JP2003041333A - Copper alloy foil for laminate - Google Patents

Copper alloy foil for laminate

Info

Publication number
JP2003041333A
JP2003041333A JP2001233981A JP2001233981A JP2003041333A JP 2003041333 A JP2003041333 A JP 2003041333A JP 2001233981 A JP2001233981 A JP 2001233981A JP 2001233981 A JP2001233981 A JP 2001233981A JP 2003041333 A JP2003041333 A JP 2003041333A
Authority
JP
Japan
Prior art keywords
copper
mass
foil
copper alloy
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001233981A
Other languages
Japanese (ja)
Inventor
Toubun Nagai
燈文 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001233981A priority Critical patent/JP2003041333A/en
Publication of JP2003041333A publication Critical patent/JP2003041333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy foil with small surface roughness, high electroconductivity, and high strength, which has adequate adhesiveness to an adhesive containing an epoxy resin without being roughened, and can be laminated to a copper-clad laminate, in a three-layer flexible substrate. SOLUTION: The copper alloy foil for the laminate is characterized by including particular elements, by making the thickness of the rust preventive film to be 3 nm or less from the surface, to impart the surface adequate adhesiveness to the adhesive containing the epoxy resin, by having surface roughness of 2 μm or less according to ten-points average surface roughness (Rz), and by having 180 degree peel strength of 8.0 N/cm or more when bonded to a substrate film with the adhesive containing the epoxy resin, without being roughened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント配線板用の積層
板に用いる銅合金箔に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy foil used for a laminated board for a printed wiring board.

【0002】[0002]

【従来の技術】電子機器の電子回路にはプリント配線板
が多く用いられる。 プリント配線板は基材となる樹脂
の種類によって、硬質積層板(リジット基板)と、可撓
性積層板(フレキシブル基板)とに大別される。フレキ
シブル基板は可撓性を持つことを特徴とし、可動部の配
線に用いられる他に、電子機器内で折り曲げた状態で収
納することも可能であるために、省スペース配線材料と
しても用いられている。また、基板自体が薄いことか
ら、半導体パッケージのインターポーザー用途あるいは
液晶ディスプレイのICテープキャリアとしても用いら
れている。 フレキシブル基板の基材はポリイミド樹脂
フィルムやポリエステル樹脂フィルムが用いられている
が、現状では耐熱性の点からポリイミドが多く用いられ
ている。 フレキシブル基板の導電材には導電性の点か
ら一般に銅が用いられている。 プリント配線板は銅張
積層板の銅箔をエッチングして種々の配線パターンを形
成し、電子部品をハンダで接続して実装していく。
2. Description of the Related Art Printed wiring boards are often used in electronic circuits of electronic equipment. The printed wiring board is roughly classified into a hard laminated board (rigid board) and a flexible laminated board (flexible board) depending on the type of resin as a base material. The flexible substrate is characterized by its flexibility, and besides being used for the wiring of movable parts, it can also be stored in a bent state in electronic devices, so it is also used as a space-saving wiring material. There is. Since the substrate itself is thin, it is also used as an interposer for semiconductor packages or as an IC tape carrier for liquid crystal displays. A polyimide resin film or a polyester resin film is used as the base material of the flexible substrate, but currently polyimide is often used from the viewpoint of heat resistance. Copper is generally used as the conductive material of the flexible substrate from the viewpoint of conductivity. The printed wiring board is formed by etching the copper foil of the copper clad laminate to form various wiring patterns and connecting electronic components with solder to mount them.

【0003】フレキシブル基板はその構造から二層フレ
キシブル基板と三層フレキシブル基板がある。 二層フ
レキシブル基板はポリイミドなどの樹脂と導電材となる
銅が直接に接合された構造となっている。 一方、三層
フレキシブル基板は、ポリイミドなどの樹脂フィルムと
導電材となる銅箔とを、エポキシ樹脂やアクリル樹脂な
どを含有する接着剤で貼り合わせた構造となっている
が、接着性が良いことや安価であることから、広く用い
られている。 このような構造の違いから、フレキシブ
ル基板で銅と接合する樹脂は、二層フレキシブル基板が
ポリイミドであるのに対して、三層フレキシブル基板で
は接着剤に含まれる樹脂である。
Flexible substrates include two-layer flexible substrates and three-layer flexible substrates due to their structure. The two-layer flexible substrate has a structure in which a resin such as polyimide and copper serving as a conductive material are directly bonded. On the other hand, the three-layer flexible substrate has a structure in which a resin film such as polyimide and a copper foil serving as a conductive material are bonded with an adhesive containing an epoxy resin, an acrylic resin, or the like, but the adhesiveness is good. It is widely used because it is inexpensive. Due to such a difference in structure, the resin bonded to copper in the flexible substrate is the resin contained in the adhesive in the three-layer flexible substrate, whereas the two-layer flexible substrate is polyimide.

【0004】三層フレキシブル基板に使用される接着剤
は耐熱性、耐久性、可撓性などの特性を必要とすること
から、各種の樹脂を混合して強度やガラス転移温度を調
整しているが、一般にエポキシ樹脂を主成分とするもの
が用いられている。 この用途の接着剤はエポキシ樹脂
(例えばビスフェノールA型グリシジルエーテルやグリ
シジルエステル型エポキシ樹脂)などにアミンなど硬化
剤、可撓性を付与するニトリルゴムやエラストマーを含
む溶剤状あるいはシート状のものが用いられる。 銅張
積層板の製造方法は、一般的にポリイミドフィルム上に
溶剤状の接着剤を塗布して乾燥したところへ銅箔を重ね
るか、ポリイミドフィルムと銅箔の間に接着剤をシート
状にしたもの間に挟み、ロールプレス機あるいは平面加
熱プレス機で仮接着後、更に100〜200℃で数十分
から数時間ほど加熱硬化して接着する。
Since the adhesive used for the three-layer flexible substrate needs characteristics such as heat resistance, durability and flexibility, various resins are mixed to adjust the strength and the glass transition temperature. However, those containing an epoxy resin as a main component are generally used. The adhesive used for this purpose is a solvent-like or sheet-like adhesive containing an epoxy resin (for example, bisphenol A type glycidyl ether or glycidyl ester type epoxy resin) as a curing agent such as amine, and nitrile rubber or elastomer for imparting flexibility. To be The method for producing a copper-clad laminate is generally a method in which a solvent-like adhesive is applied onto a polyimide film and then a copper foil is laid over it where it is dried, or the adhesive is formed into a sheet between the polyimide film and the copper foil. It is sandwiched between objects and temporarily adhered by a roll press machine or a plane heating press machine, and then heat cured at 100 to 200 ° C. for several tens of minutes to several hours to adhere.

【0005】プリント配線板は電子部品をハンダで接続
して実装されるとき等に、銅箔と樹脂との熱膨張係数の
違いにより熱応力が加わるので、銅箔と樹脂の接着性が
悪いと剥離する問題が生じる。 このため銅張積層板に
使われる銅箔は樹脂との接着性を改善するために、銅箔
に表面に銅の粒子を電気めっきで形成する粗化処理が施
している。 これは、銅箔の表面に凹凸を形成して、樹
脂に銅箔を食い込ませて機械的な接着強度を得る、いわ
ゆるアンカー効果で接着性を改善するものである。一方
で、近年の電子機器の小型化、軽量化、高機能化に伴っ
てプリント配線板に対して高密度実装の要求が高まり、
電子回路の配線幅と配線間隔を小さくしたファインピッ
チ化が進んでいる。 導電材に表面粗さの大きい銅箔や
粗化処理で凹凸を形成した銅箔を用いると、エッチング
で回路を形成する際に、樹脂に銅が残るエッチング残が
生じたり、エッチング直線性が低下して回路幅が不均一
になりやすい。 このため、電子回路をファインピッチ
化するためには、銅箔の表面粗さの小さいことが好まし
い。 また、パソコンや移動体通信等の電子機器では電
気信号が高周波化しているが、電気信号の周波数が1G
Hz以上になると、電流が導体の表面にだけ流れる表皮
効果の影響が顕著になり、表面の凹凸で伝送経路が変化
する影響が無視できなくなる。 このため、高周波特性
から銅箔の表面粗さを小さくする試みがなされている。
When a printed wiring board is mounted by connecting electronic components with solder, thermal stress is applied due to the difference in thermal expansion coefficient between the copper foil and the resin, so that the adhesiveness between the copper foil and the resin is poor. The problem of peeling occurs. For this reason, the copper foil used in the copper-clad laminate has been subjected to a roughening treatment in which copper particles are formed on the surface of the copper foil by electroplating in order to improve the adhesion with the resin. This is to improve the adhesiveness by a so-called anchor effect, in which unevenness is formed on the surface of the copper foil and the copper foil is made to dig into the resin to obtain mechanical adhesive strength. On the other hand, as electronic devices have become smaller, lighter and more sophisticated in recent years, the demand for high-density mounting on printed wiring boards has increased,
Fine pitches are being made by reducing the wiring width and spacing of electronic circuits. When a copper foil with a large surface roughness or a copper foil that has been roughened by a roughening treatment is used as the conductive material, etching residue may remain in the resin when etching the circuit, or the etching linearity may deteriorate. Then, the circuit width tends to be uneven. Therefore, in order to make the electronic circuit finer, it is preferable that the surface roughness of the copper foil is small. In electronic devices such as personal computers and mobile communications, the frequency of electric signals is high, but the frequency of electric signals is 1G.
When the frequency is higher than Hz, the effect of the skin effect in which the current flows only on the surface of the conductor becomes remarkable, and the effect of changing the transmission path due to the unevenness of the surface cannot be ignored. Therefore, attempts have been made to reduce the surface roughness of the copper foil due to the high frequency characteristics.

【0006】プリント配線板の導電材となる銅箔はその
製造方法の違いにより電解銅箔と圧延銅箔に分類され
る。 電解銅箔は一般に硫酸酸性硫酸銅めっき浴からチ
タンやステンレスのドラム上に銅を電解析出して製造さ
れる。 電解析出時に銅箔に凹凸が形成されて表面粗さ
が大きくなる。 最近はめっき浴に添加剤を加えたり、
電解析出条件を調節して表面粗さを小さくした銅箔、い
わゆるロープロファイル箔が製造されるようになってき
た。 圧延銅箔は圧延ロールにより塑性加工して製造さ
れるので、圧延ロールの表面形態が箔の表面に転写した
平滑な表面が得られる。 なお、箔とは一般に100μ
m以下の厚さの薄板をいう。
Copper foil which is a conductive material of a printed wiring board is classified into electrolytic copper foil and rolled copper foil depending on the manufacturing method. Electrolytic copper foil is generally manufactured by electrolytically depositing copper from a sulfuric acid-acidified copper sulfate plating bath on a titanium or stainless steel drum. When electrolytically depositing, irregularities are formed on the copper foil and the surface roughness increases. Recently, adding additives to the plating bath,
A copper foil, a so-called low profile foil, whose surface roughness is reduced by adjusting electrolytic deposition conditions has come to be manufactured. Since the rolled copper foil is manufactured by plastic working with a rolling roll, a smooth surface in which the surface morphology of the rolling roll is transferred to the surface of the foil can be obtained. The foil is generally 100μ.
A thin plate having a thickness of m or less.

【0007】前述したように現在、銅張積層板に使われ
る銅箔は樹脂との接着性を改善するために、銅箔に粗化
処理が施しているが、上記の理由から粗化処理を施さな
い表面粗さの小さい銅箔を樹脂フィルムと貼り合わせる
ことが望ましく、粗化処理を施さずに接着強度を確保す
ることが必要である。 また、三層フレキシブル基板で
は金属である銅箔と有機物である接着剤の接着強度を改
善するためにシランカップリング剤等を銅箔に塗布する
試みがなされているが、充分な接着性は得られていな
い。
As described above, the copper foil currently used in the copper-clad laminate is currently subjected to a roughening treatment in order to improve the adhesiveness with the resin. For the above reasons, the roughening treatment is performed. It is desirable to bond a copper foil having a small surface roughness that is not applied to the resin film, and it is necessary to secure adhesive strength without performing a roughening treatment. Further, in a three-layer flexible substrate, an attempt has been made to apply a silane coupling agent or the like to the copper foil in order to improve the adhesive strength between the copper foil that is a metal and the adhesive that is an organic substance, but sufficient adhesiveness is not obtained. Has not been done.

【0008】導電材として用いられる銅箔の素材には、
純銅や少量の添加元素を含む銅合金が用いられる。 電
子回路のファインピッチ化に伴って導体である銅箔が薄
くなり、また回路幅が狭くなっていることから、銅箔の
特性に対して、直流抵抗損失が小さく導電率が高いこと
が求められている。 銅は導電性に優れた材料であり、
導電性が重視される上記の分野では純度99.9%以上
の純銅が用いられるのが一般的である。 しかし、銅は
純度を上げると強度が低下するので、銅箔が薄くなると
ハンドリング性が悪くなるため、銅箔の強度が大きいこ
とが好ましい。
The material of the copper foil used as the conductive material is
Pure copper or a copper alloy containing a small amount of additional elements is used. Copper foil, which is a conductor, has become thinner and the circuit width has become narrower as the pitch of electronic circuits has become finer. ing. Copper is a material with excellent conductivity,
In the above fields where conductivity is important, pure copper having a purity of 99.9% or more is generally used. However, since the strength of copper decreases as the purity increases, the handling property deteriorates when the copper foil becomes thin. Therefore, the strength of the copper foil is preferably high.

【0009】このような状況の中で、導電材である銅箔
を粗化処理を施さずに、ポリイミドフィルムとをエポキ
シ樹脂を含む接着剤を用いて貼り合わせることを試み
た。ところが、ポリイミドフィルムと純銅の圧延銅箔と
が剥離しやすく、エポキシ樹脂を含む接着剤と銅の界面
が剥離しやすいことが判明した。 このため導電材であ
る銅箔を粗化処理を施さずに用いることは、接着剤の主
成分であるエポキシ樹脂と銅箔の剥離が生じやすく、そ
の結果から断線などの欠陥となる問題があり、実用化に
至っていない。
Under these circumstances, an attempt was made to bond the polyimide film to the polyimide film using an adhesive containing an epoxy resin, without subjecting the copper foil as a conductive material to roughening treatment. However, it has been found that the polyimide film and the rolled copper foil of pure copper are easily separated, and the interface between the adhesive containing the epoxy resin and the copper is easily separated. For this reason, using a copper foil as a conductive material without subjecting it to roughening treatment tends to cause peeling of the copper foil from the epoxy resin, which is the main component of the adhesive, resulting in a problem such as disconnection. , Has not been put to practical use.

【0010】[0010]

【発明が解決しようとする課題】基材のポリイミド樹脂
フィルムと導電材の銅箔とをエポキシ樹脂を含有する接
着剤で貼り合わせた三層プリント配線板を製造するとき
の接着性を改善して、粗化処理のような特別な処理を施
さずに、銅箔の表面粗さがRzで2μm以下、180゜
ピール強度で8.0N/cm以上の接着強度が得られる
積層板用の銅合金箔を提供することである。
To improve the adhesiveness when a three-layer printed wiring board is manufactured by bonding a polyimide resin film as a base material and a copper foil as a conductive material with an adhesive containing an epoxy resin. A copper alloy for a laminated plate, which can obtain a surface roughness of a copper foil of 2 μm or less in Rz and a bonding strength of 8.0 N / cm or more in a 180 ° peel strength without performing a special treatment such as a roughening treatment. Is to provide foil.

【0011】[0011]

【課題を改善するための手段】本発明者らは、ポリイミ
ド樹脂フィルムと導電材の銅箔とをエポキシ樹脂を含有
する接着剤で貼り合わせたときの接着性について検討し
た結果、接着性は導電性の優れる純銅をベースにして少
量の添加元素を加えた銅合金で改善されること、銅合金
箔の防錆被膜が厚くなると低下することが判明した。
具体的には、エポキシ樹脂を含有する接着剤との接着性
に対する各種の添加元素の影響、防錆被膜の厚さと接着
性の関係について研究を重ねた結果、本発明は、 (1)添加元素の成分を重量割合にてAgが0.02質
量%〜1.0質量%、Inが0.01質量%〜0.5質
量%、の各成分の内一種以上を含み、残部を銅及び不可
避不純物からなり、防錆皮膜の厚さが表面から3nm以
下とすることにより、表面粗さを十点平均表面粗さ(R
z)で2μm以下、導電率が80%IACS以上、粗化
処理が不要で、エポキシ樹脂を含む接着剤で基板樹脂と
接合したときにエポキシ樹脂を含む接着剤と銅合金箔と
の180゜ピール強度が8.0N/cm以上であること
を特徴とする、積層板用銅合金箔。 (2)添加元素の成分を重量割合にてAgが0.02質
量%〜1.0質量%、Inが0.01質量%〜0.5質
量%、の各成分の内一種以上を含み、更にAl、Be、
Co、Fe、Mg、Mn、Ni、P、Pb、Si、Ti
およびZnの各成分の内一種以上を総量で0.005質
量%〜2.5質量%を含有し、残部を銅及び不可避不純
物からなり、防錆皮膜の厚さが表面から3nm以下とす
ることにより、表面粗さを十点平均表面粗さ(Rz)で
2μm以下、引張強さが500N/mm以上、導電率
が60%IACS以上であり、粗化処理が不要で、エポ
キシ樹脂を含む接着剤で基板樹脂と接合したときにエポ
キシ樹脂を含む接着剤と銅合金箔との180゜ピール強
度が8.0N/cm以上であることを特徴とする、積層
板用銅合金箔。
The inventors of the present invention have investigated the adhesiveness when a polyimide resin film and a copper foil of a conductive material are bonded together with an adhesive containing an epoxy resin, and as a result, the adhesiveness is conductive. It has been found that the improvement is achieved by a copper alloy with a small amount of additional elements based on pure copper having excellent properties, and that it is reduced as the rustproof coating of the copper alloy foil becomes thicker.
Specifically, as a result of repeated studies on the influence of various additive elements on the adhesiveness with an adhesive containing an epoxy resin and the relationship between the thickness of the rust-preventive coating and the adhesiveness, the present invention was The content of Ag is 0.02% by mass to 1.0% by mass, In is 0.01% by mass to 0.5% by mass, and one or more of the respective components are included, and the balance is copper and unavoidable. The surface roughness is 10-point average surface roughness (R
z) 2 μm or less, conductivity 80% IACS or more, no roughening treatment required, and 180 ° peel between the adhesive containing epoxy resin and the copper alloy foil when bonded to the substrate resin with the adhesive containing epoxy resin. A copper alloy foil for a laminate, which has a strength of 8.0 N / cm or more. (2) Ag containing 0.02% by mass to 1.0% by mass and In containing 0.01% by mass to 0.5% by mass of the components of the additional element, and at least one of these components, Furthermore, Al, Be,
Co, Fe, Mg, Mn, Ni, P, Pb, Si, Ti
And 0.001 to 2.5 mass% of one or more of the respective components of Zn and Zn in total, and the balance consisting of copper and unavoidable impurities, and the thickness of the rust preventive film being 3 nm or less from the surface The surface roughness is 10 μm or less in terms of ten-point average surface roughness (Rz), the tensile strength is 500 N / mm 2 or more, the electrical conductivity is 60% IACS or more, and the roughening treatment is unnecessary, and the epoxy resin is contained. A copper alloy foil for laminates, wherein the 180 ° peel strength between the adhesive containing the epoxy resin and the copper alloy foil is 8.0 N / cm or more when bonded to the substrate resin with the adhesive.

【0012】[0012]

【発明実施の形態】本発明において表面状態および合金
組成等を上記に限定した理由を述べる。 (1)防錆被膜:純銅および銅合金の変色防止は、ベン
ゾトリアゾールやイミダゾールなどの窒素を含有する有
機物を用いて、表面に銅とのキレートを形成して防錆被
膜とすることが広く行われている。 一方でこれらの防
錆被膜は撥水性を有し、エポキシ樹脂の結合を阻害して
接着性を悪くする作用がある。 このため、防錆被膜の
厚みを表面から3nm以下と制限することで、エポキシ
樹脂を含む接着剤を用いて銅合金箔とポリイミドフィル
ムとを強固に接着することができるようになる。 防錆
皮膜の厚さを低減するためには、例えば防錆剤の濃度を
低減する方法があり、防錆剤にベンゾトリアゾールを用
いた場合には、その濃度を3000ppm以下とするこ
とが好ましい。 防錆皮膜の表面からの厚さはオージェ
電子分光分析により測定することにより定量化できる。
すなわち、オージェ電子分光分析により、深さ方向に
分析を行い、防錆剤を構成する元素である窒素の検出強
度がバックグラウンドと同一になるまでの表面からの深
さをSiO換算で測定することにより求められる。
BEST MODE FOR CARRYING OUT THE INVENTION The reason why the surface condition and alloy composition are limited to the above in the present invention will be described. (1) Anticorrosion coating: To prevent discoloration of pure copper and copper alloys, it is widely used to form a chelate with copper on the surface by using an organic substance containing nitrogen such as benzotriazole or imidazole to form an anticorrosion coating. It is being appreciated. On the other hand, these rust-proof coatings have water repellency and have an effect of impairing the bonding of the epoxy resin to deteriorate the adhesiveness. Therefore, by limiting the thickness of the rust-preventive coating to 3 nm or less from the surface, it becomes possible to firmly bond the copper alloy foil and the polyimide film using an adhesive containing an epoxy resin. In order to reduce the thickness of the rust preventive film, for example, there is a method of reducing the concentration of the rust preventive agent. When benzotriazole is used as the rust preventive agent, the concentration is preferably 3000 ppm or less. The thickness of the anticorrosion coating from the surface can be quantified by measuring by Auger electron spectroscopy.
That is, by Auger electron spectroscopy analysis, analysis is performed in the depth direction, and the depth from the surface until the detected intensity of nitrogen, which is an element constituting the rust preventive agent, becomes the same as the background, is measured in terms of SiO 2. Required by

【0013】(2)Ag、In:Ag、Inは樹脂を製
造する際に、重合を促進する触媒としての作用が働くこ
とが知られている。 このため、Ag、Inを銅に添加
して合金箔とすることにより、金属と接着剤の主成分で
あるエポキシ樹脂との結合を促進して、界面の結合が強
化されたと考えられる。 しかし、Ag、Inの添加量
が少なすぎると触媒として十分な作用をしないため、金
属と樹脂の結合が十分に行われず、接着性の改善効果が
小さい。 プリント配線板として実用上で支障のない1
80゜ピール強度である8.0N/cm以上を付与する
ことが必要である。 この特性を得るためには、Ag、
Inの添加量が重量比で各々0.02質量%以上、0.
01質量%以上であることが判明した。また、Ag、I
nは銅中に固溶して耐熱性を改善すること、Ag、In
による導電率への影響が小さく、少量の銀を含む銅合金
箔は導電材料に適している。しかし、銅中に添加するA
g、Inの量が多くなると、導電率を低下して回路用の
導電材料として適さなくなる。 このため、プリント配
線板の積層板用銅合金箔として適切な組成を検討した結
果、Agについては0.02〜1.0質量%、より好ま
しくは0.04〜0.5質量%、Inについては0.0
1〜0.5質量%、より好ましくは0.02〜0.3質
量%であることが判明した。
(2) Ag, In: It is known that Ag and In act as a catalyst for promoting polymerization when a resin is produced. Therefore, it is considered that by adding Ag and In to copper to form an alloy foil, the bonding between the metal and the epoxy resin which is the main component of the adhesive is promoted and the bonding at the interface is strengthened. However, if the added amounts of Ag and In are too small, they do not sufficiently act as a catalyst, so that the metal and the resin are not sufficiently bonded and the effect of improving the adhesiveness is small. Practical use as a printed wiring board 1
It is necessary to impart a strength of 8.0 N / cm or more, which is a 80 ° peel strength. To obtain this characteristic, Ag,
The added amount of In is 0.02% by mass or more in weight ratio, and 0.1.
It was found to be 01 mass% or more. Also, Ag, I
n is a solid solution in copper to improve heat resistance, Ag, In
The copper alloy foil containing a small amount of silver is suitable as a conductive material because it has a small effect on conductivity. However, A added to copper
If the amounts of g and In increase, the conductivity decreases and it becomes unsuitable as a conductive material for circuits. Therefore, as a result of studying a suitable composition as a copper alloy foil for a laminated board of a printed wiring board, as a result, Ag is 0.02 to 1.0% by mass, more preferably 0.04 to 0.5% by mass, and In is In. Is 0.0
It has been found to be 1 to 0.5% by weight, more preferably 0.02 to 0.3% by weight.

【0014】(3)引張強さと導電性:一般に強度と導
電性は相反する関係にあり、高強度の材料ほど導電性が
低下する傾向がある。従って、高い導電率を要求される
ものについては、強度が劣っても導電率の高いことが必
要とされるから、導電率が80%IACSと規定した。
一方、引張強さが500N/mmより小さい場合、ハ
ンドリング等の取り扱いでしわを発生しやすいので、引
張強さが高くすると、導電率が低くなり、60%IAC
S以下の場合では積層板用の導電材料として好ましくな
い。高強度でハンドリング性に優れた積層板用の銅合金
箔に適する条件としては、引張強さが500N/mm
以上、導電率が60%IACS以上と定めた。 (4)Al、Be、Co、Fe、Mg、Mn、Ni、
P、Pb、Si、TiおよびZnはいずれも主として
銅合金の強度を高める効果を有しており、必要に応じて
1種以上の添加がなされる。 その含有量が総量で0.
005質量%未満であると上記の作用に所望の効果が得
られず、一方で総量で2.5質量%を越える場合には導
電性、ハンダ付け性、加工性を著しく劣化させる。 従
って、Al、Be、Co、Fe、Mg、Mn、Ni、
P、Pb、Si、TiおよびZnの含有量の範囲は総量
で0.005〜2.5質量%と定めた。
(3) Tensile strength and electroconductivity: In general, strength and electroconductivity are in a contradictory relationship, and the higher the strength of the material, the lower the electroconductivity tends to be. Therefore, for those requiring high electrical conductivity, high electrical conductivity is required even if the strength is poor, so the electrical conductivity was defined as 80% IACS.
On the other hand, if the tensile strength is less than 500 N / mm 2 , wrinkles are likely to occur during handling such as handling, so if the tensile strength is high, the electrical conductivity will be low and 60% IAC
In the case of S or less, it is not preferable as a conductive material for laminated plates. Tensile strength is 500 N / mm 2 as a condition suitable for a copper alloy foil for a laminated plate having high strength and excellent handleability.
As described above, the conductivity is determined to be 60% IACS or more. (4) Al, Be, Co, Fe, Mg, Mn, Ni,
P, Pb, Si, Ti and Zn are all mainly
It has the effect of increasing the strength of the copper alloy, and if necessary, one or more kinds of additives are added. The total content is 0.
If the amount is less than 005% by mass, the desired effect cannot be obtained, while if the total amount exceeds 2.5% by mass, the conductivity, solderability and workability are significantly deteriorated. Therefore, Al, Be, Co, Fe, Mg, Mn, Ni,
The total content of P, Pb, Si, Ti and Zn was set to 0.005 to 2.5 mass%.

【0015】(5)表面粗さ: 銅箔の表面粗さが大き
くなると、電気信号の周波数が1GHz以上で電流が導
体の表面にだけ流れる表皮効果により、インピーダンス
が増大して高周波信号の伝送に影響する。 したがっ
て、高周波回路用途の導電材の用途では表面粗さが小さ
くなることが必要であり、表面粗さと高周波特性の関連
を検討した結果、プリント配線板の積層板用銅合金箔と
して、表面粗さが十点平均表面粗さ(Rz)で2μm以
下とすればよいことがわかった。 表面粗さを小さくす
る方法は、圧延銅箔、電解銅箔の製造条件を適正化する
こと、銅箔の表面を化学研磨あるいは電解研磨するとい
った手法がある。 一般には、圧延銅箔は容易に表面粗
さを小さくすることが可能であり、圧延機のワークロー
ルの表面粗さを小さくして、銅箔に転写されるワークロ
ールのプロファイルを小さくすることができる。 (6)180゜ピール強度:180゜ピール強度が小さ
い場合、積層板から剥離が生じる恐れがあるので、8.
0N/cm以上の接着強度が必要である。
(5) Surface roughness: When the surface roughness of the copper foil increases, the impedance increases due to the skin effect in which the current flows only on the surface of the conductor when the frequency of the electric signal is 1 GHz or more, and the high frequency signal is transmitted. Affect. Therefore, it is necessary to reduce the surface roughness in the use of conductive materials for high-frequency circuits.As a result of studying the relationship between surface roughness and high-frequency characteristics, the surface roughness of copper alloy foil for laminated boards of printed wiring boards It was found that the ten-point average surface roughness (Rz) should be 2 μm or less. As a method for reducing the surface roughness, there are methods such as optimizing the manufacturing conditions of rolled copper foil and electrolytic copper foil, and chemically polishing or electrolytic polishing the surface of the copper foil. In general, rolled copper foil can easily reduce the surface roughness, and it is possible to reduce the surface roughness of the work roll of the rolling mill to reduce the profile of the work roll transferred to the copper foil. it can. (6) 180 ° peel strength: When the 180 ° peel strength is small, peeling may occur from the laminated plate.
An adhesive strength of 0 N / cm or more is required.

【0016】本発明の銅合金箔は製造方法に限定される
ものではなく、例えば合金めっき法による電解銅箔ある
いは合金を溶解鋳造して圧延する圧延銅箔のような方法
で製造できる。 以下に例として圧延による方法を述べ
る。 溶融した純銅に所定量の合金元素を添加して、鋳
型内に鋳造してインゴットとする。 銅合金の溶解鋳造
は酸化物等の生成を抑制するため、真空中あるいは不活
性ガス雰囲気中で行うことが望ましい。 また原料は酸
素含有量の少ない電気銅あるいは無酸素銅を用いること
が望ましい。 インゴットは、熱間圧延である程度の厚
さまで薄くした後、皮削りを行い、その後冷間圧延と焼
鈍を繰返し行い、最後に冷間圧延を行って箔に仕上げ
る。 圧延上がりの材料は圧延油が付着しているので、
アセトンや石油系溶剤等で脱脂処理をする。
The copper alloy foil of the present invention is not limited to a manufacturing method, and can be manufactured by a method such as electrolytic copper foil by an alloy plating method or a rolled copper foil in which an alloy is melt cast and rolled. The rolling method will be described below as an example. A predetermined amount of alloying element is added to molten pure copper and cast in a mold to form an ingot. The melting and casting of the copper alloy is preferably performed in a vacuum or in an inert gas atmosphere in order to suppress the formation of oxides and the like. It is desirable to use electrolytic copper or oxygen-free copper having a low oxygen content as the raw material. The ingot is thinned to a certain thickness by hot rolling, then cut, then repeatedly cold-rolled and annealed, and finally cold-rolled to obtain a foil. Rolling oil adheres to the material after rolling, so
Degrease with acetone or petroleum solvent.

【0017】焼鈍で酸化層が生じると後工程で支障が生
じるので、焼鈍は真空中あるいは不活性ガス雰囲気中で
行うか、焼鈍後に酸化層を除去することが必要である。
例えば、酸洗で酸化層を除去するには硫酸+過酸化水
素、硝酸+過酸化水素、または硫酸+過酸化水素+弗化
物を用いることが好ましい。
If an oxide layer is formed by annealing, it will interfere with the subsequent steps. Therefore, it is necessary to perform the annealing in vacuum or in an inert gas atmosphere, or to remove the oxide layer after annealing.
For example, in order to remove the oxide layer by pickling, it is preferable to use sulfuric acid + hydrogen peroxide, nitric acid + hydrogen peroxide, or sulfuric acid + hydrogen peroxide + fluoride.

【0018】[0018]

【実施例】以下に本発明の実施例を説明する。銅合金の
作製は、主原料として無酸素銅を、高周波真空誘導溶解
炉を用いてAr雰囲気中にて高純度黒鉛製るつぼ内で溶
解したところへ、副原料として銀、インジウム、アルミ
ニウム、銅ベリリウム母合金、コバルト、銅鉄母合金、
マグネシウム、マンガン、ニッケル、銅リン母合金、
鉛、銅シリコン母合金、チタンおよび亜鉛から選ばれた
添加元素を添加した後、鋳鉄製の鋳型内に鋳造した。こ
の方法で厚さ30mm、幅50mm、長さ150mm、
重さ約2kgの銅合金のインゴットを得た。このインゴ
ットを900℃に加熱して、熱間圧延により厚さ8mm
まで圧延して酸化スケールを除去した後、冷間圧延と熱
処理とを繰り返して厚さ35μmの圧延上がりの銅合金
箔を得た。
EXAMPLES Examples of the present invention will be described below. A copper alloy was prepared by melting oxygen-free copper as a main material in a high-purity graphite crucible in an Ar atmosphere using a high-frequency vacuum induction melting furnace, and then using silver, indium, aluminum, or copper beryllium as auxiliary materials. Mother alloy, cobalt, copper iron mother alloy,
Magnesium, manganese, nickel, copper phosphorus master alloy,
After adding an additive element selected from lead, copper-silicon master alloy, titanium and zinc, it was cast in a cast iron mold. With this method, thickness 30mm, width 50mm, length 150mm,
A copper alloy ingot weighing about 2 kg was obtained. This ingot is heated to 900 ° C and hot rolled to a thickness of 8 mm.
After removing the oxide scale by rolling up to 80 ° C., cold rolling and heat treatment were repeated to obtain a rolled copper alloy foil with a thickness of 35 μm.

【0019】上記の方法で得られた厚さ35μmの銅合
金箔は圧延油が付着しているのでアセトン中に浸漬して
油分を除去した。 これを硫酸10重量%および過酸化
水素1重量%を含む水溶液に浸漬して表面の酸化層およ
び防錆皮膜を除去した。 防錆皮膜の厚みの影響を調査
する目的で、ベンゾトリアゾールの濃度を調整した水溶
液に浸漬して、直ちに乾燥した。 これ以外に粗化処理
やシランカップリング処理等の接着性を改善する特別な
表面処理を実施していない。 このようにして作製した
銅合金箔を、エポキシ樹脂を含む接着剤でポリイミドフ
ィルムと接着して銅張積層板を作製した。 銅張積層板
の作製は、エポキシ樹脂と硬化剤を混合した溶剤型の接
着剤を厚さ25μmのポリイミドフィルム上に、ギャッ
プ量100μmのアプリケータで塗布し、これを乾燥機
内で温度130℃で4分間乾燥した後、前述の銅合金箔
を重ねて、平面加熱プレス機を用いて温度170℃、圧
力30kgf/cmの条件で30分間保持して銅張積
層板を得た。 ここで乾燥後の接着剤の厚みは20μm
であった。
Since the rolling oil adhered to the copper alloy foil having a thickness of 35 μm obtained by the above method, it was immersed in acetone to remove the oil. This was immersed in an aqueous solution containing 10% by weight of sulfuric acid and 1% by weight of hydrogen peroxide to remove the oxide layer and the rust preventive film on the surface. For the purpose of investigating the influence of the thickness of the rust preventive film, the film was immersed in an aqueous solution in which the concentration of benzotriazole was adjusted and immediately dried. Other than this, no special surface treatment such as roughening treatment or silane coupling treatment for improving adhesiveness is carried out. The copper alloy foil thus prepared was bonded to a polyimide film with an adhesive containing an epoxy resin to prepare a copper clad laminate. The copper-clad laminate is prepared by coating a solvent-type adhesive, which is a mixture of an epoxy resin and a curing agent, on a polyimide film having a thickness of 25 μm with an applicator having a gap amount of 100 μm, and the temperature is 130 ° C. in a dryer. After drying for 4 minutes, the above-mentioned copper alloy foils were overlaid and held for 30 minutes under the conditions of a temperature of 170 ° C. and a pressure of 30 kgf / cm 2 using a flat heating press to obtain a copper-clad laminate. Here, the thickness of the adhesive after drying is 20 μm.
Met.

【0020】このようにして得られた銅合金箔の「引張
強さ」、「導電率」、「防錆皮膜の厚み」、「表面粗
さ」、「高周波特性」および「接着強度」を以下の方法
で評価した。 (1)引張強さ:引張強さは引張試験で室温における引
張強さを測定した。測定試料は厚さ35μmに加工した
銅箔を、プレシジョンカッターを用いて幅12.7m
m、長さ150mmの短冊状に切断した。 これを評点
間距離50mmで、引張速度50mm/分で測定した。 (2)導電率:導電率は20℃における電気抵抗を、ダ
ブルブリッジを用いた直流四端子法で求めた。測定試料
は厚さ35μmの箔に加工した銅箔を幅12.7mmに
切断した。 これを測定間長さ50mmの電気抵抗を測
定して導電率を求めた。 (3)防錆皮膜の厚み:前述したように、オージェ電子
分光分析の深さ方向分析をおこない、防錆剤を構成する
元素である窒素の検出強度がバックグラウンドと同一に
なるまでの表面からの深さをそれぞれSiO換算で測
定した。 (4)表面粗さ:表面粗さは触針式表面粗さ計を用いて
圧延方向に対して直角方向に測定した。測定条件はJI
S B 0601に記載された方法に準拠して、十点平
均表面粗さ(Rz)で評価した。 (5)高周波特性:高周波特性は高周波電流を通電した
ときのインピーダンスで評価した。インピーダンスは厚
さ35μmの箔に加工した銅箔を幅1mmに加工し、1
0MHz、20mAの高周波電流を通電したときの電圧
降下を長さ100mmについて測定して求めた。 (6)接着強度:接着強度は180゜ピール強度をJI
S C 5016に記載された方法に準拠して実施し
た。 測定は引き剥がし導体幅を5.0mmとし、ポリ
イミドフィルム側を引張試験機側に固定して、導体であ
る銅合金箔を180゜方向に曲げて、引張速度50mm
/分で引き剥がした。
The "tensile strength", "electrical conductivity", "thickness of rust preventive film", "surface roughness", "high frequency characteristics" and "adhesive strength" of the copper alloy foil thus obtained are as follows. It evaluated by the method. (1) Tensile strength: Tensile strength was measured by measuring the tensile strength at room temperature by a tensile test. The measurement sample is a copper foil processed to a thickness of 35 μm, and a width of 12.7 m using a precision cutter.
m and 150 mm in length were cut into strips. This was measured at a distance between scores of 50 mm and a tensile speed of 50 mm / min. (2) Conductivity: The conductivity was obtained by measuring the electric resistance at 20 ° C. by a DC four-terminal method using a double bridge. As the measurement sample, a copper foil processed into a foil having a thickness of 35 μm was cut into a width of 12.7 mm. The electrical resistance was measured by measuring the electrical resistance of this for a measurement length of 50 mm. (3) Thickness of rust preventive film: As described above, the depth direction analysis of Auger electron spectroscopic analysis was performed, and from the surface until the detected intensity of nitrogen, which is an element that constitutes the rust preventive agent, became the same as the background. Was measured in terms of SiO 2 . (4) Surface roughness: The surface roughness was measured in the direction perpendicular to the rolling direction using a stylus type surface roughness meter. Measurement conditions are JI
The ten-point average surface roughness (Rz) was evaluated according to the method described in S B 0601. (5) High frequency characteristics: The high frequency characteristics were evaluated by the impedance when a high frequency current was applied. For impedance, copper foil processed to a thickness of 35 μm was processed to a width of 1 mm, and 1
The voltage drop when a high frequency current of 0 MHz and 20 mA was applied was measured for a length of 100 mm. (6) Adhesive strength: Adhesive strength is 180 ° peel strength JI
It was carried out according to the method described in S C 5016. The width of the peeling conductor is 5.0 mm, the polyimide film side is fixed to the tensile tester side, the copper alloy foil that is the conductor is bent in the 180 ° direction, and the pulling speed is 50 mm.
It was peeled off at the speed of / min.

【0021】本発明の請求項1に関する実施例を示す。
表1は銅合金箔の組成および表2はその特性評価結果
である。 なお、表中に「−」で示した部分は測定を実
施していないことを示す。 実施例のNo.1〜No.
9は本発明の請求項1に関する銅合金箔の実施例であ
る。 本発明の銅合金箔は導電率が80%IACS以上
であり、銅合金箔を、エポキシ樹脂を含む接着剤でポリ
イミドフィルムと接着したときの180゜ピール強度が
8.0N/cm以上であった。 優れた導電性と高い接
着強度を有していることがわかる。
An embodiment according to claim 1 of the present invention will be shown.
Table 1 shows the composition of the copper alloy foil, and Table 2 shows the results of its characteristic evaluation. In addition, the part shown by "-" in the table indicates that the measurement is not performed. No. of the embodiment. 1-No.
9 is an example of the copper alloy foil according to claim 1 of the present invention. The electrical conductivity of the copper alloy foil of the present invention is 80% IACS or more, and the 180 ° peel strength when the copper alloy foil is bonded to a polyimide film with an adhesive containing an epoxy resin is 8.0 N / cm or more. . It can be seen that it has excellent conductivity and high adhesive strength.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】次に本発明の請求項2に関する実施例を示
す。 表3は銅合金箔の組成および表4はその特性評価
結果である。実施例のNo.10〜No.14は本発明
の請求項2に関する銅合金箔の実施例である。 表4に
示すように、本発明の銅合金箔は導電率が60%IAC
S以上であり、引張強さが500N/mm以上、銅合
金箔をエポキシ樹脂を含む接着剤でポリイミドフィルム
と接着したときの180゜ピール強度が8.0N/cm
以上であった。 優れた導電性とハンドリング性を有
し、かつ高い接着強度を有していることがわかる。
Next, an embodiment according to claim 2 of the present invention will be described. Table 3 shows the composition of the copper alloy foil, and Table 4 shows the characteristic evaluation results. No. of the embodiment. 10-No. 14 is an example of the copper alloy foil according to claim 2 of the present invention. As shown in Table 4, the copper alloy foil of the present invention has a conductivity of 60% IAC.
The tensile strength is S or more, the tensile strength is 500 N / mm 2 or more, and the 180 ° peel strength is 8.0 N / cm when a copper alloy foil is bonded to a polyimide film with an adhesive containing an epoxy resin.
That was all. It can be seen that it has excellent conductivity and handleability, and also has high adhesive strength.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】表5は比較例の銅合金箔の組成および表6
はその特性評価結果である。No.15〜19は本発明
の請求項1に関する比較例である。 No.15は本発
明の合金成分を加えていない圧延銅箔である。 無酸素
銅をAr雰囲気中にて溶解鋳造したインゴットを箔に加
工して、実施例と同じ接着剤を用いてポリイミドフィル
ムと同条件で接着した。 素材が純銅であるので導電性
が大きいが、180゜ピール強度が7.5N/cmと小
さく、充分な接着強度が得られていないので、プリント
配線板としたときに剥離が生じる恐れがある。
Table 5 shows the composition of the copper alloy foil of Comparative Example and Table 6
Is the characteristic evaluation result. No. 15 to 19 are comparative examples relating to claim 1 of the present invention. No. Reference numeral 15 is a rolled copper foil to which the alloy component of the present invention is not added. An ingot obtained by melting and casting oxygen-free copper in an Ar atmosphere was processed into a foil, and the foil was bonded under the same conditions as the polyimide film using the same adhesive as in the example. Since the material is pure copper, it has high conductivity, but its 180 ° peel strength is as small as 7.5 N / cm and sufficient adhesive strength is not obtained, so peeling may occur when it is used as a printed wiring board.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】No.16〜No.19は、Agあるいは
Inを添加して実施例と同様の方法で箔に加工した。
No.16はAgの濃度が少ないために、導電率が大き
いが耐熱性および接着性を改善する効果が十分でない。
180゜ピール強度が小さく、積層板に加工したとき
の剥離する恐れがある。 一方、No.17はAgの濃
度が重量比で1.0質量%を超えて添加したために、1
80゜ピール強度が高いが、導電率が80%IACS未
満と低くなり、高い導電率を必要とするプリント配線板
の導電材には適さない。 同様に、No.18はInの
濃度が少ないために、導電率が大きいが耐熱性および接
着性を改善する効果が十分でなく、No.19はInの
濃度が重量比で0.5質量%を超えて添加したために、
導電率が80%IACS未満と低くなり、高い導電率を
必要とするプリント配線板の導電材には適さない。
No. 16-No. No. 19 was processed into a foil by adding Ag or In in the same manner as in the example.
No. No. 16, which has a high Ag concentration, has a large electric conductivity, but the effect of improving heat resistance and adhesiveness is not sufficient.
The 180 ° peel strength is low and there is a risk of peeling when processed into a laminated plate. On the other hand, No. No. 17 was added because the concentration of Ag was more than 1.0% by mass in weight ratio.
Although it has a high 80 ° peel strength, it has a low conductivity of less than 80% IACS and is not suitable as a conductive material for a printed wiring board which requires high conductivity. Similarly, No. Since No. 18 has a low In concentration, it has a high conductivity, but the effect of improving heat resistance and adhesiveness is not sufficient. No. 19 was added because the concentration of In exceeds 0.5 mass% by weight,
The electrical conductivity is as low as less than 80% IACS, which is not suitable as a conductive material for a printed wiring board that requires high electrical conductivity.

【0031】No.20、21は本発明の請求項2に関
する比較例である。 No.20はAgに加えてNiお
よびPを、またNo.21はInに加えてTiを添加し
て実施例と同様の方法で箔に加工した。 しかし、Pあ
るいはTiの添加量は引張強さを大きくし、耐熱性およ
び接着性を改善するが、PあるいはTiの添加量が重量
比で2.5質量%を超えて添加されると、導電率が60
%IACSよりかなり低くなり、プリント配線板の導電
材としては適さない。
No. 20 and 21 are comparative examples relating to claim 2 of the present invention. No. No. 20 contains Ni and P in addition to Ag, and No. 20. No. 21 was processed into a foil by adding Ti in addition to In and by the same method as in the example. However, the addition amount of P or Ti increases the tensile strength and improves heat resistance and adhesiveness, but if the addition amount of P or Ti exceeds 2.5 mass% by weight, the conductive property is increased. Rate is 60
It is much lower than% IACS, and is not suitable as a conductive material for a printed wiring board.

【0032】No.22は、表1に示した実施例のN
o.3の合金箔を用いてその表面をエメリー紙で軽く削
り取って表面を粗す処理を行った。その結果、表面粗さ
が大きくなると高周波で通電した場合に表皮効果によっ
てインピーダンスが増加するため、高周波回路の導電材
用途としては適さない。
No. 22 is N of the embodiment shown in Table 1.
o. The alloy foil of No. 3 was used to lightly scrape the surface with emery paper to roughen the surface. As a result, when the surface roughness becomes large, the impedance increases due to the skin effect when energized at a high frequency, which is not suitable as a conductive material for a high frequency circuit.

【0033】比較例のNo.23は、表1に示した実施
例のNo.3の合金箔を用いて、防錆剤としてベンゾト
リアゾールの濃度を0.5%(5000ppm)に調整
した水溶液中に浸漬する処理を行った。防錆剤の高濃度
であったために防錆皮膜の厚さが5nmと厚くなり、1
80゜ピール強度が4.5N/cmと小さい。
No. of the comparative example. No. 23 of the embodiment shown in Table 1 Using the alloy foil of No. 3, it was immersed in an aqueous solution in which the concentration of benzotriazole as a rust preventive was adjusted to 0.5% (5000 ppm). Due to the high concentration of the rust preventive agent, the thickness of the rust preventive film becomes as thick as 5 nm
The 80 ° peel strength is as low as 4.5 N / cm.

【0034】[0034]

【発明の効果】本発明の銅合金箔はエポキシ樹脂を含む
接着剤を用いてポリイミド樹脂フィルムと接着してプリ
ント配線板積層板用に用いると、表面粗さが小さくとも
樹脂と優れた接着性を有し、かつ高い導電性と強度を有
する。これによって、微細配線を必要とする電子回路の
導電材としての用途に好適である。
When the copper alloy foil of the present invention is used for a printed wiring board laminate by adhering it to a polyimide resin film using an adhesive containing an epoxy resin, it has excellent adhesion to the resin even if the surface roughness is small. And has high conductivity and strength. This makes it suitable for use as a conductive material for electronic circuits that require fine wiring.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 添加元素の成分を重量割合にてAgが
0.02質量%〜1.0質量%、Inが0.01質量%
〜0.5質量%、の各成分の内一種以上を含み、残部を
銅及び不可避不純物からなり、防錆皮膜の厚さが表面か
ら3nm以下とすることにより、表面粗さを十点平均表
面粗さ(Rz)で2μm以下、導電率が80%IACS
以上、粗化処理が不要で、エポキシ樹脂を含む接着剤で
基板樹脂と接合したときにエポキシ樹脂を含む接着剤と
銅合金箔との180゜ピール強度が8.0N/cm以上
であることを特徴とする、積層板用銅合金箔。
1. Ag is 0.02% by mass to 1.0% by mass and In is 0.01% by mass in terms of the weight ratio of the additive element components.
.About.0.5% by mass of each component, the balance consisting of copper and unavoidable impurities, and the thickness of the rust preventive film being 3 nm or less from the surface, the surface roughness is 10-point average surface. Roughness (Rz) is 2 μm or less, conductivity is 80% IACS
As described above, the roughening treatment is not necessary, and the 180 ° peel strength between the adhesive containing the epoxy resin and the copper alloy foil is 8.0 N / cm or more when the substrate resin is joined with the adhesive containing the epoxy resin. Characteristic, copper alloy foil for laminated boards.
【請求項2】 添加元素の成分を重量割合にてAgが
0.02質量%〜1.0質量%、Inが0.01質量%
〜0.5質量%、の各成分の内一種以上を含み、更にA
l、Be、Co、Fe、Mg、Mn、Ni、P、Pb、
Si、TiおよびZnの各成分の内一種以上を総量で
0.005質量%〜2.5質量%を含有し、残部を銅及
び不可避不純物からなり、防錆皮膜の厚さが表面から3
nm以下とすることにより、表面粗さを十点平均表面粗
さ(Rz)で2μm以下、引張強さが500N/mm
以上、導電率が60%IACS以上であり、粗化処理が
不要で、エポキシ樹脂を含む接着剤で基板樹脂と接合し
たときにエポキシ樹脂を含む接着剤と銅合金箔との18
0゜ピール強度が8.0N/cm以上であることを特徴
とする、積層板用銅合金箔。
2. Ag is 0.02% by mass to 1.0% by mass and In is 0.01% by mass in terms of the weight ratio of the additive element components.
.About.0.5% by mass of each component, and further includes A
l, Be, Co, Fe, Mg, Mn, Ni, P, Pb,
It contains 0.005 mass% to 2.5 mass% of one or more of the respective components of Si, Ti and Zn in the total amount, and the balance consists of copper and unavoidable impurities, and the thickness of the rust preventive film is 3 from the surface.
When the surface roughness is 10 nm or less, the ten-point average surface roughness (Rz) is 2 μm or less, and the tensile strength is 500 N / mm 2.
As described above, the electrical conductivity is 60% IACS or more, the roughening treatment is not necessary, and when the adhesive containing the epoxy resin is bonded to the substrate resin, the adhesive containing the epoxy resin and the copper alloy foil 18
A copper alloy foil for a laminate, which has a 0 ° peel strength of 8.0 N / cm or more.
JP2001233981A 2001-08-01 2001-08-01 Copper alloy foil for laminate Pending JP2003041333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233981A JP2003041333A (en) 2001-08-01 2001-08-01 Copper alloy foil for laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233981A JP2003041333A (en) 2001-08-01 2001-08-01 Copper alloy foil for laminate

Publications (1)

Publication Number Publication Date
JP2003041333A true JP2003041333A (en) 2003-02-13

Family

ID=19065674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233981A Pending JP2003041333A (en) 2001-08-01 2001-08-01 Copper alloy foil for laminate

Country Status (1)

Country Link
JP (1) JP2003041333A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003064431A (en) * 2001-08-20 2003-03-05 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP2005336585A (en) * 2004-05-28 2005-12-08 Mitsui Mining & Smelting Co Ltd Copper alloy foil and its production method
JP2006281249A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
JP2014145126A (en) * 2013-01-30 2014-08-14 Furukawa Electric Co Ltd:The Electrolytic copper foil having high strength and high heat resistance and method of producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387324A (en) * 1989-03-17 1991-04-12 Kobe Steel Ltd Copper alloy rolled foil for flexible printed wiring board
JPH0748641A (en) * 1993-08-05 1995-02-21 Kobe Steel Ltd Copper alloy lead frame for bear bonding
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
JPH11262975A (en) * 1998-03-17 1999-09-28 Hitachi Chem Co Ltd Production of copper-clad laminated sheet and printed wiring board and multilayered printed wiring board using the same
JP2000307051A (en) * 1999-04-21 2000-11-02 Dowa Mining Co Ltd Copper and copper alloy and manufacture thereof
JP2001011550A (en) * 1999-06-30 2001-01-16 Kobe Steel Ltd Copper alloy rolled foil
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387324A (en) * 1989-03-17 1991-04-12 Kobe Steel Ltd Copper alloy rolled foil for flexible printed wiring board
JPH0748641A (en) * 1993-08-05 1995-02-21 Kobe Steel Ltd Copper alloy lead frame for bear bonding
JPH07188969A (en) * 1993-10-22 1995-07-25 Gould Electron Inc Electrodeposited copper foil and its preparation
JPH11262975A (en) * 1998-03-17 1999-09-28 Hitachi Chem Co Ltd Production of copper-clad laminated sheet and printed wiring board and multilayered printed wiring board using the same
JP2000307051A (en) * 1999-04-21 2000-11-02 Dowa Mining Co Ltd Copper and copper alloy and manufacture thereof
JP2001011550A (en) * 1999-06-30 2001-01-16 Kobe Steel Ltd Copper alloy rolled foil
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041334A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003064431A (en) * 2001-08-20 2003-03-05 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP2005336585A (en) * 2004-05-28 2005-12-08 Mitsui Mining & Smelting Co Ltd Copper alloy foil and its production method
JP2006281249A (en) * 2005-03-31 2006-10-19 Nikko Kinzoku Kk High gloss rolled copper foil for copper-clad laminated substrate, and method for producing the same
JP2014145126A (en) * 2013-01-30 2014-08-14 Furukawa Electric Co Ltd:The Electrolytic copper foil having high strength and high heat resistance and method of producing the same

Similar Documents

Publication Publication Date Title
KR100466062B1 (en) Copper-alloy foil to be used for laminate sheet
JP4381574B2 (en) Copper alloy foil for laminates
US6939620B2 (en) Copper alloy foil
US6808825B2 (en) Copper alloy foil
WO2010010893A1 (en) Surface-treated copper foil and copper-clad laminate
KR100504518B1 (en) Copper alloy foil for laminated sheet
JP2003041334A (en) Copper alloy foil for laminate
JP2002226928A (en) Copper alloy foil for laminated board
JP2003041333A (en) Copper alloy foil for laminate
JP3911173B2 (en) Rolled copper foil for copper clad laminate and method for producing the same (2)
JP2002249835A (en) Copper alloy foil for lamination
JP2003025489A (en) Copper alloy foil for laminate
JP2003055723A (en) Copper alloy foil for laminate sheet
JP2003055722A (en) Copper alloy foil for laminate sheet
JP2003034830A (en) Copper alloy foil for laminate
JP2003013156A (en) Copper alloy foil for laminate
JP4550263B2 (en) Copper alloy foil for laminates
JP2003041332A (en) Copper alloy foil for laminate
JP4798894B2 (en) Copper alloy foil for laminates
JP2003064430A (en) Copper alloy foil for laminate sheet
JP2003034829A (en) Copper alloy foil for laminate
JP2002356789A (en) Copper alloy foil for laminate
JP2003013157A (en) Copper alloy foil for laminate (a-3)
JP5940010B2 (en) Surface roughening copper foil, method for producing the same, and circuit board
JP4798890B2 (en) Copper alloy foil for laminates

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060427

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A02