JP6226098B2 - Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays - Google Patents

Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays Download PDF

Info

Publication number
JP6226098B2
JP6226098B2 JP2017063418A JP2017063418A JP6226098B2 JP 6226098 B2 JP6226098 B2 JP 6226098B2 JP 2017063418 A JP2017063418 A JP 2017063418A JP 2017063418 A JP2017063418 A JP 2017063418A JP 6226098 B2 JP6226098 B2 JP 6226098B2
Authority
JP
Japan
Prior art keywords
electronic
copper alloy
electrical equipment
mass
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017063418A
Other languages
Japanese (ja)
Other versions
JP2017186664A (en
Inventor
裕隆 松永
裕隆 松永
牧 一誠
一誠 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020187021014A priority Critical patent/KR102296652B1/en
Priority to MX2018011658A priority patent/MX2018011658A/en
Priority to CN201780005558.0A priority patent/CN108431257B/en
Priority to PCT/JP2017/012914 priority patent/WO2017170699A1/en
Priority to US16/076,617 priority patent/US11203806B2/en
Priority to EP17775233.4A priority patent/EP3438298B1/en
Priority to TW106110851A priority patent/TWI703225B/en
Publication of JP2017186664A publication Critical patent/JP2017186664A/en
Application granted granted Critical
Publication of JP6226098B2 publication Critical patent/JP6226098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/14Terminal arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members

Description

本発明は、コネクタやプレスフィット等の端子、リードフレーム、バスバー、リレー用可動片等の電子・電気機器用部品に適した電子・電気機器用銅合金、及び、この電子・電気機器用銅合金からなる電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片に関するものである。   The present invention relates to a copper alloy for electronic / electrical equipment suitable for electronic / electrical equipment parts such as terminals such as connectors and press-fit, lead frames, bus bars, relay movable pieces, etc., and this copper alloy for electronic / electrical equipment The present invention relates to a copper alloy sheet material for electronic / electric equipment, parts for electronic / electric equipment, terminals, bus bars, and a movable piece for relay.

従来、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
ここで、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される電子・電気機器用部品の小型化および薄肉化が図られている。このため、電子・電気機器用部品を構成する材料には、高い強度や良好な曲げ加工性が求められている。また、自動車のエンジンルーム等の高温環境下で使用されるコネクタの端子等においては、耐応力緩和特性も求められている。
Conventionally, copper or copper alloy having high conductivity has been used for electronic / electric equipment parts such as terminals such as connectors and press fits, movable pieces for relays, lead frames, bus bars and the like.
Here, along with the downsizing of electronic devices and electrical devices, parts for electronic and electrical devices used in these electronic devices and electrical devices are being made smaller and thinner. For this reason, the material which comprises the components for electronic / electrical devices is calculated | required by high intensity | strength and favorable bending workability. In addition, stress relaxation resistance is also required for connector terminals used in high-temperature environments such as automobile engine rooms.

コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品に使用される材料として、例えば特許文献1、2には、Cu−Mg系合金が提案されている。   For example, Patent Documents 1 and 2 propose Cu-Mg alloys as materials used for electronic and electrical device parts such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars, and the like. Yes.

特許第5045783号公報Japanese Patent No. 5045783 特開2014−114464号公報JP 2014-114464 A

ここで、特許文献1に記載されたCu−Mg系合金においては、Mgの含有量が多いため、導電性が不十分であり、高い導電性が要求される用途には適用することが困難であった。
また、特許文献2に記載されたCu−Mg系合金においては、Mgの含有量が0.01〜0.5mass%、及びPの含有量が0.01〜0.5mass%とされており、冷間加工性および曲げ加工性を大きく劣化させる粗大な化合物について考慮されておらず、冷間加工性及び曲げ加工性が不十分であった。
Here, in the Cu-Mg based alloy described in Patent Document 1, since the Mg content is large, the conductivity is insufficient, and it is difficult to apply to applications that require high conductivity. there were.
In the Cu-Mg alloy described in Patent Document 2, the Mg content is 0.01 to 0.5 mass%, and the P content is 0.01 to 0.5 mass%. Coarse compounds that greatly deteriorate cold workability and bending workability are not considered, and cold workability and bending workability are insufficient.

さらに、上述のCu−Mg系合金においては、Mgによって銅合金溶湯の粘度が上昇することから、Pを添加しないと鋳造性が低下してしまうといった問題があった。
また、最近では、電子・電気機器の軽量化にともない、これら電子機器や電気機器等に使用されるコネクタ等の端子、リレー用可動片、リードフレーム等の電子・電気機器用部品の薄肉化が図られている。このため、コネクタ等の端子においては、接圧を確保するために、厳しい曲げ加工を行う必要があり、従来にも増して、曲げ加工性が要求されている。
Furthermore, in the above-mentioned Cu-Mg type | system | group alloy, since the viscosity of a copper alloy molten metal raises with Mg, there existed a problem that castability will fall unless P is added.
Recently, with the reduction in weight of electronic and electrical devices, the thickness of electronic and electrical device parts such as connectors, movable pieces for relays, lead frames, etc. used in these electronic devices and electrical devices has been reduced. It is illustrated. For this reason, in a terminal such as a connector, it is necessary to perform severe bending work in order to ensure contact pressure, and bending workability is required more than ever.

この発明は、前述した事情に鑑みてなされたものであって、導電性、曲げ加工性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and is excellent in electrical conductivity and bending workability for electronic and electrical equipment copper alloys, electronic and electrical equipment copper alloy strips, and electronic and electrical equipment use. It aims at providing a movable piece for components, a terminal, a bus bar, and a relay.

この課題を解決するために、本発明の電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、導電率が75%IACS超えであるとともに、走査型電子顕微鏡観察において、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされていることを特徴としている。 In order to solve this problem, the copper alloy for electronic / electrical equipment of the present invention includes Mg in a range of 0.15 mass% to less than 0.35 mass%, and P in a range of 0.0005 mass% to less than 0.01 mass%. In addition, the balance is made of Cu and inevitable impurities, the electrical conductivity is over 75% IACS, and the average number of compounds containing Mg and P having a particle size of 0.1 μm or more is observed under a scanning electron microscope. 0.5 pieces / μm 2 or less.

上述の構成の電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することにより、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。具体的には導電率が75%IACS超えとされているので、高い導電性が要求される用途にも適用することができる。また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、Mgを含む銅合金溶湯の粘度を下げることができ、鋳造性を向上させることができる。   According to the copper alloy for electronic and electrical equipment having the above-described configuration, the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%, so that Mg is dissolved in the copper matrix. As a result, the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity. Specifically, since the electrical conductivity exceeds 75% IACS, it can also be applied to applications that require high electrical conductivity. Moreover, since P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, the viscosity of the molten copper alloy containing Mg can be lowered, and the castability can be improved.

そして、走査型電子顕微鏡観察において、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされていることから、母相中には、割れの起点となる粗大なMgとPを含有する化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状のコネクタ等の端子、リレー用可動片、リードフレーム等の電子・電気機器用部品等を成形することが可能となる。 In the observation with a scanning electron microscope, the average number of compounds containing Mg and P having a particle size of 0.1 μm or more is 0.5 pieces / μm 2 or less. Thus, a large amount of coarse Mg and P-containing compounds that are the starting points of the above are not dispersed, and the bending workability is improved. Therefore, it becomes possible to mold terminals for complicated shapes such as connectors, movable pieces for relays, parts for electronic and electric devices such as lead frames, and the like.

ここで、本発明の電子・電気機器用銅合金においては、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕<0.5の関係式を満足していることが好ましい。
この場合、MgとPを含む粗大な化合物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
Here, in the copper alloy for electronic and electrical equipment of the present invention, the Mg content [Mg] (mass%) and the P content [P] (mass%) are [Mg] + 20 × [P] < It is preferable that the relational expression of 0.5 is satisfied.
In this case, the production | generation of the coarse compound containing Mg and P can be suppressed, and it can suppress that cold work property and bending workability fall.

また、本発明の電子・電気機器用銅合金においては、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕≦400の関係式を満たすことが好ましい。
この場合、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率を、上述のように規定することにより、鋳造性を確実に向上させることができる。
Moreover, in the copper alloy for electronic / electrical equipment of the present invention, the Mg content [Mg] (mass%) and the P content [P] (mass%) satisfy [Mg] / [P] ≦ 400. It is preferable to satisfy the relational expression.
In this case, the castability can be reliably improved by defining the ratio of the Mg content that lowers the castability and the P content that improves the castability as described above.

さらに、本発明の電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上であることが好ましい。
この場合、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が上述のように規定されているので、容易に変形することがなく、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の銅合金として特に適している。
Furthermore, in the copper alloy for electronic / electrical equipment of the present invention, it is preferable that the 0.2% yield strength when a tensile test is performed in a direction orthogonal to the rolling direction is 300 MPa or more.
In this case, since the 0.2% proof stress at the time of performing a tensile test in a direction orthogonal to the rolling direction is defined as described above, the terminal is not easily deformed, such as a connector or a press fit, It is particularly suitable as a copper alloy for electronic and electrical equipment parts such as movable pieces for relays, lead frames and bus bars.

また、本発明の電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上であることが好ましい。
この場合、応力緩和率が上述のように規定されていることから、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、例えばコネクタ端子等の接圧の低下を抑制することができる。よって、エンジンルーム等の高温環境下で使用される電子機器用部品の素材として適用することが可能となる。
Moreover, in the copper alloy for electronic / electric equipment of this invention, it is preferable that a residual stress rate is 50% or more at 150 degreeC and 1000 hours.
In this case, since the stress relaxation rate is defined as described above, permanent deformation can be suppressed to a small level even when used in a high temperature environment, and for example, a decrease in contact pressure of a connector terminal or the like is suppressed. be able to. Therefore, it can be applied as a material for electronic device parts used in a high temperature environment such as an engine room.

本発明の電子・電気機器用銅合金板条材は、上述の電子・電気機器用銅合金からなることを特徴としている。
この構成の電子・電気機器用銅合金板条材によれば、上述の電子・電気機器用銅合金で構成されていることから、導電性、強度、曲げ加工性、耐応力緩和特性に優れており、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
なお、本発明の電子・電気機器用銅合金板条材は、板材及びこれをコイル状に巻き取った条材を含むものである。
The copper alloy sheet material for electronic / electrical equipment of the present invention is characterized by comprising the above-mentioned copper alloy for electronic / electrical equipment.
According to the copper alloy sheet material for electronic / electrical equipment of this configuration, since it is composed of the above-mentioned copper alloy for electronic / electrical equipment, it has excellent conductivity, strength, bending workability, and stress relaxation resistance. It is particularly suitable as a material for electronic and electrical device parts such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars and the like.
In addition, the copper alloy sheet material for electronic / electrical equipment of the present invention includes a sheet material and a sheet material obtained by winding the sheet material in a coil shape.

ここで、本発明の電子・電気機器用銅合金板条材においては、表面にSnめっき層又はAgめっき層を有することが好ましい。
この場合、表面にSnめっき層又はAgめっき層を有しているので、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。なお、本発明において、「Snめっき」は、純Snめっき又はSn合金めっきを含み、「Agめっき」は、純Agめっき又はAg合金めっきを含む。
Here, in the copper alloy sheet material for electronic / electrical equipment of the present invention, it is preferable to have a Sn plating layer or an Ag plating layer on the surface.
In this case, since it has a Sn plating layer or an Ag plating layer on the surface, it is particularly suitable as a material for electronic and electrical equipment parts such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars, etc. Yes. In the present invention, “Sn plating” includes pure Sn plating or Sn alloy plating, and “Ag plating” includes pure Ag plating or Ag alloy plating.

本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金板条材からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等を含むものである。この構成の電子・電気機器用部品は、上述の電子・電気機器用銅合金板条材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
また、本発明の電子・電気機器用部品においては、表面にSnめっき層又はAgめっき層を有していてもよい。なお、Snめっき層及びAgめっき層は、予め電子・電気機器用銅合金板条材に形成しておいてもよいし、電子・電気機器用部品を成形した後に形成してもよい。
The component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy sheet material for electronic / electrical equipment. The electronic / electrical device parts in the present invention include terminals such as connectors and press-fit, movable pieces for relays, lead frames, bus bars and the like. The electronic / electrical device parts with this structure are manufactured using the above-mentioned copper alloy sheet material for electronic / electrical devices, so that they exhibit excellent characteristics even when downsized and thinned. Can do.
Moreover, in the component for electronic / electric equipment of this invention, you may have Sn plating layer or Ag plating layer on the surface. The Sn plating layer and the Ag plating layer may be formed in advance on a copper alloy sheet material for electronic / electric equipment, or may be formed after molding a part for electronic / electric equipment.

本発明の端子は、上述の電子・電気機器用銅合金板条材からなることを特徴としている。
この構成の端子は、上述の電子・電気機器用銅合金板条材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
また、本発明の端子においては、表面にSnめっき層又はAgめっき層を有していてもよい。なお、Snめっき層及びAgめっき層は、予め電子・電気機器用銅合金板条材に形成しておいてもよいし、端子を成形した後に形成してもよい。
The terminal of the present invention is characterized by comprising the above-described copper alloy sheet material for electronic and electrical equipment.
Since the terminal of this structure is manufactured using the above-mentioned copper alloy sheet material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.
Moreover, in the terminal of this invention, you may have Sn plating layer or Ag plating layer on the surface. The Sn plating layer and the Ag plating layer may be formed in advance on a copper alloy sheet material for electronic / electric equipment, or may be formed after the terminal is formed.

本発明のバスバーは、上述の電子・電気機器用銅合金板条材からなることを特徴としている。
この構成のバスバーは、上述の電子・電気機器用銅合金板条材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
また、本発明のバスバーにおいては、表面にSnめっき層又はAgめっき層を有していてもよい。なお、Snめっき層及びAgめっき層は、予め電子・電気機器用銅合金板条材に形成しておいてもよいし、バスバーを成形した後に形成してもよい。
The bus bar of the present invention is characterized by comprising the above-described copper alloy sheet material for electronic and electrical equipment.
Since the bus bar having this configuration is manufactured using the above-described copper alloy sheet material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned.
Moreover, in the bus bar of the present invention, the surface may have a Sn plating layer or an Ag plating layer. The Sn plating layer and the Ag plating layer may be formed in advance on a copper alloy sheet material for electronic / electrical equipment, or may be formed after the bus bar is formed.

本発明のリレー用可動片は、上述の電子・電気機器用銅合金板条材からなることを特徴としている。
この構成のリレー用可動片は、上述の電子・電気機器用銅合金板条材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
また、本発明のリレー用可動片においては、表面にSnめっき層又はAgめっき層を有していてもよい。なお、Snめっき層及びAgめっき層は、予め電子・電気機器用銅合金板条材に形成しておいてもよいし、リレー用可動片を成形した後に形成してもよい。
The movable piece for relay of the present invention is characterized by comprising the above-described copper alloy sheet material for electronic and electrical equipment.
Since the movable piece for relay having this configuration is manufactured using the above-described copper alloy sheet material for electronic and electrical equipment, it can exhibit excellent characteristics even when it is downsized and thinned. .
Moreover, in the movable piece for relay of this invention, you may have Sn plating layer or Ag plating layer on the surface. The Sn plating layer and the Ag plating layer may be formed in advance on a copper alloy sheet material for electronic / electrical equipment, or may be formed after the movable piece for relay is formed.

本発明によれば、導電性、曲げ加工性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片を提供することができる。   According to the present invention, a copper alloy for electronic and electrical equipment having excellent conductivity and bending workability, a copper alloy sheet material for electronic and electrical equipment, a component for electronic and electrical equipment, a terminal, a bus bar, and a movable for relay A piece can be provided.

本実施形態である電子・電気機器用銅合金の製造方法のフロー図である。It is a flowchart of the manufacturing method of the copper alloy for electronic and electric apparatuses which is this embodiment. 本実施例における化合物の観察結果の一例を示す写真及びEDX分析結果である。It is the photograph and EDX analysis result which show an example of the observation result of the compound in a present Example.

以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
本実施形態である電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなる組成を有する。
また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされている。
そして、本実施形態である電子・電気機器用銅合金においては、走査型電子顕微鏡観察において、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされている。
Below, the copper alloy for electronic and electric apparatuses which is one Embodiment of this invention is demonstrated.
The copper alloy for electronic / electrical equipment according to this embodiment includes Mg in a range of 0.15 mass% to less than 0.35 mass%, P in a range of 0.0005 mass% to less than 0.01 mass%, and the balance being It has a composition consisting of Cu and inevitable impurities.
Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, the electrical conductivity exceeds 75% IACS.
And in the copper alloy for electronic and electric devices which is this embodiment, in scanning electron microscope observation, the average number of the compound containing Mg and P with a particle size of 0.1 micrometer or more is 0.5 piece / micrometer < 2 >. It is as follows.

また、本実施形態である電子・電気機器用銅合金においては、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕+20×〔P〕<0.5
の関係式を満足している。
さらに、本実施形態では、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕/〔P〕≦400
の関係式を満足している。
In addition, in the copper alloy for electronic and electrical equipment according to the present embodiment, the Mg content [Mg] (mass%) and the P content [P] (mass%)
[Mg] + 20 × [P] <0.5
Is satisfied.
Furthermore, in this embodiment, Mg content [Mg] (mass%) and P content [P] (mass%)
[Mg] / [P] ≦ 400
Is satisfied.

また、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされている。すなわち、本実施形態では、電子・電気機器用銅合金の圧延材とされており、圧延の最終工程における圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が上述のように規定されているのである。
さらに、本実施形態である電子・電気機器用銅合金においては、残留応力率が150℃、1000時間で50%以上とされている。
Moreover, in the copper alloy for electronic / electric equipment which is this embodiment, the 0.2% yield strength at the time of performing a tensile test in a direction orthogonal to the rolling direction is set to 300 MPa or more. That is, in this embodiment, it is a rolled material of a copper alloy for electronic / electrical equipment, and the 0.2% yield strength when a tensile test is performed in a direction orthogonal to the rolling direction in the final rolling process is as described above. It is defined as follows.
Furthermore, in the copper alloy for electronic / electric equipment according to this embodiment, the residual stress rate is 50% or more at 150 ° C. for 1000 hours.

ここで、上述のように成分組成、化合物、各種特性を規定した理由について以下に説明する。   Here, the reason why the component composition, the compound, and various characteristics are defined as described above will be described below.

(Mg:0.15mass%以上0.35mass%未満)
Mgは、銅合金の母相中に固溶することで、導電率を大きく低下させることなく、強度および耐応力緩和特性を向上させる作用を有する元素である。
ここで、Mgの含有量が0.15mass%未満の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が0.35mass%以上の場合には、導電率が大きく低下するとともに、銅合金溶湯の粘度が上昇し、鋳造性が低下するおそれがある。
以上のことから、本実施形態では、Mgの含有量を0.15mass%以上0.35mass%未満の範囲内に設定している。
なお、強度および耐応力緩和特性をさらに向上させるためには、Mgの含有量の下限を0.16mass%以上とすることが好ましく、0.17mass%以上とすることがさらに好ましい。また、導電率の低下及び鋳造性の低下を確実に抑制するためには、Mgの含有量の上限を0.30mass%以下とすることが好ましく、0.28mass%以下とすることがさらに好ましい。
(Mg: 0.15 mass% or more and less than 0.35 mass%)
Mg is an element having an effect of improving strength and stress relaxation resistance without greatly reducing the electrical conductivity by being dissolved in the parent phase of the copper alloy.
Here, when the content of Mg is less than 0.15 mass%, there is a possibility that the effect cannot be sufficiently achieved. On the other hand, when the Mg content is 0.35 mass% or more, the conductivity is greatly reduced, the viscosity of the molten copper alloy is increased, and castability may be reduced.
From the above, in the present embodiment, the Mg content is set within a range of 0.15 mass% or more and less than 0.35 mass%.
In order to further improve the strength and the stress relaxation resistance, the lower limit of the Mg content is preferably 0.16 mass% or more, more preferably 0.17 mass% or more. Further, in order to reliably suppress the decrease in conductivity and the decrease in castability, the upper limit of the Mg content is preferably set to 0.30 mass% or less, and more preferably set to 0.28 mass% or less.

(P:0.0005mass%以上、0.01mass%未満)
Pは、鋳造性を向上させる作用効果を有する元素である。
ここで、Pの含有量が0.0005mass%未満の場合には、その作用効果を十分に奏功せしめることができないおそれがある。一方、Pの含有量が0.01mass%以上の場合には、MgとPを含有する粒径0.1μm以上の粗大な化合物が生成しやすくなることから、この化合物が破壊の起点となり、冷間加工時や曲げ加工時に割れが生じるおそれがある。
以上のことから、本実施形態においては、Pの含有量を0.0005mass%以上0.01mass%未満の範囲内に設定している。なお、確実に鋳造性を向上させるためには、Pの含有量の下限を0.0007mass%以上とすることが好ましく、0.001mass%以上とすることがさらに好ましい。また、粗大な化合物の生成を確実に抑制するためには、Pの含有量の上限を0.009mass%未満とすることが好ましく、0.008mass%未満とすることがさらに好ましく、0.0075mass%以下とすることが好ましく、さらに0.0050mass%以下が好ましい。
(P: 0.0005 mass% or more and less than 0.01 mass%)
P is an element having an effect of improving castability.
Here, when content of P is less than 0.0005 mass%, there exists a possibility that the effect cannot be fully achieved. On the other hand, when the P content is 0.01% by mass or more, a coarse compound having a particle diameter of 0.1 μm or more containing Mg and P is likely to be generated. There is a risk of cracks occurring during inter-processing and bending.
From the above, in the present embodiment, the P content is set within a range of 0.0005 mass% or more and less than 0.01 mass%. In order to reliably improve the castability, the lower limit of the P content is preferably 0.0007 mass% or more, and more preferably 0.001 mass% or more. In order to reliably suppress the formation of a coarse compound, the upper limit of the P content is preferably less than 0.009 mass%, more preferably less than 0.008 mass%, and more preferably 0.0075 mass%. It is preferable to set it as follows, and 0.0050 mass% or less is further preferable.

(〔Mg〕+20×〔P〕<0.5)
上述のように、MgとPが共存することにより、MgとPを含む化合物が生成することになる。
ここで、質量比で、Mgの含有量を〔Mg〕、Pの含有量を〔P〕とした場合に、〔Mg〕+20×〔P〕が0.5以上となる場合には、MgおよびPの総量が多く、MgとPを含む化合物が粗大化するとともに高密度に分布し、冷間加工時や曲げ加工時に割れが生じやすくなるおそれがある。
以上のことから、本実施形態においては、〔Mg〕+20×〔P〕を0.5未満に設定している。なお、化合物の粗大化および高密度化を確実に抑制して、冷間加工時や曲げ加工時における割れの発生を抑制するためには、〔Mg〕+20×〔P〕を0.48未満とすることが好ましく、0.46未満とすることがさらに好ましい。さらに好ましくは0.44未満である。
([Mg] + 20 × [P] <0.5)
As described above, when Mg and P coexist, a compound containing Mg and P is generated.
Here, when the Mg content is [Mg] and the P content is [P], when [Mg] + 20 × [P] is 0.5 or more, Mg and The total amount of P is large, and the compound containing Mg and P is coarsened and distributed with a high density, and there is a risk that cracks are likely to occur during cold working or bending.
From the above, in this embodiment, [Mg] + 20 × [P] is set to less than 0.5. In addition, in order to reliably suppress the coarsening and densification of the compound and suppress the occurrence of cracks during cold working or bending, [Mg] + 20 × [P] is less than 0.48. Preferably, it is more preferable to set it to less than 0.46. More preferably, it is less than 0.44.

(〔Mg〕/〔P〕≦400)
Mgは、銅合金溶湯の粘度を上昇させ、鋳造性を低下させる作用を有する元素であることから、鋳造性を確実に向上させるためには、MgとPの含有量の比率を適正化する必要がある。
ここで、質量比で、Mgの含有量を〔Mg〕、Pの含有量を〔P〕とした場合に、〔Mg〕/〔P〕が400を超える場合には、Pに対してMgの含有量が多くなり、Pの添加による鋳造性向上効果が小さくなるおそれがある。
以上のことから、本実施形態においては、〔Mg〕/〔P〕を400以下に設定している。鋳造性をより向上させるためには、〔Mg〕/〔P〕を350以下とすることが好ましく、300以下とすることがさらに好ましい。
なお、〔Mg〕/〔P〕が過剰に低い場合には、Mgが化合物として消費され、Mgの固溶による効果を得ることができなくなるおそれがある。MgとPを含有する化合物の生成を抑制し、Mgの固溶による耐力、耐応力緩和特性の向上を確実に図るためには、〔Mg〕/〔P〕の下限を20超えとすることが好ましく、25超えであることがさらに好ましい。
([Mg] / [P] ≦ 400)
Mg is an element that has the effect of increasing the viscosity of the molten copper alloy and lowering the castability. Therefore, in order to reliably improve the castability, it is necessary to optimize the ratio of the contents of Mg and P. There is.
Here, in terms of mass ratio, when Mg content is [Mg] and P content is [P], and [Mg] / [P] is more than 400, There is a possibility that the content is increased and the effect of improving castability by the addition of P is reduced.
From the above, in this embodiment, [Mg] / [P] is set to 400 or less. In order to further improve the castability, [Mg] / [P] is preferably 350 or less, and more preferably 300 or less.
When [Mg] / [P] is excessively low, Mg is consumed as a compound, and there is a possibility that the effect of solid solution of Mg cannot be obtained. In order to suppress the formation of a compound containing Mg and P and to surely improve the yield strength and stress relaxation resistance due to the solid solution of Mg, the lower limit of [Mg] / [P] should be 20 or more. Preferably, it exceeds 25, and more preferably.

(不可避不純物:0.1mass%以下)
その他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、Sn、As、Sb、Tl、Pb、Bi、Be、N、C、Si、Li、H、O、S等が挙げられる。これらの不可避不純物は、導電率を低下させる作用があることから、総量で0.1mass%以下とする。
また、Ag、Zn、Snは銅中に容易に混入して導電率を低下させるため、総量で500massppm未満とすることが好ましい。特にSnは大きく導電率を減少させるため、単独で50massppm未満とすることが好ましい。
さらに、Si、Cr、Ti、Zr、Fe、Coは、特に導電率を大きく減少させるとともに、化合物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
(Inevitable impurities: 0.1 mass% or less)
Other inevitable impurities include Ag, B, Ca, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru , Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Tl, Pb, Bi, Be, N , C, Si, Li, H, O, S and the like. Since these inevitable impurities have the effect of lowering the conductivity, the total amount is set to 0.1 mass% or less.
In addition, Ag, Zn, and Sn are easily mixed in copper to lower the electrical conductivity, so that the total amount is preferably less than 500 massppm. In particular, since Sn greatly reduces the conductivity, it is preferable that it be less than 50 massppm alone.
Furthermore, since Si, Cr, Ti, Zr, Fe, and Co greatly reduce the electrical conductivity and deteriorate the bending workability due to the formation of the compound, it is preferable that the total amount of these elements is less than 500 massppm.

(MgとPを含有する化合物)
本実施形態である電子・電気機器用銅合金においては、走査型電子顕微鏡で観察した結果、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされている。これらのサイズの大きい化合物が多量に存在すると、これらの化合物が割れの起点となり、曲げ加工性が大幅に劣化することになる。
(Compound containing Mg and P)
In the copper alloy for electronic / electric equipment according to this embodiment, as a result of observation with a scanning electron microscope, the average number of compounds containing Mg and P having a particle size of 0.1 μm or more is 0.5 / μm 2. It is as follows. If a large amount of these large-sized compounds are present, these compounds serve as starting points for cracking, and the bending workability is greatly deteriorated.

組織を調査した結果、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下の場合、すなわち、MgとPを含有する化合物が存在しないあるいは少量である場合、良好な曲げ加工性が得られることになる。
さらに、上述の作用効果を確実に奏功せしめるためには、粒径0.05μm以上のMgとPを含有する化合物の平均個数が合金中に0.5個/μm以下であることが、より好ましい。
As a result of investigating the structure, when the average number of compounds containing Mg and P having a particle size of 0.1 μm or more is 0.5 pieces / μm 2 or less, that is, the compound containing Mg and P does not exist or a small amount When it is, favorable bending workability will be obtained.
Furthermore, in order to ensure that the above-described effects are achieved, the average number of compounds containing Mg and P having a particle size of 0.05 μm or more is 0.5 / μm 2 or less in the alloy. preferable.

なお、MgとPを含有する化合物の平均個数は、電界放出型走査電子顕微鏡を用いて、倍率:5万倍、視野:約4.8μmで10視野の観察を行い、その平均値を算出する。
また、MgとPを含有する化合物の粒径は、化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とする。
粒径0.1μm以上のMgとPを含有する化合物の単位面積当たりの平均個数(個数密度)は、主に鋳造速度と中間熱処理温度、熱処理時間によって制御できる。上述の化合物単位面積当たりの平均個数(個数密度)を低くするためには、鋳造速度を速く、中間熱処理を高温短時間に設定することで達成できる。鋳造速度と中間熱処理条件は適宜選択することになる。
The average number of compounds containing Mg and P was calculated by observing 10 fields of view at a magnification of 50,000 times and a field of view of about 4.8 μm 2 using a field emission scanning electron microscope. To do.
In addition, the particle diameter of the compound containing Mg and P is the long diameter of the compound (the length of the straight line that can be drawn the longest in the grains under the condition of not contacting the grain boundary in the middle) and the short diameter (in the direction intersecting with the long diameter at right angles). The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the grain boundary in the middle.
The average number (number density) per unit area of the compound containing Mg and P having a particle size of 0.1 μm or more can be controlled mainly by the casting speed, intermediate heat treatment temperature, and heat treatment time. In order to reduce the average number (number density) per unit area of the compound described above, it can be achieved by setting the casting speed fast and setting the intermediate heat treatment at a high temperature and in a short time. The casting speed and intermediate heat treatment conditions are appropriately selected.

(導電率:75%IACS超え)
本実施形態である電子・電気機器用銅合金において、導電率を75%IACS超えに設定することにより、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品として良好に使用することができる。
なお、導電率は76%IACS超えであることが好ましく、77%IACS超えであることがさらに好ましく、78%IACS超えであることがより好ましく、80%IACS超えであることがさらに好ましい。
(Conductivity: over 75% IACS)
In the copper alloy for electronic and electrical equipment according to the present embodiment, by setting the electrical conductivity to exceed 75% IACS, electronic and electrical equipment such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars, etc. It can be used satisfactorily as a service part.
The electrical conductivity is preferably more than 76% IACS, more preferably more than 77% IACS, more preferably more than 78% IACS, and still more preferably more than 80% IACS.

(0.2%耐力:300MPa以上)
本実施形態である電子・電気機器用銅合金においては、0.2%耐力を300MPa以上とすることにより、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適するものとなる。なお、本実施形態では、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされている。
ここで、上述の0.2%耐力は325MPa以上であることが好ましく、350MPa以上であることがさらに好ましい。
(0.2% proof stress: 300 MPa or more)
In the copper alloy for electronic / electric equipment according to this embodiment, the 0.2% proof stress is set to 300 MPa or more, so that terminals such as connectors and press fits, movable pieces for relays, lead frames, bus bars, etc. It is particularly suitable as a material for equipment parts. In the present embodiment, the 0.2% yield strength when the tensile test is performed in the direction orthogonal to the rolling direction is set to 300 MPa or more.
Here, the 0.2% yield strength described above is preferably 325 MPa or more, and more preferably 350 MPa or more.

(残留応力率:50%以上)
本実施形態である電子機器用銅合金においては、上述のように、残留応力率が150℃、1000時間で50%以上とされている。
この条件における残留応力率が高い場合には、高温環境下で使用した場合であっても永久変形を小さく抑えることができ、接圧の低下を抑制することができる。よって、本実施形態である電子機器用銅合金は、自動車のエンジンルーム周りのような高温環境下で使用される端子として適用することが可能となる。本実施形態では、圧延方向に対して直交方向に応力緩和試験を行った残留応力率が150℃、1000時間で50%以上とされている。
ここで、上述の残留応力率は150℃、1000時間で60%以上とすることが好ましく、150℃、1000時間で70%以上とすることがさらに好ましい。
(Residual stress ratio: 50% or more)
In the copper alloy for electronic devices according to the present embodiment, as described above, the residual stress rate is set to 50% or more at 150 ° C. for 1000 hours.
When the residual stress rate under these conditions is high, permanent deformation can be suppressed even when used in a high temperature environment, and a decrease in contact pressure can be suppressed. Therefore, the copper alloy for electronic devices according to the present embodiment can be applied as a terminal used in a high temperature environment such as around the engine room of an automobile. In the present embodiment, the residual stress ratio obtained by performing the stress relaxation test in the direction orthogonal to the rolling direction is set to 50% or more at 150 ° C. for 1000 hours.
Here, the above-mentioned residual stress rate is preferably 60% or more at 150 ° C. and 1000 hours, and more preferably 70% or more at 150 ° C. and 1000 hours.

次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。   Next, a manufacturing method of the copper alloy for electronic / electric equipment according to the present embodiment having such a configuration will be described with reference to the flowchart shown in FIG.

(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。なお、各種元素の添加には、元素単体や母合金等を用いることができる。また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
(Melting / Casting Process S01)
First, the above-described elements are added to a molten copper obtained by melting a copper raw material to adjust the components, thereby producing a molten copper alloy. In addition, an element simple substance, a mother alloy, etc. can be used for the addition of various elements. Moreover, you may melt | dissolve the raw material containing the above-mentioned element with a copper raw material. Moreover, you may use the recycling material and scrap material of this alloy. Here, the molten copper is preferably so-called 4NCu having a purity of 99.99 mass% or more, or so-called 5NCu having a purity of 99.999 mass% or more. In the melting process, in order to suppress the oxidation of Mg and to reduce the hydrogen concentration, the atmosphere is dissolved in an inert gas atmosphere (for example, Ar gas) having a low vapor pressure of H 2 O, and the holding time during melting is minimized It is preferable that the

そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この際、銅合金溶湯の凝固時に、MgとPを含有する化合物が晶出物として形成されるため、凝固速度を速くすることでMgとPを含有する化合物サイズをより微細にすることが可能となる。そのため、溶湯の冷却速度は0.5℃/sec以上とすることが好ましく、さらに好ましくは1℃/sec以上であり、最も好ましくは15℃/sec以上である。
Then, the copper alloy molten metal whose components are adjusted is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use a continuous casting method or a semi-continuous casting method.
At this time, since the compound containing Mg and P is formed as a crystallized product during solidification of the molten copper alloy, the size of the compound containing Mg and P can be made finer by increasing the solidification rate. It becomes. Therefore, the cooling rate of the molten metal is preferably 0.5 ° C./sec or more, more preferably 1 ° C./sec or more, and most preferably 15 ° C./sec or more.

(均質化/溶体化工程S02)
次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析して濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することがある。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を300℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりする。なお、この均質化/溶体化工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
(Homogenization / Solution Step S02)
Next, heat treatment is performed for homogenization and solution of the obtained ingot. In the ingot, there may be an intermetallic compound or the like mainly composed of Cu and Mg generated by Mg segregating and concentrating in the solidification process. Therefore, in order to eliminate or reduce these segregation and intermetallic compounds, etc., by performing a heat treatment to heat the ingot to 300 ° C. or more and 900 ° C. or less, Mg can be uniformly diffused in the ingot. Mg is dissolved in the matrix. The homogenization / solution solution step S02 is preferably performed in a non-oxidizing or reducing atmosphere.

ここで、加熱温度が300℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を300℃以上900℃以下の範囲に設定している。
なお、後述する粗加工の効率化と組織の均一化のために、前述の均質化/溶体化工程S02の後に熱間加工を実施してもよい。この場合、加工方法に特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。また、熱間加工温度は、300℃以上900℃以下の範囲内とすることが好ましい。
Here, when the heating temperature is less than 300 ° C., solutionization is incomplete, and a large amount of intermetallic compounds mainly containing Cu and Mg may remain in the matrix phase. On the other hand, when the heating temperature exceeds 900 ° C., a part of the copper material becomes a liquid phase, and the structure and the surface state may become non-uniform. Therefore, the heating temperature is set in the range of 300 ° C. or higher and 900 ° C. or lower.
In addition, in order to increase the efficiency of roughing and to make the structure uniform, which will be described later, hot working may be performed after the homogenization / solution forming step S02 described above. In this case, the processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing, and the like can be employed. The hot working temperature is preferably in the range of 300 ° C. or higher and 900 ° C. or lower.

(粗加工工程S03)
所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S03における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間加工となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率(圧延率)については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。
(Roughing process S03)
In order to process into a predetermined shape, rough processing is performed. The temperature condition in this roughing step S03 is not particularly limited, but is in the range of −200 ° C. to 200 ° C., which is cold or warm processing for suppressing recrystallization or improving dimensional accuracy. It is preferable to use normal temperature. The processing rate (rolling rate) is preferably 20% or more, and more preferably 30% or more. Moreover, there is no limitation in particular about a processing method, For example, rolling, wire drawing, extrusion, groove rolling, forging, a press, etc. are employable.

(中間熱処理工程S04)
粗加工工程S03後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。熱処理の方法は特に限定はないが、晶出等により形成された上述の化合物の粒径を増大させないためには、高温、短時間の熱処理工程が必要となるため、好ましくは400℃以上900℃以下の保持温度、5秒以上1時間以下の保持時間、より好ましくは500℃以上900℃以下の保持温度、5秒以上30分以下の保持時間で熱処理を行う。また非酸化雰囲気または還元性雰囲気中で熱処理を行う。
また、加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
なお、粗加工工程S03及び中間熱処理工程S04は、繰り返し実施してもよい。
(Intermediate heat treatment step S04)
After the rough machining step S03, heat treatment is performed for the purpose of thorough solution treatment, recrystallization structure, or softening for improving workability. The method of heat treatment is not particularly limited, but in order not to increase the particle size of the above-mentioned compound formed by crystallization or the like, a high-temperature, short-time heat treatment step is required. The heat treatment is performed at the following holding temperature, 5 seconds to 1 hour, more preferably 500 ° C. to 900 ° C., and 5 seconds to 30 minutes. Further, heat treatment is performed in a non-oxidizing atmosphere or a reducing atmosphere.
Moreover, the cooling method after heating is not particularly limited, but it is preferable to adopt a method such as water quenching in which the cooling rate is 200 ° C./min or more.
Note that the roughing step S03 and the intermediate heat treatment step S04 may be repeatedly performed.

(仕上加工工程S05)
中間熱処理工程S04後の銅素材を所定の形状に加工するため、仕上加工を行う。なお、この仕上加工工程S05における温度条件は特に限定はないが、再結晶を抑制するため、または軟化を抑制するために冷間、または温間加工となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、仕上加工工程S05において加工硬化によって強度を向上させるためには、加工率を20%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を30%以上とすることがより好ましく、加工率を40%以上とすることがさらに好ましく、60%以上とすることが最も好ましい。また加工率の増加により曲げ加工性は劣化するため、99%以下とすることが好ましい。
(Finishing process S05)
Finishing is performed to process the copper material after the intermediate heat treatment step S04 into a predetermined shape. Note that the temperature condition in the finishing step S05 is not particularly limited, but is in the range of −200 ° C. to 200 ° C., which is cold or warm processing to suppress recrystallization or softening. In particular, room temperature is preferable. Further, the processing rate is appropriately selected so as to approximate the final shape, but in order to improve the strength by work hardening in the finishing processing step S05, the processing rate is preferably set to 20% or more. Also. When further improving the strength, the processing rate is more preferably 30% or more, the processing rate is more preferably 40% or more, and most preferably 60% or more. Further, since the bending workability deteriorates due to the increase of the processing rate, it is preferably made 99% or less.

(仕上熱処理工程S06)
次に、仕上加工工程S05によって得られた塑性加工材に対して、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上熱処理を実施する。
熱処理温度は、100℃以上800℃以下の範囲内とすることが好ましく、200℃以上700℃以下の範囲内とすることがより好ましい。なお、この仕上熱処理工程S06においては、再結晶による強度の大幅な低下を避けるように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。
例えば300℃では1秒から120秒程度保持とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。
さらに、上述の仕上加工工程S05と仕上熱処理工程S06とを、繰り返し実施してもよい。
(Finish heat treatment step S06)
Next, a finishing heat treatment is performed on the plastic workpiece obtained in the finishing step S05 in order to improve stress relaxation resistance and low-temperature annealing hardening, or to remove residual strain.
The heat treatment temperature is preferably in the range of 100 ° C. or higher and 800 ° C. or lower, and more preferably in the range of 200 ° C. or higher and 700 ° C. or lower. In this finishing heat treatment step S06, it is necessary to set heat treatment conditions (temperature, time, cooling rate) so as to avoid a significant decrease in strength due to recrystallization.
For example, it is preferable to hold at 300 ° C. for about 1 to 120 seconds. This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.
The method of heat treatment is not particularly limited, but short-time heat treatment using a continuous annealing furnace is preferable from the viewpoint of reducing the manufacturing cost.
Furthermore, the above-described finishing processing step S05 and finishing heat treatment step S06 may be repeated.

このようにして、本実施形態である電子・電気機器用銅合金板条材(板材又はこれをコイル形状とした条材)が製出されることになる。なお、この電子・電気機器用銅合金板条材の板厚は、0.05mm超え3.0mm以下の範囲内とされており、好ましくは0.1mm超え3.0mm未満の範囲内とされている。電子・電気機器用銅合金板条材の板厚が0.05mm以下の場合、大電流用途での導体としての使用には不向きであり、板厚が3.0mmを超える場合には、プレス打ち抜き加工が困難となる。   In this way, the copper alloy sheet material for electronic / electrical equipment (the sheet material or the sheet material having the coil shape) is produced according to the present embodiment. The thickness of the copper alloy sheet material for electronic / electric equipment is in the range of 0.05 mm to 3.0 mm, preferably in the range of 0.1 mm to less than 3.0 mm. Yes. If the thickness of the copper alloy strip for electronic and electrical equipment is 0.05mm or less, it is not suitable for use as a conductor in high current applications, and if the thickness exceeds 3.0mm, press punching Processing becomes difficult.

ここで、本実施形態である電子・電気機器用銅合金板条材は、そのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1〜100μm程度のSnめっき層またはAgめっき層を形成してもよい。この際、電子・電気機器用銅合金板条材の板厚がめっき層厚さの10〜1000倍となることが好ましい。
さらに、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金板条材)を素材として、打ち抜き加工や曲げ加工等を施すことにより、例えばコネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバーといった電子・電気機器用部品が成形される。
Here, the copper alloy sheet material for electronic / electrical equipment according to the present embodiment may be used as it is for electronic / electrical equipment parts as it is. An Sn plating layer or an Ag plating layer of about 100 μm may be formed. At this time, it is preferable that the thickness of the copper alloy sheet material for electronic / electric equipment is 10 to 1000 times the plating layer thickness.
Furthermore, by using a copper alloy for electronic / electric equipment (copper alloy strip for electronic / electric equipment) according to the present embodiment as a raw material, for example, a terminal such as a connector or a press fit, Components for electronic and electrical equipment such as relay movable pieces, lead frames, and bus bars are formed.

以上のような構成とされた本実施形態である電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。また、Pを0.0005mass%以上0.01mass%未満の範囲内で含んでいるので、Mgを含む銅合金溶湯の粘度を下げることができ、鋳造性を向上させることができる。
また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされているので、高い導電性が要求される用途にも適用することができる。
According to the copper alloy for electronic and electrical equipment according to the present embodiment configured as described above, the Mg content is in the range of 0.15 mass% or more and less than 0.35 mass%. When Mg is dissolved in the matrix, the strength and stress relaxation resistance can be improved without greatly reducing the electrical conductivity. Moreover, since P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, the viscosity of the molten copper alloy containing Mg can be lowered, and the castability can be improved.
Moreover, in the copper alloy for electronic / electrical equipment which is this embodiment, since the electrical conductivity is over 75% IACS, it can be applied to applications that require high electrical conductivity.

そして、本実施形態である電子・電気機器用銅合金においては、走査型電子顕微鏡観察において、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされていることから、母相中には、割れの起点となる粗大なMgとPを含有する化合物が多く分散されておらず、曲げ加工性が向上することになる。よって、複雑な形状のコネクタ等の端子、リレー用可動片、リードフレーム等の電子・電気機器用部品等を成形することが可能となる。 And in the copper alloy for electronic and electric devices which is this embodiment, in scanning electron microscope observation, the average number of the compound containing Mg and P with a particle size of 0.1 micrometer or more is 0.5 piece / micrometer < 2 >. Since it is set as follows, many compounds containing coarse Mg and P which are the starting points of cracking are not dispersed in the matrix, and the bending workability is improved. Therefore, it becomes possible to mold terminals for complicated shapes such as connectors, movable pieces for relays, parts for electronic and electric devices such as lead frames, and the like.

また、本実施形態である電子・電気機器用銅合金においては、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕<0.5の関係式を満足しているので、MgとPの粗大な化合物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
さらに、本実施形態である電子・電気機器用銅合金においては、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕≦400の関係式を満たしているので、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率が適正化され、P添加の効果により、鋳造性を確実に向上させることができる。
In addition, in the copper alloy for electronic and electrical devices according to the present embodiment, the Mg content [Mg] (mass%) and the P content [P] (mass%) are [Mg] + 20 × [P]. Since the relational expression of <0.5 is satisfied, the production of coarse compounds of Mg and P can be suppressed, and the deterioration of cold workability and bending workability can be suppressed.
Furthermore, in the copper alloy for electronic / electric equipment according to the present embodiment, the Mg content [Mg] (mass%) and the P content [P] (mass%) are [Mg] / [P] ≦ Since the relational expression of 400 is satisfied, the ratio between the content of Mg that lowers the castability and the content of P that improves the castability is optimized, and the castability is reliably improved by the effect of adding P. be able to.

また、本実施形態である電子・電気機器用銅合金においては、0.2%耐力が300MPa以上とされ、残留応力率が150℃、1000時間で50%以上とされているので、強度、耐応力緩和特性に優れており、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。   Moreover, in the copper alloy for electronic / electric equipment according to the present embodiment, the 0.2% proof stress is 300 MPa or more and the residual stress rate is 50% or more at 150 ° C. for 1000 hours. It has excellent stress relaxation properties and is particularly suitable as a material for electronic and electrical equipment parts such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars, and the like.

また、本実施形態である電子・電気機器用銅合金板条材は、上述の電子・電気機器用銅合金で構成されていることから、この電子・電気機器用銅合金板条材に曲げ加工等を行うことで、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品を製造することができる。
なお、表面にSnめっき層又はAgめっき層を形成した場合には、コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
Moreover, since the copper alloy sheet material for electronic / electrical equipment which is this embodiment is comprised with the above-mentioned copper alloy for electronic / electrical equipment, it is bent into this copper alloy sheet material for electronic / electrical equipment. By performing the above, it is possible to manufacture parts for electronic and electrical equipment such as terminals such as connectors and press-fit, movable pieces for relays, lead frames, and bus bars.
In addition, when an Sn plating layer or an Ag plating layer is formed on the surface, it is particularly suitable as a material for electronic and electrical equipment parts such as connectors, press-fit terminals, relay movable pieces, lead frames, bus bars, etc. .

さらに、本実施形態である電子・電気機器用部品(コネクタやプレスフィット等の端子、リレー用可動片、リードフレーム、バスバー等)は、上述の電子・電気機器用銅合金で構成されているので、小型化および薄肉化しても優れた特性を発揮することができる。   Furthermore, the electronic / electric equipment parts (terminals such as connectors and press-fit, relay movable pieces, lead frames, bus bars, etc.) according to the present embodiment are made of the above-described copper alloy for electronic / electric equipment. Even if the size and thickness are reduced, excellent characteristics can be exhibited.

以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品(端子、バスバー等)について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について説明したが、電子・電気機器用銅合金の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
As described above, the copper alloy for electronic / electric equipment, the copper alloy sheet material for electronic / electric equipment, and the parts for electronic / electric equipment (terminals, bus bars, etc.) according to the embodiments of the present invention have been described. It is not limited and can be changed as appropriate without departing from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for producing a copper alloy for electronic / electric equipment has been described. However, the method for producing a copper alloy for electronic / electric equipment is not limited to that described in the embodiment. The existing manufacturing method may be selected as appropriate.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、鋳型に注湯して鋳塊を製出した。なお、本発明例2、19、20、は断熱材(イソウール)鋳型、本発明例21、22はカーボン鋳型、本発明例1、3〜18、23〜34、比較例1〜3は水冷機能を備えた銅合金鋳型、比較例4、5は加熱機能を備えたヒーター付き鉄製鋳型を鋳造用の鋳型として用いた。鋳塊の大きさは、厚さ約100mm×幅約150mm×長さ約300mmとした。
この鋳塊の鋳肌近傍を面削し、最終製品の板厚が0.5mmとなるように、鋳塊を切り出してサイズを調整した。
このブロックを、Arガス雰囲気中において、表2に記載の温度条件で4時間の加熱を行い、均質化/溶体化処理を行った。
Below, the result of the confirmation experiment performed in order to confirm the effect of this invention is demonstrated.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more was prepared, charged in a high-purity graphite crucible, and high-frequency melted in an atmosphere furnace having an Ar gas atmosphere. Various additive elements were added to the obtained molten copper to prepare the component compositions shown in Table 1, and poured into a mold to produce an ingot. Inventive Examples 2, 19, and 20 are heat insulating material (isowool) molds, Inventive Examples 21 and 22 are carbon molds, Inventive Examples 1, 3 to 18, 23 to 34, and Comparative Examples 1 to 3 are water-cooled functions. In Comparative Examples 4 and 5, an iron mold with a heater having a heating function was used as a casting mold. The size of the ingot was about 100 mm thick x about 150 mm wide x about 300 mm long.
The vicinity of the cast surface of the ingot was chamfered, and the ingot was cut out and the size was adjusted so that the thickness of the final product was 0.5 mm.
The block was heated in an Ar gas atmosphere for 4 hours under the temperature conditions shown in Table 2 to perform homogenization / solution treatment.

その後、表2に記載の条件で粗圧延を実施した後、ソルトバスを用いて表2に記載された温度条件で熱処理を行った。
熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表2に記載された圧延率で仕上圧延(仕上加工)を実施し、厚さ0.5mm、幅約150mm、長さ200mmの薄板を製出した。
そして、仕上圧延(仕上加工)後に、表2に示す条件で、Ar雰囲気中で仕上熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作成した。
Then, after carrying out rough rolling on the conditions described in Table 2, it heat-processed on the temperature conditions described in Table 2 using the salt bath.
The heat-treated copper material was appropriately cut into a shape suitable for the final shape, and surface grinding was performed to remove the oxide film. Thereafter, finish rolling (finishing) was performed at room temperature at a rolling rate described in Table 2 to produce a thin plate having a thickness of 0.5 mm, a width of about 150 mm, and a length of 200 mm.
Then, after finish rolling (finishing), finish heat treatment was performed in an Ar atmosphere under the conditions shown in Table 2, and then water quenching was performed to create a thin plate for property evaluation.

(鋳造性)
鋳造性の評価として、前述の鋳造時における肌荒れの有無を観察した。目視で肌荒れが全くあるいはほとんど認められなかったものを◎、深さ1mm未満の小さな肌荒れが発生したものを○、深さ1mm以上2mm未満の肌荒れが発生したものを△とした。また深さ2mm以上の大きな肌荒れが発生したものは×とし、途中で評価を中止した。評価結果を表3に示す。
なお、肌荒れの深さとは、鋳塊の端部から中央部に向かう肌荒れの深さのことである。
(Castability)
As an evaluation of castability, the presence or absence of rough skin at the time of casting was observed. The case where no or almost no skin roughness was visually observed was indicated by ◎, the case where a small skin roughness less than 1 mm in depth occurred was indicated by ◯, and the case where skin roughness was caused by a depth of 1 mm or more and less than 2 mm was indicated by Δ. Moreover, the thing where big skin roughness more than depth 2mm generate | occur | produced was made into x, and evaluation was stopped on the way. The evaluation results are shown in Table 3.
In addition, the depth of rough skin is the depth of rough skin which goes to the center part from the edge part of an ingot.

(化合物観察)
各試料の圧延面に対して、鏡面研磨、イオンエッチングを行った。MgとPを含有する化合物を確認するため、FE−SEM(電界放出型走査電子顕微鏡)を用い、1万倍の視野(約120μm/視野)で観察を行った。
次に、MgとPを含有する化合物の密度(個/μm)を調査するために、1万倍の視野(約120μm/視野)を選び、その領域で、5万倍で連続した10視野(約4.8μm/視野)の撮影を行った。金属間化合物の粒径については、金属間化合物の長径(途中で粒界に接しない条件で粒内に最も長く引ける直線の長さ)と短径(長径と直角に交わる方向で、途中で粒界に接しない条件で最も長く引ける直線の長さ)の平均値とした。そして、粒径0.1μm以上のMgとPを含有する化合物と粒径0.05μm以上のMgとPを含有する化合物の密度(個/μm)を求めた。化合物の観察結果を一例を図2に示す。
(Compound observation)
Mirror polishing and ion etching were performed on the rolled surface of each sample. In order to confirm the compound containing Mg and P, observation was performed using a FE-SEM (Field Emission Scanning Electron Microscope) with a 10,000 × field of view (approximately 120 μm 2 / field of view).
Next, in order to investigate the density of the compound containing Mg and P (pieces / μm 2 ), a field of view of 10,000 times (about 120 μm 2 / field of view) was selected, and 10 × The field of view (about 4.8 μm 2 / field of view) was photographed. As for the particle size of the intermetallic compound, the major axis of the intermetallic compound (the length of the straight line that can be drawn the longest in the grain without contact with the grain boundary in the middle) and the minor axis (in the direction perpendicular to the major axis, the grain in the middle The average value of the length of the straight line that can be drawn the longest under conditions that do not contact the boundary). And the density (piece / micrometer < 2 >) of the compound containing Mg and P with a particle size of 0.1 micrometer or more and the compound containing Mg and P with a particle size of 0.05 micrometer or more was calculated | required. An example of the observation results of the compound is shown in FIG.

(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力を測定した。なお、試験片は、圧延方向に直交する方向で採取した。評価結果を表3に示す。
(Mechanical properties)
A No. 13B test piece defined in JIS Z 2241 was collected from the strip for characteristic evaluation, and 0.2% proof stress was measured by the offset method of JIS Z 2241. In addition, the test piece was extract | collected in the direction orthogonal to a rolling direction. The evaluation results are shown in Table 3.

(導電率)
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して垂直になるように採取した。評価結果を表3に示す。
(conductivity)
A test piece having a width of 10 mm and a length of 150 mm was taken from the strip for characteristic evaluation, and the electric resistance was determined by a four-terminal method. Moreover, the dimension of the test piece was measured using the micrometer, and the volume of the test piece was calculated. And electrical conductivity was computed from the measured electrical resistance value and volume. In addition, the test piece was extract | collected so that the longitudinal direction might become perpendicular | vertical with respect to the rolling direction of the strip for characteristic evaluation. The evaluation results are shown in Table 3.

(耐応力緩和特性)
耐応力緩和特性試験は、日本伸銅協会技術標準JCBA−T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、150℃の温度で1000時間保持後の残留応力率を測定した。評価結果を表3に示す。
試験方法としては、各特性評価用条材から圧延方向に対して直交する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
表面最大応力(MPa)=1.5Etδ0/Ls 2
ただし、
E:ヤング率(MPa)
t:試料の厚み(t=0.5mm)
δ:初期たわみ変位(2mm)
:スパン長さ(mm)
である。
150℃の温度で、1000時間保持後の曲げ癖から、残留応力率を測定し、耐応力緩和特性を評価した。なお残留応力率は次式を用いて算出した。
残留応力率(%)=(1−δt0)×100
ただし、
δ:150℃で1000時間保持後の永久たわみ変位(mm)−常温で24h保持後の永久たわみ変位(mm)
δ:初期たわみ変位(mm)
である。
(Stress relaxation characteristics)
In the stress relaxation resistance test, stress was applied by a method according to the cantilevered screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and the residual stress ratio after holding for 1000 hours at a temperature of 150 ° C. was measured. . The evaluation results are shown in Table 3.
As a test method, a specimen (width 10 mm) is taken from each characteristic evaluation strip in a direction orthogonal to the rolling direction, and the initial deflection displacement is set so that the maximum surface stress of the specimen is 80% of the proof stress. The span length was adjusted to 2 mm. The maximum surface stress is determined by the following equation.
Maximum surface stress (MPa) = 1.5 Etδ 0 / L s 2
However,
E: Young's modulus (MPa)
t: thickness of sample (t = 0.5 mm)
δ 0 : Initial deflection displacement (2 mm)
L s : Span length (mm)
It is.
The residual stress rate was measured from the bending habit after holding for 1000 hours at a temperature of 150 ° C., and the stress relaxation resistance was evaluated. The residual stress rate was calculated using the following formula.
Residual stress rate (%) = (1−δ t / δ 0 ) × 100
However,
δ t : Permanent deflection displacement after holding at 150 ° C. for 1000 hours (mm) −Permanent deflection displacement after holding for 24 h at room temperature (mm)
δ 0 : Initial deflection displacement (mm)
It is.

(曲げ加工性)
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向になるように、特性評価用薄板から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径は、仕上圧延率が85%超の場合は0.5mm(R/t=1.0)、仕上圧延率が85%以下の場合は曲げ半径が0.3mm(R/t=0.6)のW型の治具を用い、W曲げ試験を行った。
曲げ部の外周部を目視で観察して割れが観察された場合は「×」、大きなしわが観察された場合は○、破断や微細な割れ、大きなしわを確認できない場合を◎として判定を行った。なお、◎、○は許容できる曲げ加工性と判断した。評価結果を表3に示す。
(Bending workability)
Bending was performed in accordance with four test methods of Japan Copper and Brass Association Technical Standard JCBA-T307: 2007. A plurality of test pieces having a width of 10 mm and a length of 30 mm are taken from the thin sheet for characteristic evaluation so that the bending axis is perpendicular to the rolling direction, the bending angle is 90 degrees, the bending radius is a finish rolling ratio of 85. W-type jigs having a bending radius of 0.3 mm (R / t = 0.6) when the rolling reduction ratio is 85% or less. A W-bending test was performed.
Judgment is made as “X” when a crack is observed by visually observing the outer periphery of the bent portion, “◯” when a large wrinkle is observed, and “◎” when a fracture, a fine crack, or a large wrinkle cannot be confirmed. It was. In addition, (double-circle) and (circle) were judged to be the allowable bending workability. The evaluation results are shown in Table 3.

比較例1は、Mgの含有量が本発明の範囲よりも少なく、耐力、及び、耐応力緩和特性が不十分であった。
比較例2は、Mgの含有量が本発明の範囲よりも多く、導電率が低かった。
比較例3は、Pの含有量が本発明の範囲よりも多く、中間圧延で割れが発生し、評価ができなかった。
比較例4、5は、Mg及びPの含有量が多く、かつ、鋳造時の冷却速度が遅いため、化合物が多く、曲げ加工性に劣っていた。
In Comparative Example 1, the Mg content was less than the range of the present invention, and the proof stress and the stress relaxation resistance were insufficient.
In Comparative Example 2, the Mg content was larger than the range of the present invention, and the conductivity was low.
In Comparative Example 3, the P content was larger than the range of the present invention, and cracking occurred in the intermediate rolling, and evaluation could not be performed.
In Comparative Examples 4 and 5, the contents of Mg and P were large, and the cooling rate at the time of casting was slow, so there were many compounds and the bending workability was poor.

これに対して、本発明例においては、鋳造性、強度(0.2%耐力)、導電率、耐応力緩和特性(残留応力率)、曲げ加工性に優れていることが確認される。
以上のことから、本発明例によれば、導電性、曲げ加工性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金板条材を提供できることが確認された。
On the other hand, in the examples of the present invention, it is confirmed that the castability, strength (0.2% yield strength), electrical conductivity, stress relaxation resistance (residual stress rate), and bending workability are excellent.
From the above, it was confirmed that according to the examples of the present invention, it is possible to provide a copper alloy for electronic / electric equipment and a copper alloy sheet material for electronic / electric equipment excellent in conductivity and bending workability.

Claims (15)

Mgを0.15mass%以上0.35mass%未満の範囲内、Pを0.0005mass%以上0.01mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、
導電率が75%IACS超えであるとともに、
走査型電子顕微鏡観察において、粒径0.1μm以上のMgとPを含有する化合物の平均個数が、0.5個/μm以下とされていることを特徴とする電子・電気機器用銅合金。
Mg is contained in the range of 0.15 mass% or more and less than 0.35 mass%, P is contained in the range of 0.0005 mass% or more and less than 0.01 mass%, and the balance consists of Cu and inevitable impurities,
The conductivity is over 75% IACS,
A copper alloy for electronic and electrical equipment, characterized in that the average number of compounds containing Mg and P having a particle size of 0.1 μm or more is 0.5 pieces / μm 2 or less in a scanning electron microscope observation .
Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕+20×〔P〕<0.5
の関係式を満たしていることを特徴とする請求項1に記載の電子・電気機器用銅合金。
Mg content [Mg] (mass%) and P content [P] (mass%)
[Mg] + 20 × [P] <0.5
The copper alloy for electronic and electrical equipment according to claim 1, wherein the following relational expression is satisfied.
Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕/〔P〕≦400
の関係式を満たすことを特徴とする請求項1又は請求項2に記載の電子・電気機器用銅合金。
Mg content [Mg] (mass%) and P content [P] (mass%)
[Mg] / [P] ≦ 400
The copper alloy for electronic / electric equipment according to claim 1, wherein the following relational expression is satisfied.
圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上であることを特徴とする請求項1から請求項3のいずれか一項に記載の電子・電気機器用銅合金。   4. The electronic / electric device according to claim 1, wherein a 0.2% yield strength when a tensile test is performed in a direction orthogonal to a rolling direction is 300 MPa or more. 5. Copper alloy. 残留応力率が150℃、1000時間で50%以上であることを特徴とする請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金。   The copper alloy for electronic / electric equipment according to any one of claims 1 to 4, wherein the residual stress rate is 50% or more at 1000C for 1000 hours. 請求項1から請求項5のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用銅合金板条材。   A copper alloy sheet material for electronic and electrical equipment, comprising the copper alloy for electronic and electrical equipment according to any one of claims 1 to 5. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項6に記載の電子・電気機器用銅合金板条材。   It has Sn plating layer or Ag plating layer on the surface, The copper alloy sheet | seat material for electronic / electric equipment of Claim 6 characterized by the above-mentioned. 請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とする電子・電気機器用部品。   An electronic / electric equipment component comprising the copper alloy sheet material for electronic / electric equipment according to claim 6 or 7. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項8に記載の電子・電気機器用部品。   The component for electronic / electric equipment according to claim 8, comprising a Sn plating layer or an Ag plating layer on the surface. 請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とする端子。   A terminal comprising the copper alloy sheet material for electronic / electrical equipment according to claim 6 or 7. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項10に記載の端子。   The terminal according to claim 10, comprising a Sn plating layer or an Ag plating layer on the surface. 請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とするバスバー。   A bus bar comprising the copper alloy sheet material for electronic / electrical equipment according to claim 6 or 7. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項12に記載のバスバー。   The bus bar according to claim 12, comprising a Sn plating layer or an Ag plating layer on a surface thereof. 請求項6又は請求項7に記載された電子・電気機器用銅合金板条材からなることを特徴とするリレー用可動片。   A movable piece for a relay comprising the copper alloy sheet material for electronic / electrical equipment according to claim 6 or 7. 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項14に記載のリレー用可動片。   The movable piece for a relay according to claim 14, comprising a Sn plating layer or an Ag plating layer on a surface thereof.
JP2017063418A 2016-03-30 2017-03-28 Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays Active JP6226098B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2018011658A MX2018011658A (en) 2016-03-30 2017-03-29 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays.
CN201780005558.0A CN108431257B (en) 2016-03-30 2017-03-29 Copper alloy for electronic/electrical equipment, copper alloy strip material for electronic/electrical equipment, module for electronic/electrical equipment, terminal, bus bar, and movable piece for relay
PCT/JP2017/012914 WO2017170699A1 (en) 2016-03-30 2017-03-29 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
US16/076,617 US11203806B2 (en) 2016-03-30 2017-03-29 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
KR1020187021014A KR102296652B1 (en) 2016-03-30 2017-03-29 Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
EP17775233.4A EP3438298B1 (en) 2016-03-30 2017-03-29 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
TW106110851A TWI703225B (en) 2016-03-30 2017-03-30 Copper alloy for electronic/electric device, copper alloy sheet or strip for electronic/electric device, component for electronic/electric device, terminal, bus bar, and movable piece for relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069080 2016-03-30
JP2016069080 2016-03-30

Publications (2)

Publication Number Publication Date
JP2017186664A JP2017186664A (en) 2017-10-12
JP6226098B2 true JP6226098B2 (en) 2017-11-08

Family

ID=60043970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063418A Active JP6226098B2 (en) 2016-03-30 2017-03-28 Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays

Country Status (6)

Country Link
EP (1) EP3438298B1 (en)
JP (1) JP6226098B2 (en)
KR (1) KR102296652B1 (en)
CN (1) CN108431257B (en)
MX (1) MX2018011658A (en)
TW (1) TWI703225B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170699A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
WO2017170733A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP7180101B2 (en) * 2018-03-30 2022-11-30 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
KR20200134215A (en) 2018-03-30 2020-12-01 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic and electric equipment, copper alloy plate strip for electronic and electric equipment, parts for electronic and electric equipment, terminals, and busbars
JP7180102B2 (en) * 2018-03-30 2022-11-30 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, copper alloy sheet materials for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
WO2020137726A1 (en) 2018-12-26 2020-07-02 三菱伸銅株式会社 Copper alloy plate, plating film-attached copper alloy plate, and methods respectively for manufacturing these products
CN110172609A (en) * 2019-05-16 2019-08-27 红河学院 A kind of high-strength high-conductivity copper magnesium system alloy and preparation method thereof
JP7443737B2 (en) 2019-12-10 2024-03-06 三菱マテリアル株式会社 Copper alloy plate, copper alloy plate with plating film, and manufacturing method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778318A (en) * 1969-02-24 1973-12-11 Cooper Range Co Copper base composition
JPS5045783Y2 (en) 1971-08-06 1975-12-25
JPS58199835A (en) * 1982-05-19 1983-11-21 Sumitomo Electric Ind Ltd Copper alloy for electric or electronic apparatus
JP2661462B2 (en) * 1992-05-01 1997-10-08 三菱伸銅株式会社 Straight line excellent in repeated bending property: Cu alloy ultrafine wire of 0.1 mm or less
EP1688198A4 (en) * 2003-09-24 2007-03-21 Sumitomo Metal Ind Continuous casting mold and method of continuous casting for copper alloy
JP4516154B1 (en) * 2009-12-23 2010-08-04 三菱伸銅株式会社 Cu-Mg-P copper alloy strip and method for producing the same
JP5848169B2 (en) * 2012-03-14 2016-01-27 Dowaメタルテック株式会社 Silver plating material
WO2013150627A1 (en) * 2012-04-04 2013-10-10 三菱伸銅株式会社 Cu-mg-p-based copper alloy plate having excellent fatigue resistance, and method for manufacturing same
JP5908796B2 (en) * 2012-06-05 2016-04-26 三菱伸銅株式会社 Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same
JP6054085B2 (en) * 2012-07-24 2016-12-27 三菱伸銅株式会社 Cu-Mg-P-based copper alloy sheet excellent in spring limit value characteristics and fatigue resistance after bending and method for producing the same
JP6055242B2 (en) * 2012-08-30 2016-12-27 三菱伸銅株式会社 Cu-Mg-P-based copper alloy Sn plated plate and method for producing the same
JP6076724B2 (en) 2012-12-06 2017-02-08 古河電気工業株式会社 Copper alloy material and method for producing the same
JP5962707B2 (en) * 2013-07-31 2016-08-03 三菱マテリアル株式会社 Copper alloy for electronic / electric equipment, copper alloy plastic working material for electronic / electric equipment, manufacturing method of copper alloy plastic working material for electronic / electric equipment, electronic / electric equipment parts and terminals
JP6140032B2 (en) * 2013-08-30 2017-05-31 Dowaメタルテック株式会社 Copper alloy sheet, method for producing the same, and current-carrying component
JP5847787B2 (en) * 2013-11-26 2016-01-27 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and stress relaxation properties
JP6187629B1 (en) * 2016-03-30 2017-08-30 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars

Also Published As

Publication number Publication date
KR102296652B1 (en) 2021-08-31
TWI703225B (en) 2020-09-01
TW201738394A (en) 2017-11-01
KR20180125449A (en) 2018-11-23
CN108431257A (en) 2018-08-21
EP3438298B1 (en) 2021-03-17
EP3438298A1 (en) 2019-02-06
EP3438298A4 (en) 2019-12-11
JP2017186664A (en) 2017-10-12
MX2018011658A (en) 2018-12-19
CN108431257B (en) 2020-07-28

Similar Documents

Publication Publication Date Title
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
WO2017170699A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
WO2017043551A1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP2011241413A (en) Copper alloy for electronic device, method for producing copper alloy for electronic device and copper alloy rolled material for electronic device
KR102474714B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR102474009B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6187629B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
WO2019189534A1 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP6680042B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP2019178398A (en) Copper alloy for electronic and electric device, copper ally stripe material for electronic and electric device, component for electronic and electric device, terminal, and bus bar
WO2015087624A1 (en) Copper alloy for electronic/electric device, copper alloy plastic working material for electronic/electric device, and component and terminal for electronic/electric device
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP2013100571A (en) Electronics copper alloy, method for production thereof, electronics copper alloy plastic-forming material, and electronics component
JP6248389B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2013104095A (en) Copper alloy for electronic equipment, method of manufacturing copper alloy for electronic equipment, plastically worked material of copper alloy for electronic equipment, and component for electronic equipment
JP6248386B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2013104096A (en) Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, copper alloy plastic working material for electronic equipment, and part for electronic equipment
JP6248387B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6304867B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170707

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6226098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150