JP2020128598A - Rolled copper sheet, and component for electronic and electric apparatus - Google Patents

Rolled copper sheet, and component for electronic and electric apparatus Download PDF

Info

Publication number
JP2020128598A
JP2020128598A JP2020091172A JP2020091172A JP2020128598A JP 2020128598 A JP2020128598 A JP 2020128598A JP 2020091172 A JP2020091172 A JP 2020091172A JP 2020091172 A JP2020091172 A JP 2020091172A JP 2020128598 A JP2020128598 A JP 2020128598A
Authority
JP
Japan
Prior art keywords
less
content
mass
plane
ray diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020091172A
Other languages
Japanese (ja)
Inventor
牧 一誠
Kazumasa Maki
一誠 牧
裕隆 松永
Hirotaka Matsunaga
裕隆 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020091172A priority Critical patent/JP2020128598A/en
Publication of JP2020128598A publication Critical patent/JP2020128598A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a rolled copper sheet excellent in electric conductivity, and stress relaxation resistance characteristics, capable of suppressing generation of defects, and suitable for a component for an electronic and electric apparatus.SOLUTION: A rolled copper sheet includes 0.005 mass% or more and 0.05 mass% or less of Mg, and the balance of Cu and inevitable impurities, where the content of H is less than 1 mass ppm, the content of P is less than 10 mass ppm, the content of O is less than 5 mass ppm, the content of S is less than 10 mass ppm, the ratio (P+O+S)/Mg of a total amount (P+O+S) of P, O, and S to an amount of Mg is smaller than 0.6, the conductivity is larger than 95% IACS, the residual stress rate at 150°C for 1,000 hrs. is 20% or more, and the broken test piece number in an elastic region before reaching a yield point is less than 1 when performing 10 times of a tensile test using 13B test pieces specified in JIS Z 2241.SELECTED DRAWING: None

Description

本発明は、リードフレーム、端子、コネクタ等の電気・電子部品に用いられる銅圧延板であって、特に、導電率、耐応力緩和特性に優れた銅圧延板及び電子・電気機器用部品に関するものである。 The present invention relates to a rolled copper plate used for electric/electronic parts such as lead frames, terminals, connectors, etc., and particularly to a rolled copper plate excellent in conductivity and stress relaxation resistance and parts for electronic/electrical equipment. Is.

従来、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
ここで、自動車のエンジンルーム等の高温環境下で使用されるコネクタ等の端子等においては、耐応力緩和特性が求められている。
2. Description of the Related Art Conventionally, highly conductive copper or copper alloys have been used for electronic/electrical device parts such as terminals such as connectors, relays, and lead frames.
Here, stress relaxation resistance is required for terminals and the like of connectors and the like used in high temperature environments such as engine rooms of automobiles.

ここで、例えば、電気自動車やハイブリッド自動車等において用いられる高圧系のハーネスにおいては、大電流に対応するために導電率に優れた無酸素銅等が適用されている。無酸素銅からなるハーネスにおいては、耐応力緩和特性が不十分なため、端子化することができず、従来はボルト締めによって接続されていた。 Here, for example, in a high-voltage harness used in an electric vehicle, a hybrid vehicle, or the like, oxygen-free copper or the like having excellent conductivity is applied in order to handle a large current. Since the harness made of oxygen-free copper has insufficient stress relaxation resistance, it cannot be made into a terminal, and conventionally, it is connected by bolting.

ここで、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品に使用される材料として、特許文献1に記載されているCu−Mg−P合金や特許文献2に記載されているCu−Mg合金等が開発されている。
また、特許文献3には、純銅からなる銅合金圧延板において、特殊粒界比率を規定することにより、疲労強度を向上させる技術が開示されている。
Here, Cu-Mg-P alloy described in Patent Document 1 and Patent Document 2 are described as materials used for parts for electronic/electrical devices such as terminals such as connectors, relays, and lead frames. Cu-Mg alloys have been developed.
Further, Patent Document 3 discloses a technique for improving the fatigue strength of a rolled copper alloy plate made of pure copper by defining a special grain boundary ratio.

特開2007−056297号公報JP, 2007-056297, A 特開2014−114464号公報JP, 2014-114464, A 特開2012−062498号公報JP2012-062498A

しかしながら、特許文献1に記載されたCu−Mg−P合金においては、Mgの含有量が0.1〜0.4質量%と比較的多いため、導電率が不十分であった。
特許文献2に記載されたCu−Mg合金においては、Mgの含有量が0.01〜0.5質量%と規定されており、Mgの含有量が多い場合には、導電性を確保することができない。また、特許文献2においては、ブローホール欠陥を発生させるH(水素)について全く考慮されていないため、加工時に欠陥が発生し易く、製造歩留が大幅に低下するおそれがあった。
特許文献3に記載された銅圧延板においては、無酸素銅を用いた場合には導電性は確保することができるが、耐応力緩和特性が不十分であり、やはり端子化することはできなかった。
However, in the Cu-Mg-P alloy described in Patent Document 1, the Mg content is relatively large at 0.1 to 0.4% by mass, and thus the electrical conductivity was insufficient.
In the Cu-Mg alloy described in Patent Document 2, the content of Mg is specified to be 0.01 to 0.5% by mass, and when the content of Mg is large, ensure conductivity. I can't. Further, in Patent Document 2, since H (hydrogen) that causes a blowhole defect is not taken into consideration at all, there is a possibility that a defect is likely to occur during processing and the manufacturing yield may be significantly reduced.
In the copper rolled plate described in Patent Document 3, when oxygen-free copper is used, the conductivity can be secured, but the stress relaxation resistance is insufficient and it cannot be formed into a terminal. It was

この発明は、前述した事情に鑑みてなされたものであって、導電性、耐応力緩和特性に優れるとともに、欠陥の発生を抑制することが可能な電子・電気機器用部品に適した銅圧延板及びこの銅圧延板からなる電子・電気機器用部品を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and has excellent conductivity and stress relaxation resistance, and is a copper rolled plate suitable for electronic/electrical device parts capable of suppressing the occurrence of defects. It is also an object of the present invention to provide a component for electronic/electrical equipment made of this rolled copper plate.

この課題を解決するために、本発明の銅圧延板は、Mgを0.005mass%以上0.05mass%以下の範囲で含み、残部がCu及び不可避不純物からなり、Hの含有量が1massppm未満、Pの含有量が10massppm未満、Oの含有量が5massppm未満、Sの含有量が10massppm未満とされ、PとOとSの総量(P+O+S)とMg量との質量比(P+O+S)/Mgが0.6以下とされるとともに、導電率が95%IACS以上とされ、残留応力率が150℃、1000時間で20%以上であり、JIS Z 2241に規定される13B号試験片を用いて引張試験を10回行って降伏点を迎える前に弾性域で引張試験片が破断した個数である引張試験の破断回数が1回未満であることを特徴としている。 In order to solve this problem, the rolled copper plate of the present invention contains Mg in the range of 0.005 mass% or more and 0.05 mass% or less, the balance is Cu and inevitable impurities, and the H content is less than 1 mass ppm, The content of P is less than 10 massppm, the content of O is less than 5 massppm, the content of S is less than 10 massppm, and the mass ratio (P+O+S)/Mg of the total amount of P, O and S (P+O+S) and the amount of Mg is 0. The tensile stress test is conducted by using a No. 13B test piece specified in JIS Z 2241, which has a conductivity of 95% IACS or more, a residual stress rate of 20% or more at 150° C. for 1000 hours, as well as being set to 0.6 or less. Is performed 10 times and before the yield point is reached, the number of ruptures in the tensile test, which is the number of tensile test pieces ruptured in the elastic region, is less than 1.

上述の構成の銅圧延板によれば、Mgを0.005mass%以上0.05mass%以下の範囲で含み、残部がCu及び不可避不純物からなる組成を有しているので、Mgを銅の母相中に固溶させることができ、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、Hの含有量が1massppm未満とされているので、鋳塊内にブローホール欠陥が発生することを抑制することができ、加工時における欠陥の発生を抑制することができる。
さらに、Pの含有量が10massppm未満、Oの含有量が5massppm未満、Sの含有量が10massppm未満とされ、PとOとSの総量(P+O+S)とMg量との質量比(P+O+S)/Mgが0.6以下となるように、不純物元素であるP、O、Sの含有量が規定されているので、MgがP,O,Sといった元素と化合物を生成することによって消費されることが抑制され、Mgによる強度及び耐応力緩和特性の向上の効果を確実に奏功せしめることができる。
また、MgとP,O,Sといった元素との化合物の生成が抑制されていることから、母相中に破壊の起点となる化合物が多く存在しておらず、冷間加工性及び曲げ加工性を向上させることができる。
さらに、導電率が95%IACS以上とされているので、従来、純銅を用いていた用途に適用することが可能となる。
また、残留応力率が150℃、1000時間で20%以上であるので、耐応力緩和特性に特に優れることになり、高温環境下において使用した場合であっても永久変形を小さく抑えることができる。よって、自動車のエンジンルーム等において使用されるコネクタ端子等に適用することが可能となる。
According to the copper rolled sheet having the above-described structure, Mg is contained in the range of 0.005 mass% or more and 0.05 mass% or less, and the balance has the composition of Cu and inevitable impurities. It is possible to form a solid solution in it, and it is possible to improve the strength and the stress relaxation resistance characteristic without significantly reducing the conductivity.
Further, since the H content is less than 1 massppm, it is possible to suppress the occurrence of blowhole defects in the ingot, and it is possible to suppress the occurrence of defects during processing.
Furthermore, the content of P is less than 10 massppm, the content of O is less than 5 massppm, the content of S is less than 10 massppm, and the mass ratio (P+O+S)/Mg of the total amount of P, O and S (P+O+S) and the amount of Mg (P+O+S)/Mg Since the content of the impurity elements P, O, and S is regulated so that is less than or equal to 0.6, Mg may be consumed by forming a compound with elements such as P, O, and S. It is suppressed, and the effect of improving strength and stress relaxation resistance due to Mg can be surely exerted.
In addition, since the formation of compounds of Mg and elements such as P, O, and S is suppressed, many compounds that are the starting points of fracture do not exist in the parent phase, and cold workability and bendability Can be improved.
Furthermore, since the electric conductivity is 95% IACS or more, it becomes possible to apply to the use where pure copper has been conventionally used.
Moreover, since the residual stress rate is 20% or more at 150° C. for 1000 hours, the stress relaxation resistance is particularly excellent, and permanent deformation can be suppressed to be small even when used in a high temperature environment. Therefore, it can be applied to a connector terminal or the like used in an automobile engine room or the like.

ここで、本発明の銅圧延板においては、圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420})とした場合に、R{220}が0.2以上とされていることが好ましい。
{220}面は、圧延加工により形成され易く、この{220}面の割合が高くなると、圧延方向に対して曲げの軸が直交方向になるように曲げ加工した際に優れた曲げ加工性を有する。よって、板表面における{220}面からのX線回折強度の割合R{220}を0.2以上とすることにより、曲げ加工性を向上させることができる。
Here, in the rolled copper sheet of the present invention, the X-ray diffraction intensity from the {111} plane in the rolling plane is I{111}, and the X-ray diffraction intensity from the {200} plane is I{200}, {220}. X-ray diffraction intensity from the plane I{220}, X-ray diffraction intensity from the {311} plane I{311}, X-ray diffraction intensity from the {420} plane from I{420}, {220} plane When the ratio R{220} of the X-ray diffraction intensity of R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420}) It is preferable that {220} is 0.2 or more.
The {220} plane is easily formed by rolling, and when the ratio of the {220} plane is high, excellent bending workability is obtained when bending is performed so that the bending axis is orthogonal to the rolling direction. Have. Therefore, bending workability can be improved by setting the ratio R{220} of the X-ray diffraction intensity from the {220} plane on the plate surface to 0.2 or more.

本発明の電子・電気機器用部品は、上述の銅圧延板からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、コネクタ等の端子、リレー、リードフレーム等を含むものである。
この構成の電子・電気機器用部品は、導電率、耐応力緩和特性に優れた銅圧延板を用いて製造されているので、高圧系の用途にも適用可能であり、加工時における割れの発生が抑制されており、信頼性に優れている。
The electronic/electrical device component of the present invention is characterized by being formed of the above-mentioned rolled copper plate. The parts for electronic/electrical devices in the present invention include terminals such as connectors, relays, lead frames and the like.
The electronic/electrical device parts with this configuration are manufactured using a copper rolled plate with excellent electrical conductivity and stress relaxation resistance properties, so they can be applied to high-voltage applications and cracking during processing can occur. Is suppressed and it has excellent reliability.

本発明によれば、導電性、耐応力緩和特性に優れるとともに、欠陥の発生を抑制することが可能な電子・電気機器用部品に適した銅圧延板及びこの銅圧延板からなる電子・電気機器用部品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while being excellent in electroconductivity and stress relaxation resistance, the copper rolling board suitable for the components for electronic/electrical devices which can suppress the generation|occurrence|production of a defect, and the electronic/electrical equipment which consists of this copper rolling board Parts can be provided.

本実施形態である銅圧延板の製造方法のフロー図である。It is a flow figure of a manufacturing method of a copper rolling board which is this embodiment.

以下に、本発明の実施形態について図面を参照して説明する。
本実施形態である銅圧延板は、Mgを0.005mass%以上0.05mass%以下の範囲で含み、残部がCu及び不可避不純物とされた組成を有している。
また、本実施形態である銅圧延板においては、不可避不純物であるHの含有量が1massppm未満、Pの含有量が10massppm未満、Oの含有量が5massppm未満、Sの含有量が10massppm未満とされており、これらP,O,SとMgの含有量が、質量比で、(P+O+S)/Mg≦0.6の関係を有している。
さらに、本実施形態である銅圧延板においては、導電率が95%IACS以上、残留応力率が150℃、1000時間で20%以上といった特性を有している。
Embodiments of the present invention will be described below with reference to the drawings.
The rolled copper sheet of this embodiment has a composition containing Mg in the range of 0.005 mass% to 0.05 mass% and the balance being Cu and inevitable impurities.
Further, in the rolled copper plate of the present embodiment, the content of H, which is an unavoidable impurity, is less than 1 massppm, the content of P is less than 10 massppm, the content of O is less than 5 massppm, and the content of S is less than 10 massppm. Therefore, the content of P, O, S and Mg has a relationship of (P+O+S)/Mg≦0.6 in mass ratio.
Further, the copper rolled sheet according to the present embodiment has characteristics that the electric conductivity is 95% IACS or more, the residual stress rate is 150° C., and 20% or more after 1000 hours.

また、本実施形態である銅圧延板においては、圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420})とした場合に、R{220}が0.2以上とされている。 Further, in the rolled copper plate of the present embodiment, the X-ray diffraction intensity from the {111} plane in the rolling plane is I{111}, and the X-ray diffraction intensity from the {200} plane is I{200}, {220. The X-ray diffraction intensity from the {} plane is I{220}, the X-ray diffraction intensity from the {311} plane is I{311}, and the X-ray diffraction intensity from the {420} plane is I{420}, {220} plane. When the ratio R{220} of the X-ray diffraction intensity from is R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420}), R{220} is set to 0.2 or more.

なお、本実施形態においては、銅圧延板の板厚は、0.05mm超え1.0mm以下の範囲内とされており、好ましくは0.1mm超え1.0mm未満の範囲内とされている。
ここで、上述のように成分組成、導電率、0.2%耐力、残留応力率、{220}面からのX線回折強度の割合R{220}を規定した理由について以下に説明する。
In addition, in this embodiment, the plate thickness of the rolled copper plate is set to be in the range of more than 0.05 mm and 1.0 mm or less, preferably in the range of more than 0.1 mm and less than 1.0 mm.
Here, the reasons for defining the component composition, the electrical conductivity, the 0.2% proof stress, the residual stress rate, and the ratio R{220} of the X-ray diffraction intensity from the {220} plane as described above will be described below.

(Mg:0.005mass%以上0.05mass%以下)
Mgは、銅の母相中に固溶することで、導電率を大きく低下させることなく、強度及び耐応力緩和特性を向上させる作用効果を有する元素である。また、Mgを母相中に固溶させることにより、優れた曲げ加工性が得られる。
ここで、Mgの含有量が0.005mass%未満の場合には、その作用効果を奏功せしめることはできない。一方、Mgの含有量が0.05mass%を超える場合には、導電率が低下してしまうおそれがある。
このような理由から、本実施形態では、Mgの含有量を、0.005mass%以上0.05mass%以下の範囲内に設定している。なお、上述の作用効果を確実に奏功せしめるために、Mgの含有量の下限は0.007mass%以上が好ましく、0.01mass%以上がさらに好ましい。
(Mg: 0.005 mass% or more and 0.05 mass% or less)
Mg is an element having the action and effect of improving the strength and the stress relaxation resistance property without significantly reducing the conductivity by forming a solid solution in the mother phase of copper. Further, by making Mg form a solid solution in the matrix, excellent bendability can be obtained.
Here, if the content of Mg is less than 0.005 mass%, the action and effect cannot be achieved successfully. On the other hand, when the Mg content exceeds 0.05 mass %, the conductivity may decrease.
For this reason, in the present embodiment, the Mg content is set within the range of 0.005 mass% or more and 0.05 mass% or less. The lower limit of the Mg content is preferably 0.007 mass% or more, and more preferably 0.01 mass% or more, in order to surely bring out the above-described effects.

(H(水素):1massppm未満)
Hは、鋳塊中にブローホール欠陥を生じさせる元素である。このブローホール欠陥は、鋳造時には割れ、圧延時にはふくれ及び剥がれ等の欠陥の原因となる。これらの割れ、ふくれ及び剥がれ等の欠陥は、応力集中して破壊の起点となるため、強度、耐応力腐食割れ特性を劣化させることが知られている。
特に、Mgを含有した銅合金の場合、溶解時に溶質成分のMgとHOが反応することでMgOとHが形成される。そのため、HOの蒸気圧が高い場合、Hが多量に溶湯に溶解するおそれがあり、上記の欠陥につながることから、特に厳しく制限する必要がある。
ここで、Hの含有量が1massppmを超えると、上述したブローホール欠陥が発生しやすくなる。
そこで、本実施形態では、Hの含有量を1massppm未満に規定している。なお、ブローホール欠陥の発生をさらに抑制するためには、Hの含有量を0.7massppm未満とすることがさらに好ましく、0.5massppm未満がさらに好ましい。
(H (hydrogen): less than 1 massppm)
H is an element that causes blowhole defects in the ingot. This blow hole defect causes defects such as cracking during casting and swelling and peeling during rolling. It is known that defects such as cracks, blisters, and peeling deteriorate stress and stress corrosion cracking resistance since stress concentrates and becomes a starting point of fracture.
Particularly, in the case of a copper alloy containing Mg, MgO and H are formed by the reaction of Mg as a solute component with H 2 O during melting. Therefore, when the vapor pressure of H 2 O is high, a large amount of H may be dissolved in the molten metal, which leads to the above defects, so that it is necessary to strictly limit the content.
Here, if the H content exceeds 1 massppm, the above-mentioned blowhole defect is likely to occur.
Therefore, in the present embodiment, the H content is specified to be less than 1 mass ppm. In order to further suppress the occurrence of blowhole defects, the H content is more preferably less than 0.7 massppm, and further preferably less than 0.5 massppm.

(P(リン):10massppm未満)
Pは、不可避的に含有される元素であり、Mgと反応して鋳造中に晶出物を形成する。この晶出物は破壊の起点となるため、冷間加工時や曲げ加工時に割れが発生しやすくなる。よって、Pの含有量が10massppm以上の場合には、破壊の起点となる晶出物が多く存在し、冷間加工性及び曲げ加工性が低下する。また、MgがPと反応することで消費されてしまい、Mgの固溶量が低減して強度及び耐応力緩和特性を十分に向上させることができなくなるおそれがある。
このような理由から、本実施形態では、Pの含有量を10massppm未満に規定している。
(P (phosphorus): less than 10 massppm)
P is an element that is inevitably contained and reacts with Mg to form a crystallized substance during casting. Since this crystallized substance becomes the starting point of fracture, cracks are likely to occur during cold working and bending. Therefore, when the content of P is 10 mass ppm or more, many crystallized substances that are the starting points of fracture are present, and cold workability and bendability are deteriorated. Further, Mg reacts with P and is consumed, so that the amount of solid solution of Mg is reduced and strength and stress relaxation resistance may not be sufficiently improved.
For this reason, in the present embodiment, the P content is specified to be less than 10 massppm.

(O(酸素):5massppm未満)
Oは、大気等から混入して不可避的に含有される元素であり、Mgと反応して酸化物を形成する。この酸化物は、破壊の起点となるため、冷間加工時や曲げ加工時に割れが発生しやすくなる。よって、Oの含有量が5massppm以上の場合には、破壊の起点となる酸化物が多く存在し、冷間加工性及び曲げ加工性が低下するとともに延性も低下する。また、MgがOと反応することで消費されてしまい、Mgの固溶量が低減して強度及び耐応力緩和特性を十分に向上させることができなくなるおそれがある。
このような理由から、本実施形態では、Oの含有量を5massppm未満に規定している。
さらに破壊の起点となる上記の晶出物、酸化物を確実に減少させるためには、PとOの合計量を15massppm未満とすることがさらに好ましい。
(O (oxygen): less than 5 massppm)
O is an element inevitably contained by mixing from the atmosphere or the like, and reacts with Mg to form an oxide. Since this oxide serves as a starting point of fracture, cracks easily occur during cold working and bending. Therefore, when the content of O is 5 mass ppm or more, there are many oxides that are the starting points of fracture, and the cold workability and bendability are reduced and the ductility is also reduced. Further, Mg reacts with O and is consumed, so that the amount of solid solution of Mg is reduced and strength and stress relaxation resistance may not be sufficiently improved.
For this reason, in the present embodiment, the O content is specified to be less than 5 massppm.
Further, in order to surely reduce the above-mentioned crystallized substances and oxides which are the starting points of fracture, it is more preferable that the total amount of P and O is less than 15 mass ppm.

(S(硫黄):10massppm未満)
Sは、Mgの硫化物、金属間化合物又は複合硫化物などの形態で結晶粒界に存在する。結晶粒界に存在するMgの硫化物、金属間化合物又は複合硫化物は、熱間加工時に粒界割れを引き起こし、加工割れの原因となる。また、Mgの硫化物、金属間化合物又は複合硫化物は、破壊の起点となるため、冷間加工時や曲げ加工時に割れが発生しやすくなる。よって、Sの含有量が10massppm以上の場合には、Mgの硫化物、金属間化合物又は複合硫化物が多く存在し、熱間加工性、冷間加工性、曲げ加工性が低下する。また、MgがSと反応することで消費されてしまい、Mgの固溶量が低減して強度及び耐応力緩和特性を十分に向上させることができなくなるおそれがある。
このような理由から、本実施形態では、Sの含有量を10massppm未満に規定している。
(S (sulfur): less than 10 massppm)
S exists in the grain boundaries in the form of Mg sulfide, intermetallic compound, complex sulfide, or the like. Mg sulfides, intermetallic compounds, or composite sulfides present in the crystal grain boundaries cause grain boundary cracks during hot working and cause work cracking. Further, since Mg sulfide, intermetallic compound, or composite sulfide serves as a starting point of fracture, cracking is likely to occur during cold working or bending. Therefore, when the S content is 10 mass ppm or more, a large amount of Mg sulfides, intermetallic compounds or complex sulfides are present, and hot workability, cold workability, and bendability are deteriorated. In addition, Mg reacts with S and is consumed, so that the amount of solid solution of Mg is reduced and strength and stress relaxation resistance may not be sufficiently improved.
For this reason, in the present embodiment, the S content is specified to be less than 10 massppm.

(質量比(P+O+S)/Mg≦0.6)
上述した通り、P,O,SはMgと反応して化合物を形成し、冷間加工性や熱間加工性、曲げ加工性を劣化させる。特にMgの添加量に対して、P、O、Sの含有量が多い場合、Mgの固溶量が減少し、強度と耐応力緩和特性が低下するおそれがある。
そこで、本実施形態では、P、O,Sの合計含有量とMgの含有量の質量比(P+O+S)/Mgを0.6以下に規定することにより、固溶するMg量を確保し、強度及び耐応力緩和特性を十分に向上させている。なお。この作用効果を確実に奏功せしめるためには、P、O,Sの合計含有量とMgの含有量の質量比(P+O+S)/Mgを0.5以下とすることが好ましく、0.4以下とすることがさらに好ましい。
(Mass ratio (P+O+S)/Mg≦0.6)
As described above, P, O, and S react with Mg to form a compound, which deteriorates cold workability, hot workability, and bendability. In particular, when the content of P, O, and S is large with respect to the added amount of Mg, the solid solution amount of Mg may decrease, and the strength and stress relaxation resistance may deteriorate.
Therefore, in the present embodiment, by defining the mass ratio (P+O+S)/Mg of the total content of P, O, and S and the content of Mg to be 0.6 or less, the amount of solid solution Mg is secured, and the strength is increased. And the stress relaxation resistance is sufficiently improved. Incidentally. In order to surely achieve this effect, the mass ratio (P+O+S)/Mg of the total content of P, O and S and the content of Mg is preferably 0.5 or less, and 0.4 or less. More preferably.

(その他の不可避不純物:0.1mass%以下)
なお、H、P、O、S以外のその他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、As、Sb、Tl、Pb、Bi、Be、N、C、Sn、Si、Li等が挙げられる。これらの不可避不純物は、銅圧延板の導電率を低下させる作用があるため、総量で0.1mass%以下とする。
また、Ag,Znは銅中に容易に混入して銅圧延板の導電率を低下させるため、総量で500massppm未満とすることが好ましい。
さらにSi,Cr,Ti、Zr,Fe,Co,Snは、特に導電率を大きく減少させるとともに、介在物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
(Other unavoidable impurities: 0.1 mass% or less)
Other unavoidable impurities other than H, P, O and S include Ag, B, Ca, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta and Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, As, Sb, Examples thereof include Tl, Pb, Bi, Be, N, C, Sn, Si and Li. Since these unavoidable impurities have the effect of lowering the conductivity of the rolled copper plate, the total amount is made 0.1 mass% or less.
Further, Ag and Zn are easily mixed in copper and reduce the conductivity of the rolled copper plate, so that the total amount is preferably less than 500 mass ppm.
Furthermore, Si, Cr, Ti, Zr, Fe, Co, and Sn greatly reduce the conductivity in particular and deteriorate the bending workability due to the formation of inclusions. Therefore, the total amount of these elements should be less than 500 mass ppm. preferable.

(導電率:95%IACS以上)
本実施形態である銅圧延板において、導電率が95%IACS以上である場合には、通電時の発熱が抑えられるため、純銅の代替としてコネクタ等の端子、リレー、リードフレーム等の電子機器用部品に特に適している。
(Conductivity: 95% IACS or more)
In the copper rolled sheet according to the present embodiment, when the electrical conductivity is 95% IACS or more, heat generation during energization is suppressed, and therefore, as an alternative to pure copper, for terminals such as connectors, relays, lead frames, and other electronic devices. Especially suitable for parts.

(圧延方向と直交する方向における0.2%耐力:300MPa以上)
本実施形態である銅圧延板において、圧延方向と直交する方向における0.2%耐力が300MPa以上である場合には、銅圧延板は、圧延方向と直交する方向において容易に塑性変形しなくなるため、コネクタ等の端子、リレー、リードフレーム等の電子機器用部品の素材として特に適している。
なお、圧延方向と直交する方向における0.2%耐力は325MPa以上であることが好ましく、350MPa以上がさらに好ましい。
(0.2% proof stress in the direction orthogonal to the rolling direction: 300 MPa or more)
In the copper rolled plate of the present embodiment, when the 0.2% proof stress in the direction orthogonal to the rolling direction is 300 MPa or more, the copper rolled plate does not easily undergo plastic deformation in the direction orthogonal to the rolling direction. It is particularly suitable as a material for electronic equipment parts such as terminals such as connectors, relays, lead frames and the like.
The 0.2% proof stress in the direction orthogonal to the rolling direction is preferably 325 MPa or more, more preferably 350 MPa or more.

(残留応力率:150℃、1000時間で20%以上)
本実施形態である銅圧延板においては、上述のように、残留応力率が150℃、1000時間で20%以上とされている。
この条件における残留応力率が高い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である銅圧延板は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。
なお、残留応力率は、150℃、1000時間で40%以上とすることが好ましく、150℃、1000時間で50%以上とすることがさらに好ましい。
(Residual stress rate: 150%, 20% or more at 1000 hours)
In the copper rolled sheet according to the present embodiment, as described above, the residual stress rate is set to 20% or more at 150° C. for 1000 hours.
When the residual stress rate under this condition is high, permanent deformation can be suppressed to a small level even when used in a high temperature environment, and a decrease in contact pressure can be suppressed. Therefore, the rolled copper sheet according to the present embodiment can be applied as a terminal used in a high temperature environment such as around the engine room of an automobile.
The residual stress rate is preferably 40% or more at 150° C. for 1000 hours, and more preferably 50% or more at 150° C. for 1000 hours.

({220}面からのX線回折強度の割合R{220}:0.2以上)
銅圧延板の板表面において{220}面が増加すると、圧延方向に対して曲げの軸が直交方向になるような曲げ加工をしたときに優れた曲げ加工性を有することになる。そこで、本実施形態では、R{220}を0.2以上に規定している。なお、R{220}は0.25以上であることが好ましく、0.3以上であることがさらに好ましい。
一方、{220}面が発達しすぎると、圧延方向に対して曲げの軸が並行方向になるような曲げ加工をした場合に滑り系が活動し難いため、曲げ加工性が劣化する。そのため、本実施形態では、R{220}の上限を0.9以下とすることが好ましく、0.8以下とすることがさらに好ましい。
(Ratio of X-ray diffraction intensity from {220} plane R{220}: 0.2 or more)
When the {220} plane is increased on the plate surface of the copper rolled plate, excellent bending workability is obtained when the bending work is performed such that the bending axis is orthogonal to the rolling direction. Therefore, in this embodiment, R{220} is specified to be 0.2 or more. R{220} is preferably 0.25 or more, more preferably 0.3 or more.
On the other hand, if the {220} plane is excessively developed, the bending system deteriorates because the slip system is hard to operate when bending is performed such that the bending axis is parallel to the rolling direction. Therefore, in the present embodiment, the upper limit of R{220} is preferably 0.9 or less, and more preferably 0.8 or less.

次に、このような構成とされた本実施形態である銅圧延板の製造方法について、図2に示すフロー図を参照して説明する。 Next, a method for manufacturing the copper rolled sheet of the present embodiment having such a configuration will be described with reference to the flowchart shown in FIG.

(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、Mgを添加して成分調整を行い、銅合金溶湯を製出する。なお、Mgの添加には、Mg単体やCu−Mg母合金等を用いることができる。また、Mgを含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。
ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、かつ溶解時の保持時間は最小限に留めることが好ましい。
そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
(Melting/casting process S01)
First, Mg is added to a copper melt obtained by melting a copper raw material to adjust the components, and a copper alloy melt is produced. Note that Mg can be added by using a simple substance of Mg, a Cu—Mg mother alloy, or the like. Further, the raw material containing Mg may be dissolved together with the copper raw material. Also, recycled materials and scrap materials of the present alloy may be used.
Here, the copper melt is preferably so-called 4NCu having a purity of 99.99 mass% or more, or so-called 5NCu having a purity of 99.999 mass% or more. In the melting process, in order to suppress the oxidation of Mg and to reduce the hydrogen concentration, the atmosphere is melted in an inert gas atmosphere (for example, Ar gas) with a low vapor pressure of H 2 O, and the holding time during melting is minimal. It is preferable to keep the limit.
Then, the molten copper alloy having the adjusted components is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use the continuous casting method or the semi-continuous casting method.

(均質化/溶体化工程S02)
次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を300℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この加熱工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
(Homogenization/solution treatment step S02)
Next, heat treatment is performed for homogenizing and solutionizing the obtained ingot. Inside the ingot, there may be an intermetallic compound containing Cu and Mg as main components, which are generated by the segregation of Mg during the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, a heat treatment of heating the ingot to 300° C. or higher and 900° C. or lower is performed to uniformly diffuse Mg in the ingot. , Mg may be dissolved in the mother phase. The heating step S02 is preferably performed in a non-oxidizing or reducing atmosphere.

ここで、加熱温度が300℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を300℃以上900℃以下の範囲に設定している。
なお、後述する粗圧延の効率化と組織の均一化のために、前述の均質化/溶体化工程S02の後に熱間加工を実施してもよい。この場合、加工方法に特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、300℃以上900℃以下の範囲内とすることが好ましい。
Here, if the heating temperature is lower than 300° C., solution treatment may be incomplete, and a large amount of intermetallic compounds containing Cu and Mg as main components may remain in the mother phase. On the other hand, if the heating temperature exceeds 900° C., a part of the copper material may be in a liquid phase, and the texture and surface condition may be non-uniform. Therefore, the heating temperature is set in the range of 300°C to 900°C.
Note that hot working may be performed after the above-described homogenization/solution treatment step S02 in order to increase the efficiency of rough rolling and homogenize the structure described later. In this case, the processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing and the like can be adopted. The hot working temperature is preferably in the range of 300°C or higher and 900°C or lower.

(粗加工工程S03)
所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S03における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間圧延となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。
(Rough processing step S03)
Roughing is performed in order to form a predetermined shape. The temperature condition in the roughing step S03 is not particularly limited, but in order to suppress recrystallization or to improve dimensional accuracy, it is cold or warm rolling within a range of -200°C to 200°C. Is preferable, and room temperature is particularly preferable. The processing rate is preferably 20% or more, more preferably 30% or more. The processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing and the like can be adopted.

(中間熱処理工程S04)
粗加工工程S03後に、加工性向上のための軟化、または再結晶組織にするために熱処理を実施する。
熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。例えば400℃では1秒から120秒程度保持することが好ましい。
なお、粗加工工程S03及び中間熱処理工程S04は、繰り返し実施してもよい。
(Intermediate heat treatment step S04)
After the roughing step S03, heat treatment is performed for softening for improving workability or for forming a recrystallized structure.
The method of heat treatment is not particularly limited, but short-time heat treatment in a continuous annealing furnace is preferable from the effect of reducing manufacturing cost. For example, it is preferable to hold the temperature at 400° C. for about 1 to 120 seconds.
The rough processing step S03 and the intermediate heat treatment step S04 may be repeatedly performed.

(仕上圧延工程S05)
中間熱処理工程S04後の銅素材を所定の形状に加工するため、もしくは圧延により形成される{220}面を増加させるため、仕上圧延を行う。なお、この仕上圧延工程S05における温度条件は特に限定はないが、再結晶を抑制するため、または軟化を抑制するために冷間、または温間圧延となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。また、圧延率は、最終形状に近似するように適宜選択されることになるが、加工硬化によって強度を向上させるため、もしくは{220}面を増加させるためには、20%以上とすることが好ましい。また。さらなる強度の向上と{220}面の増加を図る場合には、圧延率を30%以上とすることがより好ましい。
(Finishing rolling step S05)
Finish rolling is performed in order to process the copper material after the intermediate heat treatment step S04 into a predetermined shape or to increase the {220} plane formed by rolling. The temperature condition in the finish rolling step S05 is not particularly limited, but in the range of -200°C to 200°C, which is cold rolling or warm rolling to suppress recrystallization or softening. Is preferably used, and room temperature is particularly preferable. Further, the rolling rate is appropriately selected so as to approximate the final shape, but in order to improve the strength by work hardening or increase the {220} plane, it should be 20% or more. preferable. Also. In order to further improve the strength and increase the {220} plane, it is more preferable to set the rolling rate to 30% or more.

(仕上熱処理工程S06)
次に、仕上圧延工程S05によって得られた塑性加工材に対して、残留ひずみの除去のため、仕上熱処理を実施する。
熱処理温度は、100℃以上800℃以下の範囲内とすることが好ましい。なお、この仕上熱処理工程S06においては、再結晶による強度およびR{220}の大幅な低下を避けるように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。例えば250℃では1秒から120秒程度保持とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。
さらに、上述の仕上圧延工程S05と仕上熱処理工程S06とを、繰り返し実施してもよい。
(Finishing heat treatment step S06)
Next, a finish heat treatment is performed on the plastically worked material obtained in the finish rolling step S05 to remove residual strain.
The heat treatment temperature is preferably in the range of 100° C. or higher and 800° C. or lower. In this finishing heat treatment step S06, it is necessary to set the heat treatment conditions (temperature, time, cooling rate) so as to avoid a significant decrease in strength and R{220} due to recrystallization. For example, it is preferable to keep the temperature at 250° C. for about 1 to 120 seconds. This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.
The method of heat treatment is not particularly limited, but short-time heat treatment in a continuous annealing furnace is preferable from the effect of reducing manufacturing cost.
Further, the finish rolling step S05 and the finish heat treatment step S06 may be repeatedly performed.

このようにして、本実施形態である銅圧延板が製出されることになる。
また、本実施形態である電子・電気機器用部品は、上述の銅圧延板に対して、打ち抜き加工、曲げ加工等を施すことによって製造される。
In this way, the rolled copper plate of this embodiment is produced.
The electronic/electrical device component according to the present embodiment is manufactured by subjecting the above-mentioned rolled copper plate to punching, bending, and the like.

以上のような構成とされた本実施形態である銅圧延板によれば、Mgを0.005mass%以上0.05mass%以下の範囲で含み、残部がCu及び不可避不純物からなる組成を有しているので、Mgを銅の母相中に固溶させることができ、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。具体的には、導電率が95%IACS以上とされているので、従来、純銅材料を使用していた用途への適用が可能となる。 According to the copper rolled sheet of the present embodiment configured as described above, it has a composition containing Mg in the range of 0.005 mass% or more and 0.05 mass% or less, and the balance of Cu and inevitable impurities. Therefore, Mg can be solid-dissolved in the mother phase of copper, and the strength and stress relaxation resistance can be improved without significantly reducing the conductivity. Specifically, since the electric conductivity is 95% IACS or more, it can be applied to the use where a pure copper material is conventionally used.

また、銅圧延板中に不可避的に混入する不純物元素であるHの含有量について、1massppm未満と規定されているため、ブローホール欠陥に起因する割れ、ふくれ、剥がれ等の欠陥の発生を抑制することが可能となる。 Further, since the content of H, which is an impurity element that is unavoidably mixed in the rolled copper plate, is specified to be less than 1 massppm, the occurrence of defects such as cracks, swelling, and peeling due to blowhole defects is suppressed. It becomes possible.

また、銅圧延板中に不可避的に混入する不純物元素であるP,O,Sについて、Pの含有量が10massppm未満、Oの含有量が5massppm未満、Sの含有量が10massppm未満とされ、これらP,O,SとMgの含有量が、質量比で、(P+O+S)/Mg≦0.6の関係を有するように規定されているので、MgがP,O,Sといった元素と化合物を生成することによって消費されることが抑制され、Mgによる強度及び耐応力緩和特性の向上の効果を確実に奏功せしめることができる。また、MgとP,O,Sといった元素との化合物の生成を抑制し、冷間加工性及び曲げ加工性を向上させることができる。 Further, regarding P, O, and S, which are impurity elements unavoidably mixed in the rolled copper plate, the P content is less than 10 massppm, the O content is less than 5 massppm, and the S content is less than 10 massppm. Since the contents of P, O, S and Mg have a mass ratio of (P+O+S)/Mg≦0.6, Mg produces elements such as P, O and S and compounds. By doing so, the consumption can be suppressed, and the effect of improving the strength and the stress relaxation resistance characteristic of Mg can be surely exerted. Further, it is possible to suppress the formation of compounds of Mg and elements such as P, O and S, and improve the cold workability and bending workability.

さらに、本実施形態である銅圧延板においては、圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420})とした場合に、R{220}が0.2以上とされているので、圧延方向に対して曲げの軸が直交方向になるように曲げ加工した際に優れた曲げ加工性を有する。 Further, in the rolled copper plate of the present embodiment, the X-ray diffraction intensity from the {111} plane in the rolling plane is I{111}, and the X-ray diffraction intensity from the {200} plane is I{200}, {220. The X-ray diffraction intensity from the {} plane is I{220}, the X-ray diffraction intensity from the {311} plane is I{311}, and the X-ray diffraction intensity from the {420} plane is I{420}, {220} plane. When the ratio R{220} of the X-ray diffraction intensity from is R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420}), Since R{220} is 0.2 or more, it has excellent bending workability when bending is performed so that the axis of bending is orthogonal to the rolling direction.

また、本実施形態である銅圧延板においては、残留応力率が150℃、1000時間で20%以上とされているので、高温環境下において使用した場合であっても永久変形を小さく抑えることができる。
さらに、本実施形態である銅圧延板においては、圧延方向と直交する方向における0.2%耐力が300MPa以上とされているので、容易に塑性変形することがなく、コネクタ等の端子、リレー、リードフレーム等の電子・電気機器用部品の素材として使用することができる。
Further, in the copper rolled sheet according to the present embodiment, the residual stress rate is set to 20% or more at 150° C. for 1000 hours, so that the permanent deformation can be suppressed to be small even when used in a high temperature environment. it can.
Furthermore, in the copper rolled sheet according to the present embodiment, since the 0.2% proof stress in the direction orthogonal to the rolling direction is 300 MPa or more, it is not easily plastically deformed, and terminals such as connectors, relays, It can be used as a material for electronic/electrical device parts such as lead frames.

また、本実施形態である電子・電気機器用部品は、上述の銅圧延板を素材として用いているので、導電率、強度、曲げ加工性、耐応力緩和特性に優れており、高圧系の用途にも適用可能であり、加工時における割れの発生が抑制されており、信頼性に優れている。 Further, since the electronic/electrical device component of the present embodiment uses the above-mentioned copper rolled plate as a material, it has excellent conductivity, strength, bending workability, and stress relaxation resistance, and is suitable for high-voltage applications. It is also applicable to, the occurrence of cracks during processing is suppressed, and it has excellent reliability.

以上、本発明の実施形態である銅圧延板、及び、電子・電気機器用部品について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、銅圧延板の製造方法の一例について説明したが、銅圧延板の製造方法は本実施形態に限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
Although the rolled copper plate and the electronic/electrical device component according to the embodiment of the present invention have been described above, the present invention is not limited to this, and may be appropriately performed without departing from the technical idea of the invention. Can be changed.
For example, in the above-described embodiment, an example of a method for manufacturing a copper rolled plate has been described, but the method for manufacturing a copper rolled plate is not limited to this embodiment, and an existing manufacturing method is appropriately selected and manufactured. May be.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
本発明例1〜4、参考例5〜14と比較例1、2、4〜8は、Hが2massppm未満、Pが20massppm未満、Oが10massppm未満、Sが20massppm未満である純度99.99mass%以上の純銅からなる銅原料を準備した。参考例15,16は、Hが2massppm未満、Pが20massppm未満、Oが10massppm未満、Sが20massppm未満である純度99.9mass%以上の純銅からなる銅原料を準備した。また、比較例6は、タフピッチ銅を銅原料とした。
Below, the result of the confirmation experiment conducted to confirm the effect of the present invention will be described.
Inventive Examples 1 to 4, Reference Examples 5 to 14 and Comparative Examples 1, 2, 4 to 8, H is less than 2 massppm, P is less than 20 massppm, O is less than 10 massppm, and S is less than 20 massppm Purity 99.99 mass% The copper raw material which consists of the above pure copper was prepared. In Reference Examples 15 and 16, a copper raw material made of pure copper having a purity of 99.9 mass% or more in which H is less than 2 massppm, P is less than 20 massppm, O is less than 10 massppm, and S is less than 20 massppm is prepared. In Comparative Example 6, tough pitch copper was used as the copper raw material.

これらの銅原料を高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、Mgを添加して表1に示す成分組成に調製し、カーボン鋳型に注湯して鋳塊を製出した。
この際、参考例11、14、比較例4,5においては、Cu−P母合金を添加した。参考例13,14、比較例7においては、Cu−S母合金を添加した。参考例10、12及び14においては、溶解時の雰囲気にわずかのOを導入して鋳塊を製出した。参考例10と比較例3はArガス雰囲気中に水蒸気を導入して高周波溶解した。
なお、鋳塊の大きさは、厚さ約110mm×幅約110mm×長さ約250mmとした。
These copper raw materials were charged in a high-purity graphite crucible and were subjected to high frequency melting in an atmosphere furnace in an Ar gas atmosphere. Mg was added to the obtained molten copper to prepare the component composition shown in Table 1, which was poured into a carbon mold to produce an ingot.
At this time, in Reference Examples 11 and 14 and Comparative Examples 4 and 5, Cu-P mother alloy was added. In Reference Examples 13 and 14 and Comparative Example 7, a Cu-S master alloy was added. In Reference Examples 10, 12 and 14, ingots were produced by introducing a small amount of O 2 into the atmosphere during melting. In Reference Example 10 and Comparative Example 3, steam was introduced into an Ar gas atmosphere to perform high frequency melting.
The size of the ingot was about 110 mm thick×about 110 mm wide×about 250 mm long.

得られた鋳塊から鋳肌近傍2mm以上面削し、100mm×200mm×100mmのブロックを切り出した。
このブロックを、Arガス雰囲気中において、表2に記載の温度条件で4時間の加熱を行い、均質化/溶体化処理を行った。
A surface of 2 mm or more near the casting surface was chamfered from the obtained ingot, and a block of 100 mm × 200 mm × 100 mm was cut out.
This block was heated in an Ar gas atmosphere under the temperature conditions shown in Table 2 for 4 hours for homogenization/solution treatment.

その後、表2に記載の条件で粗圧延を実施した後、ソルトバスを用いて表2に記載された温度条件で熱処理を行った。
熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表2に記載された圧延率で仕上圧延を実施し、厚さ0.25mm、幅約200mm、長さ200mmの薄板を製出した。
Then, after performing rough rolling under the conditions shown in Table 2, heat treatment was performed using a salt bath under the temperature conditions shown in Table 2.
The heat-treated copper material was appropriately cut into a shape suitable for the final shape, and surface grinding was performed to remove an oxide film. Then, at room temperature, finish rolling was carried out at the rolling rate shown in Table 2 to produce a thin plate having a thickness of 0.25 mm, a width of about 200 mm and a length of 200 mm.

そして、仕上圧延後に、表2に示す条件で、Ar雰囲気中で仕上熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作成した。
なお、参考例15,16を除き、不可避不純物の総量は0.01〜0.05mass%未満であった。また、参考例15,16の不可避不純物の総量は0.06〜0.07mass%であった。
Then, after finish rolling, finish heat treatment was performed in an Ar atmosphere under the conditions shown in Table 2 and then water quenching was performed to prepare a thin plate for property evaluation.
The total amount of unavoidable impurities was 0.01 to less than 0.05 mass% except for Reference Examples 15 and 16. The total amount of inevitable impurities in Reference Examples 15 and 16 was 0.06 to 0.07 mass %.

(冷間加工性評価)
加工性の評価として、前述の粗圧延及び仕上圧延時における耳割れの有無を観察した。目視で耳割れが全くあるいはほとんど認められなかったものを◎、長さ1mm未満の小さな耳割れが発生したものを○、長さ1mm以上3mm未満の耳割れが発生したものを△、長さ3mm以上の大きな耳割れが発生したものを×、さらに耳割れがひどく、途中で圧延を中止したものを××とした。
なお、耳割れの長さとは、圧延材の幅方向端部から幅方向中央部に向かう耳割れの長さのことである。
(Cold workability evaluation)
As an evaluation of workability, the presence or absence of edge cracks was observed during the rough rolling and finish rolling described above. If there is no or almost no visible ear cracks, ⊚; if small ear cracks with a length of less than 1 mm occur, ○; if cracks with a length of 1 mm or more and less than 3 mm occur, △, length: 3 mm The case where the above-mentioned large edge cracks occurred was marked with x, and the case where the edge cracks were severe and the rolling was stopped halfway was marked as xx.
The length of the edge crack is the length of the edge crack extending from the widthwise end of the rolled material toward the widthwise center.

(X線回折強度)
板表面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度I{200}、{220}面からのX線回折強度I{220}、{311}面からのX線回折強度I{311}、{331}面からのX線回折強度I{331}、{420}面からのX線回折強度I{420}を、次のような手順で測定した。
特性評価用条材から測定試料を採取し、反射法で、測定試料に対して1つの回転軸の回りのX線回折強度を測定した。ターゲットにはCuを使用し、KαのX線を使用した。管電流40mA、管電圧40kV、測定角度40〜150°、測定ステップ0.02°の条件で測定し、回折角とX線回折強度のプロファイルにおいて、X線回折強度のバックグラウンドを除去後、各回折面からのピークのKα1とKα2を合わせた積分X線回折強度Iを求めた。
そして、R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420})から、板表面における{220}面からのX線回折強度の割合R{220}を算出した。なお、X線回折強度の測定部位は試料板幅方向の中心部とした。
(X-ray diffraction intensity)
The X-ray diffraction intensity from the {111} plane on the plate surface is I{111}, the X-ray diffraction intensity I{200} from the {200} plane, the X-ray diffraction intensity I{220} from the {220} plane, { The X-ray diffraction intensity I{311} from the 311} plane, the X-ray diffraction intensity I{331} from the {331} plane, and the X-ray diffraction intensity I{420} from the {420} plane are set as follows. It was measured at.
A measurement sample was taken from the characteristic evaluation strip, and the X-ray diffraction intensity around one rotation axis was measured for the measurement sample by the reflection method. Cu was used as the target, and Kα X-rays were used. The tube current is 40 mA, the tube voltage is 40 kV, the measurement angle is 40 to 150°, and the measurement step is 0.02°. In the profile of the diffraction angle and the X-ray diffraction intensity, after removing the background of the X-ray diffraction intensity, The integrated X-ray diffraction intensity I was calculated by combining Kα1 and Kα2 of the peaks from the diffraction plane.
Then, from R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{331}+I{420}), X from the {220} plane on the plate surface The ratio R{220} of the line diffraction intensity was calculated. The measurement site of the X-ray diffraction intensity was the central portion in the width direction of the sample plate.

(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力を測定した。なお、試験片は、圧延方向に垂直な方向で採取した。
(Mechanical properties)
A No. 13B test piece specified in JIS Z 2241 was sampled from the characteristic evaluation strip, and 0.2% proof stress was measured by the offset method of JIS Z 2241. The test pieces were taken in a direction perpendicular to the rolling direction.

(引張試験の破断回数)
上記の13B号試験片を用いて引張試験を10回行い、降伏点を迎える前に弾性域で引張試験片が破断した個数を引張試験の破断回数とし、測定を行った。なお弾性域とは応力ひずみ曲線において線形の関係を満たす領域のことを指す。この破断回数が多いほど、欠陥や介在物によって加工性が低下していることになる。
(Number of breaks in tensile test)
Tensile tests were performed 10 times using the above No. 13B test pieces, and the number of breaks in the tensile test pieces in the elastic region before reaching the yield point was taken as the number of breaks in the tensile test for measurement. The elastic region refers to a region that satisfies a linear relationship in the stress-strain curve. The greater the number of breaks, the lower the workability due to defects and inclusions.

(曲げ加工性)
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向になるように、特性評価用薄板から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.25mm(R/t=1)のW型の治具を用い、W曲げ試験を行った。
曲げ部の外周部を目視で観察して割れが観察された場合は「×」、大きなしわが観察された場合は△、破断や微細な割れ、大きなしわを確認できない場合を○として判定を行った。なお、○、△は許容できる曲げ加工性と判断した。
(Bending workability)
Bending was performed according to the four test methods of Japan Copper and Brass Association technical standard JCBA-T307:2007. A plurality of test pieces with a width of 10 mm and a length of 30 mm were sampled from the thin plate for characteristic evaluation so that the axis of bending was orthogonal to the rolling direction, and the bending angle was 90 degrees and the bending radius was 0.25 mm (R/ A W bending test was performed using a W type jig with t=1).
When cracks are observed visually by observing the outer peripheral portion of the bent portion, ``X'' is judged, when large wrinkles are observed, Δ is judged, and when fractures or fine cracks or large wrinkles cannot be confirmed, judgment is made as ○. It was In addition, ◯ and Δ were judged to be acceptable bending workability.

(導電率)
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。
(conductivity)
A test piece having a width of 10 mm and a length of 150 mm was sampled from the characteristic evaluation strip, and the electrical resistance was determined by the four-terminal method. The dimension of the test piece was measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and the volume. The test piece was sampled so that its longitudinal direction was perpendicular to the rolling direction of the characteristic evaluation strip.

(耐応力緩和特性)
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で1000時間保持後の残留応力率を測定した。
試験方法としては、各特性評価用条材から圧延方向に対して直交する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.25mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
(Stress relaxation property)
In the stress relaxation resistance test, stress was applied by a method according to the cantilever beam method of the Japan Copper and Brass Association technical standard JCBA-T309:2004, and the residual stress rate after holding for 1000 hours at a temperature of 150° C. was measured. ..
As a test method, a test piece (width 10 mm) was taken from each characteristic evaluation strip in a direction orthogonal to the rolling direction, and the initial flexural displacement was adjusted so that the maximum stress on the surface of the test piece was 80% of the proof stress. The span length was adjusted by setting it to 2 mm. The maximum surface stress is defined by the following equation.
Maximum surface stress (MPa)=1.5 Et δ 0 /L s 2
However,
E: Young's modulus (MPa)
t: Thickness of sample (t=0.25 mm)
δ 0 : Initial deflection displacement (2 mm)
L s : Span length (mm)
Is.

150℃の温度で、1000h保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1−δt0)×100
ただし、
δ:150℃で1000h保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
The residual stress rate was measured from the bending tendency after holding for 1000 hours at a temperature of 150° C., and the stress relaxation resistance was evaluated. The residual stress rate was calculated using the following formula.
Residual stress rate (%)=(1-δ t0 )×100
However,
δ t : Permanent deflection displacement after holding at 150°C for 1000 hours (mm)-Permanent deflection displacement after holding at room temperature for 24 hours (mm)
δ 0 : Initial deflection displacement (mm)
Is.

(Mg、不純物元素の含有量の測定方法)
Mgは、誘導結合プラズマ発光分光分析装置(ICP−AES)を用いて測定した。
H、Nの分析は、熱伝導度法で行い、O,S,Cの分析は、赤外線吸収法で行った。その他不可避不純物はグロー放電質量分析装置(GD−MS)を用いて測定した。
なお、測定は試料中央部と幅方向端部の二カ所で測定を行い、含有量の多い方をそのサンプルの含有量とした。
(Measuring method of content of Mg and impurity element)
Mg was measured by using an inductively coupled plasma optical emission spectrometer (ICP-AES).
The analysis of H and N was carried out by the thermal conductivity method, and the analysis of O, S and C was carried out by the infrared absorption method. Other unavoidable impurities were measured using a glow discharge mass spectrometer (GD-MS).
The measurement was carried out at two locations, the center of the sample and the end in the width direction, and the one with the higher content was defined as the content of the sample.

成分組成を表1、製造条件を表2、評価結果を表3に示す。 The component compositions are shown in Table 1, the production conditions are shown in Table 2, and the evaluation results are shown in Table 3.

Figure 2020128598
Figure 2020128598

Figure 2020128598
Figure 2020128598

Figure 2020128598
Figure 2020128598

従来例、比較例1は、Mg量が本発明の範囲よりも少なく、強度及び残留応力率が不十分であった。
比較例2は、Mg量が本発明の範囲よりも多く、導電率が不十分であった。
比較例3は、H量が本発明の範囲よりも多く、冷間圧延時に耳割れが発生するとともに、引張試験を10回実施した結果、弾性域における引張試験片の破断が4回発生しており、欠陥による加工性の劣化が認められた。
比較例4,5は、P量が本発明の範囲よりも多く、冷間圧延時に大きな割れが生じた。このため、その後の評価を中止した。
比較例6は、O量が本発明の範囲よりも多く、冷間圧延時に耳割れが発生するとともに、引張試験を10回実施した結果、弾性域における引張試験片の破断が4回発生しており、介在物による加工性の劣化が認められた。
比較例7は、S量が本発明の範囲よりも多く、冷間圧延時に大きな耳割れが発生した。このため、その後の評価を中止した。
比較例8は、質量比(P+O+S)/Mgが本発明よりも大きく、強度及び残留応力率が不十分であった。
In the conventional example and the comparative example 1, the amount of Mg was less than the range of the present invention, and the strength and the residual stress rate were insufficient.
In Comparative Example 2, the amount of Mg was larger than the range of the present invention, and the conductivity was insufficient.
In Comparative Example 3, the amount of H was larger than the range of the present invention, the edge cracks occurred during cold rolling, and the tensile test was performed 10 times, and as a result, the tensile test pieces in the elastic region were broken 4 times. However, deterioration of workability due to defects was recognized.
In Comparative Examples 4 and 5, the amount of P was larger than the range of the present invention, and large cracks occurred during cold rolling. Therefore, the subsequent evaluation was stopped.
In Comparative Example 6, the amount of O was larger than the range of the present invention, the edge cracks occurred during cold rolling, and the tensile test was performed 10 times, resulting in the tensile test pieces breaking 4 times in the elastic region. However, deterioration of workability due to inclusions was observed.
In Comparative Example 7, the amount of S was larger than the range of the present invention, and a large edge crack occurred during cold rolling. Therefore, the subsequent evaluation was stopped.
In Comparative Example 8, the mass ratio (P+O+S)/Mg was larger than that of the present invention, and the strength and residual stress rate were insufficient.

これに対して、本発明例においては、導電率が高く、耐応力緩和特性に優れていた。
以上のことから、本発明によれば、導電性、耐応力緩和特性に優れ、電子・電気機器用部品に適した銅圧延板を提供することができることが確認された。
On the other hand, in the inventive examples, the electrical conductivity was high and the stress relaxation resistance was excellent.
From the above, it was confirmed that according to the present invention, it is possible to provide a rolled copper plate which is excellent in conductivity and stress relaxation resistance and which is suitable for parts for electronic/electrical devices.

Claims (3)

Mgを0.005mass%以上0.05mass%以下の範囲で含み、残部がCu及び不可避不純物からなり、
Hの含有量が1massppm未満、Pの含有量が10massppm未満、Oの含有量が5massppm未満、Sの含有量が10massppm未満とされ、PとOとSの総量(P+O+S)とMg量との質量比(P+O+S)/Mgが0.6以下とされるとともに、
導電率が95%IACS以上とされ、
残留応力率が150℃、1000時間で20%以上であり、
JIS Z 2241に規定される13B号試験片を用いて引張試験を10回行って降伏点を迎える前に弾性域で引張試験片が破断した個数である引張試験の破断回数が1回未満であることを特徴とする銅圧延板。
Mg in the range of 0.005 mass% or more and 0.05 mass% or less, with the balance being Cu and inevitable impurities,
The content of H is less than 1 massppm, the content of P is less than 10 massppm, the content of O is less than 5 massppm, the content of S is less than 10 massppm, and the total amount of P, O and S (P+O+S) and the mass of Mg. The ratio (P+O+S)/Mg is set to 0.6 or less, and
Conductivity is 95% IACS or more,
Residual stress rate is 20% or more at 150° C. for 1000 hours,
The number of ruptures in the tensile test, which is the number of ruptures in the tensile test piece in the elastic range before the yield point is reached by performing the tensile test 10 times using the No. 13B test piece specified in JIS Z 2241, is less than 1 time. A rolled copper plate characterized by the above.
圧延面における{111}面からのX線回折強度をI{111}、{200}面からのX線回折強度をI{200}、{220}面からのX線回折強度をI{220}、{311}面からのX線回折強度をI{311}、{420}面からのX線回折強度をI{420}、{220}面からのX線回折強度の割合R{220}をR{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420})とした場合に、R{220}が0.2以上とされていることを特徴とする請求項1に記載の銅圧延板。 The X-ray diffraction intensity from the {111} plane in the rolled surface is I{111}, the X-ray diffraction intensity from the {200} plane is I{200}, and the X-ray diffraction intensity from the {220} plane is I{220}. , The X-ray diffraction intensity from the {311} plane is I{311}, the X-ray diffraction intensity from the {420} plane is I{420}, and the ratio R{220} of the X-ray diffraction intensity from the {220} plane is When R{220}=I{220}/(I{111}+I{200}+I{220}+I{311}+I{420}), R{220} is 0.2 or more. The rolled copper plate according to claim 1, wherein 請求項1又は請求項2に記載の銅圧延板からなることを特徴とする電子・電気機器用部品。 A component for electronic/electrical equipment, comprising the rolled copper plate according to claim 1 or 2.
JP2020091172A 2020-05-26 2020-05-26 Rolled copper sheet, and component for electronic and electric apparatus Pending JP2020128598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091172A JP2020128598A (en) 2020-05-26 2020-05-26 Rolled copper sheet, and component for electronic and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091172A JP2020128598A (en) 2020-05-26 2020-05-26 Rolled copper sheet, and component for electronic and electric apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018152890A Division JP6756348B2 (en) 2018-08-15 2018-08-15 Copper rolled plate and parts for electronic and electrical equipment

Publications (1)

Publication Number Publication Date
JP2020128598A true JP2020128598A (en) 2020-08-27

Family

ID=72174260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091172A Pending JP2020128598A (en) 2020-05-26 2020-05-26 Rolled copper sheet, and component for electronic and electric apparatus

Country Status (1)

Country Link
JP (1) JP2020128598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127854A1 (en) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 Copper alloy, plastic worked copper alloy material, component for electronic/electrical devices, terminal, bus bar, lead frame, and heat dissipation substrate
WO2023127851A1 (en) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310929A (en) * 1987-06-10 1988-12-19 Furukawa Electric Co Ltd:The Copper alloy for flexible print
JPH04280935A (en) * 1991-03-07 1992-10-06 Furukawa Electric Co Ltd:The Metallic gasket material and its production
WO2004087975A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Substrate material of a copper-magnesium alloy
JP2012097327A (en) * 2010-11-02 2012-05-24 Hitachi Cable Ltd Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310929A (en) * 1987-06-10 1988-12-19 Furukawa Electric Co Ltd:The Copper alloy for flexible print
JPH04280935A (en) * 1991-03-07 1992-10-06 Furukawa Electric Co Ltd:The Metallic gasket material and its production
WO2004087975A1 (en) * 2003-04-03 2004-10-14 Outokumpu Copper Products Oy Substrate material of a copper-magnesium alloy
JP2012097327A (en) * 2010-11-02 2012-05-24 Hitachi Cable Ltd Copper alloy improved in hot and cold workability, method for production thereof, and copper alloy strip or alloy foil obtained from copper alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127854A1 (en) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 Copper alloy, plastic worked copper alloy material, component for electronic/electrical devices, terminal, bus bar, lead frame, and heat dissipation substrate
WO2023127851A1 (en) * 2021-12-28 2023-07-06 三菱マテリアル株式会社 Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate

Similar Documents

Publication Publication Date Title
JP6387755B2 (en) Copper rolled sheets and parts for electronic and electrical equipment
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP5962707B2 (en) Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
KR101477884B1 (en) Copper alloy for electronic device, method for producing copper alloy for electronic device, copper alloy rolled material for electronic device, and electronic and electric component, terminal or connector containing copper alloy for electronic device or copper alloy rolled material for electronic device
JP6758746B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
EP3243918B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
KR101554833B1 (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
KR102474714B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US10128019B2 (en) Copper alloy for electronic/electrical device, plastically-worked copper alloy material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
US11319615B2 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
JP6680042B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP5983589B2 (en) Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2017101283A (en) Copper alloy for electronic and electrical machine, copper alloy plastic processed material for electronic and electrical machine, component, terminal and bus bar for electronic and electrical machine
JP2017179492A (en) Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP2020128598A (en) Rolled copper sheet, and component for electronic and electric apparatus
JP6756348B2 (en) Copper rolled plate and parts for electronic and electrical equipment
KR20230030578A (en) Copper alloys, plastically processed copper alloys, parts for electronic and electrical devices, terminals, bus bars, lead frames, and heat dissipation boards
KR20220106133A (en) Copper alloy, copper alloy plastic processing material, electronic/electrical device parts, terminal, bus bar, heat dissipation board
JP7078070B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames
JP6304864B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP5776831B1 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104