JP6680041B2 - Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars - Google Patents

Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars Download PDF

Info

Publication number
JP6680041B2
JP6680041B2 JP2016069078A JP2016069078A JP6680041B2 JP 6680041 B2 JP6680041 B2 JP 6680041B2 JP 2016069078 A JP2016069078 A JP 2016069078A JP 2016069078 A JP2016069078 A JP 2016069078A JP 6680041 B2 JP6680041 B2 JP 6680041B2
Authority
JP
Japan
Prior art keywords
electronic
copper alloy
mass
electrical devices
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016069078A
Other languages
Japanese (ja)
Other versions
JP2017179490A (en
Inventor
裕隆 松永
裕隆 松永
牧 一誠
一誠 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016069078A priority Critical patent/JP6680041B2/en
Publication of JP2017179490A publication Critical patent/JP2017179490A/en
Application granted granted Critical
Publication of JP6680041B2 publication Critical patent/JP6680041B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、リードフレーム、コネクタやプレスフィット等の端子、バスバー等の電子・電気機器用部品に適した電子・電気機器用銅合金、及び、この電子・電気機器用銅合金からなる電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーに関するものである。   The present invention relates to a copper alloy for electronic / electrical devices, which is suitable for lead frames, terminals such as connectors and press-fits, and parts for electronic / electrical devices such as bus bars, and electronic / electrical products made of the copper alloy for electronic / electrical devices. The present invention relates to a copper alloy plastic working material for equipment, electronic / electrical equipment parts, terminals, and bus bars.

従来、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品には、導電性の高い銅又は銅合金が用いられている。
ここで、電子機器や電気機器等の小型化にともない、これら電子機器や電気機器等に使用される電子・電気機器用部品の小型化および薄肉化が図られている。このため、電子・電気機器用部品を構成する材料には、高い強度や良好な曲げ加工性が求められている。また、自動車のエンジンルーム等の高温環境下で使用されるコネクタの端子等においては、耐応力緩和特性も求められている。
2. Description of the Related Art Conventionally, copper or copper alloy having high conductivity has been used for electronic and electric equipment parts such as terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
Here, along with the miniaturization of electronic devices and electric devices, the parts for electronic and electric devices used in these electronic devices and electric devices have been made smaller and thinner. For this reason, high strength and good bending workability are required for materials constituting electronic / electrical device parts. In addition, stress relaxation resistance is also required for terminals and the like of connectors used in a high temperature environment such as an automobile engine room.

ここで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品に使用される材料として、例えば特許文献1、2には、Cu−Mg系合金が提案されている。   Here, for example, Patent Documents 1 and 2 propose a Cu—Mg-based alloy as a material used for parts for electronic / electrical devices such as terminals such as connectors and press fits, relays, lead frames, and bus bars. There is.

特開2014−025089号公報JP, 2014-025089, A 特開2014−114464号公報JP, 2014-114464, A

ここで、特許文献1に記載されたCu−Mg系合金においては、Mgの含有量が多いため、導電性が不十分であり、高い導電性が要求される用途には適用することが困難であった。
また、特許文献2に記載されたCu−Mg系合金においては、Mgの含有量が0.01〜0.5mass%、及びPの含有量が0.01〜0.5mass%とされていることから、粗大な晶出物が生じ、冷間加工性及び曲げ加工性が不十分であった。
Here, in the Cu-Mg-based alloy described in Patent Document 1, since the content of Mg is large, the electrical conductivity is insufficient, and it is difficult to apply it to the application requiring high electrical conductivity. there were.
In addition, in the Cu-Mg-based alloy described in Patent Document 2, the Mg content is 0.01 to 0.5 mass% and the P content is 0.01 to 0.5 mass%. Therefore, coarse crystallized substances were generated, and cold workability and bendability were insufficient.

この発明は、前述した事情に鑑みてなされたものであって、導電性、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances, and is a copper alloy for electronic / electrical devices and a plastic alloy for electronic / electrical devices, which has excellent conductivity, strength, bending workability, and stress relaxation resistance. The object is to provide materials, parts for electronic / electrical devices, terminals, and bus bars.

この課題を解決するために、本発明の電子・電気機器用銅合金は、Mgを0.15mass%以上、0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、導電率が75%IACS超えるとともに、EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたConfidence Index(CI)値が0.1以下である測定点を除いて解析したとき、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとしたときに、以下の式が成り立つことを特徴としている。
LB/(LLB+LHB)>20%
なお、CI値は、EBSD装置の解析ソフトOIM Analysis(Ver.6.2)にて測定される値であり、ある解析点から得られたEBSDパターンを指数付けする際に、Voting法を用いることで算出され、0から1の値を取る。CI値は指数付けと方位計算の信頼性を評価する値であるため、CI値が低い場合、すなわち解析点の明瞭な結晶パターンが得られない場合には組織中にひずみ(加工組織)が存在しているといえる。
In order to solve this problem, the copper alloy for electronic / electrical devices of the present invention contains Mg in a range of 0.15 mass% or more and less than 0.35 mass%, the balance being Cu and unavoidable impurities, and being conductive. The rate exceeds 75% IACS, and the measurement area of 1000 μm 2 or more is measured by the EBSD method at a measurement interval of 0.5 μm, and the Confidence Index (CI) value analyzed by the data analysis software OIM is 0.1 or less. When the analysis is performed excluding the measurement points, the lengths of the low-angle grain boundaries and the subgrain boundaries between the measurement points at which the azimuth difference between the adjacent measurement points is 2 ° or more and 15 ° or less are L LB , and the adjacent measurement is performed. When the length of the large-angle tilt grain boundary between the measurement points where the orientation difference between the points exceeds 15 ° is L HB , the following formula is characterized.
L LB / (L LB + L HB )> 20%
The CI value is a value measured by the analysis software OIM Analysis (Ver.6.2) of the EBSD device, and the Voting method should be used when indexing the EBSD pattern obtained from a certain analysis point. And takes a value from 0 to 1. Since the CI value is a value that evaluates the reliability of indexing and orientation calculation, when the CI value is low, that is, when a crystal pattern with a clear analysis point cannot be obtained, strain (working structure) exists in the structure. It can be said that they are doing.

上述の構成の電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することにより、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。具体的には導電率が75%IACS超えとされているので、高い導電性が要求される用途にも適用することができる。
そして、小傾角粒界およびサブグレインバウンダリーは、加工時に導入された転位の密度が高い領域であるため、これらの割合が高くなると転位密度の増加に伴う加工硬化により、強度(耐力)を向上させることができる。本発明では、前記小傾角粒界および前記サブグレインバウンダリーの長さが全粒界の長さに対して20%以上とされていることから、導電率を維持したまま強度を向上させることが可能となる。
According to the copper alloy for electronic / electrical devices having the above-described configuration, the Mg content is set to be in the range of 0.15 mass% or more and less than 0.35 mass%, so that Mg forms a solid solution in the mother phase of copper. As a result, the strength and stress relaxation resistance can be improved without significantly reducing the conductivity. Specifically, since the electric conductivity is set to exceed 75% IACS, it can be applied to an application requiring high electric conductivity.
The low-angle grain boundaries and the subgrain boundaries are regions where the density of dislocations introduced during processing is high. Therefore, when the proportion of these is high, the strength (proof stress) is improved by work hardening due to the increase in dislocation density. Can be made. In the present invention, since the lengths of the small-angle grain boundaries and the subgrain boundaries are set to 20% or more with respect to the length of all grain boundaries, it is possible to improve the strength while maintaining the conductivity. It will be possible.

ここで、本発明の電子・電気機器用銅合金においては、さらにPを0.0005mass%以上0.01mass%未満の範囲内で含み、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕≦0.51の関係式を足していることが好ましい。
この場合、Pの添加によって、Mgを含む銅合金溶湯の粘度を下げることができ、鋳造性を向上させることができる。
また、MgとPを含む粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
Here, in the copper alloy for an electrical and electronic equipment of the present invention, further look including the P in the range of less than 0.0005 mass% or more 0.01 mass%, the Mg content [Mg] (mass%) and the P the content (P) (mass%) is preferably that meets the relation of [Mg] + 20 × [P] ≦ 0.51.
In this case, the addition of P can reduce the viscosity of the copper alloy molten metal containing Mg and improve the castability.
Further, it is possible to suppress the formation of coarse crystallized substances containing Mg and P, and it is possible to suppress deterioration of cold workability and bending workability.

さらに、本発明の電子・電気機器用銅合金においてPを上述の範囲で含有する場合には、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕≦400の関係式を満たすことが好ましい。
この場合、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率を、上述のように規定することにより、鋳造性を確実に向上させることができる。
Furthermore, when P is contained in the above range in the copper alloy for electronic / electrical devices of the present invention, the Mg content [Mg] (mass%) and the P content [P] (mass%) are It is preferable to satisfy the relational expression [Mg] / [P] ≦ 400.
In this case, the castability can be reliably improved by defining the ratio of the content of Mg that lowers the castability and the content of P that improves the castability as described above.

また、本発明の電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上であることが好ましい。
この場合、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が上述のように規定されているので、容易に変形することがなく、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の銅合金として特に適している。
Further, in the copper alloy for electronic / electrical equipment of the present invention, it is preferable that the 0.2% proof stress when the tensile test is performed in the direction orthogonal to the rolling direction is 300 MPa or more.
In this case, since the 0.2% proof stress when a tensile test is performed in the direction orthogonal to the rolling direction is defined as described above, it is not easily deformed and a terminal such as a connector or press fit, It is especially suitable as a copper alloy for electronic and electrical equipment parts such as relays, lead frames and bus bars.

本発明の電子・電気機器用銅合金塑性加工材は、上述の電子・電気機器用銅合金からなることを特徴としている。
この構成の電子・電気機器用銅合金塑性加工材によれば、上述の電子・電気機器用銅合金で構成されていることから、導電性、強度、曲げ加工性、耐応力緩和特性に優れており、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
The copper alloy plastic working material for electronic / electrical equipment of the present invention is characterized by being made of the above-mentioned copper alloy for electronic / electrical equipment.
According to the copper alloy plastic working material for electronic / electrical equipment of this configuration, since it is composed of the above-mentioned copper alloy for electronic / electrical equipment, it has excellent conductivity, strength, bending workability, and stress relaxation resistance. Therefore, it is particularly suitable as a material for electronic and electrical equipment parts such as terminals for connectors and press fits, relays, lead frames, bus bars and the like.

ここで、本発明の電子・電気機器用銅合金塑性加工材においては、表面にSnめっき層又はAgめっき層を有することが好ましい。
この場合、表面にSnめっき層又はAgめっき層を有しているので、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。なお、本発明において、「Snめっき」は、純Snめっき又はSn合金めっきを含み、「Agめっき」は、純Agめっき又はAg合金めっきを含む。
Here, in the copper alloy plastically worked material for electronic / electrical equipment of the present invention, it is preferable to have a Sn plating layer or an Ag plating layer on the surface.
In this case, since it has an Sn plating layer or an Ag plating layer on the surface, it is particularly suitable as a material for terminals for connectors, press-fitting, etc., parts for electronic / electrical devices such as relays, lead frames, bus bars and the like. In addition, in this invention, "Sn plating" includes pure Sn plating or Sn alloy plating, and "Ag plating" includes pure Ag plating or Ag alloy plating.

本発明の電子・電気機器用部品は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。なお、本発明における電子・電気機器用部品とは、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等を含むものである。
この構成の電子・電気機器用部品は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
A component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy plastically worked material for electronic / electrical equipment. The electronic / electrical device parts in the present invention include terminals such as connectors and press fits, relays, lead frames, bus bars and the like.
Since the electronic / electrical device component of this configuration is manufactured using the above-mentioned copper alloy plastically worked material for electronic / electrical device, it should exhibit excellent characteristics even when it is made smaller and thinner. You can

本発明の端子は、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
この構成の端子は、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
A terminal of the present invention is characterized by being made of the above-mentioned copper alloy plastically worked material for electronic / electrical devices.
Since the terminal having this configuration is manufactured using the above-described copper alloy plastically worked material for electronic / electrical devices, it is possible to exhibit excellent characteristics even when the terminal is downsized and thinned.

本発明のバスバーは、上述の電子・電気機器用銅合金塑性加工材からなることを特徴としている。
この構成のバスバーは、上述の電子・電気機器用銅合金塑性加工材を用いて製造されているので、小型化および薄肉化した場合であっても優れた特性を発揮することができる。
A bus bar of the present invention is characterized by being made of the above-described copper alloy plastically worked material for electronic / electrical devices.
Since the bus bar having this structure is manufactured using the above-described copper alloy plastic-worked material for electronic / electrical devices, it can exhibit excellent characteristics even when it is downsized and thinned.

本発明によれば、導電性、強度、曲げ加工性、耐応力緩和特性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品、端子、及び、バスバーを提供することができる。   According to the present invention, conductivity, strength, bending workability, copper alloy for electronic / electrical devices excellent in stress relaxation resistance, copper alloy plastically processed material for electronic / electrical devices, parts for electronic / electrical devices, terminals, And a bus bar can be provided.

本実施形態である電子・電気機器用銅合金の製造方法のフロー図である。It is a flow figure of a manufacturing method of a copper alloy for electronic and electric equipment which is this embodiment.

以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
本実施形態である電子・電気機器用銅合金は、Mgを0.15mass%以上0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなる組成を有する。
また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS超えとされている。
Below, the copper alloy for electronic and electric equipment which is one embodiment of the present invention is explained.
The copper alloy for electronic / electrical devices according to the present embodiment has a composition containing Mg in the range of 0.15 mass% or more and less than 0.35 mass%, and the balance Cu and unavoidable impurities.
In addition, in the copper alloy for electronic / electrical devices of the present embodiment, the electrical conductivity is set to exceed 75% IACS.

さらに、本実施形態である電子・電気機器用銅合金においては、EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析したとき、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとしたときに、以下の式が成り立つようにされている。
LB/(LLB+LHB)>20%
なお、CI値は測定点のパターンの明瞭さを示すパラメータであり、CI値が0.1以下の測定点では明瞭なパターンが得られないため、正確な結晶方位が測定できない。そのため、上記の方位差を測定する際にはCI値が0.1以下の点を除いて解析を行っている。
Further, in the copper alloy for electronic / electrical equipment of the present embodiment, the measurement area of 1000 μm 2 or more is measured by the EBSD method at the measurement interval of 0.5 μm, and the CI value analyzed by the data analysis software OIM is 0. When the analysis is performed excluding the measurement points of 1 or less, the lengths of the small-angle grain boundaries and the subgrain boundaries between the measurement points at which the azimuth difference between the adjacent measurement points is 2 ° or more and 15 ° or less are L LB , where L HB is the length of the high-angle grain boundary between the measurement points where the azimuth difference between the adjacent measurement points exceeds 15 °, the following formula is established.
L LB / (L LB + L HB )> 20%
The CI value is a parameter indicating the clarity of the pattern at the measurement point, and a clear pattern cannot be obtained at the measurement point with a CI value of 0.1 or less, so that an accurate crystal orientation cannot be measured. Therefore, when measuring the above-mentioned azimuth difference, analysis is performed except for the point where the CI value is 0.1 or less.

なお、本実施形態である電子・電気機器用銅合金においては、さらにPを0.0005mass%以上0.01mass%未満の範囲内で含んでいてもよい。
本実施形態である電子・電気機器用銅合金においてPを上述の範囲で含有する場合には、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕+20×〔P〕<0.5
の関係式を満足している。
さらに、本実施形態では、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕/〔P〕≦400
の関係式を満足している。
The copper alloy for electronic / electrical devices according to the present embodiment may further contain P in a range of 0.0005 mass% or more and less than 0.01 mass%.
When P is contained in the above-mentioned range in the copper alloy for electronic / electrical equipment of the present embodiment, the content [Mg] (Mg%) of Mg and the content [P] (Mass%) of P are
[Mg] + 20 × [P] <0.5
The relational expression of is satisfied.
Further, in the present embodiment, the Mg content [Mg] (mass%) and the P content [P] (mass%) are
[Mg] / [P] ≦ 400
The relational expression of is satisfied.

また、本実施形態である電子・電気機器用銅合金においては、0.2%耐力が300MPa以上とされている。   The 0.2% proof stress of the copper alloy for electronic / electrical devices according to the present embodiment is set to 300 MPa or more.

ここで、上述のように成分組成、結晶組織、各種特性を規定した理由について以下に説明する。   Here, the reasons for defining the component composition, crystal structure, and various characteristics as described above will be described below.

(Mg:0.15mass%以上、0.35mass%未満)
Mgは、銅合金の母相中に固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
ここで、Mgの含有量が0.15mass%未満の場合には、その作用効果を十分に奏功せしめることができなくなるおそれがある。一方、Mgの含有量が0.35mass%以上の場合には、導電率が大きく低下するとともに、銅合金溶湯の粘度が上昇し、鋳造性が低下するおそれがある。
以上のことから、本実施形態では、Mgの含有量を0.15mass%以上0.35mass%未満の範囲内に設定している。
なお、強度および耐応力緩和特性をさらに向上させるためには、Mgの含有量の下限を0.18mass%以上とすることが好ましく、0.2mass%以上とすることがさらに好ましい。また、導電率の低下及び鋳造性の低下を確実に抑制するためには、Mgの含有量の上限を0.32mass%以下とすることが好ましく、0.3mass%以下とすることがさらに好ましい。
(Mg: 0.15 mass% or more and less than 0.35 mass%)
Since Mg forms a solid solution in the mother phase of the copper alloy, it becomes possible to improve the strength and the stress relaxation resistance without significantly reducing the conductivity.
Here, when the content of Mg is less than 0.15 mass%, there is a possibility that the action and effect cannot be sufficiently exerted. On the other hand, when the content of Mg is 0.35 mass% or more, the conductivity may be significantly reduced, the viscosity of the molten copper alloy may be increased, and the castability may be reduced.
From the above, in the present embodiment, the Mg content is set within the range of 0.15 mass% or more and less than 0.35 mass%.
In addition, in order to further improve the strength and the stress relaxation resistance, the lower limit of the Mg content is preferably 0.18 mass% or more, and more preferably 0.2 mass% or more. Further, in order to reliably suppress the decrease in conductivity and the decrease in castability, the upper limit of the Mg content is preferably 0.32 mass% or less, and more preferably 0.3 mass% or less.

(P:0.0005mass%以上、0.01mass%未満)
Pは、鋳造性を向上させる作用効果を有する元素である。また、Mgと化合物を形成することで、再結晶粒径を微細化させる作用も有する。
ここで、Pの含有量が0.0005mass%未満の場合には、その作用効果を十分に奏功せしめることができないおそれがある。一方、Pの含有量が0.01mass%以上の場合には、上記のMgとPを含有する晶出物が粗大化することから、この晶出物が破壊の起点となり、冷間加工時や曲げ加工時に割れが生じるおそれがある。
以上のことから、本実施形態においてPを添加する場合には、Pの含有量を0.0005mass%以上、0.01mass%未満の範囲内に設定している。なお、確実に鋳造性を向上させるためには、Pの含有量の下限を0.0007mass%以上とすることが好ましく、0.001mass%以上とすることがさらに好ましい。また、粗大な晶出物の生成を確実に抑制するためには、Pの含有量の上限を0.009mass%未満とすることが好ましく、0.008mass%未満とすることがさらに好ましく、0.0075mass%以下とすることが最も好ましい。
(P: 0.0005 mass% or more and less than 0.01 mass%)
P is an element having an effect of improving castability. Further, by forming a compound with Mg, it also has the function of reducing the recrystallized grain size.
Here, when the content of P is less than 0.0005 mass%, there is a possibility that the action and effect cannot be sufficiently exerted. On the other hand, when the P content is 0.01 mass% or more, the above-mentioned crystallized product containing Mg and P is coarsened, and this crystallized substance becomes a starting point of fracture, and during cold working or Cracks may occur during bending.
From the above, when P is added in the present embodiment, the content of P is set within the range of 0.0005 mass% or more and less than 0.01 mass%. In order to reliably improve the castability, the lower limit of the P content is preferably 0.0007 mass% or more, and more preferably 0.001 mass% or more. Further, in order to reliably suppress the formation of coarse crystallized substances, the upper limit of the P content is preferably less than 0.009 mass%, more preferably less than 0.008 mass%, and even more preferably 0. Most preferably, it is 0075 mass% or less.

(〔Mg〕+20×〔P〕<0.5)
Pを添加した場合には、上述のようにMgとPが共存することにより、MgとPを含む晶出物が生成することになる。
ここで、mass%で、Mgの含有量を〔Mg〕、Pの含有量を〔P〕とした場合に、〔Mg〕+20×〔P〕が0.5以上となる場合には、MgおよびPの総量が多く、MgとPを含む晶出物が粗大化するとともに高密度に分布し、冷間加工時や曲げ加工時に割れが生じやすくなるおそれがある。
以上のことから、本実施形態においてPを添加する場合には、〔Mg〕+20×〔P〕を0.5未満に設定している。なお、晶出物の粗大化および高密度化を確実に抑制して、冷間加工時や曲げ加工時における割れの発生を抑制するためには、〔Mg〕+20×〔P〕を0.48未満とすることが好ましく、0.46未満とすることがさらに好ましい。
([Mg] + 20 × [P] <0.5)
When P is added, the coexistence of Mg and P as described above produces a crystallized product containing Mg and P.
Here, when the content of Mg is [Mg] and the content of P is [P] in mass%, and [Mg] + 20 × [P] is 0.5 or more, Mg and The total amount of P is large, and the crystallized substances containing Mg and P are coarsened and distributed in high density, and cracks are likely to occur during cold working or bending.
From the above, when P is added in this embodiment, [Mg] + 20 × [P] is set to less than 0.5. [Mg] + 20 × [P] is set to 0.48 in order to surely suppress coarsening and densification of crystallized substances and suppress the occurrence of cracks during cold working and bending. It is preferably less than 0.46, more preferably less than 0.46.

(〔Mg〕/〔P〕≦400)
Mgは、銅合金溶湯の粘度を上昇させ、鋳造性を低下させる作用を有する元素であることから、鋳造性を確実に向上させるためには、MgとPの含有量の比率を適正化する必要がある。
ここで、mass%で、Mgの含有量を〔Mg〕、Pの含有量を〔P〕とした場合に、〔Mg〕/〔P〕が400を超える場合には、Pに対してMgの含有量が多くなり、Pの添加による鋳造性向上効果が小さくなるおそれがある。
以上のことから、本実施形態においてPを添加する場合には、〔Mg〕/〔P〕を400以下に設定している。鋳造性をより向上させるためには、〔Mg〕/〔P〕を350以下とすることが好ましく、300以下とすることがさらに好ましい。
なお、〔Mg〕/〔P〕が過剰に低い場合には、Mgが晶出物として消費され、Mgの固溶による効果を得ることができなくなるおそれがある。MgとPを含有する晶出物の生成を抑制し、Mgの固溶による耐力、耐応力緩和特性の向上を確実に図るためには、〔Mg〕/〔P〕の下限を20超えとすることが好ましく、25超えであることがさらに好ましい。
([Mg] / [P] ≦ 400)
Since Mg is an element that increases the viscosity of the molten copper alloy and reduces the castability, it is necessary to optimize the content ratio of Mg and P in order to reliably improve the castability. There is.
Here, when the content of Mg is [Mg] and the content of P is [P] in mass%, and [Mg] / [P] exceeds 400, the ratio of Mg to P is There is a possibility that the content is increased and the effect of improving the castability by adding P is reduced.
From the above, when P is added in this embodiment, [Mg] / [P] is set to 400 or less. In order to further improve the castability, [Mg] / [P] is preferably 350 or less, more preferably 300 or less.
When [Mg] / [P] is excessively low, Mg is consumed as a crystallized substance, and the effect due to solid solution of Mg may not be obtained. In order to suppress the formation of crystallized substances containing Mg and P and to surely improve the yield strength and stress relaxation resistance due to the solid solution of Mg, the lower limit of [Mg] / [P] is set to more than 20. Preferably, it is more preferably 25 or more.

(不可避不純物:0.1mass%以下)
その他の不可避的不純物としては、Ag、B、Ca、Sr、Ba、Sc、Y、希土類元素、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Re、Fe、Ru、Os、Co、Se、Te、Rh、Ir、Ni、Pd、Pt、Au、Zn、Cd,Hg、Al、Ga、In、Ge、Sn、As、Sb、Tl、Pb、Bi、Be、N、C、Si、Li、H、O、S等が挙げられる。これらの不可避不純物は、導電率を低下させる作用があることから、総量で0.1mass%以下とする。
また、Ag、Zn、Snは銅中に容易に混入して導電率を低下させるため、総量で500massppm未満とすることが好ましい。
さらにSi、Cr、Ti、Zr、Fe、Coは、特に導電率を大きく減少させるとともに、介在物の形成により曲げ加工性を劣化させるため、これらの元素は総量で500massppm未満とすることが好ましい。
(Inevitable impurities: 0.1 mass% or less)
Other unavoidable impurities include Ag, B, Ca, Sr, Ba, Sc, Y, rare earth elements, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe and Ru. , Os, Co, Se, Te, Rh, Ir, Ni, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn, As, Sb, Tl, Pb, Bi, Be, N , C, Si, Li, H, O, S and the like. These unavoidable impurities have the effect of lowering the conductivity, so the total amount is made 0.1 mass% or less.
Further, Ag, Zn, and Sn are easily mixed in copper to reduce the conductivity, so that the total amount is preferably less than 500 mass ppm.
Furthermore, Si, Cr, Ti, Zr, Fe, and Co particularly greatly reduce conductivity and deteriorate bending workability due to the formation of inclusions. Therefore, the total amount of these elements is preferably less than 500 mass ppm.

(小傾角粒界およびサブグレインバウンダリー長さ比率:LLB/(LHB+LLB))
小傾角粒界およびサブグレインバウンダリーは加工時に導入された転位の密度が高い領域であるため、全粒界中の小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)が以下の式を満たすように制御することで、転位密度の増加に伴う加工硬化により、強度(耐力)を向上させることが出来る。
LB/(LLB+LHB)>20%
なお、小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)は、上記の範囲内でも25%以上が好ましく、さらには30%以上が好ましい。一方、小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)が高すぎると延性の低下により曲げ加工性を劣化させるおそれがあるため、傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)は90%以下とすることが好ましく、80%以下とすることがさらに好ましい。
(Low-angle grain boundary and subgrain boundary length ratio: L LB / (L HB + L LB ))
Since the low-angle grain boundaries and the subgrain boundaries are regions where the density of dislocations introduced during processing is high, the low-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB) in all grain boundaries By controlling so that the above formula satisfies the following formula, the strength (proof stress) can be improved by work hardening accompanied by an increase in dislocation density.
L LB / (L LB + L HB )> 20%
The low-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB ) are preferably 25% or more, and more preferably 30% or more even within the above range. On the other hand, if the small-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB ) are too high, the ductility may decrease and bending workability may be deteriorated. Therefore, the tilt grain boundaries and the subgrain boundaries may be deteriorated. The length ratio L LB / (L HB + L LB ) is preferably 90% or less, and more preferably 80% or less.

(導電率:75%IACS超え)
本実施形態である電子・電気機器用銅合金において、導電率を75%IACS超えに設定することにより、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品として良好に使用することができる。
なお、導電率は76%IACS超えであることが好ましく、77%IACS超えであることがさらに好ましく、78%IACS超えであることがより好ましく、80%IACS超えであることがさらに好ましい。
(Conductivity: over 75% IACS)
In the copper alloy for electronic / electrical equipment of the present embodiment, by setting the electrical conductivity to exceed 75% IACS, it can be used as a component for electronic / electrical equipment such as terminals such as connectors and press fits, relays, lead frames, and bus bars. It can be used well.
The electrical conductivity is preferably 76% IACS or more, more preferably 77% IACS or more, further preferably 78% IACS or more, and further preferably 80% IACS or more.

(0.2%耐力:300MPa以上)
本実施形態である電子・電気機器用銅合金においては、0.2%耐力が300MPa以上とすることにより、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適するものとなる。なお、本実施形態では、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされている。
ここで、上述の0.2%耐力は325MPa以上であることが好ましく、350MPa以上であることがさらに好ましい。
(0.2% proof stress: 300 MPa or more)
In the copper alloy for electronic / electrical devices according to the present embodiment, the 0.2% proof stress is set to 300 MPa or more, so that terminals such as connectors and press fits, electronic / electrical device parts such as relays, lead frames, and busbars can be obtained. It is particularly suitable as a material for. In this embodiment, the 0.2% proof stress when the tensile test is performed in the direction orthogonal to the rolling direction is 300 MPa or more.
Here, the above-mentioned 0.2% proof stress is preferably 325 MPa or more, and more preferably 350 MPa or more.

次に、このような構成とされた本実施形態である電子・電気機器用銅合金の製造方法について、図1に示すフロー図を参照して説明する。   Next, a method for manufacturing the copper alloy for electronic / electrical equipment according to the present embodiment having such a configuration will be described with reference to the flow chart shown in FIG.

(溶解・鋳造工程S01)
まず、銅原料を溶解して得られた銅溶湯に、前述の元素を添加して成分調整を行い、銅合金溶湯を製出する。ここで、銅溶湯は、純度が99.99mass%以上とされたいわゆる4NCu、あるいは99.999mass%以上とされたいわゆる5NCuとすることが好ましい。なお、各種元素の添加には、元素単体や母合金等を用いることができる。また、上述の元素を含む原料を銅原料とともに溶解してもよい。また、本合金のリサイクル材およびスクラップ材を用いてもよい。溶解工程では、Mgの酸化を抑制するため、また水素濃度低減のため、HOの蒸気圧が低い不活性ガス雰囲気(例えばArガス)による雰囲気溶解を行い、溶解時の保持時間は最小限に留めることが好ましい。
(Melting / casting process S01)
First, the above-mentioned elements are added to a molten copper obtained by melting a copper raw material to adjust the components, and a molten copper alloy is produced. Here, the copper melt is preferably so-called 4NCu having a purity of 99.99 mass% or more, or so-called 5NCu having a purity of 99.999 mass% or more. It should be noted that a simple element, a mother alloy, or the like can be used to add various elements. Moreover, you may melt | dissolve the raw material containing the above-mentioned element with a copper raw material. Also, recycled materials and scrap materials of the present alloy may be used. In the melting process, in order to suppress the oxidation of Mg and to reduce the hydrogen concentration, the atmosphere is melted in an inert gas atmosphere (for example, Ar gas) with a low vapor pressure of H 2 O, and the holding time during melting is minimized. It is preferable to keep

そして、成分調整された銅合金溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
この際、溶湯の凝固時に、MgとPを含む晶出物が形成されるため、凝固速度を速くすることで晶出物サイズをより微細にすることが可能となる。そのため、溶湯の冷却速度は0.1℃/sec以上とすることが好ましく、さらに好ましくは0.5℃/sec以上であり、最も好ましくは1℃/sec以上である。
Then, the molten copper alloy having the adjusted components is poured into a mold to produce an ingot. In consideration of mass production, it is preferable to use the continuous casting method or the semi-continuous casting method.
At this time, since a crystallized substance containing Mg and P is formed during solidification of the molten metal, the crystallized substance size can be made finer by increasing the solidification rate. Therefore, the cooling rate of the molten metal is preferably 0.1 ° C./sec or more, more preferably 0.5 ° C./sec or more, and most preferably 1 ° C./sec or more.

(加熱工程S02)
次に、得られた鋳塊の均質化および溶体化のために加熱処理を行う。鋳塊の内部には、凝固の過程においてMgが偏析で濃縮することにより発生したCuとMgを主成分とする金属間化合物等が存在することになる。そこで、これらの偏析および金属間化合物等を消失または低減させるために、鋳塊を400℃以上900℃以下にまで加熱する加熱処理を行うことで、鋳塊内において、Mgを均質に拡散させたり、Mgを母相中に固溶させたりするのである。なお、この加熱工程S02は、非酸化性または還元性雰囲気中で実施することが好ましい。
(Heating step S02)
Next, heat treatment is performed for homogenization and solution treatment of the obtained ingot. Inside the ingot, Cu and an intermetallic compound containing Mg as the main components, which are generated by the segregation of Mg during the solidification process, are present. Therefore, in order to eliminate or reduce such segregation and intermetallic compounds, a heat treatment of heating the ingot to 400 ° C. or more and 900 ° C. or less is performed to uniformly diffuse Mg in the ingot. , Mg is dissolved in the matrix. The heating step S02 is preferably performed in a non-oxidizing or reducing atmosphere.

ここで、加熱温度が400℃未満では、溶体化が不完全となり、母相中にCuとMgを主成分とする金属間化合物が多く残存するおそれがある。一方、加熱温度が900℃を超えると、銅素材の一部が液相となり、組織や表面状態が不均一となるおそれがある。よって、加熱温度を400℃以上900℃以下の範囲に設定している。より好ましくは400℃以上850℃以下、更に好ましくは420℃以上800℃以下とする。   Here, if the heating temperature is less than 400 ° C., solution treatment may be incomplete, and a large amount of intermetallic compounds containing Cu and Mg as main components may remain in the mother phase. On the other hand, if the heating temperature exceeds 900 ° C., a part of the copper material may be in a liquid phase, and the texture and surface condition may be non-uniform. Therefore, the heating temperature is set in the range of 400 ° C. or higher and 900 ° C. or lower. The temperature is more preferably 400 ° C. or higher and 850 ° C. or lower, and further preferably 420 ° C. or higher and 800 ° C. or lower.

(熱間加工工程S03)
粗加工の効率化と組織の均一化のために、前述の加熱工程S02の後に熱間加工を実施する。このとき、加工方法に特に限定はなく、最終形状が板や条の場合は熱間圧延を、最終形状が線や棒の場合には押出や溝圧延を、最終形状がバルク形状の場合には鍛造やプレスを適用すればよい。また、均質化の徹底と小傾角粒界の局所化を抑制するためには熱間加工温度は、400℃以上900℃以下の範囲内とすることが好ましく、450℃以上800℃以下の範囲内がさらに好ましく、450℃以上750℃以下の範囲内とすることが最適である。
(Hot working step S03)
In order to increase the efficiency of rough processing and make the structure uniform, hot working is performed after the above-described heating step S02. At this time, the processing method is not particularly limited, hot rolling when the final shape is a plate or strip, extrusion or groove rolling when the final shape is a wire or bar, and when the final shape is a bulk shape. Forging or pressing may be applied. Further, in order to thoroughly perform homogenization and suppress localization of small-angle grain boundaries, the hot working temperature is preferably in the range of 400 ° C to 900 ° C, and is in the range of 450 ° C to 800 ° C. Is more preferable, and it is optimum that the temperature is in the range of 450 ° C. or higher and 750 ° C. or lower.

(急冷工程S04)
熱間加工工程S03後に、200℃以下の温度にまで60℃/min以上の冷却速度で冷却する急冷工程S04を実施する。
(Quenching process S04)
After the hot working step S03, a quenching step S04 of cooling to a temperature of 200 ° C. or lower at a cooling rate of 60 ° C./min or higher is performed.

(粗加工工程S05)
所定の形状に加工するために、粗加工を行う。なお、この粗加工工程S05における温度条件は特に限定はないが、再結晶を抑制するために、あるいは寸法精度の向上のため、冷間または温間圧延となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。加工率(圧延率)については、20%以上が好ましく、30%以上がさらに好ましい。また、加工方法については、特に限定はなく、例えば圧延、線引き、押出、溝圧延、鍛造、プレス等を採用することができる。
(Rough processing step S05)
Roughing is performed to form a predetermined shape. The temperature condition in this rough working step S05 is not particularly limited, but in order to suppress recrystallization or to improve dimensional accuracy, it is cold or warm rolling within a range of -200 ° C to 200 ° C. Is preferable, and room temperature is particularly preferable. The processing rate (rolling rate) is preferably 20% or more, more preferably 30% or more. The processing method is not particularly limited, and for example, rolling, wire drawing, extrusion, groove rolling, forging, pressing and the like can be adopted.

(中間熱処理工程S06)
粗加工工程S05後に、溶体化の徹底、再結晶組織化または加工性向上のための軟化を目的として熱処理を実施する。熱処理の方法は特に限定はないが、好ましくは400℃以上900℃以下の保持温度、10秒以上10時間以下の保持時間で、非酸化雰囲気または還元性雰囲気中で熱処理を行う。なお、結晶粒が微細な場合、具体的には結晶粒径が3μm以下の場合は小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)は低くなる傾向にあるため、熱処理温度は特に500℃以上900℃以下が好ましい。
また、加熱後の冷却方法は、特に限定しないが、水焼入など冷却速度が200℃/min以上となる方法を採用することが好ましい。
なお、粗加工工程S05及び中間熱処理工程S06は、繰り返し実施してもよい。
(Intermediate heat treatment step S06)
After the rough processing step S05, heat treatment is performed for the purpose of thorough solution treatment, recrystallization structure or softening for improving workability. The heat treatment method is not particularly limited, but the heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere at a holding temperature of 400 ° C. or more and 900 ° C. or less and a holding time of 10 seconds or more and 10 hours or less. When the crystal grains are fine, specifically, when the crystal grain size is 3 μm or less, the low-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB ) tend to be low. The heat treatment temperature is preferably 500 ° C. or higher and 900 ° C. or lower.
Further, the cooling method after heating is not particularly limited, but it is preferable to adopt a method such as water quenching that provides a cooling rate of 200 ° C./min or more.
The rough processing step S05 and the intermediate heat treatment step S06 may be repeatedly performed.

(仕上加工工程S07)
中間熱処理工程S06後の銅素材を所定の形状に加工するため、仕上加工を行う。なお、この仕上加工工程S07における温度条件は特に限定はないが、再結晶を抑制するため、または軟化を抑制するために冷間、または温間加工となる−200℃から200℃の範囲内とすることが好ましく、特に常温が好ましい。また、加工率は、最終形状に近似するように適宜選択されることになるが、仕上加工工程S07において小傾角粒界およびサブグレインバウンダリー長さ比率を高め、加工硬化によって強度を向上させるためには、加工率を35%以上とすることが好ましい。また。さらなる強度の向上を図る場合には、加工率を40%以上とすることがより好ましく、加工率を45%以上とすることがさらに好ましい。一方、小傾角粒界およびサブグレインバウンダリーの過剰な増加による曲げ加工性の劣化を抑制させるため、加工率を90%以下とすることが好ましく、加工率を85%以下とすることがより好ましい。なお、一般に加工率は、圧延や伸線の減面率である。
(Finishing process S07)
Finishing is performed to process the copper material after the intermediate heat treatment step S06 into a predetermined shape. In addition, the temperature condition in this finishing step S07 is not particularly limited, but is within a range of -200 ° C. to 200 ° C. in which cold working or warm working is performed to suppress recrystallization or softening. Is preferable, and room temperature is particularly preferable. Further, the working ratio is appropriately selected so as to approximate the final shape, but in the finishing working step S07, the small tilt angle grain boundary and the subgrain boundary length ratio are increased to improve the strength by work hardening. In addition, it is preferable that the processing rate is 35% or more. Also. When further improving the strength, the working rate is more preferably 40% or more, further preferably 45% or more. On the other hand, the processing rate is preferably 90% or less, and more preferably 85% or less in order to suppress the deterioration of the bending workability due to the excessive increase of the small-angle grain boundary and the subgrain boundary. . The working rate is generally the area reduction rate of rolling or wire drawing.

(仕上熱処理工程S08)
次に、仕上加工工程S07によって得られた塑性加工材に対して、耐応力緩和特性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上熱処理を実施する。
熱処理温度が高すぎると小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)が大きく低下することから、熱処理温度は、100℃以上800℃以下の範囲内とすることが好ましく、200℃以上700℃以下の範囲内とすることがより好ましい。なお、この仕上熱処理工程S08においては、再結晶による強度の大幅な低下を避けるように、熱処理条件(温度、時間、冷却速度)を設定する必要がある。
例えば300℃では1秒から120秒程度保持とすることが好ましい。この熱処理は、非酸化雰囲気または還元性雰囲気中で行うことが好ましい。
熱処理の方法は特に限定はないが、製造コスト低減の効果から、連続焼鈍炉による短時間の熱処理が好ましい。
さらに、上述の仕上加工工程S07と仕上熱処理工程S08とを、繰り返し実施してもよい。
(Finishing heat treatment step S08)
Next, the plastically worked material obtained in the finishing step S07 is subjected to finishing heat treatment for improving stress relaxation resistance and low temperature annealing hardening, or for removing residual strain.
If the heat treatment temperature is too high, the low-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB ) are greatly reduced, so the heat treatment temperature should be in the range of 100 ° C. to 800 ° C. Is preferable, and it is more preferable to set it in the range of 200 ° C. or higher and 700 ° C. or lower. In this finishing heat treatment step S08, it is necessary to set the heat treatment conditions (temperature, time, cooling rate) so as to avoid a significant decrease in strength due to recrystallization.
For example, at 300 ° C., it is preferable to hold for 1 second to 120 seconds. This heat treatment is preferably performed in a non-oxidizing atmosphere or a reducing atmosphere.
The method of heat treatment is not particularly limited, but short-time heat treatment in a continuous annealing furnace is preferable from the effect of reducing manufacturing cost.
Further, the finishing processing step S07 and the finishing heat treatment step S08 described above may be repeatedly performed.

このようにして、本実施形態である電子・電気機器用銅合金塑性加工材として圧延板(薄板)が製出されることになる。なお、この電子・電気機器用銅合金塑性加工材(薄板)の板厚は、0.05mm超え3.0mm以下の範囲内とされており、好ましくは0.1mm超え3.0mm未満の範囲内とされている。電子・電気機器用銅合金塑性加工材(薄板)の板厚が0.05mm以下の場合、大電流用途での導体としての使用には不向きであり、板厚が3.0mmを超える場合には、プレス打ち抜き加工が困難となる。   In this way, a rolled plate (thin plate) is produced as the copper alloy plastically worked material for electronic / electrical equipment according to the present embodiment. The thickness of the copper alloy plastically worked material (thin plate) for electronic / electrical devices is in the range of more than 0.05 mm and less than 3.0 mm, preferably in the range of more than 0.1 mm and less than 3.0 mm. It is said that. If the thickness of the copper alloy plastically worked material (thin plate) for electronic / electrical equipment is 0.05 mm or less, it is unsuitable for use as a conductor for large current applications, and if the thickness exceeds 3.0 mm. However, press punching becomes difficult.

ここで、本実施形態である電子・電気機器用銅合金塑性加工材は、そのまま電子・電気機器用部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1〜100μm程度のSnめっき層またはAgめっき層を形成してもよい。この際、電子・電気機器用銅合金塑性加工材の板厚がめっき層厚さの10〜1000倍となることが好ましい。
さらに、本実施形態である電子・電気機器用銅合金(電子・電気機器用銅合金塑性加工材)を素材として、打ち抜き加工や曲げ加工等を施すことにより、例えばコネクタやプレスフィット等の端子、リレー、リードフレーム、バスバーといった電子・電気機器用部品が成形される。
Here, the copper alloy plastically worked material for electronic / electrical equipment according to the present embodiment may be used as it is for a component for electronic / electrical equipment. You may form a Sn plating layer or Ag plating layer of about 100 micrometers. At this time, the plate thickness of the copper alloy plastically worked material for electronic / electrical devices is preferably 10 to 1000 times the plating layer thickness.
Further, by using a copper alloy for electronic / electrical equipment (copper alloy plastic working material for electronic / electrical equipment) of the present embodiment as a material, punching or bending is performed, for example, a terminal such as a connector or press fit, Parts for electronic and electrical equipment such as relays, lead frames and bus bars are molded.

以上のような構成とされた本実施形態である電子・電気機器用銅合金によれば、Mgの含有量が0.15mass%以上0.35mass%未満の範囲内とされているので、銅の母相中にMgが固溶することで、導電率を大きく低下させることなく、強度、耐応力緩和特性を向上させることが可能となる。
また、本実施形態である電子・電気機器用銅合金においては、導電率が75%IACS以上とされているので、高い導電性が要求される用途にも適用することができる。
According to the copper alloy for an electronic / electrical device of the present embodiment configured as described above, since the content of Mg is within the range of 0.15 mass% or more and less than 0.35 mass%, Since Mg forms a solid solution in the matrix, it becomes possible to improve the strength and the stress relaxation resistance without significantly reducing the conductivity.
Further, in the copper alloy for electronic / electrical equipment according to the present embodiment, since the electrical conductivity is set to 75% IACS or more, the copper alloy for electronic / electrical devices can be applied to applications requiring high electrical conductivity.

そして、本実施形態である電子・電気機器用銅合金においては、EBSD法により測定された小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LHB+LLB)が20%以上とされているので、転位密度の増加に伴う加工硬化により、強度(耐力)を向上させることができる。よって、導電率を維持したまま強度を向上させることが可能となる。 Then, in the copper alloy for electronic / electrical equipment of the present embodiment, the low-angle grain boundaries and the subgrain boundary length ratio L LB / (L HB + L LB ) measured by the EBSD method is set to 20% or more. Therefore, the strength (proof stress) can be improved by work hardening accompanied by an increase in dislocation density. Therefore, it is possible to improve the strength while maintaining the conductivity.

また、本実施形態である電子・電気機器用銅合金においてPを添加し、Pの含有量を0.0005mass%以上0.01mass%未満の範囲内とした場合には、銅合金溶湯の粘度を低下させ、鋳造性を向上させることができる。
そして、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕+20×〔P〕<0.5の関係式を満足しているので、MgとPの粗大な晶出物の生成を抑制でき、冷間加工性及び曲げ加工性が低下することを抑制できる。
さらに、本実施形態では、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、〔Mg〕/〔P〕≦400の関係式を満たしているので、鋳造性を低下させるMgの含有量と鋳造性を向上させるPの含有量との比率が適正化され、P添加の効果により、鋳造性を確実に向上させることができる。
In addition, when P is added to the copper alloy for electronic / electrical equipment according to the present embodiment and the content of P is within the range of 0.0005 mass% or more and less than 0.01 mass%, the viscosity of the molten copper alloy is It is possible to reduce the castability and improve the castability.
Since the Mg content [Mg] (mass%) and the P content [P] (mass%) satisfy the relational expression of [Mg] + 20 × [P] <0.5, Mg It is possible to suppress the formation of coarse crystallized substances of P and P, and to suppress the deterioration of cold workability and bendability.
Further, in the present embodiment, the Mg content [Mg] (mass%) and the P content [P] (mass%) satisfy the relational expression [Mg] / [P] ≦ 400. The ratio of the content of Mg that lowers the castability and the content of P that improves the castability is optimized, and the effect of adding P can surely improve the castability.

さらに、本実施形態である電子・電気機器用銅合金においては、圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上とされているので、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。   Furthermore, in the copper alloy for electronic / electrical devices according to the present embodiment, the 0.2% proof stress when the tensile test is performed in the direction orthogonal to the rolling direction is set to 300 MPa or more, so that the connector or the press fit is performed. It is especially suitable as a material for parts for electronic and electrical equipment such as terminals, relays, lead frames, bus bars, etc.

また、本実施形態である電子・電気機器用銅合金塑性加工材は、上述の電子・電気機器用銅合金で構成されていることから、この電子・電気機器用銅合金塑性加工材に曲げ加工等を行うことで、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品を製造することができる。
なお、表面にSnめっき層又はAgめっき層を形成した場合には、コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等の電子・電気機器用部品の素材として特に適している。
Further, since the copper alloy plastically worked material for electronic / electrical equipment according to the present embodiment is made of the above-mentioned copper alloy for electronic / electrical equipment, it is possible to bend the copper alloy plastically worked material for electronic / electrical equipment into a bent material. By doing so, it is possible to manufacture terminals for connectors, press fits, etc., parts for electronic / electrical devices such as relays, lead frames, bus bars and the like.
In addition, when the Sn plating layer or the Ag plating layer is formed on the surface, it is particularly suitable as a material for terminals for connectors, press-fitting, etc., parts for electronic / electrical devices such as relays, lead frames, bus bars and the like.

さらに、本実施形態である電子・電気機器用部品(コネクタやプレスフィット等の端子、リレー、リードフレーム、バスバー等)は、上述の電子・電気機器用銅合金で構成されているので、小型化および薄肉化しても優れた特性を発揮することができる。   Further, the electronic / electrical device parts (terminals such as connectors and press-fits, relays, lead frames, bus bars, etc.) according to the present embodiment are made of the above-described copper alloy for electronic / electrical devices, and thus can be miniaturized. And even if the thickness is reduced, excellent characteristics can be exhibited.

以上、本発明の実施形態である電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品(端子、バスバー等)について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、上述の実施形態では、電子・電気機器用銅合金の製造方法の一例について説明したが、電子・電気機器用銅合金の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
The copper alloy for electronic / electrical devices, the copper alloy plastic-worked material for electronic / electrical devices, and the parts for electronic / electrical devices (terminals, bus bars, etc.), which are the embodiments of the present invention, have been described above. The present invention is not limited, and can be appropriately changed without departing from the technical idea of the invention.
For example, in the above-described embodiment, an example of a method for producing a copper alloy for electronic / electrical equipment has been described, but the method for producing a copper alloy for electronic / electrical equipment is not limited to the one described in the embodiment. Alternatively, an existing manufacturing method may be appropriately selected and manufactured.

以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる銅原料を準備し、これを高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯内に、各種添加元素を添加して表1に示す成分組成に調製し、鋳型に注湯して鋳塊を製出した。なお、本発明例3は断熱材(イソウール)鋳型、本発明例23はカーボン鋳型、本発明例1〜2、4〜22、24〜32、比較例1〜5は水冷機能を備えた銅合金鋳型を鋳造用の鋳型として用いた。鋳塊の大きさは、厚さ約100mm×幅約200mm×長さ約100mmとした。
Below, the result of the confirmation experiment conducted in order to confirm the effect of the present invention will be described.
A copper raw material made of oxygen-free copper (ASTM B152 C10100) with a purity of 99.99 mass% or more was prepared, charged into a high-purity graphite crucible, and subjected to high frequency melting in an atmosphere furnace in an Ar gas atmosphere. Various additive elements were added to the obtained molten copper to prepare the component composition shown in Table 1, and the molten copper was poured into a mold to produce an ingot. Inventive Example 3 is a heat insulating material (isowool) mold, Inventive Example 23 is a carbon mold, Inventive Examples 1-2, 4-22, 24-32, and Comparative Examples 1-5 are copper alloys having a water cooling function. The mold was used as a casting mold. The size of the ingot was about 100 mm in thickness × about 200 mm in width × about 100 mm in length.

この鋳塊の鋳肌近傍を面削し、最終製品の板厚が0.5mmとなるように、鋳塊を切り出してサイズを調整した。
このブロックを、Arガス雰囲気中において、表2に記載の温度条件で4時間の加熱を行い、保持した。そして、加熱保持後のブロックに対して、表2に示す条件で熱間圧延を実施し、水焼入れを行った。
The vicinity of the casting surface of this ingot was chamfered, and the ingot was cut out and the size was adjusted so that the plate thickness of the final product was 0.5 mm.
This block was heated and held under the temperature conditions shown in Table 2 for 4 hours in an Ar gas atmosphere. Then, the block after heating and holding was subjected to hot rolling under the conditions shown in Table 2 and water quenching.

その後、表2に記載の条件で粗圧延を実施した後、ソルトバスを用いて表2に記載された温度条件で熱処理を行った。
熱処理を行った銅素材を、適宜、最終形状に適した形にするために、切断するとともに、酸化被膜を除去するために表面研削を実施した。その後、常温で、表2に記載された圧延率で仕上圧延(仕上加工)を実施し、厚さ0.5mm、幅約150mm、長さ200mmの薄板を製出した。
そして、仕上圧延(仕上加工)後に、表2に示す条件で、Ar雰囲気中で仕上熱処理を実施し、その後、水焼入れを行い、特性評価用薄板を作成した。
Then, after performing rough rolling under the conditions shown in Table 2, heat treatment was performed under a temperature condition shown in Table 2 using a salt bath.
The heat-treated copper material was appropriately cut into a shape suitable for the final shape, and surface grinding was performed to remove the oxide film. Then, at room temperature, finish rolling (finishing) was carried out at a rolling rate shown in Table 2 to produce a thin plate having a thickness of 0.5 mm, a width of about 150 mm, and a length of 200 mm.
Then, after finish rolling (finishing), finish heat treatment was performed in an Ar atmosphere under the conditions shown in Table 2, and then water quenching was performed to prepare a thin plate for property evaluation.

(鋳造性)
鋳造性の評価として、前述の鋳造時における肌荒れの有無を観察した。目視で肌荒れが全くあるいはほとんど認められなかったものを◎、深さ1mm未満の小さな肌荒れが発生したものを○、深さ1mm以上2mm未満の肌荒れが発生したものを△とした。また深さ2mm以上の大きな肌荒れが発生したものは×とし、途中で評価を中止した。評価結果を表3に示す。
なお、肌荒れの深さとは、鋳塊の端部から中央部に向かう肌荒れの深さのことである。
(Castability)
As an evaluation of the castability, the presence or absence of rough skin during the above-mentioned casting was observed. The case where no or almost no rough skin was visually observed was rated as ⊚, the case where a small rough surface with a depth of less than 1 mm occurred was rated as ○, and the rough surface with a depth of 1 mm or more and less than 2 mm was rated as Δ. In addition, the case where a large skin roughness with a depth of 2 mm or more occurred was marked with x and the evaluation was stopped halfway. The evaluation results are shown in Table 3.
The rough skin depth is the depth of rough skin from the end portion to the central portion of the ingot.

(機械的特性)
特性評価用条材からJIS Z 2241に規定される13B号試験片を採取し、JIS Z 2241のオフセット法により、0.2%耐力を測定した。なお、試験片は、圧延方向に対して直交する方向で採取した。評価結果を表3に示す。
(Mechanical properties)
A No. 13B test piece specified in JIS Z 2241 was sampled from the characteristic evaluation strip, and 0.2% proof stress was measured by the offset method of JIS Z 2241. The test pieces were taken in a direction orthogonal to the rolling direction. The evaluation results are shown in Table 3.

(導電率)
特性評価用条材から幅10mm×長さ150mmの試験片を採取し、4端子法によって電気抵抗を求めた。また、マイクロメータを用いて試験片の寸法測定を行い、試験片の体積を算出した。そして、測定した電気抵抗値と体積とから、導電率を算出した。なお、試験片は、その長手方向が特性評価用条材の圧延方向に対して直交する方向に採取した。評価結果を表3に示す。
(conductivity)
A test piece having a width of 10 mm and a length of 150 mm was sampled from the characteristic evaluation strip, and the electrical resistance was determined by the four-terminal method. The dimension of the test piece was measured using a micrometer, and the volume of the test piece was calculated. Then, the conductivity was calculated from the measured electric resistance value and the volume. In addition, the test piece was sampled in a direction in which the longitudinal direction was orthogonal to the rolling direction of the characteristic evaluation strip. The evaluation results are shown in Table 3.

(曲げ加工性)
日本伸銅協会技術標準JCBA−T307:2007の4試験方法に準拠して曲げ加工を行った。圧延方向に対して曲げの軸が直交方向になるように、特性評価用薄板から幅10mm×長さ30mmの試験片を複数採取し、曲げ角度が90度、曲げ半径が0.3mm(R/t=0.6)のW型の治具を用い、W曲げ試験を行った。
曲げ部の外周部を目視で観察して割れが観察された場合は「×」、大きなしわが観察された場合は○、破断や微細な割れ、大きなしわを確認できない場合を◎として判定を行った。なお、◎、○は許容できる曲げ加工性と判断した。評価結果を表3に示す。
(Bending workability)
Bending was performed according to the 4 test methods of Japan Copper and Brass Association technical standard JCBA-T307: 2007. A plurality of test pieces with a width of 10 mm and a length of 30 mm were sampled from the thin plate for characteristic evaluation so that the axis of bending was orthogonal to the rolling direction, and the bending angle was 90 degrees and the bending radius was 0.3 mm (R / A W-bending test was performed using a W-type jig with t = 0.6).
When cracks are observed visually by observing the outer periphery of the bent portion, `` X '' is judged, when large wrinkles are observed, it is judged as ◯, and when fracture or fine cracks or large wrinkles cannot be confirmed, judgment is made as ◎. It was It should be noted that ⊚ and ○ were judged to be acceptable bending workability. The evaluation results are shown in Table 3.

(小傾角粒界およびサブグレインバウンダリー長さ比率)
圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、EBSD測定装置及びOIM解析ソフトによって、次のように結晶粒界(小傾角粒界およびサブグレインバウンダリーと大傾角粒界)および結晶方位差分布を測定した。
(Low-angle grain boundary and sub-grain boundary length ratio)
A surface perpendicular to the rolling width direction, that is, a TD surface (Transverse direction) is used as an observation surface, and an EBSD measuring device and an OIM analysis software are used to determine the crystal grain boundaries (small tilt angle boundary and subgrain boundary and A large tilt grain boundary) and a crystal orientation difference distribution were measured.

耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。そして、EBSD測定装置(FEI社製Quanta FEG 450,EDAX/TSL社製(現 AMETEK社) OIM Data Collection)と、解析ソフト(EDAX/TSL社製(現 AMETEK社)OIM Data Analysis ver.6.2)によって、電子線の加速電圧20kV、測定間隔0.5μmステップで1000μm以上の測定面積で、CI値が0.1以下である測定点を除いて、各結晶粒の方位差の解析を行い、隣接する測定点間の方位差が2°以上15°以下となる測定点間を小傾角粒界およびサブグレインバウンダリーとし、その長さをLLB、15°を超える測定点間を大傾角粒界としその長さをLHBとすることで、全粒界における小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LLB+LHB)を求めた。 After mechanical polishing was performed using water-resistant polishing paper and diamond abrasive grains, final polishing was performed using a colloidal silica solution. Then, an EBSD measuring apparatus (Quanta FEG 450 manufactured by FEI, OIM Data Collection manufactured by EDAX / TSL (current AMETEK) and analysis software (manufactured by EDAX / TSL (current AMETEK) OIM Data Analysis ver. 6.2). ), The misorientation of each crystal grain is analyzed except for the measurement point where the accelerating voltage of the electron beam is 20 kV, the measurement interval is 0.5 μm step, the measurement area is 1000 μm 2 or more, and the CI value is 0.1 or less. , A small tilt angle grain boundary and a subgrain boundary between measurement points at which the azimuth difference between adjacent measurement points is 2 ° or more and 15 ° or less, and the length is L LB , and a large tilt angle between measurement points exceeding 15 ° the length and grain boundaries with L HB, low-angle grain boundaries in the total grain boundaries and sub-grain boundary length ratio LB / a (L LB + L HB) was determined.

なお、粒界の解析を行う場合、試料表面のコンタミ、異物、ピットの影響を取り除くため、CI値の低い測定点などを、周囲の点の方位関係から補正して置き換える、いわゆるクリーンアップ処理が行われることがあるが、本実施例では小傾角粒界およびサブグレインバウンダリー長さを正しく評価するため、クリーンアップ処理は行わずに解析を行っている。   When analyzing grain boundaries, a so-called clean-up process is performed to correct and replace measurement points with low CI values from the azimuth relationship of surrounding points in order to remove the effects of contamination, foreign matter, and pits on the sample surface. However, in this example, in order to correctly evaluate the small-angle grain boundaries and the subgrain boundary length, the analysis is performed without performing the cleanup process.

Figure 0006680041
Figure 0006680041

Figure 0006680041
Figure 0006680041

Figure 0006680041
Figure 0006680041

比較例1,2は、Mgの含有量が本発明の範囲よりも少なく、強度不足であった。
比較例3,4は、Mgの含有量が本発明の範囲よりも多く、導電率が低かった。
比較例5は、小傾角粒界およびサブグレインバウンダリー長さ比率LLB/(LLB+LHB)が本発明の範囲よりも少なく、強度が不十分であった。
In Comparative Examples 1 and 2, the content of Mg was less than the range of the present invention and the strength was insufficient.
In Comparative Examples 3 and 4, the content of Mg was larger than the range of the present invention, and the conductivity was low.
In Comparative Example 5, the low-angle grain boundaries and the subgrain boundary length ratio L LB / (L LB + L HB ) were less than the range of the present invention, and the strength was insufficient.

これに対して、本発明例においては、0.2%耐力、導電率、曲げ加工性に優れていることが確認される。また、Pを添加した場合には鋳造性にも優れていることが確認される。
以上のことから、本発明例によれば、導電性、強度、曲げ加工性に優れた電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材を提供できることが確認された。
On the other hand, it is confirmed that the example of the present invention is excellent in 0.2% proof stress, conductivity and bending workability. It is also confirmed that when P is added, the castability is excellent.
From the above, it was confirmed that the example of the present invention can provide a copper alloy for electronic / electrical equipment and a copper alloy plastically worked material for electronic / electrical equipment, which are excellent in conductivity, strength, and bending workability.

Claims (9)

Mgを0.15mass%以上、0.35mass%未満の範囲内で含み、残部がCuおよび不可避的不純物からなり、
導電率が75%IACS超えるとともに、
EBSD法により1000μm以上の測定面積を測定間隔0.5μmステップで測定して、データ解析ソフトOIMにより解析されたCI値が0.1以下である測定点を除いて解析し、隣接する測定点間の方位差が2°以上15°以下となる測定点間である小傾角粒界およびサブグレインバウンダリーの長さをLLB、隣接する測定点間の方位差が15°を超える測定点間である大傾角粒界の長さをLHBとしたときに、以下の式が成り立つことを特徴とする電子・電気機器用銅合金。
LB/(LLB+LHB)>20%
Mg in the range of 0.15 mass% or more and less than 0.35 mass%, the balance consisting of Cu and inevitable impurities,
With conductivity exceeding 75% IACS,
The measurement area of 1000 μm 2 or more was measured by the EBSD method at a measurement interval of 0.5 μm, and the analysis was performed by the data analysis software OIM except for the measurement points having a CI value of 0.1 or less, and adjacent measurement points were analyzed. Between the measurement points where the misorientation between them is 2 ° or more and 15 ° or less, the length of the low-angle grain boundary and the subgrain boundary is L LB , and the misorientation between the adjacent measurement points exceeds 15 °. When the length of the high-angle grain boundary is L HB , the following formula is established, and a copper alloy for electronic and electric devices.
L LB / (L LB + L HB )> 20%
さらにPを0.0005mass%以上0.01mass%未満の範囲内で含み、Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕+20×〔P〕≦0.51
の関係式を満たすことを特徴とする請求項1に記載の電子・電気機器用銅合金。
Further seen including the P in the range of less than 0.0005 mass% or more 0.01 mass%, the Mg content [Mg] (mass%) and the content of P (P) (mass%) is,
[Mg] + 20 × [P] ≦ 0.51
The copper alloy for electronic / electrical devices according to claim 1, which satisfies the following relational expression .
Mgの含有量〔Mg〕(mass%)とPの含有量〔P〕(mass%)が、
〔Mg〕/〔P〕≦400
の関係式を満たすことを特徴とする請求項2に記載の電子・電気機器用銅合金。
The content of Mg [Mg] (mass%) and the content of P [P] (mass%) are
[Mg] / [P] ≦ 400
The copper alloy for electronic / electrical devices according to claim 2, which satisfies the relational expression of.
圧延方向に対して直交方向に引張試験を行った際の0.2%耐力が300MPa以上であることを特徴とする請求項3に記載の電子・電気機器用銅合金。 The copper alloy for electronic / electrical equipment according to claim 3, which has a 0.2% proof stress of 300 MPa or more when a tensile test is performed in a direction orthogonal to the rolling direction. 請求項1から請求項4のいずれか一項に記載の電子・電気機器用銅合金からなることを特徴とする電子・電気機器用銅合金塑性加工材。 A copper alloy plastically worked material for electronic / electrical equipment, comprising the copper alloy for electronic / electrical equipment according to claim 1 . 表面にSnめっき層又はAgめっき層を有することを特徴とする請求項5に記載の電子・電気機器用銅合金塑性加工材。 The copper alloy plastic working material for electronic / electrical equipment according to claim 5, which has a Sn plating layer or an Ag plating layer on its surface. 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする電子・電気機器用部品。 A component for electronic / electrical equipment, comprising the copper alloy plastically worked material for electronic / electrical equipment according to claim 5 or 6 . 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とする端子。 A terminal comprising the copper alloy plastically worked material for electronic / electrical equipment according to claim 5 or 6 . 請求項5又は請求項6に記載された電子・電気機器用銅合金塑性加工材からなることを特徴とするバスバー。 A bus bar comprising the copper alloy plastically worked material for electronic / electrical devices according to claim 5 or 6 .
JP2016069078A 2016-03-30 2016-03-30 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars Active JP6680041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069078A JP6680041B2 (en) 2016-03-30 2016-03-30 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069078A JP6680041B2 (en) 2016-03-30 2016-03-30 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars

Publications (2)

Publication Number Publication Date
JP2017179490A JP2017179490A (en) 2017-10-05
JP6680041B2 true JP6680041B2 (en) 2020-04-15

Family

ID=60005100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069078A Active JP6680041B2 (en) 2016-03-30 2016-03-30 Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars

Country Status (1)

Country Link
JP (1) JP6680041B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
WO2017170733A1 (en) 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6780187B2 (en) 2018-03-30 2020-11-04 三菱マテリアル株式会社 Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
MX2020009869A (en) * 2018-03-30 2020-10-12 Mitsubishi Materials Corp Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar.
TW202130827A (en) * 2019-11-29 2021-08-16 日商三菱綜合材料股份有限公司 Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, heat-dissipating board
CN115210394B (en) * 2020-03-06 2023-12-22 三菱综合材料株式会社 Pure copper plate
JP7120389B1 (en) 2021-05-31 2022-08-17 三菱マテリアル株式会社 Copper alloy plastic working materials, copper alloy wire rods, parts for electronic and electrical equipment, terminals
CN115735013B (en) * 2020-06-30 2024-01-26 三菱综合材料株式会社 Copper alloy plastic working material, copper alloy wire material, component for electronic and electrical equipment, and terminal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3677745A (en) * 1969-02-24 1972-07-18 Cooper Range Co Copper base composition
JP4516154B1 (en) * 2009-12-23 2010-08-04 三菱伸銅株式会社 Cu-Mg-P copper alloy strip and method for producing the same
JP2013001982A (en) * 2011-06-20 2013-01-07 Jx Nippon Mining & Metals Corp Rolled copper foil
JP6076724B2 (en) * 2012-12-06 2017-02-08 古河電気工業株式会社 Copper alloy material and method for producing the same
JP5776832B1 (en) * 2014-08-27 2015-09-09 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP5910790B1 (en) * 2015-12-01 2016-04-27 三菱マテリアル株式会社 Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars

Also Published As

Publication number Publication date
JP2017179490A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6680041B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP6226098B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP6758746B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and bus bars
EP3243918B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically-worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
KR102474714B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
JP6680042B2 (en) Copper alloys for electronic / electrical devices, plastic alloys for electronic / electrical devices, parts for electronic / electrical devices, terminals, and bus bars
WO2017170699A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP5910790B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
CN107614714B (en) Copper alloy sheet for electronic/electrical equipment, copper alloy plastic working material for electronic/electrical equipment, module for electronic/electrical equipment, terminal, and bus bar
JP6187629B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
JP6780187B2 (en) Copper alloys for electronic / electrical equipment, copper alloy strips for electronic / electrical equipment, parts for electronic / electrical equipment, terminals, and busbars
JP5983589B2 (en) Rolled copper alloy for electronic and electrical equipment, electronic and electrical equipment parts and terminals
WO2017043559A1 (en) Copper alloy for electronic/electrical device, member for plastically deforming copper alloy for electronic/electrical device, component for electronic/electrical device, terminal, and bus bar
KR101917416B1 (en) Copper-cobalt-silicon alloy for electrode material
JP6187630B1 (en) Copper alloy for electronic and electric equipment, copper alloy plastic working material for electronic and electric equipment, parts for electronic and electric equipment, terminals, and bus bars
WO2017170733A1 (en) Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relays
JP6248388B2 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP6155407B1 (en) Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts, terminals, and bus bars
JP7187989B2 (en) Copper alloys for electronic and electrical equipment, copper alloy sheets for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200302

R150 Certificate of patent or registration of utility model

Ref document number: 6680041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150