WO2023127851A1 - Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate - Google Patents

Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate Download PDF

Info

Publication number
WO2023127851A1
WO2023127851A1 PCT/JP2022/048113 JP2022048113W WO2023127851A1 WO 2023127851 A1 WO2023127851 A1 WO 2023127851A1 JP 2022048113 W JP2022048113 W JP 2022048113W WO 2023127851 A1 WO2023127851 A1 WO 2023127851A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
copper alloy
content
mass
profile strip
Prior art date
Application number
PCT/JP2022/048113
Other languages
French (fr)
Japanese (ja)
Inventor
裕隆 松永
健二 森川
真一 船木
航世 福岡
優樹 伊藤
一誠 牧
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2023127851A1 publication Critical patent/WO2023127851A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a copper alloy profile strip suitable for electronic and electrical device parts such as terminals, bus bars, lead frames, and heat dissipation substrates, and electronic and electrical device parts, terminals, bus bars and leads made of this copper alloy profile strip. It relates to the frame and the heat dissipation board.
  • Patent Document 1 discloses a rolled copper sheet containing Mg in the range of 0.005 mass% or more and less than 0.1 mass%.
  • the copper rolled sheet described in Patent Document 1 contains Mg in the range of 0.005 mass% or more and less than 0.1 mass%, and the balance is Cu and inevitable impurities.
  • the heat resistance of these materials is improved by adding a solute element.
  • the structure tends to be different between the thick and thin portions, and the thick and thin portions tend to have different properties such as strength and heat resistance.
  • the present invention has been made in view of the above-mentioned circumstances, and it is possible to stably use the thick part and the thin part in a high temperature environment without causing a difference in properties such as strength and heat resistance. It is an object of the present invention to provide a copper alloy profile strip, and electronic/electronic equipment components, terminals, bus bars, lead frames, and heat dissipation substrates made of this copper alloy profile strip.
  • a copper alloy profile strip is a copper alloy profile strip having a thick portion and a thin portion having different thicknesses in a cross section perpendicular to the longitudinal direction, and containing Mg.
  • the content is in the range of more than 10 massppm and less than 1.2 mass%
  • the content of P is in the range of 0 massppm to 200 massppm
  • the balance is Cu and unavoidable impurities.
  • the heat resistant temperature T1 of the thick portion is 260° C. or higher
  • the heat resistant temperature T2 of the thin portion is 240° C. or higher
  • 0.9 ⁇ T1/T2 ⁇ 1.25 the rolled surface, that is, the ND surface, is formed by the EBSD method.
  • the measurement area of 10000 ⁇ m 2 or more in (Normal direction) is analyzed for each crystal grain, except for the measurement points where the CI value is 0.1 or less at a measurement interval step of 0.25 ⁇ m, and the adjacent The grain boundary between the measurement points where the orientation difference between the measurement points is 15 ° or more, the average grain size A is obtained by Area Fraction, and the measurement is performed in steps with a measurement interval that is 1/10 or less of the average grain size A.
  • the measurement area is 10000 ⁇ m 2 or more in multiple fields of view, and the CI value analyzed by the data analysis software OIM is 0.1 or less.
  • L LB is the length of the low-angle grain boundary and subgrain boundary between the measurement points where the orientation difference between the adjacent measurement points is 2° or more and 15° or less, and the orientation difference between the adjacent measurement points is 15°.
  • LHB the length of the high-angle grain boundary between the measurement points exceeding °
  • the low-angle grain boundary ratio B LLB /( LLB + LHB )
  • the low-angle grain boundary ratio B1 in the thick portion is 80% or less
  • the low angle grain boundary ratio B2 in the thin portion is 80% or less
  • 0.8 ⁇ B1/B2 ⁇ 1.2 and within 10° with respect to the Goss orientation ⁇ 011 ⁇ ⁇ 100>
  • the area ratio of crystals having a crystal orientation of is 1% or more in each of the thick portion and the thin portion.
  • the Mg content is in the range of more than 10 massppm and less than 1.2 mass%, and the P content is in the range of 0 massppm to 200 massppm.
  • the heat resistance can be sufficiently improved.
  • the electrical conductivity is 48% IACS or higher, heat generation during energization can be suppressed, making it suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
  • the heat resistant temperature T1 of the thick portion is 260° C. or higher
  • the heat resistant temperature T2 of the thin portion is 240° C. or higher
  • the difference in heat resistance between the thick portion and the thin portion is small, and the heat resistance of the entire copper alloy profile strip is stably improved. Since the crystal structure is controlled so that the low-angle grain boundary ratio and the area ratio of Goss-oriented crystals in the thick portion and the thin portion are within the above-described ranges, recovery and recrystallization by movement of dislocations are achieved. is unlikely to occur, and the heat resistance can be sufficiently improved in the thick portion and the thin portion.
  • the S content is 10 mass ppm or less
  • the Se content is 5 mass ppm or less
  • the Te content is 5 mass ppm or less
  • the Sb content is 5 mass ppm.
  • the content of Bi is 5 mass ppm or less
  • the content of As is 5 mass ppm or less
  • the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less.
  • the Ag content is in the range of 5 ppm by mass or more and 20 ppm by mass or less. In this case, since Ag is contained in the above range, Ag segregates in the vicinity of grain boundaries, grain boundary diffusion is suppressed, and heat resistance can be further improved.
  • the Vickers hardness H1 of the thick portion is 70 Hv or more
  • the Vickers hardness H2 of the thin portion is 75 Hv or more
  • 0.7 ⁇ H1/H2 ⁇ 1.2 it is preferable that In this case, the Vickers hardness H1 of the thick portion is 70 Hv or more
  • the Vickers hardness H2 of the thin portion is 75 Hv or more
  • the Vickers hardness ratio H1/H2 is 0.7 ⁇ H1/H2 ⁇ 1. 2
  • the strength is excellent, and the difference in strength between the thick portion 11 and the thin portion 12 is small, so that it can be used stably.
  • the copper alloy profile strip of the present invention preferably has a metal plating layer on its surface.
  • it since it has a metal plating layer on the surface, it is particularly suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
  • a component for an electronic/electrical device is characterized by being made of the copper alloy profile strip described above.
  • the parts for electronic/electrical equipment in the present invention include terminals, bus bars, lead frames, heat-dissipating substrates, and the like. Since the component for electronic/electrical equipment having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent properties even in a high-temperature environment.
  • a terminal of the present invention is characterized by being made of the copper alloy profile strip described above. Since the terminal having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
  • a bus bar according to the present invention is characterized by being made of the copper alloy profile strip described above. Since the bus bar having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
  • a lead frame according to the present invention is characterized by being made of the above copper alloy profile strip. Since the lead frame having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
  • a heat dissipating substrate according to the present invention is characterized by being made of the copper alloy profile strip described above. Since the heat dissipating substrate having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
  • the present invention there is little difference in properties such as strength and heat resistance between the thick portion and the thin portion, and a copper alloy profile strip that can be stably used in a high-temperature environment, and the copper alloy. It becomes possible to provide electronic and electronic device parts, terminals, bus bars, lead frames, and heat dissipation substrates made of dual-gauge strips.
  • FIG. 1 is a cross-sectional explanatory view of a copper alloy dual-gauge strip according to the present embodiment
  • FIG. 1 is a flowchart of a method for manufacturing a copper alloy dual-gauge strip according to the present embodiment
  • FIG. 1 is a flowchart of a method for manufacturing a copper alloy dual-gauge strip according to the present embodiment
  • a copper alloy profile strip according to one embodiment of the present invention will be described below with reference to the accompanying drawings.
  • the copper alloy profile strip of this embodiment is optimally used as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
  • a copper alloy profile strip 10 of this embodiment has a thick portion 11 and a thin portion 12 having different thicknesses in a cross section orthogonal to the longitudinal direction. Also, the ratio t1/t2 between the thickness t1 of the thick portion 11 and the thickness t2 of the thin portion 12 is preferably 8 or less, preferably 6 or less.
  • the Mg content is in the range of more than 10 mass ppm and less than 1.2 mass%
  • the P content is in the range of 0 mass ppm to 200 mass ppm
  • the balance is Cu and unavoidable impurities. It has a composition
  • the S content is 10 mass ppm or less
  • the Se content is 5 mass ppm or less
  • the Te content is 5 mass ppm or less
  • the Sb content is 5 mass ppm.
  • the content of Bi is 5 mass ppm or less
  • the content of As is 5 mass ppm or less
  • the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less.
  • the Ag content may be in the range of 5 massppm or more and 20 massppm or less.
  • the electrical conductivity is set to 48%IACS or more.
  • the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher
  • the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher
  • a measured area of 10000 ⁇ m 2 or more on the rolled surface, that is, the ND surface (Normal direction) is measured by the EBSD method, and the CI value is measured at a step of 0.25 ⁇ m measurement interval. Except for the measurement points where is 0.1 or less, the orientation difference of each crystal grain is analyzed. Obtain the average grain size A, measure at steps with a measurement interval that is 1/10 or less of the average grain size A, and measure 10000 ⁇ m 2 or more in multiple fields so that the total number of crystal grains is 1000 or more.
  • the area is analyzed except for the measurement points where the CI value analyzed by the data analysis software OIM is 0.1 or less, and the orientation difference between adjacent measurement points is 2 ° or more and 15 ° or less.
  • L LB is the length of the low-angle grain boundary and the subgrain boundary
  • L HB is the length of the high-angle grain boundary between measurement points where the orientation difference between adjacent measurement points exceeds 15°
  • L HB is the length of the low-angle grain boundary.
  • the low-angle grain boundary ratio B2 in the thin portion 12 is 80% or less
  • 0.5% 8 ⁇ B1/B2 ⁇ 1.2.
  • the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation ⁇ 011 ⁇ ⁇ 100> is 1% or more.
  • the Vickers hardness H1 of the thick portion 11 is 70 Hv or more
  • the Vickers hardness H2 of the thin portion 12 is 75 Hv or more
  • 0.7 ⁇ H1/H2 ⁇ 1.2 is preferred.
  • Mg is an element that has the function and effect of improving the strength and heat-resistant temperature resistance without significantly lowering the electrical conductivity by forming a solid solution in the matrix of copper.
  • the content of Mg is 10 ppm by mass or less, there is a possibility that the action and effect cannot be sufficiently exhibited.
  • the content of Mg is 1.2 mass % or more, the electrical conductivity becomes low, and there is a possibility that it cannot be used stably as a material for electronic/electrical device parts. From the above, in the present embodiment, the content of Mg is set within a range of more than 10 mass ppm and less than 1.2 mass %.
  • the lower limit of the Mg content is preferably 20 mass ppm or more, more preferably 30 mass ppm or more, and more preferably 40 mass ppm or more.
  • the upper limit of the Mg content is preferably 1.0 mass% or less, more preferably 0.8 mass% or less, and 0.6 mass% or less. It is more preferable to set the content to 0.4 mass% or less.
  • (P) P is an element that has an effect of improving castability, and may be added to improve productivity. On the other hand, when it is added excessively, it reacts with Mg to form a compound, which may reduce the effect of Mg solid solution.
  • the P content is set within the range of 0 mass ppm or more and 200 mass ppm or less.
  • the upper limit of the P content is preferably 160 mass ppm or less, more preferably 120 mass ppm or less, and more preferably 80 mass ppm or less. , 60 ppm by mass or less.
  • S, Se, Te, Sb, Bi, As Elements such as S, Se, Te, Sb, Bi, As described above are elements that are generally likely to be mixed into copper alloys. These elements are likely to react with Mg to form a compound, and may reduce the solid-solution effect of Mg added in a small amount. Therefore, the content of these elements must be strictly controlled. Therefore, in the present embodiment, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, the Sb content is 5 mass ppm or less, the Bi content is 5 mass ppm or less, and the As content is 5 mass ppm or less. It is preferable to limit the content to 5 mass ppm or less. Furthermore, it is preferable to limit the total content of S, Se, Te, Sb, Bi and As to 24 ppm by mass or less.
  • the S content is more preferably 9 ppm by mass or less, and even more preferably 8 ppm by mass or less.
  • the Se content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
  • the Te content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
  • the Sb content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
  • the Bi content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
  • the As content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
  • the total content of S, Se, Te, Sb, Bi and As is more preferably 20 ppm by mass or less, and even more preferably 16 ppm by mass or less.
  • the Ag hardly dissolves in the parent phase of Cu in the normal operating temperature range of 250° C. or less for electronic and electrical equipment. Therefore, a trace amount of Ag added to copper segregates in the vicinity of grain boundaries. As a result, movement of atoms at grain boundaries is prevented, grain boundary diffusion is suppressed, and heat resistance is improved.
  • the content of Ag is 5 ppm by mass or more, it is possible to sufficiently exhibit its effects.
  • the Ag content is 20 ppm by mass or less, the electrical conductivity can be ensured and an increase in manufacturing cost can be suppressed. From the above, in the present embodiment, the Ag content is set within the range of 5 ppm by mass or more and 20 ppm by mass or less.
  • the lower limit of the Ag content is preferably 6 mass ppm or more, more preferably 7 mass ppm or more, and even more preferably 8 mass ppm or more.
  • the upper limit of the Ag content is preferably 18 mass ppm or less, more preferably 16 mass ppm or less, and further preferably 14 mass ppm or less. preferable.
  • the content of Ag may be less than 5 mass%.
  • unavoidable impurities include Al, B, Ba, Be, Ca, Cd, Cr, Sc, rare earth elements, V, Nb, Ta, Mo, Ni, W, Mn, Re, Ru, Sr, Ti, Os, Co, Rh, Ir, Pb, Pd, Pt, Au, Zn, Zr, Hf, Hg, Ga, In, Ge, Y, Tl, N, Si, Sn, Li and the like. These unavoidable impurities may be contained as long as they do not affect the properties.
  • the total amount is preferably 0.1 mass% or less, more preferably 0.05 mass% or less, and 0.03 mass% or less. is more preferably 0.01 mass % or less.
  • the upper limit of the content of each of these inevitable impurities is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, and even more preferably 2 mass ppm or less.
  • the low-angle grain boundary ratio B1 of the thick portion 11 is set to 80% or less
  • the low-angle grain boundary ratio B2 of the thin portion 12 is set to 80% or less
  • the ratio B1/B2 between the low-angle grain boundary ratio B1 of the thick portion 11 and the low-angle grain boundary ratio B2 of the thin portion 12 is set to 0.8 ⁇ B1/B2 ⁇ 1.2.
  • the low-angle grain boundary ratio B1 of the thick portion 11 is more preferably 76% or less, and even more preferably 72% or less. Further, the low-angle grain boundary ratio B1 of the thin portion 12 is more preferably 76% or less, and even more preferably 72% or less. Furthermore, the ratio B1/B2 of the low-angle grain boundary ratio is preferably within the range of 0.85 ⁇ T1/T2 ⁇ 1.15, and is within the range of 0.90 ⁇ T1/T2 ⁇ 1.10. is more preferable.
  • Crystals having a Goss orientation of ⁇ 011 ⁇ 100> are relatively resistant to accumulation of dislocations, so it is possible to suppress the diffusion of atoms caused by the movement of dislocations in a high-temperature environment and the recovery caused thereby, thereby improving the heat resistance. .
  • the thick portion 11 and the thin portion 12 are used in the same temperature environment, it is required that there is no large difference in heat resistance between the thick portion 11 and the thin portion 12 . Note that the above-mentioned Goss orientation ⁇ 011 ⁇ 100> does not occur in copper materials by general rolling or heat treatment, and can be formed by deformation processing followed by processing and heat treatment.
  • the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation ⁇ 011 ⁇ 100> is set to be 1% or more in each of the thick portion 11 and the thin portion 12. .
  • the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation ⁇ 011 ⁇ 100> in the thick portion 11 and the thin portion 12 is preferably 1.4% or more, and 1.8%. It is more preferable to make it 2.2% or more, and more preferably 2.2% or more.
  • the electrical conductivity is set to 48%IACS or more.
  • the electrical conductivity is preferably 53%IACS or higher, more preferably 58%IACS or higher, even more preferably 63%IACS or higher, and even more preferably 75%IACS or higher.
  • the conductivity may be 102.5% IACS or less, 102% IACS or less, or 101.5% IACS or less.
  • the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher and the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher.
  • the heat resistant temperature T1 of the thick portion 11 and the heat resistant temperature T2 of the thin portion 12 are preferably close to each other, and the ratio T1/T2 between the heat resistant temperature T1 of the thick portion 11 and the heat resistant temperature T2 of the thin portion 12 is 0. .9 ⁇ T1/T2 ⁇ 1.25.
  • the heat resistant temperature T1 of the thick portion 11 is more preferably 280° C. or higher, even more preferably 300° C. or higher, and even more preferably 320° C. or higher.
  • the heat resistance temperature T2 of the thin portion 12 is more preferably 260° C. or higher, even more preferably 280° C. or higher, and even more preferably 300° C. or higher.
  • the heat resistant temperature ratio T1/T2 is more preferably within the range of 0.92 ⁇ T1/T2 ⁇ 1.20.
  • the Vickers hardness H1 of the thick portion 11 is 70 Hv or more and the Vickers hardness H2 of the thin portion 12 is 75 Hv or more, the strength is ensured, Especially suitable as a material for electrical and electronic parts. Also, if the difference in hardness between the thick part 11 and the thin part 12 is large, there is a possibility that the material will be distorted during press working when manufacturing parts for electronic and electrical equipment, especially terminals, bus bars, lead frames, and heat dissipation boards. There is therefore, it is preferable that the hardness H1 of the thick portion 11 and the hardness H2 of the thin portion 12 are close to each other. .7 ⁇ H1/H2 ⁇ 1.2.
  • the Vickers hardness H1 of the thick portion 11 is more preferably 72 Hv or higher, more preferably 74 Hv or higher.
  • the Vickers hardness H2 of the thin portion 12 is more preferably 77 Hv or higher, more preferably 79 Hv or higher.
  • the Vickers hardness ratio H1/H2 is more preferably in the range of 0.8 ⁇ H1/H2 ⁇ 1.1.
  • the above elements are added to the molten copper obtained by melting the copper raw material to adjust the composition, thereby producing the molten copper alloy.
  • various elements simple elements, master alloys, or the like can be used.
  • a raw material containing the above elements may be melted together with the copper raw material. Recycled materials and scrap materials of the present alloy may also be used.
  • the copper raw material is preferably so-called 4NCu with a purity of 99.99 mass% or higher, or so-called 5NCu with a purity of 99.999 mass% or higher.
  • atmosphere melting is performed in an inert gas atmosphere (for example, Ar gas) with a low vapor pressure of H 2 O, and the holding time during melting is minimized. It is preferable to limit Then, an ingot is produced by injecting the molten copper alloy with the adjusted composition into the mold.
  • an inert gas atmosphere for example, Ar gas
  • the obtained ingot is subjected to heat treatment for homogenization and solutionization.
  • an intermetallic compound or the like containing Cu and Mg as main components may be present as the Mg is concentrated by segregation during the solidification process. Therefore, in order to eliminate or reduce these segregations and intermetallic compounds, etc., heat treatment is performed to heat the ingot to 300 ° C. or higher and 1080 ° C. or lower, so that Mg is uniformly diffused in the ingot. , and Mg are dissolved in the matrix.
  • the homogenization/solution treatment step S02 is preferably performed in a non-oxidizing or reducing atmosphere.
  • the heating temperature is set in the range of 300° C. or higher and 1080° C. or lower.
  • hot working may be performed after the homogenization/solution treatment step S02 described above in order to improve the efficiency of rough rolling and homogenize the structure, which will be described later.
  • the working method is not particularly limited, and for example, rolling, drawing, extrusion, groove rolling, forging, pressing, etc. can be employed.
  • the hot working temperature is preferably in the range of 300° C. or higher and 1080° C. or lower.
  • Rough processing step S03 Rough processing is performed in order to process into a predetermined shape.
  • the temperature conditions in this rough processing step S03 are not particularly limited, but in order to suppress recrystallization or to improve dimensional accuracy, cold or warm rolling is performed within the range of -200 ° C. to 200 ° C. It is preferable to set it as, and especially normal temperature is preferable.
  • the processing rate is preferably 20% or more, more preferably 30% or more.
  • the processing method is not particularly limited, and for example, rolling, drawing, extrusion, groove rolling, forging, pressing, etc. can be employed. Note that the rough processing step S03 and the intermediate heat treatment step S04, which will be described later, may be repeated.
  • Step S04 After the rough working step S03, a heat treatment is performed to soften for improving workability or to obtain a recrystallized structure. At this time, a short-time heat treatment in a continuous annealing furnace is preferable, and when Ag is added, localization of Ag segregation to grain boundaries can be prevented. Although the conditions for this heat treatment are not particularly limited, the heat treatment is generally carried out in the range of 200°C to 1000°C.
  • the mechanical surface treatment is a treatment that applies compressive stress to the vicinity of the surface, and when combined with the above-mentioned pre-heat treatment step S07 described later, the Goss orientation ⁇ 011 ⁇ 100> is increased, and heat resistance can be improved.
  • Mechanical surface treatments include shot peening, blasting, lapping, polishing, buffing, grinder polishing, sandpaper polishing, tension leveler treatment, light rolling with low rolling reduction per pass (rolling reduction per pass 1% or more and 10% or less and repeated three times or more), various commonly used methods can be used.
  • the material after the mechanical surface treatment step S05 is cooled by a flat die having an uneven surface and rolling rolls that reciprocate along the forming surface facing the forming surface of the die.
  • a rough and deformed strip in which a rough and thick portion and a rough and thin portion are arranged in the width direction is obtained by deforming rolling.
  • the Goss orientation is likely to be formed in the pre-upper heat treatment step S07 by setting the area reduction rate of the working within the range of 5% or more and 90% or less.
  • the area reduction rate of processing is more preferably in the range of 10% or more and 85% or less, and more preferably in the range of 15% or more and 80% or less.
  • Vickers hardness ratio H1/H2 in the thick portion 11 and the thin portion 12 can be 0.7 ⁇ H1 /H2 ⁇ 1.2.
  • the ratio of the thickness of the rough and thick portion to the thickness of the rough and thin portion is 5 or less.
  • the processing rate is preferably 5% or more, more preferably 8% or more.
  • the working rate is too high, the low-angle grain boundary ratios B1 and B2 will increase, and the area ratio of the Goss orientation, which is the recrystallized structure, will also decrease. More preferably:
  • Low temperature annealing step S09 After the finishing step S08, low-temperature annealing is performed as necessary.
  • This low-temperature annealing step S09 has the effect of reducing the proportion of low-angle grain boundaries due to the removal and recovery of residual stress.
  • the heat treatment temperature is low, the heat treatment may be performed for a long time, and when the heat treatment temperature is high, the heat treatment may be performed for a short time.
  • the annealing temperature in the low-temperature annealing step S09 is less than 100°C, or the holding time at the annealing temperature is less than 0.1 seconds, there is a risk that a sufficient strain relief effect will not be obtained. If it exceeds, there is a risk of recrystallization, and if the holding time at the annealing temperature exceeds 24 hours, the cost only increases.
  • a straightening process using a tension leveler or the like may be added after the low-temperature annealing process S09.
  • a metal plating layer may be formed on the surface.
  • Sn plating, Ag plating, Ni plating, Au plating, Pd plating, Rh plating, etc. can be applied, for example.
  • the copper alloy profile strip 10 of the present embodiment is manufactured.
  • the Mg content is in the range of more than 10 mass ppm and less than 1.2 mass%, and the P content is in the range of 0 mass ppm to 200 mass ppm. Therefore, the heat resistance can be sufficiently improved by dissolving Mg in the matrix of copper.
  • the electrical conductivity is 48% IACS or higher, heat generation during energization can be suppressed, making it suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
  • the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher
  • the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher, and 0.9 ⁇ T1/T2 ⁇ 1.25.
  • the difference in heat resistance between the thick portion 11 and the thin portion 12 is small, so that it can be used stably even in a high temperature environment.
  • the low-angle grain boundary ratios B1 and B2 of the thick portion 11 and the thin portion 12 are respectively 80% or less, and the low-angle grain boundary ratio B1/B2 is 0.8 ⁇ B1/B2 ⁇ 1.2.
  • the crystal structure is controlled so that the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation ⁇ 011 ⁇ ⁇ 100> is 1% or more in each of the thick portion and the thin portion. , recovery and recrystallization due to movement of dislocations are unlikely to occur, and the heat resistance of the thick portion 11 and the thin portion 12 can be sufficiently improved.
  • the S content is 10 mass ppm or less
  • the Se content is 5 mass ppm or less
  • the Te content is 5 mass ppm or less
  • the Sb content is 5 mass ppm or less
  • Bi When the content of is 5 mass ppm or less, the content of As is 5 mass ppm or less, and the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less, Mg and a compound are generated Since the contents of S, Se, Te, Sb, Bi, and As, which are elements that .
  • the Ag content is in the range of 5 ppm by mass or more and 20 ppm by mass or less, Ag segregates in the vicinity of grain boundaries. Field diffusion is suppressed, and the heat resistant temperature can be further improved.
  • the Vickers hardness H1 of the thick portion 11 is 70 Hv or more
  • the Vickers hardness H2 of the thin portion 12 is 75 Hv or more
  • the strength is excellent, and the difference in strength between the thick portion 11 and the thin portion 12 is small, so that it can be used stably.
  • a metal plating layer is formed on the surface of the copper alloy profile strip 10 of the present embodiment, various characteristics can be imparted to the surface, and it can be applied to electronic and electrical applications such as terminals, bus bars, and heat dissipation substrates. It is particularly suitable as a material for equipment parts.
  • the electronic/electrical device parts (terminals, bus bars, lead frames, heat dissipation substrates, etc.) of the present embodiment are made of the copper alloy profile strip 10 described above, they are excellent even in a high-temperature environment. characteristics can be exhibited.
  • the present invention is not limited thereto. , can be changed as appropriate without departing from the technical idea of the invention.
  • the method for manufacturing the copper alloy deformed strip 10 has been described, but the method for manufacturing the copper alloy deformed strip 10 is not limited to the method described in the embodiment, and the existing You may manufacture by selecting the manufacturing method of suitably.
  • the dual-gauge strip having the shape shown in FIG. 1 has been described as an example, but the multi-gauge strip is not limited to this, and may be a multi-gauge strip having another cross-sectional shape.
  • a raw material made of pure copper with a purity of 99.999 mass% or more was charged into a high-purity graphite crucible by a zone melting refining method, and high-frequency melting was performed in an atmosphere furnace in an Ar gas atmosphere.
  • various 0.1 mass% master alloys made using high-purity copper of 6N (purity 99.9999 mass%) or higher and pure metals having a purity of 2N (purity 99 mass%) or higher are used.
  • the composition was prepared as shown in Tables 1 and 2, and poured into a heat insulating material (isowool) mold to produce an ingot.
  • the size of the ingot was about 30 mm thick ⁇ about 60 mm wide ⁇ about 150 to 200 mm long.
  • the obtained ingot was heated under various temperature conditions for 1 hour in an Ar gas atmosphere, subjected to surface grinding to remove the oxide film, and cut into a predetermined size. After that, the thickness was appropriately adjusted so as to obtain the final thickness, and cutting was performed.
  • Each of the cut samples was subjected to rough rolling at room temperature at the reduction rates shown in Tables 3 and 4, and then subjected to intermediate heat treatment under the heat treatment conditions shown in Tables 3 and 4.
  • the plate-shaped die is reciprocated along the molding surface facing the molding surface of the die so that the thicknesses of the thick portion and the thin portion become the values shown in Tables 3 and 4, respectively.
  • Stepped deformation processing was carried out with rolling rolls.
  • the upper pre-heat treatment was performed under the conditions described in Tables 3 and 4.
  • finishing was performed under the conditions shown in Tables 3 and 4, and low-temperature annealing was performed with the exception of some samples. produced.
  • composition analysis A measurement sample was taken from the obtained ingot, Mg was measured by inductively coupled plasma atomic emission spectrometry, and other elements were measured by glow discharge mass spectrometry (GD-MS). In addition, the measurement was performed at two points, the central portion and the end portion in the width direction of the sample, and the larger content was taken as the content of the sample. As a result, it was confirmed that the composition was as shown in Tables 1 and 2.
  • the low angle grain boundary ratios B1 and B2 in the thick and thin portions were obtained as follows using an EBSD measuring device and OIM analysis software. After performing mechanical polishing using waterproof abrasive paper and diamond abrasive grains, final polishing was performed using a colloidal silica solution.
  • an EBSD measurement device Quanta FEG 450 manufactured by FEI, OIM Data Collection manufactured by EDAX/TSL (currently AMETEK)) and analysis software (manufactured by EDAX/TSL (currently AMETEK) OIM Data Analysis ver.7.3 .1), an electron beam acceleration voltage of 15 kV, a measurement area of 10000 ⁇ m 2 or more, except for the measurement points where the CI value is 0.1 or less at a measurement interval step of 0.25 ⁇ m, the misorientation of each crystal grain , and the grain boundaries between the measurement points where the orientation difference between the adjacent measurement points is 15° or more, and the average grain size A was obtained by Area Fraction using the data analysis software OIM.
  • the data is analyzed with a measurement area of 10000 ⁇ m 2 or more in multiple fields of view so that a total of 1000 or more crystal grains are included by measuring in steps with a measurement interval of 1/10 or less of the average grain size A. Analysis was performed excluding measurement points where the CI value analyzed by soft OIM was 0.1 or less.
  • L LB is the length of the grain boundary
  • L HB is the length of the large angle grain boundary between the measurement points exceeding 15 °.
  • a low-angle grain boundary ratio B L LB /(L LB +L HB ) was obtained as the thickness ratio.
  • Goss orientation When measuring the above small angle grain boundary and subgrain boundary length ratio, the orientation of each crystal grain is also analyzed to determine whether each analysis point is the target Goss orientation (within 10 ° from the ideal orientation). was determined, and the Goss orientation ratio (area ratio of crystal orientation) in the measurement region was determined.
  • the heat resistance temperature conforms to JCBA T325:2013 of the Japan Copper and Brass Association, acquires an isochronous softening curve by Vickers hardness in heat treatment for 1 hour, and obtains the heating temperature at which the hardness becomes 80% of the hardness before heat treatment. evaluated.
  • the rolled surface was used as the surface for Vickers hardness measurement. Tables 5 and 6 show the evaluation results.
  • test piece having a width of 10 mm and a length of 60 mm was taken from the strip material for characteristic evaluation, and the electrical resistance was determined by the four-probe method. Also, the dimensions of the test piece were measured using a micrometer, and the volume of the test piece was calculated. Then, the electrical conductivity was calculated from the measured electrical resistance value and volume. The test piece was taken so that its longitudinal direction was parallel to the rolling direction of the strip for characteristic evaluation. Tables 5 and 6 show the evaluation results.
  • Comparative Example 1 since the Mg content was less than the range of the present invention, the heat resistance temperature was low and the heat resistance was insufficient.
  • Comparative Example 2 the content of Mg exceeded the range of the present invention, and the electrical conductivity was low.
  • Comparative Example 3 the P content exceeded 200 ppm by mass, the heat resistance temperature was low, and the heat resistance was insufficient.
  • Comparative Example 4 the low-angle grain boundary ratio exceeded 80%, the heat resistance temperature was low, and the heat resistance was insufficient.
  • Comparative Example 5 the area ratio of Goss orientation was less than 1%, the heat resistance temperature was low, and the heat resistance was insufficient.
  • the ratio B1/B2 between the low-angle grain boundary ratio B1 in the thick portion and the low-angle grain boundary ratio B2 in the thin portion is outside the range of the present invention, and the heat-resistant temperature T1 of the thick portion and the heat-resistant temperature of the thin portion
  • the ratio T1/T2 to T2 was out of the range of the present invention, resulting in variations in heat resistance.
  • Examples 1 to 30 of the present invention it was confirmed that the heat resistance was improved in a well-balanced manner between the thick portion and the thin portion. From the above, according to the example of the present invention, there is little difference in properties such as strength and heat resistance between the thick part and the thin part, and the copper alloy profile strip can be stably used in a high temperature environment. It was confirmed that it is possible to provide
  • a copper alloy profile strip that can be stably used in a high-temperature environment with little difference in properties such as strength and heat resistance between the thick part and the thin part, and an electronic device made of this copper alloy profile strip. ⁇ It becomes possible to provide electronic device parts, terminals, bus bars, lead frames, and heat dissipation boards.

Abstract

Provided is a copper alloy irregular-shape strip having, in a cross-sectional view orthogonal to the longitudinal direction, portions with different thicknesses, i.e., a thick section and a thin section. The copper alloy irregular-shape strip has: a composition in which the Mg content is in the range from greater than 10 mass ppm to less than 1.2 mass% and the P content is in the range of 0 mass ppm to 200 mass ppm, with the remainder being Cu and unavoidable impurities; and an electroconductivity of 48% IACS or more. The thick section has a heat resistance temperature T1 of 260°C or more, and the thin section has a heat resistance temperature T2 of 240°C, where 0.9<T1/T2<1.25 is satisfied; the thick section has a low angle grain boundary ratio B1 of 80% or less, and the thin section has a low angle grain boundary ratio B2 of 80% or less, where 0.8<B1/B2<1.2 is satisfied. The surface area ratio of crystals having a crystallite orientation of no more than 10° with respect to a Goss orientation { 011 } <100> is 1% or more in both the thick section and the thin section. The copper alloy irregular-shape strip has high electroconductivity and excellent heat resistance.

Description

銅合金異形条材、電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板Copper alloy profile strips, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation substrates
 本発明は、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品に適した銅合金異形条材、この銅合金異形条材からなる電子・電気機器用部品、端子、バスバー、リードフレーム、放熱基板に関するものである。
 本願は、2021年12月28日に、日本に出願された特願2021-214036号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copper alloy profile strip suitable for electronic and electrical device parts such as terminals, bus bars, lead frames, and heat dissipation substrates, and electronic and electrical device parts, terminals, bus bars and leads made of this copper alloy profile strip. It relates to the frame and the heat dissipation board.
This application claims priority based on Japanese Patent Application No. 2021-214036 filed in Japan on December 28, 2021, the content of which is incorporated herein.
 従来、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
 ここで、電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電子・電気機器用部品の大型化、厚肉化も図られている。
2. Description of the Related Art Conventionally, copper or copper alloys with high conductivity are used for parts for electronic and electric devices such as terminals, bus bars, lead frames, and heat dissipation substrates.
Here, with the increase in current in electronic and electrical equipment, etc., due to the reduction of current density and the diffusion of heat due to Joule heat generation, large-sized parts for electronic and electrical equipment used in these electronic and electrical equipment, etc. It is also designed to be thinner and thicker.
 ここで、大電流に対応するために、上述の電子・電気機器用部品には、導電率に優れた無酸素銅等の純銅材が適用される。しかしながら、通電時の発熱や使用環境の高温化に伴い、銅材には高温での硬度低下のしにくさを表す耐熱性に優れた銅材が求められているが、純銅材は、これらの特性に劣っており、高温環境下での使用ができないといった問題があった。
 そこで、特許文献1には、Mgを0.005mass%以上0.1mass%未満の範囲で含む銅圧延板が開示されている。
Here, in order to cope with a large current, a pure copper material such as oxygen-free copper having excellent electrical conductivity is applied to the above electronic/electrical device parts. However, due to the heat generated when energized and the temperature of the usage environment, there is a demand for copper materials with excellent heat resistance, which means that the hardness does not decrease at high temperatures. There was a problem that it was inferior in characteristics and could not be used in a high temperature environment.
Therefore, Patent Document 1 discloses a rolled copper sheet containing Mg in the range of 0.005 mass% or more and less than 0.1 mass%.
 特許文献1に記載された銅圧延板においては、Mgを0.005mass%以上0.1mass%未満の範囲で含み、残部がCu及び不可避不純物からなる組成を有しているので、Mgを銅の母相中に固溶させることで、導電率を大きく低下させることなく、強度、耐熱性を向上させることが可能であった。 The copper rolled sheet described in Patent Document 1 contains Mg in the range of 0.005 mass% or more and less than 0.1 mass%, and the balance is Cu and inevitable impurities. By making a solid solution in the mother phase, it was possible to improve the strength and heat resistance without significantly lowering the electrical conductivity.
 また、上述の電子・電気機器用部品の素材として、例えば特許文献2,3に開示されているように、長手方向に直交する断面において互い厚さの異なる厚部と薄部とを備えた銅合金異形条材が用いられている。 Further, as a material for the electronic/electrical device parts described above, for example, as disclosed in Patent Documents 2 and 3, copper having a thick portion and a thin portion having different thicknesses in a cross section orthogonal to the longitudinal direction Alloy profile strips are used.
日本国特開2016-056414号公報(A)Japanese Patent Application Laid-Open No. 2016-056414 (A) 日本国特開2007-039735号公報(A)Japanese Patent Application Laid-Open No. 2007-039735 (A) 日本国特開2009-009887号公報(A)Japanese Patent Application Laid-Open No. 2009-009887 (A)
 ここで、これらの材料は耐熱特性を溶質元素の添加により改善させているが、互い厚さの異なる厚部と薄部とを備えた銅合金異形条材においては、材料組織が厚部と薄部とでは組織構造が異なり易く、厚部と薄部とで強度や耐熱性等の特性に差が生じやすく、高温環境下で安定して使用することができないおそれがあった。 Here, the heat resistance of these materials is improved by adding a solute element. The structure tends to be different between the thick and thin portions, and the thick and thin portions tend to have different properties such as strength and heat resistance.
 この発明は、前述した事情に鑑みてなされたものであって、厚部と薄部とで強度や耐熱性等の特性に差が生じにくく、高温環境下で安定して使用することが可能な銅合金異形条材、および、この銅合金異形条材からなる電子・電子機器用部品、端子、バスバー、リードフレーム、放熱基板を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and it is possible to stably use the thick part and the thin part in a high temperature environment without causing a difference in properties such as strength and heat resistance. It is an object of the present invention to provide a copper alloy profile strip, and electronic/electronic equipment components, terminals, bus bars, lead frames, and heat dissipation substrates made of this copper alloy profile strip.
 この課題を解決するために、本発明の銅合金異形条材は、長手方向に直交する断面において互い厚さの異なる厚部と薄部とを備えた銅合金異形条材であって、Mgの含有量が10massppm超え1.2mass%未満の範囲内、Pの含有量が0massppm以上200massppm以下の範囲内、残部がCu及び不可避不純物とした組成を有し、導電率が48%IACS以上とされ、前記厚部の耐熱温度T1が260℃以上、前記薄部の耐熱温度T2が240℃以上、かつ、0.9<T1/T2<1.25とされ、EBSD法により、圧延面、すなわちND面(Normal direction)において10000μm以上の測定面積を、0.25μmの測定間隔のステップでCI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とし、Area Fractionにより平均粒径Aを求め、平均粒径Aの10分の1以下となる測定間隔のステップで測定して、総数1000個以上の結晶粒が含まれるように、複数視野で10000μm以上となる測定面積で、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとし、小傾角粒界割合B=LLB/(LLB+LHB)としたとき、前記厚部の小傾角粒界割合B1が80%以下、前記薄部の小傾角粒界割合B2が80%以下、かつ、0.8<B1/B2<1.2とされ、Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合が、前記厚部および前記薄部でそれぞれ1%以上であることを特徴としている。 In order to solve this problem, a copper alloy profile strip according to the present invention is a copper alloy profile strip having a thick portion and a thin portion having different thicknesses in a cross section perpendicular to the longitudinal direction, and containing Mg. The content is in the range of more than 10 massppm and less than 1.2 mass%, the content of P is in the range of 0 massppm to 200 massppm, and the balance is Cu and unavoidable impurities. The heat resistant temperature T1 of the thick portion is 260° C. or higher, the heat resistant temperature T2 of the thin portion is 240° C. or higher, and 0.9<T1/T2<1.25, and the rolled surface, that is, the ND surface, is formed by the EBSD method. The measurement area of 10000 μm 2 or more in (Normal direction) is analyzed for each crystal grain, except for the measurement points where the CI value is 0.1 or less at a measurement interval step of 0.25 μm, and the adjacent The grain boundary between the measurement points where the orientation difference between the measurement points is 15 ° or more, the average grain size A is obtained by Area Fraction, and the measurement is performed in steps with a measurement interval that is 1/10 or less of the average grain size A. In order to include a total of 1000 or more crystal grains, the measurement area is 10000 μm 2 or more in multiple fields of view, and the CI value analyzed by the data analysis software OIM is 0.1 or less. L LB is the length of the low-angle grain boundary and subgrain boundary between the measurement points where the orientation difference between the adjacent measurement points is 2° or more and 15° or less, and the orientation difference between the adjacent measurement points is 15°. When the length of the high-angle grain boundary between the measurement points exceeding ° is defined as LHB , and the low-angle grain boundary ratio B= LLB /( LLB + LHB ), the low-angle grain boundary ratio B1 in the thick portion is 80% or less, the low angle grain boundary ratio B2 in the thin portion is 80% or less, and 0.8<B1/B2<1.2, and within 10° with respect to the Goss orientation {011} <100> The area ratio of crystals having a crystal orientation of is 1% or more in each of the thick portion and the thin portion.
 この構成の銅合金異形条材によれば、Mgの含有量が10massppm超え1.2mass%未満の範囲内、Pの含有量が0massppm以上200massppm以下の範囲内とされているので、Mgが銅の母相中に固溶することにより、耐熱性を十分に向上させることができる。
 また、導電率が48%IACS以上とされているので、通電時の発熱を抑えることができ、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品の素材として適している。
 さらに、前記厚部の耐熱温度T1が260℃以上、前記薄部の耐熱温度T2が240℃以上、かつ、0.9<T1/T2<1.25とされているので、十分に耐熱性に優れるとともに、厚部と薄部との耐熱性の差が小さく、銅合金異形条材全体で安定して耐熱性が向上されている。
 そして、前記厚部および前記薄部の小傾角粒界割合およびGoss方位の結晶の面積割合が、上述の範囲内となるように結晶組織を制御しているので、転位の移動による回復や再結晶が起こりにくく、前記厚部および前記薄部において、耐熱性を十分に向上させることが可能となる。
According to the copper alloy profile strip having this configuration, the Mg content is in the range of more than 10 massppm and less than 1.2 mass%, and the P content is in the range of 0 massppm to 200 massppm. By forming a solid solution in the mother phase, the heat resistance can be sufficiently improved.
In addition, since the electrical conductivity is 48% IACS or higher, heat generation during energization can be suppressed, making it suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
Furthermore, the heat resistant temperature T1 of the thick portion is 260° C. or higher, the heat resistant temperature T2 of the thin portion is 240° C. or higher, and 0.9<T1/T2<1.25. In addition, the difference in heat resistance between the thick portion and the thin portion is small, and the heat resistance of the entire copper alloy profile strip is stably improved.
Since the crystal structure is controlled so that the low-angle grain boundary ratio and the area ratio of Goss-oriented crystals in the thick portion and the thin portion are within the above-described ranges, recovery and recrystallization by movement of dislocations are achieved. is unlikely to occur, and the heat resistance can be sufficiently improved in the thick portion and the thin portion.
 ここで、本発明の銅合金異形条材においては、前記不可避不純物のうち、Sの含有量が10massppm以下、Seの含有量が5massppm以下、Teの含有量が5massppm以下、Sbの含有量が5massppm以下、Biの含有量が5masppm以下、Asの含有量が5masppm以下とされるとともに、SとSeとTeとSbとBiとAsの合計含有量が24massppm以下とされていることが好ましい。
 この場合、Mgと化合物を生成する元素であるS,Se,Te,Sb,Bi,Asの含有量が上述のように規定されているので、Mgを確実に固溶させることができ、耐熱性をさらに確実に向上させることが可能となる。
Here, in the copper alloy profile strip of the present invention, among the inevitable impurities, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, and the Sb content is 5 mass ppm. Hereinafter, it is preferable that the content of Bi is 5 mass ppm or less, the content of As is 5 mass ppm or less, and the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less.
In this case, since the contents of S, Se, Te, Sb, Bi, and As, which are elements that form compounds with Mg, are specified as described above, Mg can be reliably dissolved, and heat resistance can be further reliably improved.
 また、本発明の銅合金異形条材においては、Agの含有量が5massppm以上20massppm以下の範囲内とされていることが好ましい。
 この場合、Agを上述の範囲で含有しているので、Agが粒界近傍に偏析し、粒界拡散が抑制され、耐熱性をさらに向上させることが可能となる。
Further, in the copper alloy profile strip of the present invention, it is preferable that the Ag content is in the range of 5 ppm by mass or more and 20 ppm by mass or less.
In this case, since Ag is contained in the above range, Ag segregates in the vicinity of grain boundaries, grain boundary diffusion is suppressed, and heat resistance can be further improved.
 また、本発明の銅合金異形条材においては、前記厚部のビッカース硬さH1が70Hv以上、前記薄部のビッカース硬さH2が75Hv以上、かつ、0.7<H1/H2<1.2とされていることが好ましい。
 この場合、前記厚部のビッカース硬さH1が70Hv以上および前記薄部のビッカース硬さH2が75Hv以上とされるとともに、ビッカース硬さの比H1/H2が0.7<H1/H2<1.2とされているので、強度に優れるとともに、厚部11と薄部12とで強度の差異が小さく、安定して使用することができる。
In the copper alloy profile strip of the present invention, the Vickers hardness H1 of the thick portion is 70 Hv or more, the Vickers hardness H2 of the thin portion is 75 Hv or more, and 0.7<H1/H2<1.2. It is preferable that
In this case, the Vickers hardness H1 of the thick portion is 70 Hv or more, the Vickers hardness H2 of the thin portion is 75 Hv or more, and the Vickers hardness ratio H1/H2 is 0.7<H1/H2<1. 2, the strength is excellent, and the difference in strength between the thick portion 11 and the thin portion 12 is small, so that it can be used stably.
 また、本発明の銅合金異形条材においては、表面に金属めっき層を有することが好ましい。
 この場合、表面に金属めっき層を有しているので、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品の素材として特に適している。
Moreover, the copper alloy profile strip of the present invention preferably has a metal plating layer on its surface.
In this case, since it has a metal plating layer on the surface, it is particularly suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
 本発明の電子・電気機器用部品は、上述の銅合金異形条材からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、端子、バスバー、リードフレーム、放熱基板等を含むものである。
 この構成の電子・電気機器用部品は、上述の銅合金異形条材を用いて製造されているので、高温環境下においても優れた特性を発揮することができる。
A component for an electronic/electrical device according to the present invention is characterized by being made of the copper alloy profile strip described above. In addition, the parts for electronic/electrical equipment in the present invention include terminals, bus bars, lead frames, heat-dissipating substrates, and the like.
Since the component for electronic/electrical equipment having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent properties even in a high-temperature environment.
 本発明の端子は、上述の銅合金異形条材からなることを特徴としている。
 この構成の端子は、上述の銅合金異形条材を用いて製造されているので、高温環境下においても優れた特性を発揮することができる。
A terminal of the present invention is characterized by being made of the copper alloy profile strip described above.
Since the terminal having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
 本発明のバスバーは、上述の銅合金異形条材からなることを特徴としている。
 この構成のバスバーは、上述の銅合金異形条材を用いて製造されているので、高温環境下においても優れた特性を発揮することができる。
A bus bar according to the present invention is characterized by being made of the copper alloy profile strip described above.
Since the bus bar having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
 本発明のリードフレームは、上述の銅合金異形条材からなることを特徴としている。
 この構成のリードフレームは、上述の銅合金異形条材を用いて製造されているので、高温環境下においても優れた特性を発揮することができる。
A lead frame according to the present invention is characterized by being made of the above copper alloy profile strip.
Since the lead frame having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
 本発明の放熱基板は、上述の銅合金異形条材からなることを特徴としている。
 この構成の放熱基板は、上述の銅合金異形条材を用いて製造されているので、高温環境下においても優れた特性を発揮することができる。
A heat dissipating substrate according to the present invention is characterized by being made of the copper alloy profile strip described above.
Since the heat dissipating substrate having this configuration is manufactured using the above-described copper alloy profile strip, it can exhibit excellent characteristics even in a high-temperature environment.
 本発明によれば、厚部と薄部とで強度や耐熱性等の特性に差が生じにくく、高温環境下で安定して使用することが可能な銅合金異形条材、および、この銅合金異形条材からなる電子・電子機器用部品、端子、バスバー、リードフレーム、放熱基板を提供することが可能となる。 According to the present invention, there is little difference in properties such as strength and heat resistance between the thick portion and the thin portion, and a copper alloy profile strip that can be stably used in a high-temperature environment, and the copper alloy. It becomes possible to provide electronic and electronic device parts, terminals, bus bars, lead frames, and heat dissipation substrates made of dual-gauge strips.
本実施形態である銅合金異形条材の断面説明図である。1 is a cross-sectional explanatory view of a copper alloy dual-gauge strip according to the present embodiment; FIG. 本実施形態である銅合金異形条材の製造方法のフロー図である。1 is a flowchart of a method for manufacturing a copper alloy dual-gauge strip according to the present embodiment; FIG.
 以下に、本発明の一実施形態である銅合金異形条材について、添付した図面を参照して説明する。
 本実施形態である銅合金異形条材は、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品の素材として最適に用いられるものである。
A copper alloy profile strip according to one embodiment of the present invention will be described below with reference to the accompanying drawings.
The copper alloy profile strip of this embodiment is optimally used as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
 本実施形態である銅合金異形条材10は、図1に示すように、長手方向に直交する断面において互い厚さの異なる厚部11と薄部12とを備えている。
 また、厚部11の厚さt1と薄部12の厚さt2との比t1/t2は8以下であることが好ましく、6以下であることが好ましい。
As shown in FIG. 1, a copper alloy profile strip 10 of this embodiment has a thick portion 11 and a thin portion 12 having different thicknesses in a cross section orthogonal to the longitudinal direction.
Also, the ratio t1/t2 between the thickness t1 of the thick portion 11 and the thickness t2 of the thin portion 12 is preferably 8 or less, preferably 6 or less.
 本実施形態である銅合金異形条材10は、Mgの含有量が10massppm超え1.2mass%未満の範囲内、Pの含有量が0massppm以上200massppm以下の範囲内、残部がCu及び不可避不純物とした組成を有している。
 本実施形態である銅合金異形条材10においては、前記不可避不純物のうち、Sの含有量が10massppm以下、Seの含有量が5massppm以下、Teの含有量が5massppm以下、Sbの含有量が5massppm以下、Biの含有量が5masppm以下、Asの含有量が5masppm以下とされるとともに、SとSeとTeとSbとBiとAsの合計含有量が24massppm以下とされていることが好ましい。
 また、本実施形態である銅合金異形条材10においては、Agの含有量が5massppm以上20massppm以下の範囲内であってもよい。
In the copper alloy profile strip 10 of the present embodiment, the Mg content is in the range of more than 10 mass ppm and less than 1.2 mass%, the P content is in the range of 0 mass ppm to 200 mass ppm, and the balance is Cu and unavoidable impurities. It has a composition
In the copper alloy profile strip 10 of the present embodiment, among the inevitable impurities, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, and the Sb content is 5 mass ppm. Hereinafter, it is preferable that the content of Bi is 5 mass ppm or less, the content of As is 5 mass ppm or less, and the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less.
Further, in the copper alloy profile strip 10 of the present embodiment, the Ag content may be in the range of 5 massppm or more and 20 massppm or less.
 また、本実施形態である銅合金異形条材10においては、導電率が48%IACS以上とされている。
 さらに、本実施形態である銅合金異形条材10においては、厚部11の耐熱温度T1が260℃以上、薄部12の耐熱温度T2が240℃以上、かつ、0.9<T1/T2<1.25とされている。
Further, in the copper alloy profile strip 10 of the present embodiment, the electrical conductivity is set to 48%IACS or more.
Furthermore, in the copper alloy deformed strip 10 of the present embodiment, the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher, the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher, and 0.9<T1/T2< 1.25.
 そして、本実施形態である銅合金異形条材10においては、EBSD法により、圧延面、すなわちND面(Normal direction)において10000μm以上の測定面積を、0.25μmの測定間隔のステップでCI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とし、Area Fractionにより平均粒径Aを求め、平均粒径Aの10分の1以下となる測定間隔のステップで測定して、総数1000個以上の結晶粒が含まれるように、複数視野で10000μm以上となる測定面積で、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとし、小傾角粒界割合B=LLB/(LLB+LHB)としたとき、厚部11の小傾角粒界割合B1が80%以下、薄部12の小傾角粒界割合B2が80%以下、かつ、0.8<B1/B2<1.2とされている。
 また、本実施形態である銅合金異形条材10においては、Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合が、厚部11および薄部12でそれぞれ1%以上とされている。
Then, in the copper alloy deformed strip 10 of the present embodiment, a measured area of 10000 μm 2 or more on the rolled surface, that is, the ND surface (Normal direction) is measured by the EBSD method, and the CI value is measured at a step of 0.25 μm measurement interval. Except for the measurement points where is 0.1 or less, the orientation difference of each crystal grain is analyzed. Obtain the average grain size A, measure at steps with a measurement interval that is 1/10 or less of the average grain size A, and measure 10000 μm 2 or more in multiple fields so that the total number of crystal grains is 1000 or more. The area is analyzed except for the measurement points where the CI value analyzed by the data analysis software OIM is 0.1 or less, and the orientation difference between adjacent measurement points is 2 ° or more and 15 ° or less. L LB is the length of the low-angle grain boundary and the subgrain boundary, L HB is the length of the high-angle grain boundary between measurement points where the orientation difference between adjacent measurement points exceeds 15°, and L HB is the length of the low-angle grain boundary. When the ratio B=L LB /(L LB +L HB ), the low-angle grain boundary ratio B1 in the thick portion 11 is 80% or less, the low-angle grain boundary ratio B2 in the thin portion 12 is 80% or less, and 0.5%. 8<B1/B2<1.2.
In addition, in the copper alloy profile strip 10 of the present embodiment, the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011} <100> is 1% or more.
 さらに、本実施形態である銅合金異形条材10においては、厚部11のビッカース硬さH1が70Hv以上、薄部12のビッカース硬さH2が75Hv以上、かつ、0.7<H1/H2<1.2とされていることが好ましい。 Furthermore, in the copper alloy profile strip 10 of the present embodiment, the Vickers hardness H1 of the thick portion 11 is 70 Hv or more, the Vickers hardness H2 of the thin portion 12 is 75 Hv or more, and 0.7<H1/H2< 1.2 is preferred.
 ここで、本実施形態の銅合金異形条材10において、ここで、上述のように成分組成、各種特性、結晶組織を規定した理由について以下に説明する。 Here, in the copper alloy deformed strip 10 of the present embodiment, the reasons why the composition, various properties, and crystal structure are defined as described above will be described below.
(Mg)
 Mgは、銅の母相中に固溶することで、導電率を大きく低下させることなく、強度及び耐熱温度性を向上させる作用効果を有する元素である。
 ここで、Mgの含有量が10massppm以下の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が1.2mass%以上の場合には、導電率が低くなり、電子・電気機器用部品の素材として安定して使用することができないおそれがある。
 以上のことから、本実施形態では、Mgの含有量を10massppm超え1.2mass%未満の範囲内に設定している。
(Mg)
Mg is an element that has the function and effect of improving the strength and heat-resistant temperature resistance without significantly lowering the electrical conductivity by forming a solid solution in the matrix of copper.
Here, if the content of Mg is 10 ppm by mass or less, there is a possibility that the action and effect cannot be sufficiently exhibited. On the other hand, when the content of Mg is 1.2 mass % or more, the electrical conductivity becomes low, and there is a possibility that it cannot be used stably as a material for electronic/electrical device parts.
From the above, in the present embodiment, the content of Mg is set within a range of more than 10 mass ppm and less than 1.2 mass %.
 ここで、耐熱温度をさらに向上させるためには、Mgの含有量の下限を20massppm以上とすることが好ましく、30massppm以上とすることがさらに好ましく、40massppm以上とすることがより好ましい。
 また、導電率の低下をさらに抑制するためには、Mgの含有量の上限を1.0mass%以下とすることが好ましく、0.8mass%以下とすることがさらに好ましく、0.6mass%以下とすることがより好ましく、0.4mass%以下とすることがより一層好ましい。
Here, in order to further improve the heat resistance temperature, the lower limit of the Mg content is preferably 20 mass ppm or more, more preferably 30 mass ppm or more, and more preferably 40 mass ppm or more.
In order to further suppress the decrease in conductivity, the upper limit of the Mg content is preferably 1.0 mass% or less, more preferably 0.8 mass% or less, and 0.6 mass% or less. It is more preferable to set the content to 0.4 mass% or less.
(P)
 Pは、鋳造性を向上させる作用効果を有する元素であり、生産性を向上させるために添加してもよい。一方、過剰に添加すると、Mgと反応して化合物を形成し、Mg固溶の効果が低下するおそれがある。
 以上のことから、本実施形態では、Pの含有量を0massppm以上200massppm以下の範囲内に設定している。
 ここで、Mg固溶の効果をさらに確実に奏功せしめるためには、Pの含有量の上限を160massppm以下とすることが好ましく、120massppm以下とすることがさらに好ましく、80massppm以下とすることがより好ましく、60massppm以下とすることがより一層好ましい。
(P)
P is an element that has an effect of improving castability, and may be added to improve productivity. On the other hand, when it is added excessively, it reacts with Mg to form a compound, which may reduce the effect of Mg solid solution.
From the above, in the present embodiment, the P content is set within the range of 0 mass ppm or more and 200 mass ppm or less.
Here, in order to further ensure the effect of Mg solid solution, the upper limit of the P content is preferably 160 mass ppm or less, more preferably 120 mass ppm or less, and more preferably 80 mass ppm or less. , 60 ppm by mass or less.
(S,Se,Te,Sb,Bi,As)
 上述のS,Se,Te,Sb,Bi,Asといった元素は、一般的に銅合金に混入しやすい元素である。そして、これらの元素は、Mgと反応し化合物を形成しやすく、微量添加したMgの固溶効果を低減するおそれがある。このため、これらの元素の含有量は厳しく制御する必要がある。
 そこで、本実施形態においては、Sの含有量を10massppm以下、Seの含有量を5massppm以下、Teの含有量を5massppm以下、Sbの含有量を5massppm以下、Biの含有量を5masppm以下、Asの含有量を5masppm以下に制限することが好ましい。
 さらに、SとSeとTeとSbとBiとAsの合計含有量を24massppm以下に制限することが好ましい。
(S, Se, Te, Sb, Bi, As)
Elements such as S, Se, Te, Sb, Bi, and As described above are elements that are generally likely to be mixed into copper alloys. These elements are likely to react with Mg to form a compound, and may reduce the solid-solution effect of Mg added in a small amount. Therefore, the content of these elements must be strictly controlled.
Therefore, in the present embodiment, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, the Sb content is 5 mass ppm or less, the Bi content is 5 mass ppm or less, and the As content is 5 mass ppm or less. It is preferable to limit the content to 5 mass ppm or less.
Furthermore, it is preferable to limit the total content of S, Se, Te, Sb, Bi and As to 24 ppm by mass or less.
 なお、Sの含有量は、9massppm以下であることがより好ましく、8massppm以下であることがさらに好ましい。
 Seの含有量は、4massppm以下であることがより好ましく、2massppm以下であることがさらに好ましい。
 Teの含有量は、4massppm以下であることがより好ましく、2massppm以下であることがさらに好ましい。
 Sbの含有量は、4massppm以下であることがより好ましく、2massppm以下であることがさらに好ましい。
 Biの含有量は、4massppm以下であることがより好ましく、2massppm以下であることがさらに好ましい。
 Asの含有量は、4massppm以下であることがより好ましく、2massppm以下であることがさらに好ましい。
 さらに、SとSeとTeとSbとBiとAsの合計含有量は、20massppm以下であることがより好ましく、16massppm以下であることがさらに好ましい。
The S content is more preferably 9 ppm by mass or less, and even more preferably 8 ppm by mass or less.
The Se content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
The Te content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
The Sb content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
The Bi content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
The As content is more preferably 4 ppm by mass or less, and even more preferably 2 ppm by mass or less.
Furthermore, the total content of S, Se, Te, Sb, Bi and As is more preferably 20 ppm by mass or less, and even more preferably 16 ppm by mass or less.
(Ag:5massppm以上20massppm以下)
 Agは、250℃以下の通常の電子・電気機器の使用温度範囲ではほとんどCuの母相中に固溶することができない。このため、銅中に微量に添加されたAgは、粒界近傍に偏析することとなる。これにより粒界での原子の移動は妨げられ、粒界拡散が抑制されるため、耐熱性が向上することになる。
 ここで、Agの含有量が5massppm以上の場合には、その作用効果を十分に奏功せしめることが可能となる。一方、Agの含有量が20massppm以下である場合には、導電率が確保されるとともに製造コストの増加を抑制することができる。
 以上のことから、本実施形態では、Agの含有量を5massppm以上20massppm以下の範囲内に設定している。
(Ag: 5 mass ppm or more and 20 mass ppm or less)
Ag hardly dissolves in the parent phase of Cu in the normal operating temperature range of 250° C. or less for electronic and electrical equipment. Therefore, a trace amount of Ag added to copper segregates in the vicinity of grain boundaries. As a result, movement of atoms at grain boundaries is prevented, grain boundary diffusion is suppressed, and heat resistance is improved.
Here, when the content of Ag is 5 ppm by mass or more, it is possible to sufficiently exhibit its effects. On the other hand, when the Ag content is 20 ppm by mass or less, the electrical conductivity can be ensured and an increase in manufacturing cost can be suppressed.
From the above, in the present embodiment, the Ag content is set within the range of 5 ppm by mass or more and 20 ppm by mass or less.
 ここで、耐熱性をさらに向上させるためには、Agの含有量の下限を6massppm以上とすることが好ましく、7massppm以上とすることがより好ましく、8massppm以上とすることがさらに好ましい。また、導電率の低下およびコストの増加を確実に抑制するためには、Agの含有量の上限を18massppm以下とすることが好ましく、16massppm以下とすることがより好ましく、14massppm以下とすることがさらに好ましい。
 なお、Agを意図して添加しない場合には、Agの含有量が5mass%未満であってもよい。
Here, in order to further improve the heat resistance, the lower limit of the Ag content is preferably 6 mass ppm or more, more preferably 7 mass ppm or more, and even more preferably 8 mass ppm or more. Further, in order to reliably suppress a decrease in conductivity and an increase in cost, the upper limit of the Ag content is preferably 18 mass ppm or less, more preferably 16 mass ppm or less, and further preferably 14 mass ppm or less. preferable.
In addition, when Ag is not intentionally added, the content of Ag may be less than 5 mass%.
(その他の不可避不純物)
 上述した元素以外のその他の不可避的不純物としては、Al,B,Ba,Be,Ca,Cd,Cr,Sc,希土類元素,V,Nb,Ta,Mo,Ni,W,Mn,Re,Ru,Sr,Ti,Os,Co,Rh,Ir,Pb,Pd,Pt,Au,Zn,Zr,Hf,Hg,Ga,In,Ge,Y,Tl,N,Si,Sn,Li等が挙げられる。これらの不可避不純物は、特性に影響を与えない範囲で含有されていてもよい。
 ここで、これらの不可避不純物は、導電率を低下させるおそれがあることから、総量で0.1mass%以下とすることが好ましく、0.05mass%以下とすることがより好ましく、0.03mass%以下とすることがさらに好ましく、0.01mass%以下とすることがより一層好ましい。
 また、これらの不可避不純物のそれぞれの含有量の上限は、10massppm以下とすることが好ましく、5massppm以下とすることがより好ましく、2massppm以下とすることがさらに好ましい。
(Other unavoidable impurities)
Other unavoidable impurities other than the above elements include Al, B, Ba, Be, Ca, Cd, Cr, Sc, rare earth elements, V, Nb, Ta, Mo, Ni, W, Mn, Re, Ru, Sr, Ti, Os, Co, Rh, Ir, Pb, Pd, Pt, Au, Zn, Zr, Hf, Hg, Ga, In, Ge, Y, Tl, N, Si, Sn, Li and the like. These unavoidable impurities may be contained as long as they do not affect the properties.
Here, since these unavoidable impurities may reduce the conductivity, the total amount is preferably 0.1 mass% or less, more preferably 0.05 mass% or less, and 0.03 mass% or less. is more preferably 0.01 mass % or less.
The upper limit of the content of each of these inevitable impurities is preferably 10 mass ppm or less, more preferably 5 mass ppm or less, and even more preferably 2 mass ppm or less.
(小傾角粒界割合)
 粒界において、小傾角粒界およびサブグレインバウンダリーは加工時に導入された転位の密度が高い領域であるため、小傾角粒界およびサブグレインバウンダリー長さ比率である小傾角粒界割合B=LLB/(LLB+LHB)が高すぎると、転位を経路とした原子の高速拡散が起こりやすくなり、高温環境下での再結晶とそれに伴う軟化が起こりやすくなるため、耐熱性は損なわれるおそれがある。また、厚部11および薄部12は、同様の温度環境で使用されるため、厚部11と薄部12とで耐熱性に大きな差異が無いことが求められる。
 そこで、本実施形態では、厚部11の小傾角粒界割合B1を80%以下、薄部12の小傾角粒界割合B2を80%以下に設定している。
 また、厚部11の小傾角粒界割合B1と薄部12の小傾角粒界割合B2との比B1/B2を、0.8<B1/B2<1.2としている。
(Low angle grain boundary ratio)
In the grain boundary, since the low-angle grain boundaries and subgrain boundaries are regions with a high density of dislocations introduced during processing, the low-angle grain boundary ratio B= If L LB /(L LB +L HB ) is too high, high-speed diffusion of atoms via dislocations is likely to occur, and recrystallization in a high-temperature environment and accompanying softening are likely to occur, thereby impairing heat resistance. There is a risk. Moreover, since the thick portion 11 and the thin portion 12 are used in the same temperature environment, it is required that there is no large difference in heat resistance between the thick portion 11 and the thin portion 12 .
Therefore, in the present embodiment, the low-angle grain boundary ratio B1 of the thick portion 11 is set to 80% or less, and the low-angle grain boundary ratio B2 of the thin portion 12 is set to 80% or less.
Also, the ratio B1/B2 between the low-angle grain boundary ratio B1 of the thick portion 11 and the low-angle grain boundary ratio B2 of the thin portion 12 is set to 0.8<B1/B2<1.2.
 ここで、厚部11の小傾角粒界割合B1は76%以下であることがより好ましく、72%以下であることがさらに好ましい。
 また、薄部12の小傾角粒界割合B1は76%以下であることがより好ましく、72%以下であることがさらに好ましい。
 さらに、小傾角粒界割合の比B1/B2は、0.85<T1/T2<1.15の範囲内であることが好ましく、0.90<T1/T2<1.10の範囲内であることがより好ましい。
Here, the low-angle grain boundary ratio B1 of the thick portion 11 is more preferably 76% or less, and even more preferably 72% or less.
Further, the low-angle grain boundary ratio B1 of the thin portion 12 is more preferably 76% or less, and even more preferably 72% or less.
Furthermore, the ratio B1/B2 of the low-angle grain boundary ratio is preferably within the range of 0.85<T1/T2<1.15, and is within the range of 0.90<T1/T2<1.10. is more preferable.
(Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合)
 Goss方位{011}〈100〉を有する結晶は比較的転位が溜まりにくいため、高温環境下での転位の移動によっておこる原子の拡散とそれによる回復を抑制することが可能となり、耐熱性を向上させる。また、厚部11および薄部12は、同様の温度環境で使用されるため、厚部11と薄部12とで耐熱性に大きな差異が無いことが求められる。
 なお、上述のGoss方位{011}〈100〉は、銅材料においては、一般的な圧延や熱処理では発生せず、異形加工とその後の加工および熱処理によって形成することが可能となる。
(Area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011} <100>)
Crystals having a Goss orientation of {011}<100> are relatively resistant to accumulation of dislocations, so it is possible to suppress the diffusion of atoms caused by the movement of dislocations in a high-temperature environment and the recovery caused thereby, thereby improving the heat resistance. . Moreover, since the thick portion 11 and the thin portion 12 are used in the same temperature environment, it is required that there is no large difference in heat resistance between the thick portion 11 and the thin portion 12 .
Note that the above-mentioned Goss orientation {011}<100> does not occur in copper materials by general rolling or heat treatment, and can be formed by deformation processing followed by processing and heat treatment.
 本実施形態では、Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合を、厚部11および薄部12でそれぞれ1%以上となるように設定している。
 なお、厚部11および薄部12におけるGoss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合は、1.4%以上であることが好ましく、1.8%以上とすることがより好ましく、2.2%以上とすることがさらに好ましい。
In this embodiment, the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011}<100> is set to be 1% or more in each of the thick portion 11 and the thin portion 12. .
The area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011}<100> in the thick portion 11 and the thin portion 12 is preferably 1.4% or more, and 1.8%. It is more preferable to make it 2.2% or more, and more preferably 2.2% or more.
(導電率)
 本実施形態である銅合金異形条材10においては、導電率が48%IACS以上とされている。導電率を48%IACS以上とすることにより、通電時の発熱を抑えて、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品として良好に使用することが可能となる。
 ここで、導電率は53%IACS以上であることが好ましく、58%IACS以上であることがより好ましく、63%IACS以上であることがさらに好ましく、75%IACS以上であることがより一層好ましい。
 特に限定されないが、導電率は102.5%IACS以下であってもよく、102%IACS以下であってもよく、101.5%IACS以下であってもよい。
(conductivity)
In the copper alloy profile strip 10 of this embodiment, the electrical conductivity is set to 48%IACS or more. By setting the electrical conductivity to 48% IACS or more, heat generation during energization can be suppressed, and it becomes possible to use it favorably as parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
Here, the electrical conductivity is preferably 53%IACS or higher, more preferably 58%IACS or higher, even more preferably 63%IACS or higher, and even more preferably 75%IACS or higher.
Although not particularly limited, the conductivity may be 102.5% IACS or less, 102% IACS or less, or 101.5% IACS or less.
(耐熱温度)
 本実施形態である銅合金異形条材10においては、厚部11の耐熱温度T1が260℃以上、薄部12の耐熱温度T2が240℃以上であることが好ましい。耐熱温度を上述のように構成することで、耐熱性を十分に確保することができる。
 また、銅合金異形条材10においては、厚部11、薄部12ともに等しい温度環境で使用されることが多い。そのため、厚部11の耐熱温度T1と薄部12の耐熱温度T2は近い値であることが好ましく、厚部11の耐熱温度T1と薄部12の耐熱温度T2との比T1/T2が、0.9<T1/T2<1.25とされていることが好ましい。
 ここで、厚部11の耐熱温度T1は280℃以上であることがより好ましく、300℃以上であることがさらに好ましく、320℃以上であることがより一層好ましい。
 また、薄部12の耐熱温度T2は260℃以上であることがより好ましく、280℃以上であることがさらに好ましく、300℃以上であることがより一層好ましい。
 さらに、耐熱温度の比T1/T2は、0.92<T1/T2<1.20の範囲内であることがより好ましい。
(Heatproof temperature)
In the copper alloy deformed strip 10 of this embodiment, it is preferable that the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher and the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher. By configuring the heat resistance temperature as described above, heat resistance can be sufficiently ensured.
Moreover, in the copper alloy profile strip 10, both the thick portion 11 and the thin portion 12 are often used in the same temperature environment. Therefore, the heat resistant temperature T1 of the thick portion 11 and the heat resistant temperature T2 of the thin portion 12 are preferably close to each other, and the ratio T1/T2 between the heat resistant temperature T1 of the thick portion 11 and the heat resistant temperature T2 of the thin portion 12 is 0. .9<T1/T2<1.25.
Here, the heat resistant temperature T1 of the thick portion 11 is more preferably 280° C. or higher, even more preferably 300° C. or higher, and even more preferably 320° C. or higher.
The heat resistance temperature T2 of the thin portion 12 is more preferably 260° C. or higher, even more preferably 280° C. or higher, and even more preferably 300° C. or higher.
Furthermore, the heat resistant temperature ratio T1/T2 is more preferably within the range of 0.92<T1/T2<1.20.
(ビッカース硬さ)
 本実施形態である銅合金異形条材10においては、厚部11のビッカース硬さH1が70Hv以上、薄部12のビッカース硬さH2が75Hv以上とされている場合には、強度が確保され、電気・電子部品の素材として特に適している。
 また、厚部11と薄部12での硬度差が大きい場合、電子・電気機器用部品、特に端子、バスバー、リードフレーム、放熱基板を製造する際のプレス加工で材料のゆがみが発生する可能性がある。そのため、厚部11の硬度H1と薄部12の硬度H2は近い値であることが好ましく、厚部11のビッカース硬さH1と薄部12のビッカース硬さH2との比H1/H2が、0.7<H1/H2<1.2とされていることが好ましい。
 ここで、厚部11のビッカース硬さH1は72Hv以上であることがより好ましく、74Hv以上であることがさらに好ましい。
 また、薄部12のビッカース硬さH2は77Hv以上であることがより好ましく、79Hv以上であることがさらに好ましい。
 さらに、ビッカース硬さの比H1/H2は、0.8<H1/H2<1.1の範囲内であることがより好ましい。
(Vickers hardness)
In the copper alloy profile strip 10 of the present embodiment, when the Vickers hardness H1 of the thick portion 11 is 70 Hv or more and the Vickers hardness H2 of the thin portion 12 is 75 Hv or more, the strength is ensured, Especially suitable as a material for electrical and electronic parts.
Also, if the difference in hardness between the thick part 11 and the thin part 12 is large, there is a possibility that the material will be distorted during press working when manufacturing parts for electronic and electrical equipment, especially terminals, bus bars, lead frames, and heat dissipation boards. There is Therefore, it is preferable that the hardness H1 of the thick portion 11 and the hardness H2 of the thin portion 12 are close to each other. .7<H1/H2<1.2.
Here, the Vickers hardness H1 of the thick portion 11 is more preferably 72 Hv or higher, more preferably 74 Hv or higher.
Further, the Vickers hardness H2 of the thin portion 12 is more preferably 77 Hv or higher, more preferably 79 Hv or higher.
Furthermore, the Vickers hardness ratio H1/H2 is more preferably in the range of 0.8<H1/H2<1.1.
 次に、このような構成とされた本実施形態である銅合金異形条材10の製造方法について、図2に示すフロー図を参照して説明する。 Next, a method for manufacturing the copper alloy profile strip 10 having such a configuration according to the present embodiment will be described with reference to the flowchart shown in FIG.
(溶解・鋳造工程S01)
 まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、各種元素の添加には、元素単体や母合金等を用いることができる。また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。
 ここで、銅原料は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。
 溶解時においては、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
 そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
(Melting/casting step S01)
First, the above elements are added to the molten copper obtained by melting the copper raw material to adjust the composition, thereby producing the molten copper alloy. For addition of various elements, simple elements, master alloys, or the like can be used. Also, a raw material containing the above elements may be melted together with the copper raw material. Recycled materials and scrap materials of the present alloy may also be used.
Here, the copper raw material is preferably so-called 4NCu with a purity of 99.99 mass% or higher, or so-called 5NCu with a purity of 99.999 mass% or higher.
At the time of melting, in order to suppress the oxidation of Mg and to reduce the hydrogen concentration, atmosphere melting is performed in an inert gas atmosphere (for example, Ar gas) with a low vapor pressure of H 2 O, and the holding time during melting is minimized. It is preferable to limit
Then, an ingot is produced by injecting the molten copper alloy with the adjusted composition into the mold. In addition, when considering mass production, it is preferable to use a continuous casting method or a semi-continuous casting method.
(均質化/溶体化工程S02)
 次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を300℃以上1080℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この均質化/溶体化工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
(Homogenization/Solution Step S02)
Next, the obtained ingot is subjected to heat treatment for homogenization and solutionization. Inside the ingot, an intermetallic compound or the like containing Cu and Mg as main components may be present as the Mg is concentrated by segregation during the solidification process. Therefore, in order to eliminate or reduce these segregations and intermetallic compounds, etc., heat treatment is performed to heat the ingot to 300 ° C. or higher and 1080 ° C. or lower, so that Mg is uniformly diffused in the ingot. , and Mg are dissolved in the matrix. The homogenization/solution treatment step S02 is preferably performed in a non-oxidizing or reducing atmosphere.
 ここで、加熱温度が300℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が1080℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を300℃以上1080℃以下の範囲に設定している。
 なお、後述する粗圧延の効率化と組織の均一化のために、前述の均質化/溶体化工程S02の後に熱間加工を実施してもよい。この場合、加工方法に特に限定はなく、例えば圧延、引抜、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、300℃以上1080℃以下の範囲内とすることが好ましい。
Here, if the heating temperature is less than 300° C., the solutionization may be incomplete, and a large amount of intermetallic compounds containing Cu and Mg as main components may remain in the matrix phase. On the other hand, if the heating temperature exceeds 1080° C., part of the copper material becomes a liquid phase, and the texture and surface state may become uneven. Therefore, the heating temperature is set in the range of 300° C. or higher and 1080° C. or lower.
Note that hot working may be performed after the homogenization/solution treatment step S02 described above in order to improve the efficiency of rough rolling and homogenize the structure, which will be described later. In this case, the working method is not particularly limited, and for example, rolling, drawing, extrusion, groove rolling, forging, pressing, etc. can be employed. Also, the hot working temperature is preferably in the range of 300° C. or higher and 1080° C. or lower.
(粗加工工程S03)
 所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S03における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間圧延となる-200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、引抜、押出、溝圧延、鍛造、プレス等を採用することができる。
 なお、粗加工工程S03と後述する中間熱処理工程S04を繰り返し実施してもよい。
(Rough processing step S03)
Rough processing is performed in order to process into a predetermined shape. The temperature conditions in this rough processing step S03 are not particularly limited, but in order to suppress recrystallization or to improve dimensional accuracy, cold or warm rolling is performed within the range of -200 ° C. to 200 ° C. It is preferable to set it as, and especially normal temperature is preferable. The processing rate is preferably 20% or more, more preferably 30% or more. Moreover, the processing method is not particularly limited, and for example, rolling, drawing, extrusion, groove rolling, forging, pressing, etc. can be employed.
Note that the rough processing step S03 and the intermediate heat treatment step S04, which will be described later, may be repeated.
(中間熱処理工程S04)
 粗加工工程S03後に、加工性向上のための軟化、または再結晶組織にするために熱処理を実施する。
 この際、連続焼鈍炉による短時間の熱処理が好ましく、Agが添加された場合には、Agの粒界への偏析の局在化を防ぐことができる。
 この熱処理条件については特に限定しないが、一般的には200℃から1000℃の範囲で行う。
(Intermediate heat treatment step S04)
After the rough working step S03, a heat treatment is performed to soften for improving workability or to obtain a recrystallized structure.
At this time, a short-time heat treatment in a continuous annealing furnace is preferable, and when Ag is added, localization of Ag segregation to grain boundaries can be prevented.
Although the conditions for this heat treatment are not particularly limited, the heat treatment is generally carried out in the range of 200°C to 1000°C.
(機械的表面処理工程S05)
 中間熱処理工程S04後に、機械的表面処理を行う。機械的表面処理は、表面近傍に圧縮応力を与える処理であり、後述の上前熱処理工程S07と組み合わせることGoss方位{011}〈100〉が高まり、耐熱性を向上させることができる。
 機械的表面処理は、ショットピーニング処理、ブラスト処理、ラッピング処理、ポリッシング処理、バフ研磨、グラインダー研磨、サンドペーパー研磨、テンションレベラー処理、1パス当りの圧下率が低い軽圧延(1パス当たりの圧下率1%以上10%以下とし、3回以上繰り返す)など一般的に使用される種々の方法が使用できる。
(Mechanical surface treatment step S05)
After the intermediate heat treatment step S04, mechanical surface treatment is performed. The mechanical surface treatment is a treatment that applies compressive stress to the vicinity of the surface, and when combined with the above-mentioned pre-heat treatment step S07 described later, the Goss orientation {011}<100> is increased, and heat resistance can be improved.
Mechanical surface treatments include shot peening, blasting, lapping, polishing, buffing, grinder polishing, sandpaper polishing, tension leveler treatment, light rolling with low rolling reduction per pass (rolling reduction per pass 1% or more and 10% or less and repeated three times or more), various commonly used methods can be used.
(異形圧延加工工程S06)
 異形圧延加工では、凹凸面を有する平板状のダイと、このダイの成形面に対向して成形面に沿って往復移動される圧延ロールとにより、機械的表面処理工程S05後の材料を、冷間にて異形圧延加工して、粗厚部と粗薄部とが幅方向に並んだ粗異形条材を得る。
 なお、加工の減面率を5%以上90%以下の範囲内とすることで、上前熱処理工程S07においてGoss方位が形成されやすくなる。加工の減面率は、10%以上85%以下の範囲内とすることがさらに好ましく、15%以上80%以下の範囲内とすることがさらに好ましい。
 また、粗厚部の厚さと粗薄部の厚さの比を6以下とすることで、上前熱処理工程S07において、厚部11および薄部12における小傾角粒界割合B=LLB/(LLB+LHB)の比B1/B2を0.8<B1/B2<1.2とすることができ、厚部11および薄部12におけるビッカース硬さの比H1/H2を0.7<H1/H2<1.2とすることができる。なお、粗厚部の厚さと粗薄部の厚さの比は5以下とすることがさらに好ましい。
(Irregular shape rolling step S06)
In the profile rolling process, the material after the mechanical surface treatment step S05 is cooled by a flat die having an uneven surface and rolling rolls that reciprocate along the forming surface facing the forming surface of the die. A rough and deformed strip in which a rough and thick portion and a rough and thin portion are arranged in the width direction is obtained by deforming rolling.
It should be noted that the Goss orientation is likely to be formed in the pre-upper heat treatment step S07 by setting the area reduction rate of the working within the range of 5% or more and 90% or less. The area reduction rate of processing is more preferably in the range of 10% or more and 85% or less, and more preferably in the range of 15% or more and 80% or less.
Further, by setting the ratio of the thickness of the rough and thick portion to the thickness of the rough and thin portion to be 6 or less, in the pre-upper heat treatment step S07, the low angle grain boundary ratio B=L LB /( L LB +L HB ) ratio B1/B2 can be 0.8<B1/B2<1.2, and Vickers hardness ratio H1/H2 in the thick portion 11 and the thin portion 12 can be 0.7<H1 /H2<1.2. In addition, it is more preferable that the ratio of the thickness of the rough and thick portion to the thickness of the rough and thin portion is 5 or less.
(上前熱処理工程S07)
 次に、異形圧延加工工程S06の後に熱処理することで再結晶組織とし、Goss方位を形成させる。また、再結晶によって小傾角粒界割合Bを低下させる。さらに、厚部11と薄部12の組織を近いものとする。
 この上前熱処理工程S07では、異形圧延加工工程S06によって導入された厚部と薄部でのひずみ差をなくし、再結晶とその後の粒成長による均一な組織形成をおこなうために、一定以下の昇温速度と十分長い熱処理時間が必要となる。そのため、バッチ焼鈍による熱処理が好ましい。熱処理条件は、熱処理温度が250℃以上650℃以下の範囲内、昇温速度が500℃/h以下、熱処理時間が1時間以上100時間以下であることが好ましい。
(Upper front heat treatment step S07)
Next, heat treatment is performed after the profile rolling step S06 to form a recrystallized structure and form a Goss orientation. In addition, the low-angle grain boundary ratio B is reduced by recrystallization. Furthermore, the structures of the thick portion 11 and the thin portion 12 are similar.
In this pre-heat treatment step S07, in order to eliminate the strain difference between the thick portion and the thin portion introduced in the deformed rolling step S06, and to form a uniform structure by recrystallization and subsequent grain growth, the temperature rises below a certain level. A temperature rate and a sufficiently long heat treatment time are required. Therefore, heat treatment by batch annealing is preferable. The heat treatment conditions are preferably such that the heat treatment temperature is in the range of 250° C. or more and 650° C. or less, the temperature increase rate is 500° C./h or less, and the heat treatment time is 1 hour or more and 100 hours or less.
(仕上加工工程S08)
 上前熱処理工程S07後に、冷間加工を行う。段付きロールと平ロールとからなる圧延ロールによる冷間加工にて実施する。
 なお、厚部11のビッカース硬さH1を70Hv,薄部12のH2を75Hv以上とするためには、加工率は5%以上とすることが好ましく、8%以上とすることがより好ましい。
 一方、加工率が高すぎると、小傾角粒界割合B1,B2が高くなり、再結晶組織であるGoss方位の面積割合も低下するため、加工率は50%以下とすることが好ましく、45%以下とすることがより好ましい。
(Finishing process S08)
After the pre-upper heat treatment step S07, cold working is performed. Cold working is carried out by rolling rolls consisting of stepped rolls and flat rolls.
In order to set the Vickers hardness H1 of the thick portion 11 to 70 Hv and the H2 of the thin portion 12 to 75 Hv or more, the processing rate is preferably 5% or more, more preferably 8% or more.
On the other hand, if the working rate is too high, the low-angle grain boundary ratios B1 and B2 will increase, and the area ratio of the Goss orientation, which is the recrystallized structure, will also decrease. More preferably:
(低温焼鈍工程S09)
 仕上加工工程S08後には、必要に応じて、低温焼鈍を行う。この低温焼鈍工程S09によって、残留応力の除去、回復による小傾角粒界割合の低下の効果が得られる。
 この低温焼鈍工程S09においては、焼鈍温度を100℃以上600℃以下の範囲内、焼鈍温度での保持時間を0.1秒以上24時間以下の範囲内とすることが好ましい。なお、熱処理温度が低い場合には長時間、熱処理温度が高い場合には短時間の熱処理をすればよい。
 低温焼鈍工程S09での焼鈍温度が100℃未満、または焼鈍温度での保持時間が0.1秒未満では、十分なひずみ取りの効果が得られなくなるおそれがあり、一方、焼鈍温度が600℃を超える場合は再結晶のおそれがあり、さらに焼鈍温度での保持時間が24時間を超えることは、コスト上昇を招くだけである。
(Low temperature annealing step S09)
After the finishing step S08, low-temperature annealing is performed as necessary. This low-temperature annealing step S09 has the effect of reducing the proportion of low-angle grain boundaries due to the removal and recovery of residual stress.
In this low-temperature annealing step S09, it is preferable to set the annealing temperature within the range of 100° C. or more and 600° C. or less and the holding time at the annealing temperature within the range of 0.1 second or more and 24 hours or less. When the heat treatment temperature is low, the heat treatment may be performed for a long time, and when the heat treatment temperature is high, the heat treatment may be performed for a short time.
If the annealing temperature in the low-temperature annealing step S09 is less than 100°C, or the holding time at the annealing temperature is less than 0.1 seconds, there is a risk that a sufficient strain relief effect will not be obtained. If it exceeds, there is a risk of recrystallization, and if the holding time at the annealing temperature exceeds 24 hours, the cost only increases.
 なお、本実施形態においては、低温焼鈍工程S09の後にテンションレベラー等による矯正工程を加えてもよい。
 さらに、本実施形態の銅合金異形条材10においては、表面に金属めっき層を形成してもよい。なお、金属めっき層としては、例えば、Snめっき、Agめっき、Niめっき、Auめっき、Pdめっき、Rhめっき等を適用することができる。
In this embodiment, a straightening process using a tension leveler or the like may be added after the low-temperature annealing process S09.
Furthermore, in the copper alloy profile strip 10 of the present embodiment, a metal plating layer may be formed on the surface. In addition, as a metal plating layer, Sn plating, Ag plating, Ni plating, Au plating, Pd plating, Rh plating, etc. can be applied, for example.
 以上の工程により、本実施形態である銅合金異形条材10が製造される。 Through the above steps, the copper alloy profile strip 10 of the present embodiment is manufactured.
 以上のような構成とされた本実施形態である銅合金異形条材10においては、Mgの含有量が10massppm超え1.2mass%未満の範囲内、Pの含有量が0massppm以上200massppm以下の範囲内とされているので、Mgが銅の母相中に固溶することにより、耐熱性を十分に向上させることができる。
 また、導電率が48%IACS以上とされているので、通電時の発熱を抑えることができ、端子、バスバー、リードフレーム、放熱基板等の電子・電気機器用部品の素材として適している。
 さらに、厚部11の耐熱温度T1が260℃以上、薄部12の耐熱温度T2が240℃以上、かつ、0.9<T1/T2<1.25とされているので、十分に耐熱性に優れるとともに、厚部11と薄部12との耐熱性の差が小さく、高温環境下であっても安定して使用することができる。
In the copper alloy profile strip 10 of the present embodiment configured as described above, the Mg content is in the range of more than 10 mass ppm and less than 1.2 mass%, and the P content is in the range of 0 mass ppm to 200 mass ppm. Therefore, the heat resistance can be sufficiently improved by dissolving Mg in the matrix of copper.
In addition, since the electrical conductivity is 48% IACS or higher, heat generation during energization can be suppressed, making it suitable as a material for parts for electronic and electrical equipment such as terminals, bus bars, lead frames, and heat dissipation substrates.
Furthermore, the heat resistant temperature T1 of the thick portion 11 is 260° C. or higher, and the heat resistant temperature T2 of the thin portion 12 is 240° C. or higher, and 0.9<T1/T2<1.25. In addition, the difference in heat resistance between the thick portion 11 and the thin portion 12 is small, so that it can be used stably even in a high temperature environment.
 そして、厚部11および薄部12の小傾角粒界割合B1,B2がそれぞれ80%以下、かつ、小傾角粒界割合の比B1/B2が0.8<B1/B2<1.2とされ、Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合が、前記厚部および前記薄部でそれぞれ1%以上となるように結晶組織が制御されているので、転位の移動による回復や再結晶が起こりにくく、厚部11および薄部12において、耐熱性を十分に向上させることが可能となる。 The low-angle grain boundary ratios B1 and B2 of the thick portion 11 and the thin portion 12 are respectively 80% or less, and the low-angle grain boundary ratio B1/B2 is 0.8<B1/B2<1.2. , the crystal structure is controlled so that the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011} <100> is 1% or more in each of the thick portion and the thin portion. , recovery and recrystallization due to movement of dislocations are unlikely to occur, and the heat resistance of the thick portion 11 and the thin portion 12 can be sufficiently improved.
 本実施形態の銅合金異形条材10において、不可避不純物のうち、Sの含有量が10massppm以下、Seの含有量が5massppm以下、Teの含有量が5massppm以下、Sbの含有量が5massppm以下、Biの含有量が5masppm以下、Asの含有量が5masppm以下とされるとともに、SとSeとTeとSbとBiとAsの合計含有量が24massppm以下とされている場合には、Mgと化合物を生成する元素であるS,Se,Te,Sb,Bi,Asの含有量が低く抑えられているので、Mgを確実に固溶させることができ、耐熱性をさらに確実に向上させることが可能となる。 In the copper alloy profile strip 10 of the present embodiment, among the inevitable impurities, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, the Sb content is 5 mass ppm or less, and Bi When the content of is 5 mass ppm or less, the content of As is 5 mass ppm or less, and the total content of S, Se, Te, Sb, Bi, and As is 24 mass ppm or less, Mg and a compound are generated Since the contents of S, Se, Te, Sb, Bi, and As, which are elements that .
 さらに、本実施形態の銅合金異形条材10において、Agの含有量が5massppm以上20massppm以下の範囲内とされている場合には、Agが粒界近傍に偏析することになり、このAgによって粒界拡散が抑制され、耐熱温度をさらに確実に向上させることが可能となる。 Furthermore, in the copper alloy profile strip 10 of the present embodiment, when the Ag content is in the range of 5 ppm by mass or more and 20 ppm by mass or less, Ag segregates in the vicinity of grain boundaries. Field diffusion is suppressed, and the heat resistant temperature can be further improved.
 また、本実施形態の銅合金異形条材10において、厚部11のビッカース硬さH1が70Hv以上、薄部12のビッカース硬さH2が75Hv以上、かつ、0.7<H1/H2<1.2とされている場合には、強度に優れるとともに、厚部11と薄部12とで強度の差異が小さく、安定して使用することができる。 Further, in the copper alloy profile strip 10 of the present embodiment, the Vickers hardness H1 of the thick portion 11 is 70 Hv or more, the Vickers hardness H2 of the thin portion 12 is 75 Hv or more, and 0.7<H1/H2<1. In the case of 2, the strength is excellent, and the difference in strength between the thick portion 11 and the thin portion 12 is small, so that it can be used stably.
 さらに、本実施形態である銅合金異形条材10の表面に、金属めっき層を形成した場合には、表面に様々な特性を付与することができ、端子、バスバー、放熱基板等の電子・電気機器用部品の素材として特に適している。 Furthermore, when a metal plating layer is formed on the surface of the copper alloy profile strip 10 of the present embodiment, various characteristics can be imparted to the surface, and it can be applied to electronic and electrical applications such as terminals, bus bars, and heat dissipation substrates. It is particularly suitable as a material for equipment parts.
 さらに、本実施形態である電子・電気機器用部品(端子、バスバー、リードフレーム、放熱基板等)は、上述の銅合金異形条材10で構成されているので、高温環境下においても、優れた特性を発揮することができる。 Furthermore, since the electronic/electrical device parts (terminals, bus bars, lead frames, heat dissipation substrates, etc.) of the present embodiment are made of the copper alloy profile strip 10 described above, they are excellent even in a high-temperature environment. characteristics can be exhibited.
 以上、本発明の実施形態である銅合金異形条材10、電子・電気機器用部品(端子、バスバー、リードフレーム、放熱基板等)について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、上述の実施形態では、銅合金異形条材10の製造方法の一例について説明したが、銅合金異形条材10の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
 また、本実施形態では、図1に示す形状の異形条を例に挙げて説明したが、これに限定されることはなく、他の断面形状の異形条であってもよい。
Although the copper alloy profile strip 10 and the parts for electronic/electrical equipment (terminals, bus bars, lead frames, heat dissipation substrates, etc.) that are embodiments of the present invention have been described above, the present invention is not limited thereto. , can be changed as appropriate without departing from the technical idea of the invention.
For example, in the above-described embodiment, an example of the method for manufacturing the copper alloy deformed strip 10 has been described, but the method for manufacturing the copper alloy deformed strip 10 is not limited to the method described in the embodiment, and the existing You may manufacture by selecting the manufacturing method of suitably.
Further, in the present embodiment, the dual-gauge strip having the shape shown in FIG. 1 has been described as an example, but the multi-gauge strip is not limited to this, and may be a multi-gauge strip having another cross-sectional shape.
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 帯溶融精製法により、純度99.999mass%以上の純銅からなる原料を高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。
 得られた銅溶湯内に、6N(純度99.9999mass%)以上の高純度銅と2N(純度99mass%)以上の純度を有する純金属を用いて作製した各種0.1mass%母合金を用いて表1,2に示す成分組成に調製し、断熱材(イソウール)鋳型に注湯して、鋳塊を製出した。なお、鋳塊の大きさは、厚さ約30mm×幅約60mm×長さ約150~200mmとした。
The results of confirmatory experiments conducted to confirm the effects of the present invention will be described below.
A raw material made of pure copper with a purity of 99.999 mass% or more was charged into a high-purity graphite crucible by a zone melting refining method, and high-frequency melting was performed in an atmosphere furnace in an Ar gas atmosphere.
In the obtained molten copper, various 0.1 mass% master alloys made using high-purity copper of 6N (purity 99.9999 mass%) or higher and pure metals having a purity of 2N (purity 99 mass%) or higher are used. The composition was prepared as shown in Tables 1 and 2, and poured into a heat insulating material (isowool) mold to produce an ingot. The size of the ingot was about 30 mm thick×about 60 mm wide×about 150 to 200 mm long.
 得られた鋳塊に対して、Arガス雰囲気中において、各種温度条件で1時間の加熱を行い、酸化被膜を除去するために表面研削を実施し、所定の大きさに切断を行った。
 その後、適宜最終厚みになる様に厚みを調整して切断を行った。切断されたそれぞれの試料について、室温にて、表3,4に示す加工率で粗圧延を行った後、表3,4に記載された熱処理条件にて中間熱処理を実施した。
The obtained ingot was heated under various temperature conditions for 1 hour in an Ar gas atmosphere, subjected to surface grinding to remove the oxide film, and cut into a predetermined size.
After that, the thickness was appropriately adjusted so as to obtain the final thickness, and cutting was performed. Each of the cut samples was subjected to rough rolling at room temperature at the reduction rates shown in Tables 3 and 4, and then subjected to intermediate heat treatment under the heat treatment conditions shown in Tables 3 and 4.
 次に、これらの試料に表3,4に記載された手法で機械的表面処理工程を施した。
 なお、バフ研磨は♯1000の研磨紙を用いて行った。
 テンションレベラーはφ16mmのロールを複数備えたテンションレベラーを用い、ラインテンション100N/mmにて実施した。
 軽圧延(1パス当りの圧下率が低い圧延)は、最終3パスを1パス当たりの圧下率を4%として実施した。
Next, these samples were subjected to a mechanical surface treatment process by the method described in Tables 3 and 4.
Buffing was performed using #1000 abrasive paper.
A tension leveler equipped with a plurality of φ16 mm rolls was used, and the line tension was 100 N/mm 2 .
Light rolling (rolling with a low rolling reduction per pass) was performed with a rolling reduction of 4% per pass for the final three passes.
 そして、厚部と薄部の厚さがそれぞれ表3,4に記載された値となるように、平板状のダイと、このダイの成形面に対向して成形面に沿って往復移動される圧延ロールとにより段付き異形加工を実施した。
 そして、表3,4に記載された条件で上前熱処理を実施した。
 その後、表3,4に記載の条件で仕上加工を行い、一部の試料を除いて低温焼鈍を行うことで、表3,4に示す厚さで幅が約60mmの特性評価用条材を製出した。
Then, the plate-shaped die is reciprocated along the molding surface facing the molding surface of the die so that the thicknesses of the thick portion and the thin portion become the values shown in Tables 3 and 4, respectively. Stepped deformation processing was carried out with rolling rolls.
Then, the upper pre-heat treatment was performed under the conditions described in Tables 3 and 4.
After that, finishing was performed under the conditions shown in Tables 3 and 4, and low-temperature annealing was performed with the exception of some samples. produced.
 得られた特性評価用条材に対して、以下のようにして評価を実施した。 The obtained strips for characteristic evaluation were evaluated as follows.
(組成分析)
 得られた鋳塊から測定試料を採取し、Mgは誘導結合プラズマ発光分光分析法で、その他の元素はグロー放電質量分析装置(GD-MS)を用いて測定した。
 なお、測定は試料中央部と幅方向端部の2カ所で測定を行い、含有量の多い方をそのサンプルの含有量とした。その結果、表1,2に示す成分組成であることを確認した。
(composition analysis)
A measurement sample was taken from the obtained ingot, Mg was measured by inductively coupled plasma atomic emission spectrometry, and other elements were measured by glow discharge mass spectrometry (GD-MS).
In addition, the measurement was performed at two points, the central portion and the end portion in the width direction of the sample, and the larger content was taken as the content of the sample. As a result, it was confirmed that the composition was as shown in Tables 1 and 2.
(小傾角粒界割合)
 圧延面、すなわちND面(Normal direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように、厚部および薄部における小傾角粒界割合B1,B2を求めた。
 耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現AMETEK社)OIM Data Analysis ver.7.3.1)によって、電子線の加速電圧15kV、10000μm以上の測定面積を、0.25μmの測定間隔のステップでCI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とし、データ解析ソフトOIMを用いてArea Fractionによる平均粒径Aを求めた。その後、平均粒径Aの10分の1以下となる測定間隔のステップで測定して、総数1000個以上の結晶粒が含まれるように、複数視野で10000μm以上となる測定面積で、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定点間の方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとし、その長さをLLB、15°を超える測定点間を大傾角粒界としその長さをLHBとすることで、全粒界における小傾角粒界およびサブグレインバウンダリー長さ比率として小傾角粒界割合B=LLB/(LLB+LHB)を求めた。
(Low angle grain boundary ratio)
Using the rolled surface, that is, the ND surface (Normal direction) as an observation surface, the low angle grain boundary ratios B1 and B2 in the thick and thin portions were obtained as follows using an EBSD measuring device and OIM analysis software.
After performing mechanical polishing using waterproof abrasive paper and diamond abrasive grains, final polishing was performed using a colloidal silica solution. Then, an EBSD measurement device (Quanta FEG 450 manufactured by FEI, OIM Data Collection manufactured by EDAX/TSL (currently AMETEK)) and analysis software (manufactured by EDAX/TSL (currently AMETEK) OIM Data Analysis ver.7.3 .1), an electron beam acceleration voltage of 15 kV, a measurement area of 10000 μm 2 or more, except for the measurement points where the CI value is 0.1 or less at a measurement interval step of 0.25 μm, the misorientation of each crystal grain , and the grain boundaries between the measurement points where the orientation difference between the adjacent measurement points is 15° or more, and the average grain size A was obtained by Area Fraction using the data analysis software OIM. After that, the data is analyzed with a measurement area of 10000 μm 2 or more in multiple fields of view so that a total of 1000 or more crystal grains are included by measuring in steps with a measurement interval of 1/10 or less of the average grain size A. Analysis was performed excluding measurement points where the CI value analyzed by soft OIM was 0.1 or less. L LB is the length of the grain boundary, and L HB is the length of the large angle grain boundary between the measurement points exceeding 15 °. A low-angle grain boundary ratio B=L LB /(L LB +L HB ) was obtained as the thickness ratio.
(Goss方位)
 上記の小傾角粒界およびサブグレインバウンダリー長さ比率測定の際、各結晶粒の方位の解析もあわせて行い、各解析点が、対象とするGoss方位(理想方位から10°以内)か否かを判定し、測定領域におけるGoss方位割合(結晶方位の面積率)を求めた。
(Goss orientation)
When measuring the above small angle grain boundary and subgrain boundary length ratio, the orientation of each crystal grain is also analyzed to determine whether each analysis point is the target Goss orientation (within 10 ° from the ideal orientation). was determined, and the Goss orientation ratio (area ratio of crystal orientation) in the measurement region was determined.
(耐熱温度)
 耐熱温度は日本伸銅協会のJCBA T325:2013に準拠し、1時間の熱処理でのビッカース硬度による等時軟化曲線を取得し、熱処理前の硬度の80%の硬度となる加熱温度を求めることで評価した。なお、ビッカース硬度の測定面は圧延面とした。評価結果を表5,6に示す。
(Heatproof temperature)
The heat resistance temperature conforms to JCBA T325:2013 of the Japan Copper and Brass Association, acquires an isochronous softening curve by Vickers hardness in heat treatment for 1 hour, and obtains the heating temperature at which the hardness becomes 80% of the hardness before heat treatment. evaluated. The rolled surface was used as the surface for Vickers hardness measurement. Tables 5 and 6 show the evaluation results.
(ビッカース硬さ)
 JIS-Z2244に規定されているマイクロビッカース硬さ試験方法に準拠し、特性評価用条材の表面すなわちND面(Normal Direction)で試験加重0.98Nでビッカース硬度を測定した。評価結果を表3,4に示す。
(Vickers hardness)
According to the micro Vickers hardness test method specified in JIS-Z2244, the Vickers hardness was measured with a test load of 0.98N on the surface of the strip for characteristic evaluation, that is, the ND surface (Normal Direction). Tables 3 and 4 show the evaluation results.
(導電率)
 特性評価用条材から幅10mm×長さ60mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して平行になるように採取した。評価結果を表5,6に示す。
(conductivity)
A test piece having a width of 10 mm and a length of 60 mm was taken from the strip material for characteristic evaluation, and the electrical resistance was determined by the four-probe method. Also, the dimensions of the test piece were measured using a micrometer, and the volume of the test piece was calculated. Then, the electrical conductivity was calculated from the measured electrical resistance value and volume. The test piece was taken so that its longitudinal direction was parallel to the rolling direction of the strip for characteristic evaluation. Tables 5 and 6 show the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 比較例1は、Mgの含有量が本発明の範囲よりも少ないため、耐熱温度が低く、耐熱性が不十分であった。
 比較例2は、Mgの含有量が本発明の範囲を超えており、導電率が低くなった。
 比較例3は、Pの含有量が200massppmを超えており、耐熱温度が低く、耐熱性が不十分であった。
 比較例4は、小傾角粒界割合が80%を超えており、耐熱温度が低く、耐熱性が不十分であった。
 比較例5は、Goss方位の面積割合が1%未満であり、耐熱温度が低く、耐熱性が不十分であった。
 比較例6は、厚部の小傾角粒界割合B1と薄部の小傾角粒界割合B2との比B1/B2が本発明の範囲外となり、厚部の耐熱温度T1と薄部の耐熱温度T2との比T1/T2が本発明の範囲外となり、耐熱性にばらつきが生じた。
In Comparative Example 1, since the Mg content was less than the range of the present invention, the heat resistance temperature was low and the heat resistance was insufficient.
In Comparative Example 2, the content of Mg exceeded the range of the present invention, and the electrical conductivity was low.
In Comparative Example 3, the P content exceeded 200 ppm by mass, the heat resistance temperature was low, and the heat resistance was insufficient.
In Comparative Example 4, the low-angle grain boundary ratio exceeded 80%, the heat resistance temperature was low, and the heat resistance was insufficient.
In Comparative Example 5, the area ratio of Goss orientation was less than 1%, the heat resistance temperature was low, and the heat resistance was insufficient.
In Comparative Example 6, the ratio B1/B2 between the low-angle grain boundary ratio B1 in the thick portion and the low-angle grain boundary ratio B2 in the thin portion is outside the range of the present invention, and the heat-resistant temperature T1 of the thick portion and the heat-resistant temperature of the thin portion The ratio T1/T2 to T2 was out of the range of the present invention, resulting in variations in heat resistance.
 これに対して、本発明例1~30においては、厚部と薄部とで耐熱性がバランス良く向上されていることが確認された。
 以上のことから、本発明例によれば、厚部と薄部とで強度や耐熱性等の特性に差が生じにくく、高温環境下で安定して使用することが可能な銅合金異形条材を提供可能であることが確認された。
On the other hand, in Examples 1 to 30 of the present invention, it was confirmed that the heat resistance was improved in a well-balanced manner between the thick portion and the thin portion.
From the above, according to the example of the present invention, there is little difference in properties such as strength and heat resistance between the thick part and the thin part, and the copper alloy profile strip can be stably used in a high temperature environment. It was confirmed that it is possible to provide
 厚部と薄部とで強度や耐熱性等の特性に差が生じにくく、高温環境下で安定して使用することが可能な銅合金異形条材、および、この銅合金異形条材からなる電子・電子機器用部品、端子、バスバー、リードフレーム、放熱基板を提供することが可能となる。 A copper alloy profile strip that can be stably used in a high-temperature environment with little difference in properties such as strength and heat resistance between the thick part and the thin part, and an electronic device made of this copper alloy profile strip.・It becomes possible to provide electronic device parts, terminals, bus bars, lead frames, and heat dissipation boards.
符合の説明Code description
 10  銅合金塑性加工材
 11  厚部
 12  薄部
 t1  厚部11の厚さ
 t2  薄部12の厚さ
REFERENCE SIGNS LIST 10 Copper alloy plastic work material 11 Thick part 12 Thin part t1 Thickness of thick part 11 t2 Thickness of thin part 12

Claims (10)

  1.  長手方向に直交する断面において互い厚さの異なる厚部と薄部とを備えた銅合金異形条材であって、
     Mgの含有量が10massppm超え1.2mass%未満の範囲内、Pの含有量が0massppm以上200massppm以下の範囲内、残部がCu及び不可避不純物とした組成を有し、
     導電率が48%IACS以上とされ、
     前記厚部の耐熱温度T1が260℃以上、前記薄部の耐熱温度T2が240℃以上、かつ、0.9<T1/T2<1.25とされ、
     EBSD法により、圧延面において10000μm以上の測定面積を、0.25μmの測定間隔のステップでCI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界とし、Area Fractionにより平均粒径Aを求め、平均粒径Aの10分の1以下となる測定間隔のステップで測定して、総数1000個以上の結晶粒が含まれるように、複数視野で10000μm以上となる測定面積で、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとし、小傾角粒界割合B=LLB/(LLB+LHB)としたとき、前記厚部の小傾角粒界割合B1が80%以下、前記薄部の小傾角粒界割合B2が80%以下、かつ、0.8<B1/B2<1.2とされ、
     Goss方位{011}<100>に対して10°以内の結晶方位を有する結晶の面積割合が、前記厚部および前記薄部でそれぞれ1%以上であることを特徴とする銅合金異形条材。
    A copper alloy profile strip having a thick portion and a thin portion having different thicknesses in a cross section orthogonal to the longitudinal direction,
    The composition has a Mg content of more than 10 massppm and less than 1.2 mass%, a P content of 0 massppm or more and 200 massppm or less, and the balance being Cu and unavoidable impurities,
    Conductivity is set to 48% IACS or more,
    The heat resistant temperature T1 of the thick portion is 260° C. or higher, the heat resistant temperature T2 of the thin portion is 240° C. or higher, and 0.9<T1/T2<1.25,
    By the EBSD method, the measurement area of 10000 μm 2 or more on the rolled surface, except for the measurement points where the CI value is 0.1 or less at the measurement interval step of 0.25 μm, analyze the misorientation of each grain, The grain boundaries between the measurement points where the orientation difference between adjacent measurement points is 15° or more, and the average grain size A is obtained by Area Fraction, and the step of the measurement interval is 1/10 or less of the average grain size A. Excluding measurement points where the CI value analyzed by the data analysis software OIM is 0.1 or less with a measurement area of 10000 μm 2 or more in multiple fields of view so that a total of 1000 or more crystal grains are included. L LB is the length of the low angle grain boundary and subgrain boundary between the measurement points where the orientation difference between the adjacent measurement points is 2° or more and 15° or less, and the orientation difference between the adjacent measurement points is L HB is the length of the high-angle grain boundary between the measurement points where the angle exceeds 15°, and the low-angle grain boundary ratio B=L LB /(L LB +L HB ), the low-angle grain boundary in the thick part The ratio B1 is 80% or less, the low-angle grain boundary ratio B2 in the thin portion is 80% or less, and 0.8<B1/B2<1.2,
    A copper alloy profile strip, wherein the area ratio of crystals having a crystal orientation within 10° with respect to the Goss orientation {011}<100> is 1% or more in each of the thick portion and the thin portion.
  2.  前記不可避不純物のうち、Sの含有量が10massppm以下、Seの含有量が5massppm以下、Teの含有量が5massppm以下、Sbの含有量が5massppm以下、Biの含有量が5masppm以下、Asの含有量が5masppm以下とされるとともに、SとSeとTeとSbとBiとAsの合計含有量が24massppm以下とされていることを特徴とする請求項1に記載の銅合金異形条材。 Among the inevitable impurities, the S content is 10 mass ppm or less, the Se content is 5 mass ppm or less, the Te content is 5 mass ppm or less, the Sb content is 5 mass ppm or less, the Bi content is 5 mass ppm or less, and the As content. is 5 mass ppm or less, and the total content of S, Se, Te, Sb, Bi and As is 24 mass ppm or less.
  3.  Agの含有量が5massppm以上20massppm以下の範囲内であることを特徴とする請求項1または請求項2に記載の銅合金異形条材。 The copper alloy profile strip according to claim 1 or 2, characterized in that the Ag content is in the range of 5 ppm by mass or more and 20 ppm by mass or less.
  4.  前記厚部のビッカース硬さH1が70Hv以上、前記薄部のビッカース硬さH2が75Hv以上、かつ、0.7<H1/H2<1.2とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の銅合金異形条材。 The Vickers hardness H1 of the thick portion is 70 Hv or more, the Vickers hardness H2 of the thin portion is 75 Hv or more, and 0.7<H1/H2<1.2. The copper alloy profile strip according to claim 3.
  5.  表面に金属めっき層を有することを特徴とする請求項1から請求項4のいずれか一項に記載の銅合金異形条材。 The copper alloy dual-shaped strip according to any one of claims 1 to 4, characterized by having a metal plating layer on the surface.
  6.  請求項1から請求項5のいずれか一項に記載の銅合金異形条材からなることを特徴とする電子・電気機器用部品。 A component for electronic/electrical equipment, comprising the copper alloy profile strip according to any one of claims 1 to 5.
  7.  請求項1から請求項5のいずれか一項に記載の銅合金異形条材からなることを特徴とする端子。 A terminal characterized by being made of the copper alloy profile strip according to any one of claims 1 to 5.
  8.  請求項1から請求項5のいずれか一項に記載された銅合金異形条材からなることを特徴とするバスバー。 A bus bar characterized by being made of the copper alloy profile strip according to any one of claims 1 to 5.
  9.  請求項1から請求項5のいずれか一項に記載の銅合金異形条材からなることを特徴とするリードフレーム。 A lead frame comprising the copper alloy profile strip according to any one of claims 1 to 5.
  10.  請求項1から請求項5のいずれか一項に記載の銅合金異形条材からなることを特徴とする放熱基板。 A heat dissipation board comprising the copper alloy profile strip according to any one of claims 1 to 5.
PCT/JP2022/048113 2021-12-28 2022-12-27 Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate WO2023127851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021214036A JP2023097762A (en) 2021-12-28 2021-12-28 Copper alloy deformed bar material, part for electronic and electrical apparatuses, terminal, bus bar, lead frame, and heat dissipation substrate
JP2021-214036 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127851A1 true WO2023127851A1 (en) 2023-07-06

Family

ID=86999062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048113 WO2023127851A1 (en) 2021-12-28 2022-12-27 Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate

Country Status (3)

Country Link
JP (1) JP2023097762A (en)
TW (1) TW202344697A (en)
WO (1) WO2023127851A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136103A (en) * 2001-11-02 2003-05-14 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed steel bar and lead frame
JP2020128598A (en) * 2020-05-26 2020-08-27 三菱マテリアル株式会社 Rolled copper sheet, and component for electronic and electric apparatus
WO2020203576A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
JP2021055129A (en) * 2019-09-27 2021-04-08 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper alloy sheet and bar material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
WO2021117698A1 (en) * 2019-12-10 2021-06-17 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
JP2022072355A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136103A (en) * 2001-11-02 2003-05-14 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed steel bar and lead frame
WO2020203576A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film and manufacturing methods therefor
JP2021055129A (en) * 2019-09-27 2021-04-08 三菱マテリアル株式会社 Copper alloy for electronic and electric device, copper alloy sheet and bar material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
WO2021117698A1 (en) * 2019-12-10 2021-06-17 三菱マテリアル株式会社 Copper alloy sheet, copper alloy sheet with plating film, and method for producing same
JP2020128598A (en) * 2020-05-26 2020-08-27 三菱マテリアル株式会社 Rolled copper sheet, and component for electronic and electric apparatus
JP2022072355A (en) * 2020-10-29 2022-05-17 三菱マテリアル株式会社 Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate

Also Published As

Publication number Publication date
JP2023097762A (en) 2023-07-10
TW202344697A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7024925B2 (en) Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
CN115244197B (en) Pure copper plate
WO2021177469A1 (en) Pure copper plate
JP6981588B2 (en) Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
WO2022004791A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP7342923B2 (en) Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards
JP6981587B2 (en) Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
JP2022124875A (en) Copper alloy, plastic-worked copper alloy material, component for electronic and electric devices, terminal, bus bar, lead frame, and heat radiation substrate
WO2023127851A1 (en) Copper alloy irregular-shape strip, component for electronic/electrical devices, terminal, busbar, lead frame, and heat dissipation substrate
JP2022072355A (en) Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate
WO2023127854A1 (en) Copper alloy, plastic worked copper alloy material, component for electronic/electrical devices, terminal, bus bar, lead frame, and heat dissipation substrate
JP7078091B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards
JP7446975B2 (en) Copper alloys, plastic processed copper alloy materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards
WO2022004779A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical device, terminal, bus bar, lead frame, and heat dissipation substrate
JP7136157B2 (en) Copper alloys, copper alloy plastic working materials, parts for electronic and electrical equipment, terminals
JP7078070B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames
JP7187989B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916074

Country of ref document: EP

Kind code of ref document: A1