JP2001011550A - Copper alloy rolled foil - Google Patents

Copper alloy rolled foil

Info

Publication number
JP2001011550A
JP2001011550A JP11186808A JP18680899A JP2001011550A JP 2001011550 A JP2001011550 A JP 2001011550A JP 11186808 A JP11186808 A JP 11186808A JP 18680899 A JP18680899 A JP 18680899A JP 2001011550 A JP2001011550 A JP 2001011550A
Authority
JP
Japan
Prior art keywords
foil
oxygen
content
copper alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11186808A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
元久 宮藤
Riichi Tsuno
理一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11186808A priority Critical patent/JP2001011550A/en
Publication of JP2001011550A publication Critical patent/JP2001011550A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Conductive Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive copper alloy rolled foil for the electrode material of a collector on the negative electrode side of a lithium ion secondary battery high in tensile strength, excellent in heat resistance and having high electric conductivity. SOLUTION: This foil contains, by weight, 0.005 to 0.25% Ag, <=0.002% or 0.01 to O.04% oxygen and <=0.0002% hydrogen, and the balance Cu with inevitable impurities. In the case the content of oxygen is <=0.002%, the value of A defined by the following formula is controlled to 0.01 to 30, and in the case the content of oxygen is 0.01 to O.04%, the value of A defined by the formula of A=[the content(%) of oxygen]×[the content (%) of hydrogen]2×1012 is controlled to 1 to 300.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池、詳しく
はリチウムイオン二次電池、ポリマー電池などの負極側
集電体電極材料や、マイクロモーターのコイルに用いる
電線、フレキシブルプリント基板などの電子部品用とし
て使用し得る銅合金圧延箔に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode current collector electrode material for a secondary battery, more specifically, a lithium ion secondary battery or a polymer battery, an electric wire used for a micromotor coil, or an electronic material such as a flexible printed board. The present invention relates to a rolled copper alloy foil that can be used for parts.

【0002】[0002]

【従来の技術】(リチウムイオン二次電池負極集電体)
リチウムイオン二次電池の負極側集電体は厚さ10〜2
0μm程度の圧延タフピッチ銅箔又は電解銅箔上に、ポ
リフッ化ビニリデン(PVDF)をN−メチルピロリド
ンに溶かし、さらに負極活物質となる粉末状黒鉛を混合
したペーストを#60のバーコータで厚さ90μm程度
塗布した後、130℃で3分間乾燥して製造されてい
る。
2. Description of the Related Art (Negative electrode current collector for lithium ion secondary battery)
The negative electrode current collector of the lithium ion secondary battery has a thickness of 10 to 2
A paste obtained by dissolving polyvinylidene fluoride (PVDF) in N-methylpyrrolidone on a rolled tough pitch copper foil or electrolytic copper foil of about 0 μm, and further mixing powdered graphite as a negative electrode active material with a # 60 bar coater to a thickness of 90 μm It is manufactured by coating at about 130 ° C. for 3 minutes after coating.

【0003】圧延タフピッチ銅箔又は電解銅箔が負極側
集電体として使用される理由は、熱伝導率が大であり充
電時に発生する熱を速やかに除去できること、強度の高
いものが比較的容易に得られ、活物質塗布工程や乾燥工
程において銅箔に負荷される引張り応力に耐えられるこ
と、及びイオン化傾向などによる。このようにして製造
された負極側集電体は、間にセパレーターを介して正極
側集電体(アルミ箔に正極活物質を塗布)と重ねてプレ
スにより一体化し、巻回される(詳細は省略)。なお、
上記の活物質塗布及び乾燥などの工程はコイル状の銅箔
を巻戻しながら連続的に処理が行われるが、製造工程中
において箔の切断、ラインの動作不良などが発生すると
ライン停止を余儀なくされることがあり、そのような場
合には塗布した活物質の乾燥時間が30分程度となるこ
とがある。
The reason why the rolled tough pitch copper foil or the electrolytic copper foil is used as the negative electrode side current collector is that the heat conductivity is large, the heat generated during charging can be quickly removed, and the one having high strength is relatively easy. In the active material application step and the drying step, which can withstand the tensile stress applied to the copper foil, and the ionization tendency. The negative electrode-side current collector manufactured in this manner is overlapped with a positive electrode-side current collector (a positive electrode active material is coated on an aluminum foil) with a separator interposed therebetween, integrated by pressing, and wound (for details). Omitted). In addition,
The above processes such as application and drying of the active material are continuously performed while unwinding the coil-shaped copper foil, but if the cutting of the foil or the malfunction of the line occurs during the manufacturing process, the line must be stopped. In such a case, the drying time of the applied active material may be about 30 minutes.

【0004】(マイクロモーターのコイル用電線)マイ
クロモーターは通常のモーターに比べて容積が小さいた
め、コイルの巻線密度を上げる目的で断面形状が正方形
又は矩形の電線が用いられている。また、このコイルに
は高導電率であることが要求される。このため、タフピ
ッチ銅の圧延箔を板幅方向に切断し、正方形又は矩形断
面の線材を製造している。このように作製した電線は表
面への樹脂塗布及び乾燥を経た後、巻取られてマイクロ
モーターのコイル用電線として用いられる。
(Coil for Micromotor Coil) Since the volume of a micromotor is smaller than that of a normal motor, a wire having a square or rectangular cross section is used to increase the coil winding density. In addition, this coil is required to have high electrical conductivity. For this reason, rolled foil of tough pitch copper is cut in the sheet width direction to produce a wire having a square or rectangular cross section. The wire thus manufactured is applied as a resin wire to the surface, dried, and then wound up to be used as a wire for a micromotor coil.

【0005】[0005]

【発明が解決しようとする課題】(リチウムイオン二次
電池負極集電体)タフピッチ銅は熱伝導率が高く(導電
率98%IACS以上)、冷延の圧下率を上げることで
引張強さ400N/mm以上のものが比較的容易に得
られる。しかし、タフピッチ銅は酸素を含有して銅箔中
に亜酸化銅及び不純物元素の酸化物などの粒子を含み、
マトリックスに固溶している元素が非常に少なく、また
亜酸化銅や不純物の酸化物などの界面において回復・再
結晶が起りやすいことなどから、無酸素銅やりん脱酸銅
と比べても耐熱性がかなり低下する。このため、箔の製
造工程において圧下率を上げ、高強度のタフピッチ銅を
製造しても室温で長時間保管すると回復が起り、経時的
な強度低下・伸びの増大などの現象が発生する。このよ
うな軟化現象は保管雰囲気の温度が高くなる春〜夏の季
節において特に顕著である。
(Lithium ion secondary battery negative electrode current collector) Tough pitch copper has a high thermal conductivity (conductivity of 98% IACS or more) and a tensile strength of 400 N by increasing the rolling reduction of cold rolling. / Mm 2 or more can be obtained relatively easily. However, tough pitch copper contains particles such as cuprous oxide and oxides of impurity elements in the copper foil containing oxygen,
Very few elements dissolved in the matrix and easy recovery and recrystallization at interfaces such as cuprous oxide and oxides of impurities. Sex is considerably reduced. For this reason, even if the draft is increased in the foil manufacturing process and high-strength tough pitch copper is manufactured, recovery occurs when stored at room temperature for a long time, and phenomena such as a decrease in strength over time and an increase in elongation occur. Such a softening phenomenon is particularly remarkable in the spring to summer season when the temperature of the storage atmosphere increases.

【0006】このように軟化をおこしたタフピッチ銅圧
延箔では、引張り強さが低下しているため、軟化の度合
いに応じ、活物質の塗布及び乾燥工程において箔に負荷
する張力を変えてやる必要がある。そのため、塗布工程
に適用する際に事前に強度確認などの作業が新たに発生
し、非常に煩雑である。また、軟化の激しい箔を用いる
場合には前記工程における箔切れや箔伸びが起きやす
く、生産性の低下を招く。また、保管中に軟化の発生し
ていないタフピッチ銅圧延箔を用いる場合においても、
乾燥工程における加熱(130℃)によって軟化が発生
しやすく、乾燥後の箔を巻き取る場合に箔伸び、箔切れ
が起きることがあり、歩留まり・生産性を低下させる。
特に乾燥工程における工程トラブルにより、乾燥させよ
うとする箔が炉中で長時間滞留すると、軟化がより大き
くなり、この部分が製品として使えなくなることがあ
る。さらに、上記の問題が起きない場合であっても、電
池に組込まれた後の充放電にともなう発熱によって経時
的にタフピッチ銅圧延箔が軟化すると、活物質の膨張収
縮による箔の破断、活物質の剥離などが発生し、電池性
能を低下させてしまう。
[0006] Since the tough pitch rolled copper foil which has been softened in this way has a low tensile strength, it is necessary to change the tension applied to the foil in the step of applying and drying the active material according to the degree of softening. There is. For this reason, when applying to the coating process, work such as strength confirmation is newly generated in advance, which is very complicated. In addition, when a foil with severe softening is used, foil breakage and foil elongation in the above-described process are apt to occur, resulting in a decrease in productivity. Also, even when using a tough pitch copper rolled foil that has not been softened during storage,
Softening is likely to occur due to heating (130 ° C.) in the drying step, and when the dried foil is wound up, the foil may be stretched and the foil may be cut, thereby lowering the yield and productivity.
In particular, if the foil to be dried stays in the furnace for a long time due to a process trouble in the drying process, the softening becomes larger, and this portion may not be used as a product. Furthermore, even when the above problems do not occur, if the tough pitch copper rolled foil is softened over time due to heat generated by charging and discharging after being incorporated in the battery, the foil breaks due to expansion and contraction of the active material, Peeling occurs and battery performance is degraded.

【0007】一方、電解銅箔は、引張り強さ320N/
mm、耐力250N/mm、伸び12%を示し(後
述する実施例)、130℃で30分加熱後も初期の機械
的性質をほぼ維持でき、タフピッチ銅圧延箔と比べると
耐熱性にも優れるが、価格が圧延銅箔より高価であり、
導電率が95%IACSとタフピッチ銅圧延箔に比べて
やや低い。このような現状に鑑み、くり返し充放電によ
っても高性能が保たれるリチウムイオン二次電池を、歩
留まり・生産性よく製造するために、負極集合体として
用いられる銅箔には、引張り強さが大きい、保管、電極
製造工程及び使用時において軟化が起りにくい、タフピ
ッチ銅圧延箔並みの導電率を有するなどの特性がより強
く求められるようになってきた。
On the other hand, the electrolytic copper foil has a tensile strength of 320 N /
mm 2 , yield strength 250 N / mm 2 , elongation 12% (Examples to be described later), can maintain almost the initial mechanical properties even after heating at 130 ° C. for 30 minutes, and have a higher heat resistance than the tough pitch copper rolled foil. Excellent, but the price is more expensive than rolled copper foil,
The conductivity is 95% IACS, which is slightly lower than that of tough pitch copper rolled foil. In view of this situation, in order to manufacture lithium ion secondary batteries that maintain high performance even by repeated charge and discharge with high yield and productivity, the copper foil used as the negative electrode assembly has a tensile strength. Characteristics such as being large, hardly causing softening during storage, electrode manufacturing process and use, and having conductivity comparable to that of tough pitch copper rolled foil have been required more strongly.

【0008】(マイクロモーターのコイル用電線)上述
と同様な理由で、耐熱性の不十分なタフピッチ銅は、箔
を幅方向に切断する時の箔切れ、電線への樹脂塗布及び
乾燥工程における電線の切断などの問題を起こしやす
い。従って、本用途にも引張り強さが大きく、タフピッ
チ銅並みの導電率を有し、耐熱性に優れる銅合金箔の要
求が強くなってきた。
(Cable wire for micromotor coil) For the same reason as described above, tough pitch copper having insufficient heat resistance can be used to cut the foil when cutting the foil in the width direction, apply the resin to the wire, and dry the wire in the drying step. It is easy to cause problems such as cutting. Therefore, a demand for a copper alloy foil having high tensile strength, electrical conductivity comparable to that of tough pitch copper, and excellent heat resistance has also been increased in this application.

【0009】従って、本発明は、引張強さが大きく、耐
熱性に優れ、高い導電率を有する、安価な銅合金圧延箔
を得ることを目的とする。
Accordingly, an object of the present invention is to provide an inexpensive rolled copper alloy foil having high tensile strength, excellent heat resistance and high electrical conductivity.

【0010】[0010]

【課題を解決するための手段】本発明に係る銅合金圧延
箔は、Ag:0.005〜0.25%を含有し、さらに
酸素を含有し、水素の含有量が0.0002%以下、残
部Cu及び不可避不純物からなる銅合金圧延箔である。
ここで、酸素の含有量は0.002%以下又は0.01
〜0.04%であることが望ましく、前者の場合、以下
の式で定義されるAの値が0.01〜30であり、後者
の場合、以下の式で定義されるAの値が1〜300であ
ることが望ましい。 A=[酸素の含有量(%)]×[水素の含有量(%)]×1012 この圧延銅合金箔は、室温において引張り強さ300N
/mm以上、かつ伸び8%以上を備えること、さらに
130℃×30分加熱後において、引張り強さ300N
/mm以上、かつ伸び8%以上を備えることが望まし
い。
The rolled copper alloy foil according to the present invention contains Ag: 0.005 to 0.25%, further contains oxygen, and has a hydrogen content of 0.0002% or less. This is a rolled copper alloy foil composed of the remainder Cu and unavoidable impurities.
Here, the oxygen content is 0.002% or less or 0.01% or less.
In the former case, the value of A defined by the following formula is 0.01 to 30, and in the latter case, the value of A defined by the following formula is 1 It is desirably about 300. A = [content of oxygen (%)] × [content of hydrogen (%)] 2 × 10 12 This rolled copper alloy foil has a tensile strength of 300 N at room temperature.
/ Mm 2 or more and an elongation of 8% or more, and after heating at 130 ° C. for 30 minutes, a tensile strength of 300 N
/ Mm 2 or more and elongation of 8% or more.

【0011】[0011]

【発明の実施の形態】次に、本発明に係る圧延銅合金箔
の組成の限定理由を説明する。 (Ag)本発明の圧延銅合金箔はAgを0.005〜
0.25%含有する。Agの含有量が0.005%未満
では目的とする強度及び耐熱性が得られない。また、A
gを0.25%を越えて含有させるとその強度、耐熱性
はさらに向上するが、特性向上に対して価格上昇が大き
くなり、コストパフォーマンスが低下するため、その含
有量を0.005〜0.25%とする。望ましいAgの
含有量は0.007〜0.20%、さらに望ましくは
0.01〜0.20%である。なお、本発明の圧延銅合
金箔はさらに酸素を含有するが、AgはCuに比べて酸
素との親和力が小さいため、圧延銅合金箔中においてほ
とんどのAgは酸化物となることはなく、銅合金圧延箔
の強度と耐熱性の向上に寄与する。また、Agは銅のマ
トリックスに固溶してもその導電率をほとんど低下させ
ず、タフピッチ銅並みの導電率を保つことが可能であ
る。
Next, the reasons for limiting the composition of the rolled copper alloy foil according to the present invention will be described. (Ag) The rolled copper alloy foil of the present invention has an Ag content of 0.005 to
Contains 0.25%. If the Ag content is less than 0.005%, the desired strength and heat resistance cannot be obtained. Also, A
When g is contained in excess of 0.25%, the strength and heat resistance are further improved, but the price increases with the improvement in characteristics, and the cost performance decreases. .25%. Desirable Ag content is 0.007 to 0.20%, more preferably 0.01 to 0.20%. Although the rolled copper alloy foil of the present invention further contains oxygen, Ag has a lower affinity for oxygen than Cu, so most of the Ag in the rolled copper alloy foil does not become an oxide, and It contributes to the strength and heat resistance of the rolled alloy foil. Further, Ag hardly decreases its conductivity even when it is dissolved in a copper matrix, and can maintain conductivity similar to that of tough pitch copper.

【0012】(酸素)本発明に係る銅合金圧延箔におい
ては、強度、耐熱性と並び導電率も重要な必要特性であ
るが、P、Mg、Siなどの元素を添加して脱酸すると
これらの脱酸剤が合金中に残存して導電率が低下してし
まう。そのため、本発明の銅合金箔においては、合金中
に酸素を含有させてこれらの元素を酸化物とし、タフピ
ッチ銅並みの導電率を確保している。本発明の銅合金箔
において、酸素はマトリックスへの固溶、CuO及び
CuOなどの酸化銅粒子(溶解鋳造工程やその後の製造
工程において形成)、あるいは不可避的に含有される不
純物元素の酸化物(Cuや2種以上の不純物元素との複
合酸化物となっているものを含む)の状態で存在する。
本発明の銅合金圧延箔において箔に加工された状態にお
ける酸素量は主として溶解鋳造工程において決定され
る。
(Oxygen) In the rolled copper alloy foil according to the present invention, not only strength and heat resistance but also electrical conductivity are important necessary properties. However, when elements such as P, Mg and Si are added and deoxidized, these properties are obtained. Deoxidizing agent remains in the alloy and the electrical conductivity decreases. Therefore, in the copper alloy foil of the present invention, oxygen is contained in the alloy to convert these elements into oxides, thereby ensuring electrical conductivity comparable to that of tough pitch copper. In the copper alloy foil of the present invention, oxygen is dissolved in a matrix, copper oxide particles such as Cu 2 O and CuO (formed in a melting casting process and a subsequent manufacturing process), or oxidation of an impurity element inevitably contained. (Including those which are complex oxides with Cu or two or more impurity elements).
In the rolled copper alloy foil of the present invention, the amount of oxygen in a processed state of the foil is mainly determined in the melting casting step.

【0013】溶湯に含まれる酸素の含有量が0.002
%を越え、0.01%未満であると、溶湯中の不可避不
純物元素は、酸化されるものと酸化されないものの両者
が存在する。溶湯の酸素含有量が0.002%を越え、
0.01%未満であると、不可避不純物の酸化物粒子は
溶湯より浮上分離しにくいため鋳塊に残存しやすい。ま
た、酸化されずに鋳塊に残存する不可避不純物元素は、
熱延時の加熱によって鋳塊中の酸素と結合して酸化物粒
子となる。このように介在物を多く含む鋳塊を圧延する
と介在物が割れの起点となるため、圧延工程における板
切れや箔切れが起こりやすく、また銅合金箔とした後
も、リチウム二次電池製造時に箔に負荷される張力によ
り箔切れが起こりやすくなる。さらに、酸化物粒子界面
での回復・再結晶が起こりやすくなり耐熱性の低下を招
きやすい。
The oxygen content of the molten metal is 0.002.
%, And less than 0.01%, unavoidable impurity elements in the molten metal are both oxidized and non-oxidized. The oxygen content of the molten metal exceeds 0.002%,
If it is less than 0.01%, the oxide particles of the inevitable impurities are less likely to float and separate from the molten metal, and thus tend to remain in the ingot. Inevitable impurity elements remaining in the ingot without being oxidized are
Heating during hot rolling combines with oxygen in the ingot to form oxide particles. When rolling an ingot containing a large number of inclusions as described above, inclusions serve as starting points for cracking, so that plate and foil breakage are likely to occur in the rolling process, and even after being made into a copper alloy foil, during lithium secondary battery production. The foil is likely to break due to the tension applied to the foil. Further, recovery and recrystallization at the oxide particle interface are apt to occur, and the heat resistance is likely to decrease.

【0014】酸素含有量が0.01%以上になると不可
避不純物は溶湯中でほぼ完全に酸化され、形成されたほ
とんどの酸化物粒子が溶湯より排出されるため、前述の
板切れ及び箔切れが起きにくい。しかし、酸素の含有量
が0.04%を越えると亜酸化銅の体積率が増え、銅箔
としたときの延性、耐熱性などが低下する。酸素量が
0.002%以下であると、含有される亜酸化銅及び不
可避不純物の酸化物粒子とも少ないため延性が良好であ
り、圧延及びリチウムイオン二次電池製造時の板切れ、
箔切れが起こらない。なお、本発明の銅合金組成におい
て、酸素含有量を0.0003%以下に低減するには溶
解鋳造時の雰囲気を厳密に制御する必要があり、製造コ
ストの点から見ると酸素含有量は0.0003〜0.0
02%の範囲が望ましい。以上述べた通り、本発明の銅
合金箔における酸素含有量は0.002%以下、又は
0.01〜0.04%が望ましい。
When the oxygen content exceeds 0.01%, the inevitable impurities are almost completely oxidized in the molten metal, and most of the formed oxide particles are discharged from the molten metal. Hard to get up. However, when the oxygen content exceeds 0.04%, the volume ratio of cuprous oxide increases, and the ductility and heat resistance of a copper foil are reduced. When the amount of oxygen is 0.002% or less, the ductility is good because both the contained cuprous oxide and oxide particles of unavoidable impurities are small, and the plate breaks during rolling and production of a lithium ion secondary battery,
No foil breakage. In the copper alloy composition of the present invention, in order to reduce the oxygen content to 0.0003% or less, it is necessary to strictly control the atmosphere during melting and casting, and from the viewpoint of manufacturing cost, the oxygen content is 0%. .0003-0.0
A range of 02% is desirable. As described above, the oxygen content in the copper alloy foil of the present invention is desirably 0.002% or less, or 0.01 to 0.04%.

【0015】(水素)本発明の銅合金において、水素は
溶解鋳造、熱延又は/及び焼鈍などの工程において雰囲
気より銅合金中に侵入する。本合金は酸素を含有するた
め、水素が侵入すると水蒸気ガスを発生し、鋳塊、熱延
材、冷延材において膨れとなり、その後の圧延によって
板切れや箔切れの原因となる。また、リチウム二次電池
の集電体として電池に組込まれた後も充電時の温度上昇
などによって水素が粒界に移動して粒界強度を低下さ
せ、その結果電寿命を低下させてしまう。このような理
由から、水素の含有量は0.0002%以下であること
が望ましく、0.0001%以下であることが更に望ま
しい。
(Hydrogen) In the copper alloy of the present invention, hydrogen penetrates into the copper alloy from the atmosphere in steps such as melt casting, hot rolling and / or annealing. Since this alloy contains oxygen, when hydrogen enters, it generates steam gas, swells in ingots, hot-rolled materials, and cold-rolled materials, and causes subsequent plate or foil breakage by rolling. Further, even after being incorporated in a battery as a current collector of a lithium secondary battery, hydrogen moves to a grain boundary due to a rise in temperature during charging or the like, so that the strength of the grain boundary is reduced, and as a result, the life of the battery is reduced. For these reasons, the content of hydrogen is preferably 0.0002% or less, and more preferably 0.0001% or less.

【0016】また、酸素含有量との関係において、A=
[酸素の含有量(%)]×[水素の含有量(%)]×
1012としたとき、酸素の含有量が0.002%以下
の場合は、A=0.01〜30、また酸素の含有量が
0.01〜0.045の場合は、A=1〜300である
と、熱延割れ、加熱割れが起こりにくい。酸素の含有量
が0.002%以下の場合、Aを0.01未満とするに
は特殊な精錬設備が必要で、精錬に時間もかかるため、
また、Aが30を超えると熱延割れや熱処理時の板の膨
れの発生が多くなり、歩留りが著しく低下するためであ
る。酸素の含有量が0.01〜0.04%の場合も同様
な理由で、A=1〜300とする。
Further, in relation to the oxygen content, A =
[Oxygen content (%)] x [Hydrogen content (%)] 2 x
10 12 and the time, when the oxygen content is less than 0.002%, if A = 0.01 to 30, also the oxygen content of 0.01-0.045, A = 1 to 300 In this case, hot rolling cracking and heat cracking are unlikely to occur. When the oxygen content is 0.002% or less, a special refining facility is required to make A less than 0.01, and it takes a long time for refining.
On the other hand, when A exceeds 30, the occurrence of hot rolling cracks and swelling of the plate during heat treatment increases, and the yield is significantly reduced. When the oxygen content is 0.01 to 0.04%, A is set to 1 to 300 for the same reason.

【0017】(不純物元素)本発明に係る銅合金圧延箔
における不可避的不純物元素とは、原料あるいは溶解鋳
造工程において不可避的にCuに含有される元素であ
り、Li、Be、B、Mg、Al、Si、P、S、C
a、Ti、Cr、Mn、Fe、Co、Ni、Zn、A
s、Se、Zr、Cd、In、Sn、Sb、Te、A
u、Pbなどである。本発明の銅合金箔においては、マ
トリックスに固溶、晶出、析出又は酸化物として存在し
ているこれらの不純物元素の含有量が合計で0.005
%以下であれば、本発明に係る銅合金圧延箔において強
度、導電率、耐熱性などに影響を及ぼさない。
(Impurity element) The unavoidable impurity element in the rolled copper alloy foil according to the present invention is an element inevitably contained in Cu in a raw material or in a melting and casting step, and is Li, Be, B, Mg, Al. , Si, P, S, C
a, Ti, Cr, Mn, Fe, Co, Ni, Zn, A
s, Se, Zr, Cd, In, Sn, Sb, Te, A
u, Pb and the like. In the copper alloy foil of the present invention, the content of these impurity elements present as solid solution, crystallization, precipitation or oxide in the matrix is 0.005 in total.
% Or less does not affect the strength, conductivity, heat resistance, etc. of the rolled copper alloy foil according to the present invention.

【0018】次に、本発明に係る銅合金圧延箔の製造方
法について説明する。 (溶解鋳造)本発明に係る銅合金圧延箔を製造するため
の鋳塊は、電気銅、無酸素銅、タフピッチ銅及びこれら
のスクラップを銅の溶解原料とすることができる。Ag
はCuより低融点であり、Ag地金を用いても、Cu−
Ag中間合金を用いてもよい。本発明に係る銅合金圧延
箔において、酸素の含有量を0.002%以下とする場
合には、無酸素銅の溶解方法(CO−CO混合雰囲気
にて溶解鋳造、真空溶解など)の適用、あるいはシャフ
ト炉、電気保持炉、コアレス炉などを用いる通常の溶解
鋳造設備において、溶解炉、樋、鋳型の溶湯表面をフラ
ックス、黒鉛粒子、木炭、不活性ガスなどでカバーする
ことによって可能である。
Next, a method for producing a rolled copper alloy foil according to the present invention will be described. (Melting Casting) The ingot for producing the rolled copper alloy foil according to the present invention can be made of electrolytic copper, oxygen-free copper, tough pitch copper and scraps thereof as a raw material for melting copper. Ag
Has a lower melting point than Cu, and Cu-
An Ag intermediate alloy may be used. In the rolled copper alloy foil according to the present invention, when the oxygen content is 0.002% or less, application of a method of dissolving oxygen-free copper (melting casting in a CO-CO 2 mixed atmosphere, vacuum melting, etc.). Or, in a normal melting and casting facility using a shaft furnace, an electric holding furnace, a coreless furnace, etc., it is possible to cover the molten metal surface of the melting furnace, gutter, mold with flux, graphite particles, charcoal, inert gas, etc. .

【0019】また、酸素の含有量を0.01〜0.04
%とする場合には、溶解炉や樋において、溶湯への酸化
銅(CuO、CuO)添加、乾燥エアー吹込み、溶湯
表面を酸化性のフラックスでカバーするなどの方法によ
って可能である。目的とする酸素含有量となっているこ
とをプラズマ分光分析、組織観察(亜酸化銅の分布)な
どによって確認した後、鋳造を行う。鋳造中の酸素含有
量のモニタリングについても同様の方法を用いればよ
い。鋳塊についてもその鋳造方向に数箇所、同様の方法
で酸素含有量を分析し、不純物元素の含有量の分析を行
う。水素の含有量を0.0002%以下とするには、溶
解原料、炉、樋、鋳型などの乾燥、雰囲気の露点管理な
どによって可能である。水素の分析は例えば、鋳塊より
サンプルを採取し、JIS−Z2614に規定の方法で
行うとよい。鋳造においては、通常の竪型連続鋳造、横
形連続鋳造、薄スラブ連続鋳造などの連続鋳造、及びダ
ービル鋳造、金型鋳造などの鋳造方法を適用して造塊が
可能である。
Further, the content of oxygen is set to 0.01 to 0.04.
%, It is possible to add copper oxide (CuO, Cu 2 O) to the molten metal, blow dry air, or cover the surface of the molten metal with an oxidizing flux in a melting furnace or a gutter. Casting is performed after confirming that the target oxygen content is achieved by plasma spectroscopic analysis, structure observation (distribution of cuprous oxide), and the like. The same method may be used for monitoring the oxygen content during casting. With respect to the ingot, the oxygen content is analyzed at several points in the casting direction by the same method, and the content of the impurity element is analyzed. The hydrogen content can be reduced to 0.0002% or less by drying the raw material for melting, furnace, gutter, mold, etc., and controlling the dew point of the atmosphere. The analysis of hydrogen may be performed, for example, by collecting a sample from the ingot and performing the method specified in JIS-Z2614. In casting, ingot casting can be performed by applying a normal casting method such as vertical continuous casting, horizontal continuous casting, thin slab continuous casting or the like, or a casting method such as Darville casting or die casting.

【0020】(加工熱処理)上述の方法で造塊された本
発明に係る銅合金圧延箔用の鋳塊は、熱間圧延性、冷間
圧延性共に良好であり、竪型連続鋳造、ダービル鋳造な
どの方法で製造された鋳塊を熱延し、その後冷延と熱処
理を組合せて箔とすることも、横形連続鋳造、薄スラブ
連続鋳造などの方法で製造された鋳塊(厚さ数mm〜3
0mm程度)を冷延と熱処理を組合せて箔とすることも
可能である。本発明に係る銅合金圧延箔の加工熱処理工
程としては、例えば、700〜950℃で加熱後、熱間
圧延を行って厚さ15〜25mmとした後、冷間圧延と
焼鈍を組合せて所定の厚さの圧延箔とする。冷延途中、
厚さ0.5〜1.5mm、又は/及び0.15〜0.3
mm程度で焼鈍を行った後、厚さ0.1mm未満で焼鈍
を行い、目的とする板厚まで圧延を行う。最終板厚とし
た後、延性回復、歪除去を目的として適当な条件で最終
焼鈍を行っても良い。歪の低減には、この後さらにテン
ションレベラなどによって歪矯正を行うことも有効であ
る。
(Working heat treatment) The ingot for a copper alloy rolled foil according to the present invention formed by the above-described method has good hot rolling properties and cold rolling properties, and has a vertical continuous casting and a Darville casting. Ingots manufactured by such methods as hot rolling, then cold rolling and heat treatment can be combined into foils, or ingots manufactured by methods such as horizontal continuous casting and thin slab continuous casting (thickness of several mm) ~ 3
(About 0 mm) can be formed into a foil by combining cold rolling and heat treatment. As the working heat treatment step of the copper alloy rolled foil according to the present invention, for example, after heating at 700 to 950 ° C., hot rolling is performed to a thickness of 15 to 25 mm, and a predetermined combination of cold rolling and annealing is performed. Rolled foil of thickness. During cold rolling,
Thickness 0.5 to 1.5 mm, and / or 0.15 to 0.3
After annealing at about mm, annealing is performed at a thickness of less than 0.1 mm, and rolling is performed to a target thickness. After the final sheet thickness is obtained, final annealing may be performed under appropriate conditions for the purpose of recovering ductility and removing distortion. In order to reduce the distortion, it is effective to further correct the distortion with a tension leveler or the like.

【0021】なお、焼鈍においては連続焼鈍炉又はベル
型焼鈍炉など連続式、バッチ式いずれの焼鈍炉を用いて
も良いが、0.1mm以下の板厚においてコイル状の合
金のバッチ焼鈍を行う場合は、焼鈍中の板同士の密着を
防止するために440℃以下の温度で焼鈍することが望
ましい。また、酸素含有量が0.002%以下の合金の
焼鈍は、KV炉ガス、アンモニアクラッキングガス、N
−10vol%Hガスなど不活性雰囲気で行うこと
が望ましい。酸素の含有量が0.01〜0.04%の銅
合金を焼鈍する場合には、水素脆化(焼鈍雰囲気中の水
素と銅合金中の酸素が反応して水蒸気が発生し、銅合金
にふくれを生じる)による材料の脆性を防止するため
に、真空、タフピッチ銅と同様な焼鈍雰囲気、不活性又
は弱酸加性などの雰囲気で焼鈍を行うことが望ましい。
これらの焼鈍で材料の表面に酸化膜が形成された場合は
酸洗研磨を行って除いておく。
In the annealing, either a continuous or batch type annealing furnace such as a continuous annealing furnace or a bell type annealing furnace may be used, but the batch annealing of the coiled alloy is performed at a sheet thickness of 0.1 mm or less. In this case, it is desirable to perform annealing at a temperature of 440 ° C. or less in order to prevent adhesion between the plates during annealing. Further, annealing of an alloy having an oxygen content of 0.002% or less is performed by using a KV furnace gas, an ammonia cracking gas,
It is preferably carried out in an inert atmosphere such as 2 -10vol% H 2 gas. When annealing a copper alloy having an oxygen content of 0.01 to 0.04%, hydrogen embrittlement (hydrogen in the annealing atmosphere and oxygen in the copper alloy react to generate water vapor, and In order to prevent the material from becoming brittle due to blistering, it is desirable to perform annealing in a vacuum, an annealing atmosphere similar to that of tough pitch copper, or in an atmosphere of inertness or weak acidity.
If an oxide film is formed on the surface of the material by these annealings, it is removed by polishing with an acid.

【0022】[0022]

【実施例】(実施例1)電気銅(純度99.99%以
上)及びAgショット(純度99.99%以上)を原料
として表1に示す本発明例1〜4、比較例1〜4の銅合
金鋳塊(60mm×60mm×200mm)を不活性ガ
ス雰囲気で溶解し、金型に鋳造した。本発明例2、4及
び比較例1、4の合金は鋳造前に粉末状のCuOを添
加して酸素濃度を調整した。なお、表1に示した組成
は、比較例3は熱延途中で中止した段階の割れのない部
分より採取した試料より、比較例4は熱延材より、それ
以外は銅箔とした後の測定値である。酸素含有量は不活
性ガス融解赤外線吸収法(JISH1067)によっ
て、水素含有量はJISZ2614によって、不可避不
純物のうちAl、Si、P、Cr、Mn、Fe、Co、
Ni、Zn、As、Se、Teについては、JISに規
定の方法、その他の元素についてはICP−MS、GD
−MS、原子吸光法などを用いて分析した。また、比較
例5として市販の高強度電解箔(0.015mmt)を
使用した。
EXAMPLES (Example 1) Using electrolytic copper (purity of 99.99% or more) and Ag shot (purity of 99.99% or more) as raw materials, Examples 1 to 4 of the present invention and Comparative Examples 1 to 4 shown in Table 1 were used. A copper alloy ingot (60 mm × 60 mm × 200 mm) was melted in an inert gas atmosphere and cast into a mold. The alloys of Inventive Examples 2 and 4 and Comparative Examples 1 and 4 were adjusted to oxygen concentration by adding powdered Cu 2 O before casting. The compositions shown in Table 1 were obtained from Comparative Example 3 obtained from a sample taken from a portion having no crack at the stage where hot rolling was stopped, Comparative Example 4 was obtained from a hot-rolled material, and the others were obtained from copper foil. It is a measured value. The oxygen content is determined by an inert gas melting infrared absorption method (JISH1067), and the hydrogen content is determined by JISZ2614. Among the unavoidable impurities, Al, Si, P, Cr, Mn, Fe, Co,
For Ni, Zn, As, Se, Te, the method specified in JIS, and for other elements, ICP-MS, GD
Analysis was performed using -MS, atomic absorption method and the like. As Comparative Example 5, a commercially available high-strength electrolytic foil (0.015 mmt) was used.

【0023】[0023]

【表1】 [Table 1]

【0024】本発明例1〜4、比較例1、2及び4の鋳
塊は、次の工程で0.015mmtの箔とした。80
0℃×1時間加熱後熱延(60mmt→15mmt)、
冷延(→1.0mmt)、500〜650℃のソル
トバス中で20秒間加熱焼鈍、酸洗後冷延(→0.15
mmt)、500〜650℃のソルトバス中で20秒
間加熱焼鈍、酸洗後冷延(→0.05mmt)、N
ガス中で300〜380℃×2時間焼鈍、酸洗後冷延
(→0.015mmt)、Nガス中で300〜35
0℃×2時間焼鈍、酸洗。ただし、比較例3の鋳塊は水
素含有量及びAの値が本発明の範囲より大きく、熱延を
行ったところ割れが発生したため、その後冷延以降の工
程を行わなかった。比較例4の鋳塊は熱延が可能であっ
たが、不純物が多いため、箔圧延時に板切れ、箔表面の
割れ、穴発生が多発し、0.1mm以下の時点で圧延を
中止した。本発明例及び比較例の箔より、引張方向が圧
延方向に平行となるように、引張試験片(JIS5号、
n=2)及び導電率の測定試験片(幅10mm、長さ3
00mm、n=2)を加工し、引張強さ、伸び及び導電
率を測定した。その結果を表2に示す。
The ingots of Inventive Examples 1 to 4 and Comparative Examples 1, 2 and 4 were made into foils of 0.015 mmt in the following steps. 80
Hot rolling (60 mmt → 15 mmt) after heating at 0 ° C x 1 hour,
Cold rolling (→ 1.0 mmt), heat annealing in a salt bath at 500 to 650 ° C. for 20 seconds, pickling and cold rolling (→ 0.15)
mmt), heat annealing in a salt bath at 500 to 650 ° C. for 20 seconds, pickling, cold rolling (→ 0.05 mmt), N 2
Annealing in gas at 300 to 380 ° C. for 2 hours, pickling, cold rolling (→ 0.015 mmt), 300 to 35 in N 2 gas
Annealed at 0 ° C x 2 hours, pickled. However, in the ingot of Comparative Example 3, the hydrogen content and the value of A were larger than the ranges of the present invention, and cracks occurred when hot rolling was performed. Therefore, the subsequent steps after cold rolling were not performed. Although the ingot of Comparative Example 4 could be hot-rolled, it had many impurities, so that the sheet was cut, the surface of the foil was cracked, and holes frequently occurred during the rolling of the foil, and the rolling was stopped at a time point of 0.1 mm or less. From the foils of the present invention and the comparative examples, tensile test pieces (JIS No. 5,
n = 2) and conductivity test specimen (width 10 mm, length 3
00 mm, n = 2), and the tensile strength, elongation and conductivity were measured. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】表2に示すように、本発明例1〜4の銅合
金箔は、いずれも引張り強さが300N/mm以上、
伸び8%以上で、導電率もタフピッチ銅並みである。一
方、比較例1のタフピッチ銅箔及びAgの含有量が本発
明の下限値より低い比較例2の銅合金箔は、引張り強さ
が300N/mmに及ばない。また、比較例5の電解
箔は引張り強さ、伸びは本発明の銅合金箔並みの値であ
るが、導電率は本発明の銅合金箔より若干低い。
As shown in Table 2, the copper alloy foils of Examples 1 to 4 of the present invention all have a tensile strength of 300 N / mm 2 or more,
With an elongation of 8% or more, the conductivity is comparable to that of tough pitch copper. On the other hand, the tough pitch copper foil of Comparative Example 1 and the copper alloy foil of Comparative Example 2 whose Ag content is lower than the lower limit of the present invention have a tensile strength of less than 300 N / mm 2 . Further, the tensile strength and elongation of the electrolytic foil of Comparative Example 5 are comparable to those of the copper alloy foil of the present invention, but the electrical conductivity is slightly lower than that of the copper alloy foil of the present invention.

【0027】(実施例2)比較例1の組成のタフピッチ
銅について、厚さ0.135mmから焼鈍を行うことな
く厚さ0.015mmまで冷間圧延し、この銅圧延箔を
比較例6とした。本発明例1〜4の銅合金圧延箔、比較
例5及び比較例6の銅圧延箔より、引張方向が圧延方向
に平行となるように、引張試験片(JIS5号)を作製
した。これらの試験片を50〜500℃(50℃間隔)
に到達後30分間保持し(Nガス中)、室温まで冷却
後引張り強さを測定し、各試料についてこの加熱処理に
よる軟化特性を表わすグラフを作成した。次に各試料に
ついて、加熱していない試験片の引張り強さ及び500
℃×30分加熱材の引張り強さの平均値(平均引張り強
さ)を求めた。軟化特性のグラフより各試料において平
均引張り強さとなる加熱温度を求め、これを半軟化温度
とした。その結果を表3に示す。
(Example 2) Tough pitch copper having the composition of Comparative Example 1 was cold-rolled from 0.135 mm to 0.015 mm without annealing, and this rolled copper foil was used as Comparative Example 6. . Tensile test pieces (JIS No. 5) were prepared from the rolled copper alloy foils of Invention Examples 1 to 4 and the rolled copper foils of Comparative Examples 5 and 6 so that the tensile direction was parallel to the rolling direction. These test pieces are subjected to 50-500 ° C (50 ° C intervals).
Was held for 30 minutes (in N 2 gas) after cooling to room temperature, the tensile strength was measured, and a graph showing the softening characteristics due to this heat treatment was prepared for each sample. Next, for each sample, the tensile strength of the unheated specimen and 500
The average value (average tensile strength) of the tensile strength of the heating material was measured at 30 ° C. × 30 minutes. The heating temperature at which the average tensile strength of each sample was determined from the graph of the softening characteristics, and this was defined as the semi-softening temperature. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】表3に示すように、本発明例の銅合金圧延
箔は、半軟化温度がいずれも300℃を大きく上回るの
に対し、比較例5の電解銅箔が200℃、比較例6のタ
フピッチ銅が110℃で、共に軟化しやすいことが判明
した。このことより、本発明の銅合金箔はリチウムイオ
ン二次電池の製造工程における乾燥工程においても軟化
することがないため、該工程中の箔切れや箔の伸びが発
生しないものと考えられる。
As shown in Table 3, the copper alloy rolled foils of the present invention all have a semi-softening temperature significantly higher than 300 ° C., whereas the electrolytic copper foil of Comparative Example 5 has a temperature of 200 ° C. It was found that the tough pitch copper was easily softened at 110 ° C. From this, it is considered that the copper alloy foil of the present invention does not soften even in the drying step in the manufacturing process of the lithium ion secondary battery, so that the foil does not break or the foil does not elongate during the process.

【0030】[0030]

【発明の効果】本発明に係る銅合金圧延箔は高強度で、
導電率は従来より使用されているタフピッチ銅と同等な
値を確保しているため、リチウムイオン二次電池の負極
集電体として用いるのに好適である。特に耐熱性に優れ
るため、電池の製造工程における乾燥工程において軟化
することが少なく、生産性の向上に大きく寄与する。ま
た、電池に組込まれた後の充電放電サイクルにおいても
箔の切断、活物質の剥離などが起きにくく、リチウムイ
オン二次電池の高性能化、長寿命化にも大きく寄与す
る。さらに、本発明の銅合金圧延箔は、上記の特性を備
えるため、マイクロモーターのコイル用電線を始めとす
る電子部品製造における生産性向上、それらの高性能化
に大きく貢献する。
The rolled copper alloy foil according to the present invention has high strength,
Since the conductivity has a value equivalent to that of conventionally used tough pitch copper, it is suitable for use as a negative electrode current collector of a lithium ion secondary battery. In particular, since it is excellent in heat resistance, it hardly softens in a drying process in a battery manufacturing process, and greatly contributes to improvement in productivity. Further, even in a charge / discharge cycle after being incorporated in the battery, cutting of the foil, peeling of the active material, and the like hardly occur, which greatly contributes to higher performance and longer life of the lithium ion secondary battery. Furthermore, since the rolled copper alloy foil of the present invention has the above characteristics, it greatly contributes to the improvement of productivity in the production of electronic components such as electric wires for coils of micromotors, and to the enhancement of their performance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G301 AA01 AA08 AB02 AB08 AD01 AD10 5H017 AS10 BB02 BB06 BB14 CC01 EE01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5G301 AA01 AA08 AB02 AB08 AD01 AD10 5H017 AS10 BB02 BB06 BB14 CC01 EE01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ag:0.005〜0.25%(重量
%、以下同じ)を含有し、さらに酸素を含有し、水素の
含有量が0.0002%以下、残部Cu及び不可避不純
物からなる銅合金圧延箔。
1. Ag: 0.005 to 0.25% (% by weight, the same applies hereinafter), further containing oxygen, hydrogen content of 0.0002% or less, balance Cu and unavoidable impurities Copper alloy rolled foil.
【請求項2】 酸素の含有量が0.002%以下、以下
の式で定義されるAの値が0.01〜30であることを
特徴とする請求項1記載の銅合金圧延箔。A=[酸素の
含有量(%)]×[水素の含有量(%)]×1012
2. The rolled copper alloy foil according to claim 1, wherein the content of oxygen is 0.002% or less, and the value of A defined by the following formula is 0.01 to 30. A = [content of oxygen (%)] × [content of hydrogen (%)] 2 × 10 12
【請求項3】 酸素の含有量が0.01〜0.04%、
以下の式で定義されるAの値が1〜300であることを
特徴とする請求項1記載の銅合金圧延箔。A=[酸素の
含有量(%)]×[水素の含有量(%)]×1012
3. An oxygen content of 0.01 to 0.04%,
The copper alloy rolled foil according to claim 1, wherein the value of A defined by the following equation is 1 to 300. A = [content of oxygen (%)] × [content of hydrogen (%)] 2 × 10 12
JP11186808A 1999-06-30 1999-06-30 Copper alloy rolled foil Pending JP2001011550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11186808A JP2001011550A (en) 1999-06-30 1999-06-30 Copper alloy rolled foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11186808A JP2001011550A (en) 1999-06-30 1999-06-30 Copper alloy rolled foil

Publications (1)

Publication Number Publication Date
JP2001011550A true JP2001011550A (en) 2001-01-16

Family

ID=16194960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11186808A Pending JP2001011550A (en) 1999-06-30 1999-06-30 Copper alloy rolled foil

Country Status (1)

Country Link
JP (1) JP2001011550A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266041A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Rolled copper alloy foil and production method therefor
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041333A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003064431A (en) * 2001-08-20 2003-03-05 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP2003086186A (en) * 2001-09-07 2003-03-20 Sony Corp Battery
JP2006291316A (en) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp Rolled copper alloy foil, and copper clad laminate produced using the rolled copper alloy foil
JP2008255380A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Corrosion-resistant copper alloy tube
JP2011001622A (en) * 2009-06-22 2011-01-06 Hitachi Cable Ltd Rolled copper foil
WO2012033026A1 (en) * 2010-09-06 2012-03-15 Jx日鉱日石金属株式会社 Copper foil for printed wiring board
JP2012117123A (en) * 2010-12-02 2012-06-21 Hitachi Cable Ltd Rolled copper foil
JP2013053323A (en) * 2011-09-01 2013-03-21 Hitachi Cable Ltd Rolled copper foil
CN110903674A (en) * 2019-12-06 2020-03-24 西安广源机电技术有限公司 Preparation method of material for inhibiting temperature rise of micromotor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266041A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Rolled copper alloy foil and production method therefor
JP2003041332A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003041333A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2003064431A (en) * 2001-08-20 2003-03-05 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate sheet
JP2003086186A (en) * 2001-09-07 2003-03-20 Sony Corp Battery
JP2006291316A (en) * 2005-04-13 2006-10-26 Mitsubishi Materials Corp Rolled copper alloy foil, and copper clad laminate produced using the rolled copper alloy foil
JP2008255380A (en) * 2007-03-30 2008-10-23 Kobelco & Materials Copper Tube Inc Corrosion-resistant copper alloy tube
JP2011001622A (en) * 2009-06-22 2011-01-06 Hitachi Cable Ltd Rolled copper foil
WO2012033026A1 (en) * 2010-09-06 2012-03-15 Jx日鉱日石金属株式会社 Copper foil for printed wiring board
JP2012117123A (en) * 2010-12-02 2012-06-21 Hitachi Cable Ltd Rolled copper foil
JP2013053323A (en) * 2011-09-01 2013-03-21 Hitachi Cable Ltd Rolled copper foil
CN110903674A (en) * 2019-12-06 2020-03-24 西安广源机电技术有限公司 Preparation method of material for inhibiting temperature rise of micromotor

Similar Documents

Publication Publication Date Title
JP5490594B2 (en) Cu-Zn alloy strip for battery connection tab material
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
JP5417366B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP5495649B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP2012224927A (en) Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
JP2001011550A (en) Copper alloy rolled foil
JP2014040659A (en) Manufacturing method of aluminum alloy foil for lithium ion secondary battery positive electrode collector, aluminum alloy foil for lithium ion secondary battery positive electrode collector, and lithium ion secondary battery
JP2001152267A (en) Copper alloy rolled foil
JP4743977B2 (en) Rolled copper alloy foil and manufacturing method thereof
JP5539932B2 (en) Cu-Co-Si alloy with excellent bending workability
JP2000080428A (en) Copper alloy sheet excellent in bendability
WO2018079507A1 (en) Copper alloy sheet and method for manufacturing same
JP2000328159A (en) Copper alloy foil
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
WO2013176038A1 (en) Aluminum alloy foil for electrode collector, method for manufacturing same, and electrode material
JP3760668B2 (en) Secondary battery current collector
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
JP2001279351A (en) Rolled copper alloy foil and its production method
JP6790153B2 (en) A method for manufacturing a rolled copper foil for a secondary battery negative electrode current collector, a secondary battery negative electrode current collector and a secondary battery using the rolled copper foil, and a rolled copper foil for a secondary battery negative electrode current collector.
JP2020128598A (en) Rolled copper sheet, and component for electronic and electric apparatus
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same