JP2013001982A - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP2013001982A
JP2013001982A JP2011136796A JP2011136796A JP2013001982A JP 2013001982 A JP2013001982 A JP 2013001982A JP 2011136796 A JP2011136796 A JP 2011136796A JP 2011136796 A JP2011136796 A JP 2011136796A JP 2013001982 A JP2013001982 A JP 2013001982A
Authority
JP
Japan
Prior art keywords
copper foil
heat treatment
minutes
elongation
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011136796A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okubo
光浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011136796A priority Critical patent/JP2013001982A/en
Publication of JP2013001982A publication Critical patent/JP2013001982A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil which is excellent in strength and breaking elongation after heat treatment.SOLUTION: The rolled copper foil includes: 0.10-0.30 wt.% Mg and the balance being unavoidable impurities and copper. The rolled copper foil has a tensile strength TSA after heat treatment at 350°C for 30 minutes of 400 MPa or more and a conductivity after heat treatment at 350°C for 30 minutes of 65% IACS or more.

Description

本発明は、リチウムイオン電池を含む二次電池の電極に用いる集電体に適した圧延銅箔に関する。   The present invention relates to a rolled copper foil suitable for a current collector used for an electrode of a secondary battery including a lithium ion battery.

リチウムイオン電池は軽量でエネルギー密度が高いことから,多くの分野で採用されつつある。そして、リチウムイオン電池の電極(負極)の集電体として、従来から銅分99.9%のタフピッチ銅と呼ばれる圧延銅箔や、電解銅箔が使用されている。
ところで、集電体には電極活物質が塗着されているが、活物質からのイオンの移動に伴って充放電時には活物質が膨張及び収縮し、充放電毎に集電体が繰り返し負荷を受けることになる。そのため,集電体である銅箔が部分的に破断、剥離すると電池の寿命低下に繋がる。特に、電池の高容量化を図るためには集電体を薄くすることが求められるが、銅箔の厚みが薄くなるほど外力に対する抗力が低下する。さらに、集電体上に活物質を塗布後に乾燥処理(例えば200〜400℃)が行われ、この際に銅箔が軟化してさらに強度が低下するという問題がある。
Lithium ion batteries are being adopted in many fields because of their light weight and high energy density. As a current collector for an electrode (negative electrode) of a lithium ion battery, conventionally, a rolled copper foil called tough pitch copper having a copper content of 99.9% or an electrolytic copper foil has been used.
By the way, although the electrode active material is coated on the current collector, the active material expands and contracts during charge and discharge as ions move from the active material, and the current collector repeatedly loads each time it is charged and discharged. Will receive. Therefore, if the copper foil as the current collector is partially broken or peeled off, the battery life is shortened. In particular, in order to increase the capacity of the battery, it is required to make the current collector thinner. However, as the thickness of the copper foil becomes thinner, the resistance against external force decreases. Furthermore, after apply | coating an active material on a collector, a drying process (for example, 200-400 degreeC) is performed, and there exists a problem that a copper foil softens and the intensity | strength falls further in this case.

このようなことから、乾燥処理によっても軟化し難い銅箔として、Ag、Bi、Cd、Cr、Sn、Sb、Znの1種以上を含み、200℃で30分加熱した後の引張強さが400N/mm2 以上である電池用圧延銅箔が開示されている(特許文献1)。又、Zrを含有し、熱処理を施すことで熱処理を受けても強度が落ちない電池用圧延銅箔が開示されている(特許文献2)。一方、電池用銅箔ではないが、屈曲特性に優れた圧延銅箔として、Ag,Sn,Zr,Fe,Co,Ni,Mg,Zn,Ti,Si,B,Bi,Sb,MnおよびCrの1種以上を含むフレキシブルプリント配線板用圧延銅箔が開示されている(特許文献3)。   Therefore, as a copper foil that is difficult to soften even by drying treatment, it contains one or more of Ag, Bi, Cd, Cr, Sn, Sb, Zn, and has a tensile strength after heating at 200 ° C. for 30 minutes. A rolled copper foil for a battery having a capacity of 400 N / mm @ 2 or more is disclosed (Patent Document 1). Moreover, the rolled copper foil for batteries which contains Zr and a strength does not fall even if it heat-processes by giving heat processing is disclosed (patent document 2). On the other hand, it is not a copper foil for batteries, but as rolled copper foil with excellent bending properties, Ag, Sn, Zr, Fe, Co, Ni, Mg, Zn, Ti, Si, B, Bi, Sb, Mn and Cr The rolled copper foil for flexible printed wiring boards containing 1 or more types is disclosed (patent document 3).

特開2000-303128号公報JP 2000-303128 A 特開2003-217595号公報JP 2003-217595 A 特開2010-150598号公報JP 2010-150598 A

しかしながら、本発明者が充放電による繰り返し負荷に耐える銅箔について検討したところ、熱処理後の強度が高いだけでなく、熱処理後の破断伸びがある程度高いことが必要であることが判明した。そして、本発明者が特許文献1〜3に記載された組成の銅箔について、熱処理後の強度及び破断伸びを測定したところ、特許文献2記載の銅箔は破断伸びが小さく、特許文献1,3記載の銅箔は強度が低くなることがわかった。
すなわち、本発明は上記の課題を解決するためになされたものであり、熱処理後の強度と破断伸びがいずれも優れた圧延銅箔の提供を目的とする。
However, when the present inventor examined a copper foil that can withstand repeated loads caused by charging and discharging, it was found that not only the strength after heat treatment was high, but also the elongation at break after heat treatment was required to be high to some extent. And when this inventor measured the strength and breaking elongation after heat processing about the copper foil of the composition described in patent documents 1-3, the copper foil of patent document 2 has small elongation at break, patent documents 1, It was found that the copper foil described in 3 has a low strength.
That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rolled copper foil excellent in both strength and elongation at break after heat treatment.

本発明者らは種々検討した結果、Mg:0.10-0.30wt%を含有させることで、熱処理後の圧延銅箔の強度と破断伸びがいずれも向上することを見出した。
すなわち本発明の圧延銅箔は、Mg:0.10-0.30wt%を含み、残部が不可避的不純物及び銅からなり、350℃で30分間熱処理後の引張強さTSAが400MPa以上で、かつ350℃で30分間熱処理後の導電率が65%IACS以上である。
As a result of various studies, the present inventors have found that the inclusion of Mg: 0.10-0.30 wt% improves both the strength and elongation at break of the rolled copper foil after heat treatment.
That is, the rolled copper foil of the present invention contains Mg: 0.10-0.30 wt%, the balance consists of inevitable impurities and copper, and the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes is 400 MPa or more and at 350 ° C. The conductivity after heat treatment for 30 minutes is 65% IACS or more.

350℃で30分間熱処理する前の引張強さTSBに対し、{(TSB-TSA)/TSB}×100(%)で表される強度低下率が30%以下であることが好ましい。
350℃で30分間熱処理する前の破断伸びEL、350℃で30分間熱処理後の破断伸びELに対し、{(EL-EL)/EL}で表される破断伸び増加比が0.5〜9であることが好ましい。
さらに、Cr及び/又はMnを総量で0.05-0.25wt%含むことが好ましい。
酸素の含有量が60wtppm以下であることが好ましい
The strength reduction rate represented by {(TSB-TSA) / TSB} × 100 (%) is preferably 30% or less with respect to the tensile strength TSB before heat treatment at 350 ° C. for 30 minutes.
With respect to the breaking elongation EL 1 before heat treatment at 350 ° C. for 30 minutes and the breaking elongation EL 2 after heat treatment at 350 ° C. for 30 minutes, the breaking elongation increase ratio represented by {(EL 2 -EL 1 ) / EL 1 } is It is preferable that it is 0.5-9.
Further, it is preferable to contain 0.05 to 0.25 wt% of Cr and / or Mn in total.
It is preferable that the oxygen content is 60 wtppm or less

本発明によれば、熱処理後の強度と破断伸びがいずれも優れた圧延銅箔を得ることができる。   According to the present invention, it is possible to obtain a rolled copper foil excellent in both strength and elongation at break after heat treatment.

実施例6の試料の表面のSEM像を示す図である。6 is a diagram showing an SEM image of the surface of a sample of Example 6. FIG. 実施例7の試料の表面のSEM像を示す図である。10 is a diagram showing an SEM image of the surface of a sample of Example 7. FIG. 350℃で30分加熱した後の銅箔の破断伸びELと、電池のサイクル寿命との関係を示す図である。And 350 ° C. for 30 minutes elongation at break EL 2 copper foil after heating is a diagram showing the relationship between the cycle life of the battery.

以下、本発明の実施形態に係る圧延銅箔について説明する。   Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated.

<成分組成>
圧延銅箔は、Mg:0.10-0.30wt%を含み、残部が不可避的不純物及び銅からなる。Mgは銅中に固溶し、熱処理による再結晶を抑制して軟化を防止する(耐熱性が向上する)。又、銅中にMgを添加すると、再結晶粒に双晶が生じ、この双晶が耐熱性に寄与すると考えられる。
一般に、圧延銅箔を熱処理すると、圧延時の加工歪が低減して強度が低下すると共に伸びが向上する傾向にある。そこで、Mgを銅中に添加すると、双晶により熱処理後の強度が高くなるので、熱処理による強度低下を打消し、熱処理後の強度と破断伸びがいずれも優れたものとなる。
一方、特許文献2のように銅中にZrを添加しても双晶が観察されるが、熱処理後の破断伸びは向上しない。これは、Zrが活性な金属であり、Zr酸化物や銅とZrの化合物が生成しやすく,銅中に粗大な粒子が生じて伸びを低下させると考えられる。又、銅中に固溶したZrは再結晶を極端に抑制するので、200〜400℃の熱処理では歪が減少しにくく,熱処理後の延性が増加し難くなる。
<Ingredient composition>
The rolled copper foil contains Mg: 0.10-0.30 wt%, and the balance consists of inevitable impurities and copper. Mg dissolves in copper and suppresses recrystallization by heat treatment to prevent softening (heat resistance is improved). Further, when Mg is added to copper, twins are formed in the recrystallized grains, and this twinning is considered to contribute to heat resistance.
Generally, when a rolled copper foil is heat-treated, there is a tendency that processing strain during rolling is reduced, strength is lowered, and elongation is improved. Therefore, when Mg is added to copper, the strength after heat treatment is increased by twinning, so that the strength reduction due to heat treatment is counteracted, and both the strength and elongation at break after heat treatment are excellent.
On the other hand, twinning is observed even when Zr is added to copper as in Patent Document 2, but the elongation at break after heat treatment is not improved. This is thought to be because Zr is an active metal, and a Zr oxide or a compound of copper and Zr is likely to be formed, and coarse particles are formed in copper to reduce elongation. Moreover, since Zr solid-dissolved in copper extremely suppresses recrystallization, strain is hardly reduced by heat treatment at 200 to 400 ° C., and ductility after heat treatment is difficult to increase.

圧延銅箔中のMgの含有量が0.10wt%未満であると、350℃で30分間熱処理後の引張強さTSAが400MPa未満に低下する。Mgの含有量が0.30wt%を超えると、破断伸びが低下する。これは、大きなMg酸化物粒子が生成して破断の起点となるためと考えられる。
又、添加元素としてCr及び/又はMnを総量で0.05-0.25wt%含んでもよい。特に、Crを添加すると、耐熱性がさらに向上する。Cr及び/又はMnの総量が0.05wt%未満であると耐熱性の向上効果を生じず、総量が0.25wt%を超えると350℃で30分熱処理後に破断伸びが低下すると共に導電率が65%IACS未満となる。
When the Mg content in the rolled copper foil is less than 0.10 wt%, the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes decreases to less than 400 MPa. When the Mg content exceeds 0.30 wt%, the elongation at break decreases. This is presumably because large Mg oxide particles are generated and become the starting point of fracture.
Further, Cr and / or Mn may be added as additive elements in a total amount of 0.05 to 0.25 wt%. In particular, when Cr is added, the heat resistance is further improved. If the total amount of Cr and / or Mn is less than 0.05 wt%, there will be no effect of improving heat resistance.If the total amount exceeds 0.25 wt%, the elongation at break will decrease after heat treatment at 350 ° C for 30 minutes and the conductivity will be 65%. Less than IACS.

さらに、酸素の含有量が60wtppm以下であると、銅箔中の酸化物に起因して破断することが抑制され、熱処理後の破断伸びがさらに向上するので好ましい。   Furthermore, it is preferable that the oxygen content is 60 wtppm or less, because breakage due to oxides in the copper foil is suppressed, and elongation at break after heat treatment is further improved.

<引張強さ>
本発明の圧延銅箔は、350℃で30分間熱処理後の引張強さTSAが400MPa以上である。TSAが400MPa未満であると、圧延銅箔を電池の集電体に用いたときに、充放電時の活物質の膨張及び収縮に伴って集電体が繰り返し負荷を受けると、集電体が破断し易くなる。
350℃で30分間熱処理する前の引張強さTSBに対し、{(TSB-TSA)/TSB}×100(%)で表される強度低下率が30%以下であることが好ましい。強度低下率が30%以下であると、熱処理後の強度が高いだけでなく、熱処理前の強度に対する熱処理後の軟化の度合いが小さく、集電体上の活物質の乾燥時に銅箔の強度が低くならず、集電体製造時のハンドリング性が向上する。
なお、引張強さTSA,TSBは、引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における引張り強さ(破断強度;TS)を測定して求める。
<Tensile strength>
The rolled copper foil of the present invention has a tensile strength TSA of 400 MPa or more after heat treatment at 350 ° C. for 30 minutes. When the TSA is less than 400 MPa, when the rolled copper foil is used as a battery current collector, if the current collector is repeatedly loaded with expansion and contraction of the active material during charge and discharge, the current collector It becomes easy to break.
The strength reduction rate represented by {(TSB-TSA) / TSB} × 100 (%) is preferably 30% or less with respect to the tensile strength TSB before heat treatment at 350 ° C. for 30 minutes. When the strength reduction rate is 30% or less, not only the strength after the heat treatment is high, but also the degree of softening after the heat treatment relative to the strength before the heat treatment is small, and the strength of the copper foil when the active material on the current collector is dried It is not lowered, and handling properties at the time of producing the current collector are improved.
The tensile strengths TSA and TSB are obtained by measuring the tensile strength (breaking strength; TS) in a direction parallel to the rolling direction according to JIS-Z2241 using a tensile tester.

<破断伸び>
圧延銅箔を集電体に用いたとき、上述のように充放電による繰り返し負荷に耐えるには、銅箔の熱処理後の強度が高いだけでなく、熱処理後の破断伸びがある程度高いことが好ましい。但し、圧延銅箔の板厚が変化すると熱処理後の破断伸びの値の好ましい範囲も変化する。これは、板厚によって圧延銅箔上への活物質の塗布量や、充放電時の銅箔の歪量等が異なるからである。
そこで、本発明においては、圧延銅箔の350℃で30分間熱処理後の破断伸びELの好ましい範囲を実験的に求めて数式化した。図3は、圧延銅箔の350℃で30分間熱処理後の破断伸びEL2と、この圧延銅箔を負極集電体として用いたときの電池のサイクル寿命との関係を示す。なお、サイクル寿命の評価方法は後述する。又、図3は、TSAが400MPa以上で、かつ350℃で30分間熱処理後の導電率が65%IACS以上である試料についてのプロットである。
<Elongation at break>
When a rolled copper foil is used as a current collector, not only the strength after heat treatment of copper foil is high, but also the elongation at break after heat treatment is preferably high to some extent in order to withstand repeated loads due to charge and discharge as described above. . However, when the plate thickness of the rolled copper foil is changed, the preferable range of the elongation at break after the heat treatment is also changed. This is because the coating amount of the active material on the rolled copper foil, the strain amount of the copper foil during charging / discharging, and the like differ depending on the plate thickness.
Therefore, in the present invention, a preferable range of the elongation at break EL 2 after heat treatment at 350 ° C. for 30 minutes of the rolled copper foil was experimentally obtained and formulated. FIG. 3 shows the relationship between the elongation at break EL2 after heat treatment at 350 ° C. for 30 minutes of the rolled copper foil and the cycle life of the battery when this rolled copper foil is used as a negative electrode current collector. The cycle life evaluation method will be described later. FIG. 3 is a plot of a sample having a TSA of 400 MPa or more and a conductivity of 65% IACS or more after heat treatment at 350 ° C. for 30 minutes.

図3に示すように、サイクル寿命が優れている試料(○)と、サイクル寿命が劣る試料(×)との境界のELを表す直線Cを、板厚t(mm)に対して実験的に表すと、式1:
C=181.4×t−0.51 (1)
となった。
直線Cを用いた理由は、銅箔を用いた集電体を円筒型電池に組み込んだ際、銅箔が巻回されるが、この時に集電体(銅箔)に生じる曲げ歪は、銅箔の板厚が薄くなるのと比例して小さくなるからである。つまり、銅箔の板厚が薄くなるほど、電池の充放電による集電体の膨張収縮の際に加えられる曲げ歪が小さくなり、破断伸びが小さくても破断しにくくなるので、右上がりの直線となる。
なお、図3において、板厚毎に、サイクル寿命が優れている試料の内で最もELが小さい値の試料のデータと、サイクル寿命が劣る試料の内で最もELが大きい値の試料のデータを抽出し(合計10点のデータ)、これらのデータと直線Cとの誤差の二乗和が最小となるように最小二乗法によりCを求めた。
As shown in FIG. 3, a straight line C representing EL 2 at the boundary between a sample having a good cycle life (◯) and a sample having a poor cycle life (×) is experimentally measured with respect to the plate thickness t (mm). Is represented by the formula 1:
C = 181.4 × t−0.51 (1)
It became.
The reason for using the straight line C is that when a current collector using copper foil is incorporated into a cylindrical battery, the copper foil is wound. At this time, the bending strain generated in the current collector (copper foil) This is because the thickness of the foil becomes smaller in proportion to the thickness. In other words, the thinner the copper foil, the smaller the bending strain applied during the expansion and contraction of the current collector due to battery charging / discharging, and it is difficult to break even if the elongation at break is small. Become.
In FIG. 3, for each plate thickness, the data of the sample with the smallest EL 2 value among the samples with excellent cycle life and the sample with the largest value of EL 2 among the samples with inferior cycle life. Data was extracted (data of a total of 10 points), and C was determined by the least square method so that the sum of squares of errors between these data and the straight line C was minimized.

なお破断伸びは、引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向に引っ張り、試験片が破断したときの標点間の長さLと、試験前の標点距離L0(50mm)との差を%で求めた破断伸びである。破断伸び(%)=(L−L)/L×100で表される。
又、試験片の寸法等によって破断伸びの値が変化する。従って、本発明においては、上記引張強さ及び破断伸びの測定に用いる試験片の寸法を幅12.7mm、長さ110mmとして、引張試験機の標点間距離(引張り長さ)を上記のように50mmとする。
The elongation at break is determined by the tensile tester in accordance with JIS-Z2241 in the direction parallel to the rolling direction, the length L between the gauge points when the test piece breaks, and the gauge distance L0 (50 mm) before the test. It is the elongation at break when the difference is obtained in%. Elongation at break (%) = (L−L 0 ) / L 0 × 100.
Further, the value of elongation at break varies depending on the dimensions of the test piece. Accordingly, in the present invention, the dimensions of the test piece used for measuring the tensile strength and elongation at break are 12.7 mm in width and 110 mm in length, and the distance between the gauges (tensile length) of the tensile tester is as described above. 50mm.

従って、350℃で30分間熱処理後の破断伸びEL(%)≧181.4×t−0.51であると、活物質の乾燥(熱処理)後に銅箔集電体の伸びが大きくなるので、電池の充放電に伴う銅箔集電体の収縮を高い伸びで吸収して破断し難くなり、好ましい。一方、EL(%)<181.4×t−0.51であると、充放電による繰り返し負荷に耐える集電体が得られないことがある。 Accordingly, if the elongation at break EL 2 (%) ≧ 181.4 × t−0.51 after heat treatment at 350 ° C. for 30 minutes, the elongation of the copper foil current collector increases after the active material is dried (heat treatment). The shrinkage of the copper foil current collector accompanying the charging / discharging of the battery is absorbed with high elongation, and it is difficult to break, which is preferable. On the other hand, if EL 2 (%) <181.4 × t−0.51, a current collector that can withstand repeated loads due to charge and discharge may not be obtained.

なお、上記式1を用い、代表的な板厚tにおける350℃で30分間熱処理後の好ましい破断伸びELを示すと、板厚t=18μm、15μm、12μm、10μm、7μmで、それぞれEL=2.8%以上、2.2%以上、1.7%以上、1.3%以上、0.8%以上となる。 Incidentally, using the above formula 1, indicating a preferred elongation at break EL 2 after heat treatment typical 30 minutes at 350 ° C. in the sheet thickness t, the thickness t = 18μm, 15μm, 12μm, 10μm, with 7 [mu] m, respectively EL 2 = 2.8% or more, 2.2% or more, 1.7% or more, 1.3% or more, 0.8% or more.

また、本発明の圧延銅箔の350℃で30分間熱処理前の破断伸びELは15%以下であることが好ましい。破断伸びELが15%を超えると、集電体に活物質を塗布乾燥させる製造ラインでの銅箔集電体の張力の制御が困難となる場合がある。
また、本発明の圧延銅箔の350℃で30分間熱処理後の破断伸びELも15%以下であることが好ましい。破断伸びELが15%を超えると、集電体として使用されている圧延銅箔が充放電時に座屈する場合がある。
また、本発明の圧延銅箔の350℃で30分間熱処理前の破断伸びELは、厚み18μmとしたときに1.6%以上であることが好ましく、厚み15μmとしたときに1.3%以上であることが好ましく、厚み12μmとしたときに1.1%以上であることが好ましく、厚み10μmとしたときに0.8%以上であることが好ましく、厚み7μmとしたときに0.3%以上であることが好ましい。これは、銅箔集電体に活物質を塗布乾燥させる製造ラインにおいて塗布乾燥前の銅箔への張力の不均一を伸びにより解消し、製造ラインでの破断を防止するためである。圧延銅箔の厚みによって、好ましい範囲が異なるのは、圧延銅箔の厚みによって製造ラインの搬送張力が異なり、搬送張力の幅方向の不均一の程度も変化するからである。
Also, elongation at break EL 1 before the heat treatment for 30 minutes at 350 ° C. of rolled copper foil of the present invention is preferably 15% or less. When breaking elongation EL 1 exceeds 15%, the control of the tension of a copper foil current collector of the production line for coating and drying an active material on a current collector is difficult.
Further, it is preferable that elongation at break EL 2 after the heat treatment for 30 minutes at 350 ° C. of rolled copper foil of the present invention is also 15% or less. When breaking elongation EL 2 exceeds 15%, the rolled copper foil is used as the current collector buckles during charging and discharging.
Further, the elongation at break EL 1 before heat treatment at 350 ° C. for 30 minutes of the rolled copper foil of the present invention is preferably 1.6% or more when the thickness is 18 μm, and 1.3% when the thickness is 15 μm. It is preferably 1.1% or more when the thickness is 12 μm, preferably 0.8% or more when the thickness is 10 μm, and 0.3% when the thickness is 7 μm. % Or more is preferable. This is because in the production line in which the active material is applied to and dried on the copper foil current collector, the uneven tension on the copper foil before coating and drying is eliminated by elongation, and breakage in the production line is prevented. The reason why the preferable range varies depending on the thickness of the rolled copper foil is that the conveyance tension of the production line varies depending on the thickness of the rolled copper foil, and the degree of non-uniformity of the conveyance tension in the width direction also changes.

<破断伸びの増加比>
上記した破断伸びELを規定するのに加え、350℃で30分間加熱前後の破断伸びの増加比M={(EL-EL)/EL}を9以下に小さくすることが好ましい。増加比Mが9より大きくなると、電池の充放電時の活物質の膨張にともなって銅箔集電体が塑性変形してしまい、変形した銅箔集電体が次の収縮時に元に戻らないことがある。この場合、銅箔集電体が収縮する際に電池内部で座屈、破断してサイクル寿命が低下する。
但し、増加比Mが0.5未満になると、熱処理によっても蓄積された加工歪が解放されずにEL又はELが小さくなり、電池の充放電時の活物質の膨張にともなって銅箔集電体が伸びずに破断し、サイクル寿命が低下することがあるので好ましくない。又、再結晶焼鈍後の加工度を低くしても、熱処理前後の加工歪量の変化が小さくなるので増加比Mが0.5未満になるが、この場合には、そもそも銅箔の強度が低くなってハンドリング性が低下する。
なお、増加比Mを0.5〜9に制御する方法としては、銅箔の組成(Mgの添加量,及び必要に応じてCr及び/又はMnの添加量)、又は最終冷間圧延の加工度を制御することが挙げられる。
なお、増加比Mの値は好ましくは0.5〜5、更に好ましくは0.8〜3.0、最も好ましくは0.8〜2.5である。
<Increase ratio of elongation at break>
In addition to defining the above-described breaking elongation EL 2 , it is preferable to reduce the breaking elongation increase ratio M = {(EL 2 −EL 1 ) / EL 1 } before and after heating at 350 ° C. for 30 minutes to 9 or less. When the increase ratio M is larger than 9, the copper foil current collector is plastically deformed with the expansion of the active material at the time of charge / discharge of the battery, and the deformed copper foil current collector does not return to the original state at the next contraction. Sometimes. In this case, when the copper foil current collector contracts, it buckles and breaks inside the battery, thereby reducing the cycle life.
However, when the increase ratio M is less than 0.5, EL 2 or EL 1 becomes smaller without releasing the processing strain accumulated even by the heat treatment, and the copper foil is accompanied by the expansion of the active material during charging / discharging of the battery. The current collector is not preferable because it may break without extending and the cycle life may be reduced. Moreover, even if the degree of work after recrystallization annealing is lowered, the change in work strain before and after heat treatment is small, so the increase ratio M is less than 0.5. In this case, the strength of the copper foil is originally It becomes low and handling property falls.
In addition, as a method of controlling the increase ratio M to 0.5 to 9, the composition of the copper foil (addition amount of Mg and, if necessary, addition amount of Cr and / or Mn), or processing of the final cold rolling Control the degree.
The increase ratio M is preferably 0.5 to 5, more preferably 0.8 to 3.0, and most preferably 0.8 to 2.5.

本発明の圧延銅箔は、350℃で30分熱処理後の導電率が65%IACS以上であることが好ましい。上記導電率が65%IACS未満であると、電池の集電体として適さない。導電率は、JIS−H0505に準拠して4端子法により測定する。
本発明の圧延銅箔の厚さは、20μm以下が好ましく、5μm〜18μmがより好ましく、7μm〜15μmがより好ましく、10μm〜15μmが最も好ましい。
The rolled copper foil of the present invention preferably has a conductivity of 65% IACS or more after heat treatment at 350 ° C. for 30 minutes. If the conductivity is less than 65% IACS, it is not suitable as a battery current collector. The conductivity is measured by a four-terminal method according to JIS-H0505.
The thickness of the rolled copper foil of the present invention is preferably 20 μm or less, more preferably 5 μm to 18 μm, more preferably 7 μm to 15 μm, and most preferably 10 μm to 15 μm.

本発明の圧延銅箔を、再結晶焼鈍に必要な温度である450℃で30分間熱処理後の結晶粒径が1〜15μmであることが好ましい。結晶粒径が1μm以下となるような焼鈍条件の場合、未再結晶組織が残留する可能性が高くなる。又、結晶粒径が15μmを超える場合には最終圧延で充分なひずみを加えることができず、充分な強度が得られないことがある。又、上記したように、本発明の圧延銅箔を最終冷間圧延後に再結晶させた(例えば450℃で30分加熱した)圧延銅箔は双晶を含んでよい。
なお、結晶粒径は、JIS-H0501の切断法に準じ測定し、圧延面について行う。
The rolled copper foil of the present invention preferably has a crystal grain size of 1 to 15 μm after heat treatment at 450 ° C., which is a temperature necessary for recrystallization annealing, for 30 minutes. In the case of an annealing condition in which the crystal grain size is 1 μm or less, there is a high possibility that an unrecrystallized structure remains. On the other hand, if the crystal grain size exceeds 15 μm, sufficient strain cannot be applied in the final rolling, and sufficient strength may not be obtained. Moreover, as described above, the rolled copper foil of the present invention is recrystallized after the final cold rolling (for example, heated at 450 ° C. for 30 minutes), and the rolled copper foil may contain twins.
The crystal grain size is measured according to the cutting method of JIS-H0501, and is performed on the rolled surface.

本発明の圧延銅箔は、リチウムイオン二次電池等の電極(負極)の集電体に好適に使用できるが、用途は限定されない。特に、銅箔の厚さが20μm以下となると、熱処理による強度低下が顕著になるので、本発明を有効に適用できる。   Although the rolled copper foil of this invention can be used conveniently for the electrical power collector of electrodes (negative electrode), such as a lithium ion secondary battery, an application is not limited. In particular, when the thickness of the copper foil is 20 μm or less, the strength reduction due to the heat treatment becomes remarkable, so that the present invention can be effectively applied.

<圧延銅箔の製造>
本発明の圧延銅箔は、上記組成のインゴットを熱間圧延後、冷間圧延して製造することができる。又、冷間圧延として、焼鈍前圧延、再結晶焼鈍、及び最終圧延を行ってもよい。
又、再結晶焼鈍を行う場合には、最終圧延の加工度を80%以上とすると、引張強さ(強度)が向上するので好ましい。
<Manufacture of rolled copper foil>
The rolled copper foil of the present invention can be produced by hot rolling an ingot having the above composition and then cold rolling. Further, as cold rolling, rolling before annealing, recrystallization annealing, and final rolling may be performed.
In the case of performing recrystallization annealing, it is preferable to set the workability of the final rolling to 80% or more because tensile strength (strength) is improved.

まず、表1、表2に記載の組成の銅インゴット(残部は銅および不可避的不純物)を製造し、厚み10mmまで熱間圧延を行った。その後、面削を行った後、所定の加工度で焼鈍前圧延し、450℃で再結晶焼鈍した。さらに、表1、表2に示す加工度で最終冷間圧延し、表1、表2に示す厚みの銅箔(各実施例及び比較例)を得た。   First, copper ingots having the compositions shown in Tables 1 and 2 (the balance was copper and unavoidable impurities) were manufactured and hot-rolled to a thickness of 10 mm. Then, after chamfering, rolling was performed at a predetermined workability before annealing, and recrystallization annealing was performed at 450 ° C. Furthermore, the final cold rolling was carried out at the working degree shown in Tables 1 and 2, and copper foils (each example and comparative example) having thicknesses shown in Tables 1 and 2 were obtained.

<評価>
最終圧延して得られた銅箔試料を350℃で30分間熱処理する前後の引張強さ、破断伸び、及び導電率を測定した。なお、一部の試料については熱処理条件を400℃で30分間に変更して評価を行った。
引張強さ及び破断伸びの測定に用いる試験片の寸法を幅12.7mm、長さ110mmとして、引張試験機のチャック間距離(引張り長さ)を50mmとし、上記したようにして測定した。又、導電率は、JIS−H0505に準拠して4端子法により測定した。
<Evaluation>
The copper foil samples obtained by final rolling were measured for tensile strength, elongation at break, and electrical conductivity before and after heat treatment at 350 ° C. for 30 minutes. Note that some samples were evaluated by changing the heat treatment conditions at 400 ° C. for 30 minutes.
The dimensions of the test piece used for measurement of tensile strength and elongation at break were 12.7 mm in width and 110 mm in length, and the distance between chucks (tensile length) of the tensile tester was 50 mm. The conductivity was measured by a 4-terminal method in accordance with JIS-H0505.

<サイクル寿命>
得られた銅箔につき、円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔(試料)の両面にドクターブレード方式で所定厚さ塗布し、350℃で30分間加熱し乾燥した。さらにもとの厚さの80%の厚みになるよう加圧して厚みを調整した後、せん断加工により成型し負極板を得た。
(2)正極活物質としてLiCoO粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50%水性ディスパージョン7重量部、増粘剤としてカルボキシルメチルセルロース1%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、銅箔の厚さの3倍の厚さのアルミニウム箔からなる集電体の両面にドクターブレード方式で所定厚さ塗布して200℃で1時間加熱し乾燥した。さらにもとの厚さの80%の厚みになるよう加圧して厚みを調整した後、せん断加工により成型し正極板を得た。
<Cycle life>
About the obtained copper foil, the cylindrical lithium ion secondary battery was produced in the following procedures, and the cycle life was measured.
(1) Thickener aqueous solution 23 dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of carboxymethylcellulose as a thickener. A weight part was kneaded and dispersed to obtain a negative electrode paste. This negative electrode paste was applied to both surfaces of a rolled copper foil (sample) by a doctor blade method to a predetermined thickness, heated at 350 ° C. for 30 minutes and dried. Further, the thickness was adjusted by applying pressure to 80% of the original thickness, and then molded by shearing to obtain a negative electrode plate.
(2) 50 parts by weight of LiCoO 2 powder as the positive electrode active material, 1.5 parts by weight of acetylene black as the conductive agent, 7 parts by weight of PTFE 50% aqueous dispersion as the binder, 41.5% aqueous solution of carboxymethyl cellulose as the thickener A weight part was kneaded and dispersed to obtain a positive electrode paste. The positive electrode paste was applied to both surfaces of a current collector made of an aluminum foil having a thickness three times the thickness of the copper foil by a doctor blade method, heated at 200 ° C. for 1 hour, and dried. Further, the pressure was adjusted to 80% of the original thickness to adjust the thickness, and then molded by shearing to obtain a positive electrode plate.

(3)正極板と負極板とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータを介して絶縁した状態で渦巻状に巻回し、この電極群を電池ケースに収容した。
(4)負極板から連接する負極リードを、電池ケースと下部絶縁板を介して電気的に接続した。同様に正極板から連接する正極リードを、封口板の内部端子に上部絶縁板を介して電気的に接続した。この後、非水電解液を注液し、封口板と電池ケースとを絶縁ガスケットを介してかしめ封口して、直径17mm、高さ50mmサイズの電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、エチルメチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF)を1.0モル溶かした電解液を調製した。この電解液を電池ケースに所定量注液し、正極活物質層及び負極活物質層内に含浸させた。
(3) The positive electrode plate and the negative electrode plate were spirally wound in a state of being insulated via a separator made of a polypropylene resin microporous film having a thickness of 20 μm, and this electrode group was accommodated in a battery case.
(4) The negative electrode lead connected from the negative electrode plate was electrically connected to the battery case via the lower insulating plate. Similarly, the positive electrode lead connected from the positive electrode plate was electrically connected to the internal terminal of the sealing plate via the upper insulating plate. Thereafter, a non-aqueous electrolyte is injected, the sealing plate and the battery case are caulked and sealed through an insulating gasket, and a cylindrical lithium ion secondary battery having a diameter of 17 mm and a height of 50 mm and a battery capacity of 780 mAh is obtained. Produced.
(5) The electrolytic solution was obtained by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 20% by volume of methyl propionate. An electrolyte solution was prepared. A predetermined amount of this electrolytic solution was poured into the battery case and impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用いて充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。
充電条件は、4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。
放電条件は、780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が400回以上になった場合に良好なサイクル特性が得られたと判定した。
The charge / discharge cycle characteristics were evaluated using the produced battery. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life.
The charging condition is a constant current-constant voltage charge at 4.2V for 2 hours, and after the constant current charge of 550mA (0.7CmA) until the battery voltage reaches 4.2V, the current value further attenuates. The battery was charged to 40 mA (0.05 CmA).
The discharge conditions were a discharge at a constant current of 780 mA (1 CmA) to a discharge end voltage of 3.0 V. It was determined that good cycle characteristics were obtained when the cycle life reached 400 times or more.

得られた結果を表1、表2に示す。なお、サイクル寿命の欄の「○」はサイクル寿命が400回以上となった場合を、「×」はサイクル寿命が400回未満となったときを示す。   The obtained results are shown in Tables 1 and 2. In the cycle life column, “◯” indicates that the cycle life is 400 times or more, and “×” indicates that the cycle life is less than 400 times.

表1から明らかなように、Mg:0.10-0.30wt%を含み、残部が不可避的不純物及び銅からなる各実施例の場合、350℃で30分間熱処理後の引張強さTSAが400MPa以上で、かつ350℃で30分熱処理後の導電率が65%IACS以上であった。さらに各実施例の場合、破断伸びELが式1から計算した値以上となり、サイクル寿命が400回以上に向上した。
なお、さらにCrを0.05-0.25wt%含む実施例7,8の場合、熱処理条件を他の実施例(350℃)より高温(400℃で30分間)としても、熱処理後の引張強さTSAが400MPa以上で、かつ350℃で30分熱処理後の導電率が65%IACS以上であった。
As is apparent from Table 1, in the case of each example containing Mg: 0.10-0.30 wt%, the balance being inevitable impurities and copper, the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes is 400 MPa or more, The conductivity after heat treatment at 350 ° C for 30 minutes was 65% IACS or more. Further, in each example, the elongation at break EL 2 was not less than the value calculated from Equation 1, and the cycle life was improved to 400 times or more.
Furthermore, in Examples 7 and 8 containing 0.05 to 0.25 wt% of Cr, the tensile strength TSA after the heat treatment was not changed even when the heat treatment conditions were higher than other examples (350 ° C.) (400 ° C. for 30 minutes). The conductivity after heat treatment at 350 ° C for 30 minutes was 65% IACS or more at 400MPa or more.

一方、Mgの添加量が0.10wt%未満である比較例1〜3の場合、350℃で30分間熱処理後の引張強さTSAが400MPa未満に低下し、耐熱性に劣った。さらに比較例1〜3の場合、破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。
Mgの添加量が0.30wt%を超えた比較例4の場合、酸化物に起因する破断により破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。
Cr/又はMnを0.25wt%を超えて添加した比較例5,6の場合、破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。又、導電率も65%IACS未満に低下した。
On the other hand, in Comparative Examples 1 to 3 in which the amount of Mg added was less than 0.10 wt%, the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes decreased to less than 400 MPa, and the heat resistance was poor. Furthermore, in the case of Comparative Examples 1 to 3, elongation at break EL 2 is less than the value calculated from Equation 1, the cycle life was reduced to less than 400 times.
In the case of Comparative Example 4 in which the added amount of Mg exceeded 0.30 wt%, the elongation at break EL 2 was less than the value calculated from Equation 1 due to the breakage due to the oxide, and the cycle life was reduced to less than 400 times.
In Comparative Examples 5 and 6 in which Cr / or Mn was added in excess of 0.25 wt%, the elongation at break EL 2 was less than the value calculated from Equation 1, and the cycle life was reduced to less than 400 times. Also, the conductivity decreased to less than 65% IACS.

電解銅箔を用いた比較例8の場合、350℃で30分間熱処理後の引張強さTSAが400MPa未満に低下し、耐熱性に劣った。又、破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。
Mgを添加せず、Zrを添加した比較例9,10、11の場合、破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。
In the case of Comparative Example 8 using the electrolytic copper foil, the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes was reduced to less than 400 MPa, and the heat resistance was poor. Further, the elongation at break EL 2 was less than the value calculated from Equation 1, and the cycle life was reduced to less than 400 times.
In Comparative Examples 9, 10, and 11 in which Mg was not added and Zr was added, the elongation at break EL 2 was less than the value calculated from Equation 1, and the cycle life was reduced to less than 400 times.

又、上記した比較例2は、Mgの添加量が0.10wt%未満であると共に、Agを添加したものであり、Mg以外の添加物を添加しても熱処理後の強度と破断伸びをバランス良く向上させることができず、Mgの添加量を0.10wt%以上とすることが重要であることがわかる。
酸素の含有量が60wtppmを超えた比較例12の場合、酸化物に起因する破断により破断伸びELが式1から計算した値未満となり、サイクル寿命が400回未満に低下した。
In Comparative Example 2 described above, the amount of Mg added is less than 0.10 wt% and Ag is added. Even if additives other than Mg are added, the strength and elongation at break after heat treatment are balanced. It cannot be improved, and it is understood that it is important that the amount of Mg added is 0.10 wt% or more.
In Comparative Example 12 in which the oxygen content exceeds 60Wtppm, elongation at break EL 2 by fracture due to oxide is less than the value calculated from Equation 1, the cycle life was reduced to less than 400 times.

又、表2は、試料の厚みによる熱処理後の破断伸びの変化、及び最終冷間圧延の加工度による熱処理後の引張強さの変化を示す。各実施例の場合、350℃で30分間熱処理後の引張強さTSAが400MPa以上で、かつ350℃で30分熱処理後の導電率が65%IACS以上であった。さらに各実施例の場合、破断伸びELが式1から計算した値以上となり、サイクル寿命が400回以上に向上した。 Table 2 shows the change in elongation at break after heat treatment depending on the thickness of the sample, and the change in tensile strength after heat treatment depending on the workability of the final cold rolling. In each example, the tensile strength TSA after heat treatment at 350 ° C. for 30 minutes was 400 MPa or more, and the conductivity after heat treatment at 350 ° C. for 30 minutes was 65% IACS or more. Further, in each example, the elongation at break EL 2 was not less than the value calculated from Equation 1, and the cycle life was improved to 400 times or more.

厚み及び組成が同一である実施例1、13、18,19、比較例21の組、及び実施例5、比較例22の組を比較すると、いずれの組も最終冷間圧延の加工度が40%へ小さくなるにつれて熱処理後の引張強さが低下している。そして、いずれの組においても加工度が40%になると熱処理後の引張強さが400MPa未満に低下しており、最終冷間圧延の加工度が40%を超える必要がある。   When the sets of Examples 1, 13, 18, 19 and Comparative Example 21, and the sets of Example 5 and Comparative Example 22 having the same thickness and composition were compared, the degree of workability of the final cold rolling was 40 in all sets. As the percentage decreases, the tensile strength after heat treatment decreases. And in any group, when the workability becomes 40%, the tensile strength after heat treatment decreases to less than 400 MPa, and the workability of the final cold rolling needs to exceed 40%.

なお、図1、図2は、それぞれ実施例6、7の試料の表面のSEM像であり、矢印で示すように双晶が観察された。   1 and 2 are SEM images of the surfaces of the samples of Examples 6 and 7, respectively, and twins were observed as indicated by arrows.

Claims (5)

Mg:0.10-0.30wt%を含み、残部が不可避的不純物及び銅からなり、350℃で30分間熱処理後の引張強さTSAが400MPa以上で、かつ350℃で30分間熱処理後の導電率が65%IACS以上である圧延銅箔。 Mg: Containing 0.10-0.30wt%, the balance is inevitable impurities and copper, tensile strength TSA after heat treatment at 350 ° C for 30 minutes is 400MPa or more, and conductivity after heat treatment at 350 ° C for 30 minutes is 65 Rolled copper foil that is at least% IACS. 350℃で30分間熱処理する前の引張強さTSBに対し、{(TSB-TSA)/TSB}×100(%)で表される強度低下率が30%以下である請求項1記載の圧延銅箔。 2. The rolled copper according to claim 1, wherein the strength reduction rate represented by {(TSB-TSA) / TSB} × 100 (%) is 30% or less with respect to the tensile strength TSB before heat treatment at 350 ° C. for 30 minutes. Foil. 350℃で30分間熱処理する前の破断伸びEL、350℃で30分間熱処理後の破断伸びELに対し、{(EL-EL)/EL}で表される破断伸び増加比が0.5〜9である請求項1または2に記載の圧延銅箔。 With respect to the breaking elongation EL 1 before heat treatment at 350 ° C. for 30 minutes and the breaking elongation EL 2 after heat treatment at 350 ° C. for 30 minutes, the breaking elongation increase ratio represented by {(EL 2 -EL 1 ) / EL 1 } is It is 0.5-9, The rolled copper foil of Claim 1 or 2. さらに、Cr及び/又はMnを総量で0.05-0.25wt%含む請求項1〜3のいずれかに記載の圧延銅箔。 Furthermore, the rolled copper foil in any one of Claims 1-3 which contains 0.05-0.25 wt% of Cr and / or Mn in a total amount. 酸素の含有量が60wtppm以下である請求項1〜4のいずれか記載の圧延銅箔。 The rolled copper foil according to any one of claims 1 to 4, wherein the oxygen content is 60 wtppm or less.
JP2011136796A 2011-06-20 2011-06-20 Rolled copper foil Withdrawn JP2013001982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136796A JP2013001982A (en) 2011-06-20 2011-06-20 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136796A JP2013001982A (en) 2011-06-20 2011-06-20 Rolled copper foil

Publications (1)

Publication Number Publication Date
JP2013001982A true JP2013001982A (en) 2013-01-07

Family

ID=47670866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136796A Withdrawn JP2013001982A (en) 2011-06-20 2011-06-20 Rolled copper foil

Country Status (1)

Country Link
JP (1) JP2013001982A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179490A (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP2017179493A (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
WO2018066413A1 (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
US20180102545A1 (en) * 2015-06-18 2018-04-12 Ls Mtron Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
US10403899B2 (en) 2014-10-31 2019-09-03 Hitachi, Ltd. Alloy and lithium ion battery
JP2019173043A (en) * 2018-03-26 2019-10-10 古河電気工業株式会社 Copper alloy strip, manufacturing method therefor and flat cable using the same
CN110996507A (en) * 2018-10-03 2020-04-10 捷客斯金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403899B2 (en) 2014-10-31 2019-09-03 Hitachi, Ltd. Alloy and lithium ion battery
US20180102545A1 (en) * 2015-06-18 2018-04-12 Ls Mtron Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
US10418635B2 (en) * 2015-06-18 2019-09-17 Kcf Technologies Co., Ltd. Electrolytic copper foil for lithium secondary battery and lithium secondary battery comprising the same
JP2017179490A (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
JP2017179493A (en) * 2016-03-30 2017-10-05 三菱マテリアル株式会社 Copper alloy for electric and electronic device, copper alloy plastic processing material for electric and electronic device, component for electric and electronic device, terminal and bus bar
WO2018066413A1 (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy plate for heat dissipation components, heat dissipation component, and method for producing heat dissipation component
JP2018059132A (en) * 2016-10-03 2018-04-12 株式会社神戸製鋼所 Copper alloy sheet for heat radiation component and heat radiation component
JP2019173043A (en) * 2018-03-26 2019-10-10 古河電気工業株式会社 Copper alloy strip, manufacturing method therefor and flat cable using the same
CN110996507A (en) * 2018-10-03 2020-04-10 捷客斯金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN110996507B (en) * 2018-10-03 2022-09-09 捷客斯金属株式会社 Copper foil, copper-clad laminate using same, flexible printed board, and electronic device

Similar Documents

Publication Publication Date Title
TWI502085B (en) Copper alloy foil
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
US11108052B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP2013001982A (en) Rolled copper foil
WO2012086448A1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5496139B2 (en) Copper foil and secondary battery using the same
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP2013001983A (en) Rolled copper foil
JP2012177171A (en) Aluminum alloy foil for lithium ion battery electrode current collector, and method for producing the same
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2023178067A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
WO2023089963A1 (en) Rolled copper foil for secondary batteries, secondary battery negative electrode using same, and secondary battery
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902