio of the crystals within is EBSP (Electron Backscattering
Pattern) method. In the EBSP method, an electron beam is incident on the sample surface and the Kikuchi pattern is obtained from the reflected electrons generated at this time. By analyzing this Kikuchi pattern, the crystal orientation at the electron beam incident position can be known. The orientation distribution of the sample surface is measured by two-dimensionally scanning the electron beam on the sample surface and measuring the crystal orientation at a predetermined pitch (Naoya Ishibashi: Material Science, Vol.37, No.3).
(2000), pp.116-122).

【0022】(2)再結晶焼鈍 銅の立方体集合組織は再結晶組織に調質したときに発達
するため,減肉エッチングを行う前の時点で,銅箔を再
結晶させるための熱処理を行う必要がある(発明(1)、
(8))。三層フレキシブル基板では,エポキシ等の熱硬
化性樹脂からなる接着剤を用いて,銅箔とポリイミド等
の樹脂フィルムとを貼りあわせる。この接着剤を硬化さ
せるために,130〜170℃の温度で数時間から数十時間の
加熱処理を行う。この熱処理により銅箔を再結晶組織に
調質すればよい。二層フレキシブル基板についてはいく
つかの製造方法があるが,その一つであるキャスティン
グ法では,ポリイミド樹脂の前駆体であるポリアミック
酸を含むワニスを,銅箔上に塗布して加熱硬化させ,銅
箔上にポリイミド皮膜を形成する。この加工硬化処理で
は,300℃程度の温度で数10分から数時間加熱するが,
この熱処理により銅箔を再結晶組織に調質すればよい。
(2) Recrystallization annealing Since the cubic texture of copper develops when it is refined into a recrystallization texture, it is necessary to perform a heat treatment for recrystallizing the copper foil before the thinning etching. There is (Invention (1),
(8)). In a three-layer flexible substrate, an adhesive made of a thermosetting resin such as epoxy is used to bond a copper foil and a resin film such as polyimide. To cure this adhesive, heat treatment is performed at a temperature of 130 to 170 ° C for several hours to several tens of hours. It suffices to refine the copper foil into a recrystallized structure by this heat treatment. There are several manufacturing methods for a two-layer flexible substrate. One of them is the casting method, in which a varnish containing polyamic acid, which is a precursor of a polyimide resin, is applied on a copper foil and heat-cured to form a copper foil. Form a polyimide film on the foil. In this work hardening treatment, heating is performed at a temperature of about 300 ° C for several tens of minutes to several hours.
It suffices to refine the copper foil into a recrystallized structure by this heat treatment.

【0023】一方,樹脂皮膜を形成する工程の以前ある
いは以後の工程において,銅箔を焼鈍し再結晶組織に調
質することも可能である。銅箔を焼鈍して再結晶させる
と,再結晶初期に立方体方位粒が形成される。その後,
焼鈍を継続しても立方体集合組織の発達度が変化するこ
とはない。また,立方体方位の発達度は焼鈍温度に依存
しない。圧延銅箔の代表的な再結晶集合組織は,圧延銅
箔を半軟化温度より50℃高い温度で焼鈍することによっ
て得ることができる。ここで半軟化温度とは,所定の時
間で焼鈍したときに,引張り強さが焼鈍前の値と完全再
結晶後の値との中間の値になるときの焼鈍温度である。
On the other hand, it is possible to anneal the copper foil to prepare a recrystallized structure before or after the step of forming the resin film. When copper foil is annealed and recrystallized, cubic oriented grains are formed at the initial stage of recrystallization. afterwards,
Even if annealing is continued, the degree of cubic texture development does not change. The degree of cubic orientation development does not depend on the annealing temperature. A typical recrystallized texture of rolled copper foil can be obtained by annealing the rolled copper foil at a temperature 50 ° C higher than the semi-softening temperature. Here, the semi-softening temperature is an annealing temperature at which the tensile strength becomes an intermediate value between the value before annealing and the value after complete recrystallization when annealed for a predetermined time.

【0024】(3)立方体方位を発達させる圧延加工組
織 再結晶焼鈍したときに立方体集合組織が発達する銅箔を
製造するためには,圧延での加工組織が重要である。銅
(合金)の圧延加工組織が、(110)[112]を主方位とし、
かつ前項(1)で述べた,I/I0>50が得られる圧延加工組
織が本発明の特徴である。このような圧延加工組織を得
るには最終圧延加工度を高くすること,および最終圧延
前の再結晶焼鈍で結晶粒を小さくすることが有効である
(発明(3))。例えば,最終圧延加工度を90%以上とし
最終圧延前の結晶粒径を20μm以下とすることが有効で
ある。
(3) Rolling Work Structure that Develops Cubic Orientation In order to manufacture a copper foil in which a cubic texture develops when recrystallized and annealed, the working structure in rolling is important. The rolling structure of copper (alloy) has (110) [112] as the main orientation,
Further, the rolling structure which can obtain I / I 0 > 50 described in the above item (1) is a feature of the present invention. In order to obtain such a rolling work structure, it is effective to raise the final rolling workability and reduce the crystal grains by recrystallization annealing before the final rolling (Invention (3)). For example, it is effective to set the final rolling degree to 90% or more and the grain size before final rolling to 20 μm or less.

【0025】(4)立方体方位を発達させる組成 本発明では,さらに鮮鋭な立方体方位を安定して得るた
めの方法を,合金成分の観点から検討し,上記圧延加工
度、最終圧延前の結晶粒度の最適化に加え,Cu中のトー
タル不純物量の制御,およびCu中への適量のAg添加が有
効であることを発見した。銅箔に加工される純銅には,
酸素濃度100〜500 mass ppm(以下,mass ppmをppmと表
記する)のタフピッチ銅と酸素濃度10 ppm以下の無酸素
銅の二種類がある。タフピッチ銅,無酸素銅とも,本発
明の銅箔の素材に用いることができる。
(4) Composition that develops cubic orientation In the present invention, a method for stably obtaining a sharper cubic orientation is studied from the viewpoint of alloy components, and the rolling workability and the grain size before final rolling are examined. In addition to the optimization of, it was discovered that controlling the total amount of impurities in Cu and adding an appropriate amount of Ag to Cu are effective. For pure copper processed into copper foil,
There are two types: tough pitch copper with an oxygen concentration of 100 to 500 mass ppm (hereinafter mass ppm is referred to as ppm) and oxygen-free copper with an oxygen concentration of 10 ppm or less. Both tough pitch copper and oxygen-free copper can be used as the material for the copper foil of the present invention.

【0026】不純物の合計量と立方体方位の発達度との
関係を調査した結果,タフピッチ銅では不純物が40 ppm
を超えると立方体方位の発達が阻害され(発明(4)),
無酸素銅では不純物が20 ppmを超えると立方体方位の発
達が阻害された(発明(5))。このようにタフピッチ銅
は無酸素銅と比較し不純物の許容量が多いが,タフピッ
チ銅では不純物が酸化物として析出し,立方体方位阻害
に寄与する固溶不純物の量が減少するためである。ここ
で,不純物量の測定には,グロー放電質量分析法(GD-M
S)を用い,原子量が3(Li)以上の全元素について半定
量分析を行ない,0.1 ppm以上の濃度で検出された元素
の濃度を加算した。装置にはVG Elemental社製のVG9000
二重収束型GDMSを用い,放電ガスにはArを用いた。後述
するようにAgは立方体方位の発達に寄与するため,Agは
規定する不純物の対象から除外した。また,Oについて
も,上述したように不純物を無害化する効果があるた
め,不純物規定の対象から除外した。さらに,HおよびH
e,Ar等の希ガス類元素(以下「ガス」と略記する)に
ついても,立方体方位の発達と無関係であるため不純物
規定の対象から除外した。
As a result of investigating the relationship between the total amount of impurities and the degree of cubic orientation development, in tough pitch copper, the impurities were 40 ppm.
If it exceeds, the development of the cubic orientation is hindered (Invention (4)),
In oxygen-free copper, when the impurities exceeded 20 ppm, the development of cubic orientation was inhibited (Invention (5)). In this way, tough pitch copper has a larger allowable amount of impurities than oxygen-free copper, but in tough pitch copper, the impurities precipitate as oxides, and the amount of solid solution impurities that contribute to the inhibition of cubic orientation decreases. Here, the glow discharge mass spectrometry (GD-M
S) was used for semi-quantitative analysis of all elements with an atomic weight of 3 (Li) or higher, and the concentrations of the elements detected at concentrations of 0.1 ppm or higher were added. VG9000 made by VG Elemental
A double focusing GDMS was used and Ar was used as the discharge gas. As will be described later, Ag contributes to the development of the cubic orientation, so Ag was excluded from the target of the prescribed impurities. Further, O is also excluded from the target of the impurity regulation because it has the effect of making the impurities harmless as described above. Furthermore, H and H
Noble gas elements such as e and Ar (abbreviated as “gas” below) are also excluded from the target of impurity regulation because they are unrelated to the development of cubic orientation.

【0027】立方体方位発達へのAg添加の効果は,タフ
ピッチ銅,無酸素銅の場合とも,Ag濃度が100〜700 ppm
の範囲において,より高いレベルで認められた。特許第
2505480号で述べられているように,Cuに多量のAgを添
加すると立方体集合組織の発達が抑制されることは知ら
れていたが,適量のAg添加で立方体方位が鮮鋭化するこ
とは過去に報告されていない。従来のAgをCuに添加する
目的は,Cuに耐熱性を付与すること(特開2000-212661
等),伸びを付与すること(特開平11-140564)等であ
った。通常のタフピッチ銅および無酸素銅は10 ppm程度
のAgを含有しているが,さらに微量のAgを添加すること
により,立方体集合組織をより発達させることが可能で
ある。その添加量が総量で100 ppm未満でも若干の効果
があり,100 ppm以上添加することにより,一層高い効
果が得られる。しかし,Agが700 ppmを超えると逆に立
方体方位の発達度が低下し,またAgはCuより高価なため
原料コストの点でも不利である(発明(6)、(7)、(14)、(1
5))。なお,微量のAgをCuに添加しても特性上の問題は
発生せず,若干ではあるが立方体集合組織の発達に効果
があるため,本発明においては100 ppm未満のAgを含有
することも可能である(発明(4),(5),(12),(13))。
The effect of adding Ag on the cubic orientation development is that the Ag concentration is 100 to 700 ppm in both tough pitch copper and oxygen-free copper.
Was observed at a higher level in the range of. Patent No.
As described in No. 2505480, it has been known that the addition of a large amount of Ag to Cu suppresses the development of cubic texture, but the addition of an appropriate amount of Ag sharpens the cubic orientation in the past. Not reported. The conventional purpose of adding Ag to Cu is to impart heat resistance to Cu (Japanese Patent Laid-Open No. 2000-212661).
Etc.) and imparting elongation (Japanese Patent Laid-Open No. 11-140564). Ordinary tough pitch copper and oxygen-free copper contain about 10 ppm Ag, but it is possible to further develop the cubic texture by adding a trace amount of Ag. Even if the total amount added is less than 100 ppm, there is some effect, and by adding more than 100 ppm, a higher effect can be obtained. However, when Ag exceeds 700 ppm, the degree of cubic orientation development decreases, and Ag is more expensive than Cu, which is also disadvantageous in terms of raw material cost (inventions (6), (7), (14), (1
Five)). It should be noted that even if a small amount of Ag is added to Cu, there is no problem in characteristics and it is effective for the development of cubic texture, although it is slight, so in the present invention, Ag of less than 100 ppm may be contained. Possible (Inventions (4), (5), (12), (13)).

【0028】銅箔の素材を選択する場合には,軟化温度
にも留意する必要がある。通常の無酸素銅の軟化温度は
タフピッチ銅の軟化温度より高く,Agを添加すると軟化
温度が高くなる。樹脂皮膜を形成する工程で銅箔を再結
晶させる場合には,そのときの熱履歴で再結晶するよう
に成分を調整することが肝要である。また,立方体集合
組織を発達させるために最終圧延加工度を高くすると軟
化温度が低下し室温で保管中に軟化することがあるが,
成分を調整してこの室温軟化を防止することもできる。
例えば,不純物量を規制した無酸素銅を用いる方策(特
開2000-212660),適量のAgを添加したタフピッチ銅を
用いる方策(特開2000-212661)等が提案されている。
When selecting the material of the copper foil, it is necessary to pay attention to the softening temperature. The normal softening temperature of oxygen-free copper is higher than that of tough pitch copper, and the addition of Ag increases the softening temperature. When the copper foil is recrystallized in the step of forming the resin film, it is important to adjust the components so that it recrystallizes according to the heat history at that time. In addition, if the final rolling degree is increased to develop a cubic texture, the softening temperature may decrease and softening may occur during storage at room temperature.
Ingredients can be adjusted to prevent this room temperature softening.
For example, a method using oxygen-free copper with a controlled amount of impurities (Japanese Patent Laid-Open No. 2000-212660) and a method using tough pitch copper with an appropriate amount of Ag added (Japanese Patent Laid-Open No. 2000-212661) have been proposed.

【0029】(5)介在物 介在物(銅と異なる相)が存在すると,介在物と銅とで
エッチング速度が異なるため,介在物が溶け残って凸を
形成したり,介在物が銅より先に溶けて凹を形成したり
する。そこで大きな介在物の頻度を規制する。本発明の
場合,介在物の厚みが問題となる。介在物の観察は,鏡
面研磨した後の圧延方向に平行な断面について行なう。
厚みが5μmを超える介在物の個数が,0.5個/mm2以上に
なると,介在物に起因する凹凸による弊害を無視できな
くなる(発明(17))。介在物には,鋳造時に発生する
晶出物,鋳造や熱処理時に発生する析出物,溶解時に溶
湯に巻き込まれる耐火物,圧延時に材料表面に押し込ま
れる異物等がある。
(5) Inclusions When inclusions (phases different from copper) are present, the etching rates of the inclusions and copper are different, so that the inclusions remain unmelted to form protrusions, or the inclusions precede copper. It melts and forms a recess. Therefore, the frequency of large inclusions is regulated. In the case of the present invention, the thickness of inclusions becomes a problem. The inclusions are observed on a cross section parallel to the rolling direction after mirror polishing.
When the number of inclusions having a thickness of more than 5 μm is 0.5 pieces / mm 2 or more, the adverse effect caused by the unevenness due to the inclusions cannot be ignored (Invention (17)). The inclusions include crystallized substances generated during casting, precipitates generated during casting or heat treatment, refractory substances caught in the molten metal during melting, and foreign substances pushed into the material surface during rolling.

【0030】(6)表面性状 銅を冷間圧延したときに,表面に生成する亀裂状のくぼ
みを腐食の起点に利用し,平滑なエッチング面を得る。
そのためには小さいくぼみを高頻度で均一に分散させる
ことが肝要である。この条件は次の通りである(発明(1
6))。 0.2≦D≦2,W/D≦15,N≧500,L≦50 (D:くぼみの深さ(μm),W:くぼみの圧延方向の幅
(μm),N:くぼみの頻度(個/mm2),L:隣接するく
ぼみ間の距離(μm))
(6) Surface texture When the copper is cold-rolled, crack-like depressions formed on the surface are used as the starting points of corrosion to obtain a smooth etched surface.
For that purpose, it is important to uniformly disperse the small dents with high frequency. The conditions are as follows (Invention (1
6)). 0.2 ≦ D ≦ 2, W / D ≦ 15, N ≧ 500, L ≦ 50 (D: Depth of depression (μm), W: Width of depression in rolling direction (μm), N: Frequency of depression (pieces / mm 2 ), L: Distance between adjacent depressions (μm))

【0031】図1にくぼみの代表的な形態を示す。ま
た,図2は同一試料の表面プロファイルである。後述す
る凹凸SEMを用いて,圧延方向と平行な方向に,表面の
凹凸を測定している。図2中には,くぼみの圧延方向の
幅(W)とくぼみの深さ(D)の定義を示してある。Dが
0.2μmより小さいと腐食の起点として作用しない。Dが2
μmより大きいと,逆にエッチング面の凹凸が大きくな
る。くぼみの形態が鋭利な方が腐食の起点としての効果
が大きく,W/Dが15以下である必要がある。また,有効
な効果を得るためには,くぼみの頻度(N)を500個/mm2
以上とし,隣接するくぼみ間の距離(L)が最大でも50
μm以下になるように均一に分散させる必要がある。
FIG. 1 shows a typical form of the depression. Moreover, FIG. 2 is a surface profile of the same sample. The unevenness on the surface is measured in the direction parallel to the rolling direction using the unevenness SEM described later. Fig. 2 shows the definition of the width (W) of the recess in the rolling direction and the depth (D) of the recess. D is
If it is smaller than 0.2 μm, it does not act as a starting point of corrosion. D is 2
If it is larger than μm, concavity and convexity on the etching surface will become large. The sharper the dent morphology, the greater the effect as the starting point of corrosion, and the W / D must be 15 or less. Moreover, in order to obtain an effective effect, the frequency of depressions (N) is 500 / mm 2
The maximum distance (L) between adjacent depressions is 50.
It is necessary to disperse evenly so that the particle size becomes less than μm.

【0032】(7)銅箔の用途等 エッチングによる銅箔の薄肉化は,フレキシブル基板の
回路をファインピッチ化することを目的に行われる。す
なわち,本発明の銅箔はファインピッチ用途に適した銅
箔である。とくに,銅箔を10μm以下の厚み(発明(1
8))に減肉エッチングした後,幅30μm以下の電極リー
ドを形成する場合において,顕著な効果を発揮する。二
層フレキシブル基板は接着剤層が存在せず薄いため,三
層フレキシブル基板より高密度実装に対して有利であ
る。本発明の銅箔を二層フレキシブル基板に用いファイ
ンピッチ回路を形成することにより,さらなる高密度実
装が可能となる。以下,実施例により本発明を説明す
る。
(7) Use of copper foil, etc. The thinning of the copper foil by etching is carried out for the purpose of making the circuit of the flexible substrate fine pitch. That is, the copper foil of the present invention is a copper foil suitable for fine pitch applications. In particular, copper foil with a thickness of 10 μm or less (invention (1
After thinning etching in 8)), it produces a remarkable effect when forming electrode leads with a width of 30 μm or less. The two-layer flexible substrate is thinner than the three-layer flexible substrate because it has no adhesive layer and is therefore advantageous for high-density mounting. By using the copper foil of the present invention in a two-layer flexible substrate to form a fine pitch circuit, higher density mounting becomes possible. Hereinafter, the present invention will be described with reference to examples.

【0033】[0033]

【実施例】実施例1 180〜230 ppmの含有量になるようにAgを添加し,O濃度
を150〜200 ppmの範囲に調整した厚さ200 mmのタフピッ
チ銅インゴットを溶製した。Cu,Ag,O,Hおよび希ガス以
外の不純物の合計濃度が40 ppm以下になるように,原料
となる電気銅の品位を調整した。このインゴットを900
℃から熱間圧延し,厚さ10 mmの板を得た。その後,冷
間圧延と焼鈍と繰り返し,最後に冷間圧延で厚さ18μm
の銅箔に加工した。最後の冷間圧延前の焼鈍では結晶粒
径を10〜15μmの範囲に調整した。最終冷間圧延では,
加工度を種々変化させた。圧延加工度(R)は次式で定
義する。 R = (t0−t) / t0 ×100 (t0:圧延前の厚み,t:
圧延後の厚み) この銅箔は発明(2)に係る圧延仕上り銅箔であり、こ
れを半軟化温度より50℃高い温度で焼鈍し再結晶させ
た。この場合の焼鈍時間は30分とした。再結晶後の銅箔
について,以下の評価を行った。
Example 1 A 200 mm thick tough pitch copper ingot was prepared by adding Ag to a content of 180 to 230 ppm and adjusting the O concentration in the range of 150 to 200 ppm. The grade of electrolytic copper used as the raw material was adjusted so that the total concentration of impurities other than Cu, Ag, O, H, and noble gases was 40 ppm or less. 900 this ingot
Hot rolling was performed from ℃ to obtain a plate with a thickness of 10 mm. After that, cold rolling and annealing are repeated, and finally cold rolling is performed to a thickness of 18 μm.
Processed into copper foil. In the final annealing before cold rolling, the crystal grain size was adjusted to the range of 10 to 15 μm. In the final cold rolling,
The workability was changed variously. The rolling degree (R) is defined by the following equation. R = (t 0 −t) / t 0 × 100 (t 0 : thickness before rolling, t:
Thickness after rolling) This copper foil was a rolled finished copper foil according to the invention (2), and was annealed at a temperature higher by 50 ° C than the semi-softening temperature to recrystallize. The annealing time in this case was 30 minutes. The following evaluations were performed on the recrystallized copper foil.

【0034】 X線回折:圧延面における (200)面の回
折強度の積分値(I)求めた。この値をあらかじめ測定
しておいた微粉末銅(方位がランダムな試料)の(200)
面の回折強度積分値(I0)で割り,I/I0の値を計算し
た。なおピーク強度の積分値の測定は,箔及び微粉末銅
ともにCo管球を用い,2θ=57〜63°(θは回折角度)
の範囲で行った。
X-ray diffraction: The integrated value (I) of the diffraction intensity of the (200) plane in the rolled surface was obtained. (200) of finely powdered copper (sample with random orientation) whose value was measured in advance
The value of I / I 0 was calculated by dividing by the integrated value of the diffraction intensity of the surface (I 0 ). In addition, the integral value of the peak intensity was measured using a Co tube for both foil and fine copper powder, 2θ = 57 to 63 ° (θ is the diffraction angle)
It went in the range of.

【0035】EBSP:試料表面をりん酸中で電解研磨し
鏡面を得た。その後,TSL社製のOIM(Orientation Imag
ing Micrograph)を用い,0.25 mm×0.3 mmの試料表面
を,1μmの間隔で測定し,全結晶個数に対する[100]方
向と圧延方向との成す角度が10°以内である結晶の割合
(以下αとする)を求めた。
EBSP: The sample surface was electrolytically polished in phosphoric acid to obtain a mirror surface. After that, TSL's OIM (Orientation Imag
ing Micrograph), the surface of a sample of 0.25 mm × 0.3 mm was measured at intervals of 1 μm, and the ratio of crystals whose angle between the [100] direction and the rolling direction was within 10 ° to the total number of crystals (hereinafter α And asked).

【0036】エッチング試験:温度50℃,濃度100g/L
の過硫酸ナトリウム水溶液を試料表面に,2 kg/cm2の圧
力で噴射し,深さ方向に約9μm減肉エッチングした。そ
の後,JIS B0601に従い,接触粗さ計を用いて表面の最
大高さ(Ry)を求めた。基準長さを0.8 mmとし,圧延方
向と平行な方向に測定した。Ryの測定は場所を変えて5
回行い,5回の測定値の最大値を求めた。
Etching test: temperature 50 ° C., concentration 100 g / L
An aqueous solution of sodium persulfate was sprayed onto the surface of the sample at a pressure of 2 kg / cm 2 , and the thickness was reduced by approximately 9 μm. Then, according to JIS B0601, the maximum height (Ry) of the surface was obtained using a contact roughness meter. The reference length was 0.8 mm and the measurement was performed in the direction parallel to the rolling direction. The measurement of Ry changes the place 5
The maximum value of the measured values of 5 times was calculated.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に,(200)面の I/I0,α値およびエ
ッチング表面のRyを示す。最終圧延加工度の増加ととも
に,立方体方位が発達する傾向がみられる。表1のRyの
データを,I/I0との関係で図3に示す。I/I0<50の範
囲では,Ryは3μmを超える高い値である。Ry>3μmの場
合,レジスト膜と銅箔との間に気泡がかなりの頻度で生
じ,エッチング加工により回路を形成することが不可能
であった。I/I0=50の近傍から,I/I0の増加とともに
Ryが3μmを下回るレベルにまで低下する。Ry≦3μmであ
れば回路エッチングは可能であるが,製造歩留,製造の
容易性の点では,できるだけRyが小さい方が望ましい。
I/I0>60の範囲では,Ry値にかなりのばらつきが認め
られ,もはやI/I0の増加の伴いRyが単調に減少する傾
向はみられない。したがってI/I0は60まで高めれば充
分といえる。
Table 1 shows I / I 0 and α value of the (200) plane and Ry of the etched surface. The cubic orientation tends to develop as the final rolling reduction increases. The Ry data in Table 1 is shown in FIG. 3 in relation to I / I 0 . In the range of I / I 0 <50, Ry is a high value exceeding 3 μm. When Ry> 3 μm, bubbles were generated quite frequently between the resist film and the copper foil, making it impossible to form a circuit by etching. From the vicinity of I / I 0 = 50, as I / I 0 increases
Ry drops to a level below 3 μm. Circuit etching is possible if Ry ≤ 3 μm, but in terms of manufacturing yield and ease of manufacturing, it is desirable that Ry be as small as possible.
In the range of I / I 0 > 60, there is considerable variation in Ry value, and there is no longer any tendency for Ry to decrease monotonically with increasing I / I 0 . Therefore, it can be said that increasing I / I 0 to 60 is sufficient.

【0039】図4にはα値とRyとの関係を示す。I/I0
のレベルによりデータを層別している。α値とRyには良
い相関が認められる。α≧60%(すなわち発明(8),(9))
ではRy≦3μmとなり回路エッチングが可能となる。α≧
80%(発明(11))ではRy≦2μmとなり,このRyのレベル
ではほとんど問題なく回路エッチングを行なうことがで
きる。α≧90%の範囲ではRy≦1.5μmとなる。このRy値
はエッチング前の表面のRy値と近いレベルであり(図2
参照),理想的なエッチングが行われたことになる。な
お,図4のI/I0>60のデータ(○)においてα値とRy
に良い相関が認められることから,図3のI/I0>60の
範囲で認められるRyのばらつきは,αのばらつきに起因
して発生していることがわかる。
FIG. 4 shows the relationship between the α value and Ry. I / I 0
The data is stratified according to the level of. There is a good correlation between α value and Ry. α ≧ 60% (ie inventions (8), (9))
With Ry ≤ 3 μm, circuit etching becomes possible. α ≧
At 80% (invention (11)), Ry ≦ 2 μm, and at this level of Ry, circuit etching can be performed with almost no problems. In the range of α ≧ 90%, Ry ≦ 1.5 μm. This Ry value is close to the Ry value of the surface before etching (Fig. 2
(See), it means that the ideal etching was performed. In addition, in the data of I / I 0 > 60 (○) in FIG.
It can be seen that the variation in Ry observed in the range of I / I 0 > 60 in FIG.

【0040】実施例2 種々の濃度のAgを含有するタフピッチ銅(O濃度:150〜
200 ppm)および無酸素銅(O濃度:2〜5 ppm)インゴッ
トを溶製した。Cu,Ag,O,Hおよび希ガス以外の不純物の
合計濃度は,7〜12 ppmの範囲に調整してある。インゴ
ットの厚さは150mmである。このインゴットを850℃から
熱間圧延し,厚さ12 mmの板を得た。その後,冷間圧延
と焼鈍と繰り返し,最後に冷間圧延で厚さ12μmの銅箔
に加工した。タフピッチ銅の最終圧延加工度は99.2%お
よび95.2%の2水準とし,無酸素銅の最終圧延加工度は9
9.2%とした。なお,最後の冷間圧延前の焼鈍では結晶粒
径を10〜15μmの範囲に調整した。この銅箔のうちAg含
有量が100〜700ppmの範囲に入るものは発明(6), (14)に
係る圧延仕上り銅箔に相当する。この銅箔を半軟化温度
により50℃高い温度で焼鈍し再結晶させた。この場合の
焼鈍時間は30分とした。再結晶後の銅箔について,前述
した測定方法にて(200)面のI/I0値およびα値測定し
た。
Example 2 Tough pitch copper containing various concentrations of Ag (O concentration: 150-
200 ppm) and oxygen-free copper (O concentration: 2-5 ppm) ingots were melted. The total concentration of impurities other than Cu, Ag, O, H and noble gases was adjusted to the range of 7 to 12 ppm. The thickness of the ingot is 150mm. This ingot was hot-rolled from 850 ° C to obtain a 12 mm thick plate. After that, cold rolling and annealing were repeated, and finally cold rolling was applied to form a copper foil with a thickness of 12 μm. The final rolling workability of tough pitch copper is set to 2 levels of 99.2% and 95.2%, and the final rolling workability of oxygen-free copper is 9
It was set to 9.2%. In the final annealing before cold rolling, the grain size was adjusted to the range of 10 to 15 μm. Among the copper foils, the one having an Ag content within the range of 100 to 700 ppm corresponds to the rolled finished copper foil according to the inventions (6) and (14). This copper foil was annealed at a temperature higher by 50 ° C. due to the semi-softening temperature and recrystallized. The annealing time in this case was 30 minutes. For the recrystallized copper foil, the I / I 0 value and α value of the (200) plane were measured by the above-described measurement method.

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】(200)面のI/I0値およびα値の測定結果
を,それぞれ表2,表3に示す。また,このデータをそ
れぞれ図5,図6に図示する。I/I0値,α値とも,Ag
の添加により徐々に大きくなり,Agが100 ppm以上にな
ると急激に増加し,Ag=150〜600ppmではほぼ一定の高い
値を示している。そして,Agが700 ppmを超えると,I/
I0値,α値とも急激に低下している。
The measurement results of the I / I 0 value and α value of the (200) plane are shown in Table 2 and Table 3, respectively. The data are also shown in FIGS. 5 and 6, respectively. Both I / I 0 value and α value are Ag
It gradually increases with the addition of Ag, and increases sharply when Ag exceeds 100 ppm, and shows a substantially constant high value at Ag = 150 to 600 ppm. When Ag exceeds 700 ppm, I /
Both I 0 value and α value decrease sharply.

【0044】表2,3に示すように,Agが5000 ppmにな
ると,I/I0値,α値とも極端に低い値を示し,再結晶
集合組織として立方体方位が発達するという純銅の特性
が完全に失われている。圧延加工度が高いほど立方体方
位が発達している。また,タフピッチ銅の方が無酸素銅
より立方体方位が発達しているが,後述するように,不
純物が立方体方位の発達を阻害する影響が,タフピッチ
銅の方が小さいためである。
As shown in Tables 2 and 3, when Ag is 5000 ppm, both the I / I 0 value and the α value show extremely low values, and the characteristic of pure copper is that the cubic orientation develops as a recrystallization texture. Completely lost. The higher the rolling degree, the more developed the cubic orientation. Further, the tough pitch copper has a more developed cubic orientation than the oxygen-free copper, but as described later, the effect of impurities impeding the development of the cubic orientation is that the tough pitch copper is smaller.

【0045】実施例3 Agを添加していないタフピッチ銅,含有量が180〜230 p
pmとなるようにAgを添加したタフピッチ銅,Agを添加し
ていない無酸素銅および含有量が180〜230 ppmとなるよ
うにAgを添加した無酸素銅について,Cu,Ag,O,Hおよび
希ガス以外の元素の合計濃度(以下,「不純物濃度」と
いう)を種々に変化させた。タフピッチ銅のO濃度は150
〜200 ppmの範囲,無酸素銅のO濃度は1〜5 ppmの範囲に
調整した。また,Agを添加しない場合でも,原料の電気
銅から7〜15 ppmのAgが混入した。
Example 3 Tough pitch copper without addition of Ag, content of 180 to 230 p
Cu, Ag, O, H, and H were measured for tough pitch copper with Ag added to pm, oxygen-free copper without Ag, and oxygen-free copper with Ag added to 180-230 ppm. The total concentration of elements other than rare gas (hereinafter referred to as “impurity concentration”) was changed variously. O concentration of tough pitch copper is 150
The oxygen concentration of oxygen-free copper was adjusted to the range of up to 200 ppm and the oxygen concentration of oxygen-free copper to the range of 1 to 5 ppm. Even if Ag was not added, 7 to 15 ppm of Ag was mixed from the raw material electrolytic copper.

【0046】厚さ225 mmのインゴットを溶製し,875℃
の熱間圧延により厚さ9 mmの板に加工した。その後,冷
間圧延と焼鈍と繰り返し,最後に加工度98.8%の冷間圧
延により厚さ18μmの銅箔を得た。なお,最後の冷間圧
延前の焼鈍では結晶粒径を10〜15μmの範囲に調整し
た。これらの銅箔のうち、Agを添加したタフピッチ銅は
発明(9)を引用する(14)に相当し、Ag添加した無酸素銅
は発明(9)を引用する(15)に相当し、何れも圧延仕上り
の箔である。これらの銅箔を半軟化温度より50℃高い温
度で焼鈍し再結晶させた。この場合の焼鈍時間は30分と
した。再結晶後の銅箔について,(200)面のI/I0値およ
びα値測定した。それぞれの測定方法は上述した。
A 225 mm thick ingot is melted and melted at 875 ° C.
Was hot-rolled into a plate with a thickness of 9 mm. After that, cold rolling and annealing were repeated, and finally, cold rolling with a workability of 98.8% was performed to obtain a copper foil with a thickness of 18 μm. In the final annealing before cold rolling, the grain size was adjusted to the range of 10 to 15 μm. Of these copper foils, tough pitch copper added with Ag corresponds to invention (9) cited as (14), oxygen-free copper added with Ag corresponds to invention (9) referred to as (15), and either Is also a rolled foil. These copper foils were annealed and recrystallized at a temperature 50 ° C. higher than the semi-softening temperature. The annealing time in this case was 30 minutes. The I / I 0 value and α value of the (200) plane of the recrystallized copper foil were measured. Each measuring method is described above.

【0047】[0047]

【表4】 [Table 4]

【0048】(200)面のI/I0値およびα値の測定結果を
表4に示す。銅箔の原料である電気銅が含有する一般的
不純物であるS,Fe,As,Sb,Bi,Pb,Se,Te,Cdおよ
びSnの濃度を示してある。不純物の合計とは,Cu,Ag,O,
Hおよび希ガス以外の元素のうち,0.1 ppm以上の濃度で
検出された元素の濃度を加算した値であり,この値には
S,Fe,As,Sb,Bi,Pb,Se,Te,Cd,Sn以外の元素の
濃度も含まれている。このような元素として耐火物が含
有するAl,Siや脱酸剤として添加されるP等があった。
不純物の合計量とI/I0値およびα値との関係を図7,
図8に示す。
Table 4 shows the measurement results of the I / I 0 value and α value of the (200) plane. The concentrations of S, Fe, As, Sb, Bi, Pb, Se, Te, Cd and Sn, which are general impurities contained in electrolytic copper which is a raw material of copper foil, are shown. The total impurities are Cu, Ag, O,
Of the elements other than H and noble gases, it is the value obtained by adding the concentrations of the elements detected at a concentration of 0.1 ppm or more.
Concentrations of elements other than S, Fe, As, Sb, Bi, Pb, Se, Te, Cd, Sn are also included. As such elements, there were Al, Si contained in refractories and P added as a deoxidizer.
Fig. 7 shows the relationship between the total amount of impurities and the I / I 0 value and α value.
It shows in FIG.

【0049】タフピッチ銅(図7):不純物濃度が40 p
pm以下であれば,Ag添加の有無にかかわらず,50を超え
るI/I0値が得られている(発明(4),(6))。不純物が20
ppm以下の範囲では,不純物濃度に対しほぼ一定のI/I
0値が得られている。60以上のα値が得られる不純物濃
度の範囲は,Agを添加した場合で40 ppm以下(発明(1
2)),Ag無添加の場合で30 ppm以下(発明(14))で
ある。80以上のα値が得られる不純物濃度の範囲は,Ag
を添加した場合で22 ppm以下,Ag無添加の場合で14 ppm
以下である。また,α値は,I/I0値と異なり,不純物
濃度の低減に伴って単調に増加している。すなわち,不
純物量が少くなると,I/I0値が同等でもα値が増加す
る挙動が認められる。この挙動が,前述した図3のα値
のばらつきを生じさせている。
Tough pitch copper (FIG. 7): Impurity concentration is 40 p
If it is pm or less, an I / I 0 value exceeding 50 is obtained regardless of whether Ag is added or not (Inventions (4) and (6)). 20 impurities
In the range of ppm or less, I / I is almost constant with respect to the impurity concentration.
A value of 0 has been obtained. The range of the impurity concentration at which an α value of 60 or more is obtained is 40 ppm or less when Ag is added (invention (1
2)), 30 ppm or less without adding Ag (Invention (14)). The range of impurity concentration that can obtain α value of 80 or more is Ag
22 ppm or less when added, 14 ppm when no Ag is added
It is the following. Further, unlike the I / I 0 value, the α value monotonically increases as the impurity concentration decreases. That is, when the amount of impurities is small, the α value increases even if the I / I 0 values are the same. This behavior causes the variation of the α value in FIG. 3 described above.

【0050】無酸素銅(図8):不純物濃度が20 ppm以
下であれば,Ag添加の有無にかかわらず,50を超えるI
/I0値が得られている(発明(13))。60以上のα値が
得られる不純物濃度の範囲は,Agを添加した場合,Ag無
添加の場合とも20 ppm以下(発明(13),(15))であ
る。80以上のα値が得られる不純物濃度の範囲は,Agを
添加した場合で15 ppm以下,Ag無添加の場合で8 ppm以
下である。図7と比較すると,無酸素銅はタフピッチと
比較し,より敏感に不純物の影響を受けることがわか
る。
Oxygen-free copper (FIG. 8): If the impurity concentration is 20 ppm or less, I exceeds 50 regardless of whether Ag is added or not.
/ I 0 value is obtained (Invention (13)). The range of the impurity concentration with which the α value of 60 or more is obtained is 20 ppm or less (Invention (13), (15)) both with and without addition of Ag. The range of the impurity concentration that can obtain an α value of 80 or more is 15 ppm or less when Ag is added, and 8 ppm or less when Ag is not added. Compared to FIG. 7, it can be seen that oxygen-free copper is more sensitively affected by impurities than tough pitch.

【0051】実施例4 250〜300 ppmのAgを含有する厚み18μmの銅箔につい
て,介在物の形態と頻度を種々に変化させた。介在物を
増やす手段として,酸素濃度を高くする,活性金属を添
加する等の方法を採った。最終圧延加工度は99.1%と
し,最終冷間圧延前の結晶粒径は15〜20μmの範囲に調
整した。これら銅箔を半軟化温度より50℃高い温度で30
分間焼鈍して再結晶させた。
Example 4 With respect to a copper foil having a thickness of 18 μm and containing 250 to 300 ppm of Ag, the form and frequency of inclusions were variously changed. As a method of increasing inclusions, methods such as increasing the oxygen concentration and adding an active metal were adopted. The final rolling degree was 99.1%, and the grain size before final cold rolling was adjusted to the range of 15 to 20 μm. Apply these copper foils at a temperature 50 ° C above the semi-softening temperature
It was annealed for a minute and recrystallized.

【0052】圧延方向に平行な断面を鏡面研磨し,走査
型電子顕微鏡を用いて,厚み方向の幅が5μmを超える介
在物の個数を測定した。観察面積は10 mm2とした。ま
た,実施例1と同じ条件で減肉エッチングを行い,エッ
チング面を,(株)エリオニクス社製の電子線三次元粗
さ解析装置ERA−8000を用いて観察し,確認された突起
の高さを測定した。
A cross section parallel to the rolling direction was mirror-polished, and the number of inclusions having a width in the thickness direction of more than 5 μm was measured using a scanning electron microscope. The observation area was 10 mm 2 . Further, thinning etching was performed under the same conditions as in Example 1, and the etching surface was observed using an electron beam three-dimensional roughness analyzer ERA-8000 manufactured by Elionix Co., Ltd. Was measured.

【0053】[0053]

【表5】 [Table 5]

【0054】評価結果を表5に示す。厚みが5μmを超え
る介在物は,エッチング後の表面に高さが2μmを超える
突起を生じさせることがあった。次のエッチング加工で
回路を形成する工程において,エッチング面にレジスト
を塗布すると,この突起の周辺に気泡が発生した。この
ような異常箇所をエッチングすると,回路の断線や回路
の短絡が生じ,フレキシブル基板の製造歩留が低下し
た。気泡の発生が著しい場合には,エッチング加工自体
が不可能となった。厚みが5μmを超える介在物の頻度が
0.5 個/mm2未満になると,回路エッチングの際の介在
物に起因する異常率が,無視できるレベルにまで低下し
た(発明(17))。
The evaluation results are shown in Table 5. Inclusions with a thickness of more than 5 μm may cause protrusions with a height of more than 2 μm on the surface after etching. In the process of forming a circuit by the next etching process, when a resist was applied to the etching surface, bubbles were generated around this protrusion. Etching of such an abnormal portion caused a disconnection of the circuit or a short circuit of the circuit, which reduced the manufacturing yield of the flexible substrate. When the generation of bubbles was remarkable, the etching process itself became impossible. The frequency of inclusions whose thickness exceeds 5 μm
When it was less than 0.5 / mm 2, the abnormal rate due to inclusions during circuit etching decreased to a negligible level (Invention (17)).

【0055】実施例5 450〜500 ppmのAgを添加し,O濃度を150〜200 ppmの範
囲に調整した厚さ200 mmのタフピッチ銅インゴットを溶
製した。Cu,Ag,O,Hおよび希ガス以外の合計濃度が20 pp
m以下になるように,原料となる電気銅の品位を調整し
た。このインゴットを750℃から熱間圧延し,厚さ10 mm
の板を得た。その後,冷間圧延と焼鈍と繰り返し,最後
に試験圧延機を用い,加工度96.4%の冷間圧延で厚さ12
μmの銅箔に加工した。この最終圧延では,最終パスの
加工度を30%,圧延速度を80 m/minとし,圧延油の粘度
を10 cStとし,用いる圧延ロールの直径を変えることに
より,表面のくぼみの発生状況を種々に変化させた。な
お,最後の冷間圧延前の焼鈍では結晶粒径を10〜15μm
の範囲に調整した。この銅箔を半軟化温度より50℃高い
温度で焼鈍し再結晶させた。この場合の焼鈍時間は30分
とした。再結晶後の(200)面のI/I0値は60〜65の範囲で
あり,α値は85〜90の範囲であった。
Example 5 A tough pitch copper ingot having a thickness of 200 mm was prepared by adding Ag of 450 to 500 ppm and adjusting the O concentration in the range of 150 to 200 ppm. 20 pp total concentration except Cu, Ag, O, H and noble gases
The quality of the electrolytic copper used as the raw material was adjusted so that it would be less than m. This ingot was hot-rolled from 750 ℃, and the thickness was 10 mm.
Got the plate. After that, cold rolling and annealing were repeated, and finally, a test rolling machine was used to perform cold rolling with a workability of 96.4% to a thickness of 12
It was processed into a copper foil of μm. In this final rolling, the workability of the final pass was set to 30%, the rolling speed was set to 80 m / min, the viscosity of the rolling oil was set to 10 cSt, and the occurrence of surface dents was changed by changing the diameter of the rolling roll used. Changed to. In the final annealing before cold rolling, the grain size was 10 to 15 μm.
Adjusted to the range. This copper foil was annealed at a temperature 50 ° C. higher than the semi-softening temperature and recrystallized. The annealing time in this case was 30 minutes. The I / I 0 value of the (200) plane after recrystallization was in the range of 60 to 65, and the α value was in the range of 85 to 90.

【0056】それぞれの試料に対し,(株)エリオニク
ス社製の電子線三次元粗さ解析装置ERA−8000を用い
て, 0.2≦D≦2,W/D≦15(D:くぼみの深さ(μm),W:く
ぼみの圧延方向の幅(μm )) の条件を満たすくぼみの頻度Nを測定した。また,隣接
するくぼみ間の距離を測定し,最も大きい距離(L)を
求めた。次に,各試料に対し,温度30℃,濃度50g/Lの
過硫酸ナトリウム水溶液を1.5 kg/cm2の圧力で噴射し,
深さ方向に約6μmエッチングした。このエッチング液は
実施例1で用いたエッチング液よりも腐食力が弱いた
め,表面くぼみの影響がでやすい。その後,JIS B0601
に従い,接触粗さ計を用いて表面の最大高さ(Ry)を求
めた。基準長さを0.8 mmとし,圧延方向と平行な方向
に,場所を変えて5回測定し,5回の測定値のうちの最
大値を求めた。
For each sample, using an electron beam three-dimensional roughness analyzer ERA-8000 manufactured by Elionix Co., Ltd., 0.2 ≦ D ≦ 2, W / D ≦ 15 (D: depth of depression ( μm), W: width of the depression in the rolling direction (μm)). In addition, the distance between adjacent depressions was measured and the largest distance (L) was obtained. Next, to each sample, an aqueous solution of sodium persulfate having a temperature of 30 ° C. and a concentration of 50 g / L was injected at a pressure of 1.5 kg / cm 2 ,
About 6 μm was etched in the depth direction. Since this etching solution has a weaker corrosive power than the etching solution used in Example 1, it is likely to be affected by the surface depression. After that, JIS B0601
Then, the maximum height (Ry) of the surface was obtained using a contact roughness meter. The standard length was 0.8 mm, and the measurement was performed 5 times at different locations in the direction parallel to the rolling direction, and the maximum value of the 5 measurements was obtained.

【0057】[0057]

【表6】 [Table 6]

【0058】評価結果を表6に示す。No.1〜5より,く
ぼみが増えるに従いRyが小さくなることがわかる。No.6
は圧延油の滴下量を減らした例であり,ロールと圧延材
との間の油膜の分布が不均一になり,くぼみの分布が局
在的になっている。その結果として,No.6ではRyの低下
効果は認められない。一方,20 cStと粘度の高い圧延油
を用いてNo.4同じ条件で圧延し,Dが最大で2.7μmのく
ぼみを1560個/mm2の頻度で導入したところ,Ry=3.02μm
と却って凹凸が大きくなった。なお,このようなくぼみ
の影響は,実施例1のエッチング条件においては認めら
れなかった。
Table 6 shows the evaluation results. From Nos. 1 to 5, it can be seen that Ry decreases as the number of depressions increases. No.6
Shows an example in which the amount of rolling oil dropped is reduced, and the distribution of the oil film between the roll and the rolled material is non-uniform, and the distribution of depressions is localized. As a result, No. 6 has no Ry lowering effect. On the other hand, rolling was performed under the same conditions as No. 4 using rolling oil with a high viscosity of 20 cSt, and cavities with a maximum D of 2.7 μm were introduced at a frequency of 1560 / mm 2 , and Ry = 3.02 μm.
On the contrary, the unevenness became large. It should be noted that such an influence of the depression was not recognized under the etching conditions of Example 1.

【0059】[0059]

【発明の効果】本発明によると、圧延銅箔の表面をエッ
チングした際に,平滑な表面が得られるので、この銅箔
はファインピッチ加工が施されるフレキシブル基板に好
適である。
According to the present invention, when a surface of a rolled copper foil is etched, a smooth surface can be obtained. Therefore, this copper foil is suitable for a flexible substrate on which fine pitch processing is performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 くぼみが発生した銅箔表面のSEM像である。FIG. 1 is an SEM image of the surface of a copper foil in which dents have occurred.

【図2】 銅箔表面の凹凸プロファイルである。FIG. 2 is an uneven profile on the surface of a copper foil.

【図3】 (200)面のI/I0とエッチング後表面の最大高
さとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the I / I 0 of the (200) plane and the maximum height of the surface after etching.

【図4】 <100>方位と圧延方向との角度が10°以内
である結晶の割合(α(%))と、最大高さとの関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the maximum height and the ratio (α (%)) of crystals in which the angle between the <100> orientation and the rolling direction is within 10 °.

【図5】 Ag濃度が(200)面のI/I0に及ぼす影響を示す
グラフである。
FIG. 5 is a graph showing the influence of Ag concentration on I / I 0 of a (200) plane.

【図6】 Ag濃度が<100>方位と圧延方向との角度が1
0°以内である結晶の割合(α(%))を示すグラフで
ある。
[Fig. 6] Angle of Ag concentration <100> direction and rolling direction is 1
It is a graph which shows the ratio (alpha (%)) of the crystal which is within 0 degree.

【図7】 不純物濃度が(200)面のI/I0に及ぼす影響を
示すグラフである。
FIG. 7 is a graph showing the influence of the impurity concentration on I / I 0 of the (200) plane.

【図8】 不純物濃度が<100>方位と圧延方向との角度
が10°以内である結晶の割合(α(%))を示すグラ
フである。
FIG. 8 is a graph showing the proportion (α (%)) of crystals in which the angle between the <100> direction of the impurity concentration and the rolling direction is within 10 °.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22F 1/00 613 C22F 1/00 613 622 622 661 661A Fターム(参考) 4E002 AA08 AD13 BC05 CB01 CB03 4E351 AA04 AA16 BB01 DD04 DD54 GG20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C22F 1/00 613 C22F 1/00 613 622 622 661 661A F term (reference) 4E002 AA08 AD13 BC05 CB01 CB03 4E351 AA04 AA16 BB01 DD04 DD54 GG20

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 20μm以下の厚さを有する圧延銅箔の圧
延面をX線回折することにより求めた(200)面の回折強度
(I)が,微粉末銅を前記圧延銅箔と同一条件下でX線回
折することにより求めた(200)面の回折強度(I0)に対
しI/I0>50であることを特徴とする均一エッチング減
肉性に優れた再結晶調質圧延銅箔。
1. The diffraction intensity (I) of the (200) plane obtained by performing X-ray diffraction on the rolled surface of a rolled copper foil having a thickness of 20 μm or less has the same fine copper powder condition as that of the rolled copper foil. Recrystallized tempered rolled copper excellent in uniform etching thinning property, characterized in that I / I 0 > 50 with respect to the diffraction intensity (I 0 ) of the (200) plane determined by X-ray diffraction under Foil.
【請求項2】 圧延加工組織が、半軟化温度より50℃高
い温度で焼鈍することにより、I/I0>50(ただし、Iは
圧延銅箔の圧延面をX線回折することによって求めた
(200)面の回折強度であり、I0は微粉末銅を前記圧延
銅箔と同一条件下でX線回折することによって求めた
(200)面の回折強度である)で表される再結晶組織を
誘起し得ることを特徴とする圧延仕上がりの圧延銅箔。
2. The rolling structure has an I / I 0 > 50 (where I is determined by X-ray diffraction of the rolled surface of the rolled copper foil by annealing at a temperature 50 ° C. higher than the semi-softening temperature). Recrystallization represented by the (200) plane diffraction intensity, and I 0 is the (200) plane diffraction intensity obtained by X-ray diffraction of fine copper powder under the same conditions as the rolled copper foil. A rolled copper foil having a rolled finish, which is capable of inducing a structure.
【請求項3】 前記圧延加工組織が、結晶粒径が20μm
以下の再結晶組織を有する圧延銅箔を、90%以上の加工
度で仕上げ圧延することにより形成されたものである請
求項2記載の厚さが20μm以下の圧延仕上がりの圧延銅
箔。
3. The rolling structure has a crystal grain size of 20 μm.
The rolled copper foil having a thickness of 20 μm or less according to claim 2, which is formed by finish rolling a rolled copper foil having the following recrystallization structure at a working ratio of 90% or more.
【請求項4】 Cu,Ag,O,Hおよび希ガス類元素以外の
元素の合計量が40mass ppm以下であるタフピッチ銅から
なる請求項1,2または3記載の再結晶調質または圧延
仕上がり圧延銅箔。
4. The recrystallized tempered or rolled finished rolled copper foil according to claim 1, wherein the tough pitch copper has a total amount of elements other than Cu, Ag, O, H and rare gas elements of 40 mass ppm or less. .
【請求項5】 Cu,Ag,O,Hおよび希ガス類元素以外の
元素の合計量が20mass ppm以下である無酸素銅からなる
請求項1,2または3記載の再結晶調質または圧延仕上
がり圧延銅箔。
5. The recrystallized heat-treated or rolled-finished rolled copper according to claim 1, comprising oxygen-free copper having a total amount of elements other than Cu, Ag, O, H and rare gas elements of 20 mass ppm or less. Foil.
【請求項6】 100〜700mass ppmのAgを含有し、Cu,A
g,O,Hおよび希ガス類元素以外の元素の合計量が40mas
s ppm以下であるタフピッチ銅からなる請求項1,2ま
たは3記載の再結晶調質または圧延仕上がり圧延銅箔。
6. Cu, A containing 100 to 700 mass ppm of Ag
The total amount of elements other than g, O, H and rare gas elements is 40mass.
The recrystallized tempered or rolled finished rolled copper foil according to claim 1, 2 or 3, which is made of tough pitch copper having a sppm or less.
【請求項7】 100〜700mass ppmのAgを含有し、Cu,A
g,O,Hおよび希ガス類元素以外の元素の合計量が20mas
s ppm以下である無酸素銅からなる請求項1,2または
3記載の再結晶調質または圧延仕上がり圧延銅箔。
7. Cu, A containing 100 to 700 mass ppm of Ag
The total amount of elements other than g, O, H and rare gas elements is 20mass.
The recrystallized heat-treated or roll-finished rolled copper foil according to claim 1, comprising oxygen-free copper having a sppm or less.
【請求項8】 20μm以下の厚さを有する圧延銅箔の圧
延面をX線回折することにより求めた(200)面の回折強度
(I)が,微粉末銅を前記圧延銅箔と同一条件下でX線回
折することによって求めた(200)面の回折強度(I0)に
対しI/I0>50であり、さらに結晶の[100]方向と圧延方
向との成す角度(θ)が10°以内(θ≦10°)である結
晶の全結晶個数に対する割合(α)が60%以上(α≧60
%)であることを特徴とする均一エッチング減肉性に優
れた再結晶調質圧延銅箔。
8. The diffraction intensity (I) of the (200) plane obtained by X-ray diffracting the rolled surface of a rolled copper foil having a thickness of 20 μm or less shows that the fine copper powder has the same condition as the rolled copper foil. I / I 0 > 50 with respect to the diffraction intensity (I 0 ) of the (200) plane obtained by X-ray diffraction below, and the angle (θ) formed by the [100] direction of the crystal and the rolling direction is The ratio (α) to the total number of crystals within 10 ° (θ ≦ 10 °) is 60% or more (α ≧ 60
%) A recrystallized temper rolled copper foil with excellent uniform etching thinning property.
【請求項9】 圧延加工組織が、半軟化温度より50℃高
い温度で焼鈍することにより、I/I0>50(ただし、Iは
圧延銅箔の圧延面をX線回折することによって求めた(2
00)面の回折強度であり、I0は微粉末銅を前記圧延銅箔
と同一条件下でX線回折することによって求めた(200)
面の回折強度である)およびα≧60%(ただし、αは、
結晶の[100]方向と圧延方向との成す角度が10°以内で
ある結晶の全結晶個数に対する割合)で表される再結晶
組織を誘起し得ることを特徴とする圧延仕上がり圧延銅
箔。
9. I / I 0 > 50 (where I is determined by X-ray diffraction of the rolled surface of the rolled copper foil) by annealing the rolled structure at a temperature 50 ° C. higher than the semi-softening temperature. (2
Is the diffraction intensity of the (00) plane, and I 0 was obtained by X-ray diffraction of fine copper powder under the same conditions as the rolled copper foil (200).
Surface diffraction intensity) and α ≧ 60% (where α is
A rolled-finished rolled copper foil capable of inducing a recrystallized structure represented by (ratio to the total number of crystals of a crystal in which the angle formed by the [100] direction of the crystal and the rolling direction is within 10 °).
【請求項10】 前記圧延加工組織が、結晶粒径が20μ
m以下の再結晶組織を有する圧延銅箔を、90%以上の加工
度で仕上げ圧延することにより形成されたものであるこ
とを特徴とする請求項9項記載の厚さが20μm以下の圧
延仕上がりの圧延銅箔。
10. The rolling structure has a crystal grain size of 20 μm.
A rolled copper foil having a thickness of 20 μm or less according to claim 9, which is formed by finish rolling a rolled copper foil having a recrystallization structure of m or less at a workability of 90% or more. Rolled copper foil.
【請求項11】 前記αが80%以上(α≧80%)であるこ
とを特徴とする請求項8,9または10記載の再結晶調
質または圧延仕上がり圧延銅箔。
11. The recrystallized tempered or rolled finished rolled copper foil according to claim 8, 9 or 10, wherein the α is 80% or more (α ≧ 80%).
【請求項12】 Cu,Ag,O,Hおよび希ガス類元素以外
の元素の合計量が以外の元素の合計量が30mass ppm以下
であるタフピッチ銅からなる請求項8,9,10または
11記載の再結晶調質または圧延仕上がり圧延銅箔。
12. The alloy according to claim 8, 9, 10 or 11 comprising tough pitch copper in which the total amount of elements other than Cu, Ag, O, H and rare gas elements is 30 mass ppm or less. Crystal-conditioned or rolled rolled copper foil.
【請求項13】 Cu,Ag,O,Hおよび希ガス類元素以外
の元素の合計量が20mass ppm以下である無酸素銅からな
る請求項8,9,10または11記載の再結晶調質また
は圧延仕上がり圧延銅箔。
13. The recrystallized temper or rolled finish according to claim 8, 9, 10 or 11, which is made of oxygen-free copper having a total amount of elements other than Cu, Ag, O, H and rare gas elements of 20 mass ppm or less. Rolled copper foil.
【請求項14】 100〜700mass ppmのAgを含有し、Cu,
Ag,O,Hおよび希ガス類元素以外の元素の合計量が40ma
ss ppm以下であるタフピッチ銅からなる請求項8,9,
10または11記載の再結晶調質または圧延仕上がり圧
延銅箔。
14. Cu containing 100 to 700 mass ppm of Ag,
The total amount of elements other than Ag, O, H and rare gas elements is 40 ma
10. A tough pitch copper having a ss ppm or less,
The recrystallized tempered or rolled finished rolled copper foil according to 10 or 11.
【請求項15】 100〜700mass ppmのAgを含有し、Cu,
Ag,O,Hおよび希ガス類元素以外の元素の合計量が20ma
ss ppm以下である無酸素銅からなる請求項8,9,10
または11記載の再結晶調質または圧延仕上がり圧延銅
箔。
15. Cu containing 100 to 700 mass ppm of Ag,
The total amount of elements other than Ag, O, H and rare gas elements is 20 ma
11. An oxygen-free copper containing less than ss ppm.
Alternatively, the recrystallized tempered or rolled finished rolled copper foil according to item 11.
【請求項16】 圧延方向と直交する方向に延びた亀裂
状のくぼみが表面に分散し、そのくぼみが次の寸法およ
び形状を有することを特徴とする請求項1から15まで
のいずれか1項記載の再結晶調質または圧延仕上がり圧
延銅箔。 0.2≦D≦2,W/D≦15,N≧500,L≦50 (D:くぼみの深さ(μm),W:くぼみの圧延方向の
幅(μm),N:くぼみの頻度(個/mm2),L:隣接す
るくぼみ間の距離(μm))
16. The crack-shaped depressions extending in the direction orthogonal to the rolling direction are dispersed on the surface, and the depressions have the following dimensions and shapes. Recrystallized tempered or rolled finished rolled copper foil described. 0.2 ≦ D ≦ 2, W / D ≦ 15, N ≧ 500, L ≦ 50 (D: Depth of depression (μm), W: Width of depression in rolling direction (μm), N: Frequency of depression (pieces / mm 2 ), L: Distance between adjacent depressions (μm))
【請求項17】 圧延面と平行な断面の組織観察にて検
出される,厚みが5μmを越える介在物の個数が、0.5個/
mm2未満であることを特徴とする請求項1から16まで
のいずれか1項記載の再結晶調質または圧延仕上がり圧
延銅箔。
17. The number of inclusions having a thickness of more than 5 μm, which is detected by observing the structure of a section parallel to the rolled surface, is 0.5 /
The recrystallized heat-treated or rolled finished rolled copper foil according to any one of claims 1 to 16, characterized in that it is less than mm 2 .
【請求項18】 銅箔を樹脂フィルムと張り合わせた
後、銅箔の厚みが10μm以下になるようにエッチング
し、その後、幅30μm以下の電極リードをエッチング加
工により形成する積層板に用いられることを特徴とする
請求項1から17までのいずれか1項記載の再結晶調質
または圧延仕上がり圧延銅箔。
18. A laminate used for laminating copper foil with a resin film, etching the copper foil to a thickness of 10 μm or less, and then forming electrode leads with a width of 30 μm or less by etching. The recrystallized tempered or rolled finished rolled copper foil according to any one of claims 1 to 17, which is characterized by the above-mentioned.
【請求項19】 二層フレキシブル積層板用の素材とし
て用いられる請求項18記載の再結晶調質または圧延仕
上がり圧延銅箔。
19. The recrystallized tempered or rolled finished rolled copper foil according to claim 18, which is used as a material for a two-layer flexible laminate.
JP2001395774A 2001-12-27 2001-12-27 Rolled copper foil for copper-clad laminate Pending JP2003193211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001395774A JP2003193211A (en) 2001-12-27 2001-12-27 Rolled copper foil for copper-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001395774A JP2003193211A (en) 2001-12-27 2001-12-27 Rolled copper foil for copper-clad laminate

Publications (1)

Publication Number Publication Date
JP2003193211A true JP2003193211A (en) 2003-07-09

Family

ID=27602065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001395774A Pending JP2003193211A (en) 2001-12-27 2001-12-27 Rolled copper foil for copper-clad laminate

Country Status (1)

Country Link
JP (1) JP2003193211A (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
JP2006346874A (en) * 2005-06-13 2006-12-28 Nippon Steel Chem Co Ltd Copper clad laminated sheet and its manufacturing method
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2007107036A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Rolled copper alloy foil to be bent
JP2007107038A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper alloy foil for circuit
WO2008050584A1 (en) * 2006-10-24 2008-05-02 Nippon Mining & Metals Co., Ltd. Rolled copper foil excellent in bending resistance
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2009231309A (en) * 2008-03-19 2009-10-08 Hitachi Cable Ltd Copper foil for printed wiring board
WO2010001812A1 (en) * 2008-06-30 2010-01-07 新日鐵化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010034541A (en) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd Flexible circuit board, manufacturing method therefor, and bend structure of flexible circuit board
JP2010056128A (en) * 2008-08-26 2010-03-11 Nippon Steel Chem Co Ltd Manufacturing method for flexible wiring board
WO2010055613A1 (en) * 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
EP2227926A1 (en) * 2007-12-04 2010-09-15 E. I. du Pont de Nemours and Company Bendable circuit structure for led mounting and interconnection
JP2010227971A (en) * 2009-03-27 2010-10-14 Nippon Mining & Metals Co Ltd Rolled copper foil
JP2011070830A (en) * 2009-09-24 2011-04-07 Jx Nippon Mining & Metals Corp Rolled copper foil excellent in shearing processability and electrode collector using this, negative electrode plate, and secondary battery
EP2357656A1 (en) * 2008-11-12 2011-08-17 Toyo Kohan Co., Ltd. Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP2012041574A (en) * 2010-08-13 2012-03-01 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board and method for manufacturing the same
JP2012106283A (en) * 2010-10-28 2012-06-07 Jx Nippon Mining & Metals Corp Rolled copper foil
CN102782174A (en) * 2009-12-25 2012-11-14 新日铁化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
US20130040821A1 (en) * 2009-11-20 2013-02-14 Sumitomo Electric Industries, Ltd. Substrate for superconducting compound and method for manufacturing the substrate
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
WO2013042663A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board
JP2013071138A (en) * 2011-09-27 2013-04-22 Jx Nippon Mining & Metals Corp Rolled copper foil
KR20130060005A (en) * 2011-11-29 2013-06-07 삼성테크윈 주식회사 Copper based thin metal layer and manufacturing method of graphene using the same
JP2013136807A (en) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp Rolled copper foil for use in forming superconductive film
CN103255310A (en) * 2012-02-15 2013-08-21 日立电线株式会社 Rolled copper foil and preparation thereof
JP2013189702A (en) * 2012-02-15 2013-09-26 Sh Copper Products Co Ltd Rolled copper foil and method of manufacturing the same
JP2013209744A (en) * 2012-02-28 2013-10-10 Jx Nippon Mining & Metals Corp Rolled copper foil
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
EP2695733A1 (en) * 2011-05-13 2014-02-12 JX Nippon Mining & Metals Corp. Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
KR101376037B1 (en) 2010-10-28 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil
KR20140139109A (en) 2012-03-29 2014-12-04 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil
KR20140142341A (en) 2012-03-29 2014-12-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
WO2017014016A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
CN110475883A (en) * 2017-03-30 2019-11-19 Jx金属株式会社 Rolled copper foil
JP2020143321A (en) * 2019-03-05 2020-09-10 Jx金属株式会社 Rolled copper foil for flexible printed circuit board, flexible copper-clad laminate and flexible printed circuit board

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563408B2 (en) 2004-08-30 2009-07-21 Dowa Metaltech Co., Ltd. Copper alloy and method of manufacturing the same
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
JP4704025B2 (en) * 2004-12-21 2011-06-15 Jx日鉱日石金属株式会社 Roughening rolled copper foil for high frequency circuit and method for producing the same
JP2006346874A (en) * 2005-06-13 2006-12-28 Nippon Steel Chem Co Ltd Copper clad laminated sheet and its manufacturing method
JP2007107037A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper-alloy foil for circuit
JP2007107038A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Copper or copper alloy foil for circuit
JP2007107036A (en) * 2005-10-12 2007-04-26 Nikko Kinzoku Kk Rolled copper alloy foil to be bent
JP4672515B2 (en) * 2005-10-12 2011-04-20 Jx日鉱日石金属株式会社 Rolled copper alloy foil for bending
JP4662834B2 (en) * 2005-10-12 2011-03-30 Jx日鉱日石金属株式会社 Copper or copper alloy foil for circuit
WO2008050584A1 (en) * 2006-10-24 2008-05-02 Nippon Mining & Metals Co., Ltd. Rolled copper foil excellent in bending resistance
JP4704474B2 (en) * 2006-10-24 2011-06-15 Jx日鉱日石金属株式会社 Rolled copper foil with excellent bending resistance
JPWO2008050584A1 (en) * 2006-10-24 2010-02-25 日鉱金属株式会社 Rolled copper foil with excellent bending resistance
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP4716520B2 (en) * 2007-03-30 2011-07-06 Jx日鉱日石金属株式会社 Rolled copper foil
EP2227926A1 (en) * 2007-12-04 2010-09-15 E. I. du Pont de Nemours and Company Bendable circuit structure for led mounting and interconnection
JP2009231309A (en) * 2008-03-19 2009-10-08 Hitachi Cable Ltd Copper foil for printed wiring board
JP2010034541A (en) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd Flexible circuit board, manufacturing method therefor, and bend structure of flexible circuit board
US9060432B2 (en) 2008-06-30 2015-06-16 Nippon Steel & Sumikin Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
WO2010001812A1 (en) * 2008-06-30 2010-01-07 新日鐵化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
CN102077698B (en) * 2008-06-30 2013-03-27 新日铁化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010056128A (en) * 2008-08-26 2010-03-11 Nippon Steel Chem Co Ltd Manufacturing method for flexible wiring board
WO2010055613A1 (en) * 2008-11-12 2010-05-20 東洋鋼鈑株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
EP2357656A1 (en) * 2008-11-12 2011-08-17 Toyo Kohan Co., Ltd. Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
CN102209804A (en) * 2008-11-12 2011-10-05 东洋钢钣株式会社 Polymer laminate substrate for formation of epitaxially grown film, and manufacturing method therefor
US20120040840A1 (en) * 2008-11-12 2012-02-16 Hironao Okayama Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
US9034124B2 (en) * 2008-11-12 2015-05-19 Toyo Kohan Co., Ltd. Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP5606920B2 (en) * 2008-11-12 2014-10-15 東洋鋼鈑株式会社 Polymer laminated substrate for epitaxial growth film formation and method for producing the same
EP2357656A4 (en) * 2008-11-12 2014-05-07 Toyo Kohan Co Ltd Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
JP2010227971A (en) * 2009-03-27 2010-10-14 Nippon Mining & Metals Co Ltd Rolled copper foil
JP2011070830A (en) * 2009-09-24 2011-04-07 Jx Nippon Mining & Metals Corp Rolled copper foil excellent in shearing processability and electrode collector using this, negative electrode plate, and secondary battery
US20130040821A1 (en) * 2009-11-20 2013-02-14 Sumitomo Electric Industries, Ltd. Substrate for superconducting compound and method for manufacturing the substrate
US8993064B2 (en) * 2009-11-20 2015-03-31 Toyo Kohan Co., Ltd. Substrate for superconducting compound and method for manufacturing the substrate
CN102782174A (en) * 2009-12-25 2012-11-14 新日铁化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
US9549471B2 (en) 2010-07-15 2017-01-17 Jx Nippon Mining & Metals Corporation Copper foil composite
JP2012041574A (en) * 2010-08-13 2012-03-01 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board and method for manufacturing the same
KR101376037B1 (en) 2010-10-28 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil
JP2012106283A (en) * 2010-10-28 2012-06-07 Jx Nippon Mining & Metals Corp Rolled copper foil
US10178816B2 (en) 2011-05-13 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil composite, copper foil used for the same, formed product and method of producing the same
EP2695733A1 (en) * 2011-05-13 2014-02-12 JX Nippon Mining & Metals Corp. Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
TWI572478B (en) * 2011-05-13 2017-03-01 Jx Nippon Mining & Metals Corp A copper foil composite body and a copper foil for the same, and a molded body and a method for producing the same
EP2695733A4 (en) * 2011-05-13 2014-11-19 Jx Nippon Mining & Metals Corp Copper foil complex, copper foil used in copper foil complex, molded body, and method for producing molded body
JP2013055162A (en) * 2011-09-01 2013-03-21 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board, copper clad laminate, flexible printed wiring board, and electronic apparatus
WO2013042663A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board
CN103828491A (en) * 2011-09-21 2014-05-28 吉坤日矿日石金属株式会社 Copper foil for flexible printed wiring board
CN103828491B (en) * 2011-09-21 2016-12-21 吉坤日矿日石金属株式会社 Flexible printed circuit board Copper Foil
JP2013069787A (en) * 2011-09-21 2013-04-18 Jx Nippon Mining & Metals Corp Copper foil for flexible printed wiring board
JP2013071138A (en) * 2011-09-27 2013-04-22 Jx Nippon Mining & Metals Corp Rolled copper foil
KR20130060005A (en) * 2011-11-29 2013-06-07 삼성테크윈 주식회사 Copper based thin metal layer and manufacturing method of graphene using the same
KR101900758B1 (en) * 2011-11-29 2018-09-20 한화에어로스페이스 주식회사 Copper based thin metal layer and manufacturing method of graphene using the same
JP2013136807A (en) * 2011-12-28 2013-07-11 Jx Nippon Mining & Metals Corp Rolled copper foil for use in forming superconductive film
US9955574B2 (en) 2012-01-13 2018-04-24 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
US9981450B2 (en) 2012-01-13 2018-05-29 Jx Nippon Mining & Metals Corporation Copper foil composite, formed product and method of producing the same
CN103255310A (en) * 2012-02-15 2013-08-21 日立电线株式会社 Rolled copper foil and preparation thereof
JP2013189702A (en) * 2012-02-15 2013-09-26 Sh Copper Products Co Ltd Rolled copper foil and method of manufacturing the same
JP2013209744A (en) * 2012-02-28 2013-10-10 Jx Nippon Mining & Metals Corp Rolled copper foil
KR20140139109A (en) 2012-03-29 2014-12-04 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil
KR20160075865A (en) 2012-03-29 2016-06-29 제이엑스금속주식회사 Surface-treated copper foil
KR20160078512A (en) 2012-03-29 2016-07-04 제이엑스금속주식회사 Surface-treated copper foil
TWI565833B (en) * 2012-03-29 2017-01-11 Jx Nippon Mining & Metals Corp Surface treatment copper foil, copper laminated board, printed wiring board, printed circuit boards, and electronic equipment
KR20140142341A (en) 2012-03-29 2014-12-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Surface-treated copper foil
US10070521B2 (en) 2012-03-29 2018-09-04 Jx Nippon Mining & Metals Corporation Surface-treated copper foil
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP2016176094A (en) * 2015-03-19 2016-10-06 Jx金属株式会社 Rolled copper foil, copper-clad laminate, and flexible printed board and electronic equipment
JPWO2017014016A1 (en) * 2015-07-17 2018-04-26 凸版印刷株式会社 Metal mask substrate and metal mask for vapor deposition
JP2017106114A (en) * 2015-07-17 2017-06-15 凸版印刷株式会社 Method of manufacturing base material for metal mask and method of manufacturing metal mask for vapor deposition
JP6120039B1 (en) * 2015-07-17 2017-04-26 凸版印刷株式会社 Method for manufacturing base material for metal mask, and method for manufacturing metal mask for vapor deposition
WO2017014016A1 (en) * 2015-07-17 2017-01-26 凸版印刷株式会社 Method for producing base for metal masks, method for producing metal mask for vapor deposition, base for metal masks, and metal mask for vapor deposition
CN110475883A (en) * 2017-03-30 2019-11-19 Jx金属株式会社 Rolled copper foil
JP2020143321A (en) * 2019-03-05 2020-09-10 Jx金属株式会社 Rolled copper foil for flexible printed circuit board, flexible copper-clad laminate and flexible printed circuit board

Similar Documents

Publication Publication Date Title
JP2003193211A (en) Rolled copper foil for copper-clad laminate
JP4916154B2 (en) Copper or copper alloy foil for circuit
EP2339038B1 (en) Copper alloy sheet for electric and electronic part
JP4662834B2 (en) Copper or copper alloy foil for circuit
US7563408B2 (en) Copper alloy and method of manufacturing the same
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP5255229B2 (en) Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP5399489B2 (en) Copper foil and manufacturing method thereof
US20080056930A1 (en) Copper alloy and method of producing same
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
JP2008248331A (en) Rolled copper foil
US20020155021A1 (en) Copper-alloy foil to be used for laminate sheet
JP2007107036A (en) Rolled copper alloy foil to be bent
JP2008045204A (en) Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
WO2021140915A1 (en) Cu-Ni-Si-BASED COPPER ALLOY SHEET MATERIAL, METHOD FOR PRODUCING SAME, AND CURRENT-CARRYING COMPONENT
KR100491385B1 (en) Copper alloy foil for laminated sheet
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
CN1234890C (en) Copper alloy foil for laminated board
JP2006339304A (en) Metal material for printed circuit board
JP2009084593A (en) Cu-Cr-Si-BASED ALLOY FOIL
JP5778460B2 (en) Rolled copper foil, method for producing the same, and copper-clad laminate
JP5940010B2 (en) Surface roughening copper foil, method for producing the same, and circuit board
JP2003041333A (en) Copper alloy foil for laminate
JP2003055723A (en) Copper alloy foil for laminate sheet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040114

A621 Written request for application examination

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20041007

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A02 Decision of refusal

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A711 Notification of change in applicant

Effective date: 20060619

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Effective date: 20060619

Free format text: JAPANESE INTERMEDIATE CODE: A7422