JP5416077B2 - Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same - Google Patents

Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Download PDF

Info

Publication number
JP5416077B2
JP5416077B2 JP2010272827A JP2010272827A JP5416077B2 JP 5416077 B2 JP5416077 B2 JP 5416077B2 JP 2010272827 A JP2010272827 A JP 2010272827A JP 2010272827 A JP2010272827 A JP 2010272827A JP 5416077 B2 JP5416077 B2 JP 5416077B2
Authority
JP
Japan
Prior art keywords
negative electrode
copper foil
electrode plate
foil
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010272827A
Other languages
Japanese (ja)
Other versions
JP2011142071A (en
Inventor
隆紹 波多野
翔太郎 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010272827A priority Critical patent/JP5416077B2/en
Publication of JP2011142071A publication Critical patent/JP2011142071A/en
Application granted granted Critical
Publication of JP5416077B2 publication Critical patent/JP5416077B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な圧延銅箔、並びにそれを用いた負極集電体、負極板及び電池に関する。   The present invention relates to a rolled copper foil suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, and a negative electrode current collector, a negative electrode plate and a battery using the rolled copper foil.

携帯電話、ノート型パソコン等のポータブル機器の普及に伴い、小型で高容量の二次電池の需要が伸びている。また、電気自動車やハイブリッド車等に用いられる中・大型の二次電池の需要も急増している。二次電池のなかでも、リチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されている。
リチウムイオン二次電池としては、アルミニウム箔にLiCoO2、LiNiO2、LiMn24等の化合物をコーティングしたものを正極として用い、銅箔に炭素質材料等を活物質としてコーティングしたものを負極に用いるものが知られている(図2)。
With the widespread use of portable devices such as mobile phones and notebook computers, the demand for small, high-capacity secondary batteries is growing. In addition, demand for medium- and large-sized secondary batteries used in electric vehicles, hybrid vehicles, and the like is also increasing rapidly. Among secondary batteries, lithium ion secondary batteries are used in many fields because of their light weight and high energy density.
As a lithium ion secondary battery, an aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode, and a copper foil coated with a carbonaceous material as an active material is used as a negative electrode. What is used is known (FIG. 2).

銅箔には圧延銅箔と電解銅箔がある。圧延銅箔は、強度、疲労特性等の点で二次電池負極板の材料として優れている。二次電池負極板材料として市販されている圧延銅箔の多くは、タフピッチ銅(JIS−C1100)を素材とするものである。タフピッチ銅とは、100〜500質量ppmの酸素を含有する純銅であり、銅分は99.90質量%以上に規格化されている(以下、質量ppm及び質量%をそれぞれppm及び%と表記する)。
圧延銅箔の製造プロセスでは、タフピッチ銅のインゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で、例えば35〜5μmの範囲の所定の厚みに仕上げる。
Copper foil includes rolled copper foil and electrolytic copper foil. The rolled copper foil is excellent as a material for the secondary battery negative electrode plate in terms of strength, fatigue characteristics, and the like. Many of the rolled copper foils marketed as secondary battery negative electrode plate materials are made of tough pitch copper (JIS-C1100). Tough pitch copper is pure copper containing oxygen of 100 to 500 mass ppm, and the copper content is standardized to 99.90 mass% or more (hereinafter, mass ppm and mass% are expressed as ppm and%, respectively). ).
In the manufacturing process of the rolled copper foil, a tough pitch copper ingot is hot-rolled, and then cold-rolling and annealing are repeated, and finally it is finished to a predetermined thickness in the range of, for example, 35 to 5 μm by final cold-rolling.

一般的に、銅箔負極板は、電解銅箔や圧延銅箔を用いて次のプロセスで製造される。
(1)活物質と結着剤とを溶剤に混練分散したペーストを、集電体となる銅箔の片面もしくは両面に塗布して負極板材とする。
(2)150〜300℃の温度で数時間から数十時間加熱し乾燥する。
(3)必要に応じ、負極板材に加圧する。
(4)せん断加工を施し、所定形状の負極板へ成型する。
せん断加工の例としては、プレス機による打ち抜き加工、シャーリングによる切断加工、丸刃スリッターによる切断加工等がある。
Generally, a copper foil negative electrode plate is manufactured by the following process using electrolytic copper foil or rolled copper foil.
(1) A paste obtained by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a copper foil serving as a current collector to form a negative electrode plate material.
(2) Heat and dry at 150 to 300 ° C. for several hours to several tens of hours.
(3) Pressurize the negative electrode plate material as necessary.
(4) A shearing process is performed to form a negative electrode plate having a predetermined shape.
Examples of shearing include punching with a press, cutting with shearing, and cutting with a round blade slitter.

タフピッチ銅又は無酸素銅を素材とする従来の圧延銅箔は、上記(2)乾燥工程において再結晶を起こして銅箔強度が低下(軟化)し、引張強さが200MPa近くまで低下する。このような軟らかい銅箔は、電池製造工程での負極板の巻き取り、巻回による極板群の製造時に高張力の負荷がかけられて箔切れを起こしやすくなる。
又、リチウムイオン二次電池では、充電時にはリチウムイオンが正極から負極に移動し、放電時にはリチウムイオンが負極から正極に移動する。リチウムイオンの移動に伴って負極活物質が膨張収縮するため、銅箔は充放電によって機械的な繰り返しストレスを受ける。そのため軟化した銅箔は、充放電による機械的な繰り返しストレスを受けて変形し、銅箔表面に塗布された活物質が剥離しやすいと共に、銅箔自体も損傷しやすくなる。
In the conventional rolled copper foil made of tough pitch copper or oxygen-free copper, recrystallization occurs in the above (2) drying step, the copper foil strength is reduced (softened), and the tensile strength is reduced to nearly 200 MPa. Such a soft copper foil is subject to high tension load during winding of the negative electrode plate in the battery manufacturing process and manufacturing of the electrode plate group by winding, and the foil easily breaks.
In a lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions move from the negative electrode to the positive electrode during discharging. Since the negative electrode active material expands and contracts as the lithium ions move, the copper foil is subjected to mechanical repeated stress due to charge and discharge. Therefore, the softened copper foil is deformed by mechanical repeated stress due to charging / discharging, and the active material applied on the surface of the copper foil is easily peeled off, and the copper foil itself is easily damaged.

また、二次電池の小型化に伴い、負極集電体である銅箔の薄肉化が進んでいる。銅箔が薄肉化すると、電池製造において活物質の塗布時に高張力の負荷がかけられて箔切れを起こしやすくなると共に、上記軟化による箔切れが更に発生しやすくなる。従って、最終圧延加工後の製品(圧延上がり)においてより高い引張強さを有すると共に、熱履歴の際に軟化しにくい銅箔が求められている。
このような課題に対応するため、タフピッチ銅を素材とする圧延銅箔に替わり、銅合金を素材とする圧延銅箔(以下、銅合金箔)が提案されている。
In addition, with the miniaturization of secondary batteries, the copper foil, which is a negative electrode current collector, is becoming thinner. When the copper foil is thinned, a high-tension load is applied at the time of application of the active material in battery production, and the foil breakage easily occurs, and the foil breakage due to the softening is more likely to occur. Accordingly, there is a demand for a copper foil that has a higher tensile strength in a product after final rolling (rolled up) and is less likely to soften during thermal history.
In order to deal with such problems, a rolled copper foil made of a copper alloy (hereinafter referred to as copper alloy foil) has been proposed instead of a rolled copper foil made of tough pitch copper.

特開2000−303128(特許文献1)では、無酸素銅にCr、Zr、Ag、Cd、Sn、Sb又はBiを50又は100ppm添加した銅合金箔が開示されている。
特開2000−133276(特許文献2)では、Znを10〜35%の範囲で含有する銅合金箔が開示されている。
特開平11−339811(特許文献3)では、Cu−0.1%Fe−0.03%P、Cu−0.3%Cr−0.25%Sn−0.2%Zn及びCu−0.1%Niを素材とする銅合金箔が開示されている。
特開2000−328159(特許文献4)では、0.002〜0.045%のPを含有し、これに0.006〜0.25%のFe又は/及び0.005〜0.25%のAgを添加した銅合金箔が開示されている。これら合金は、りん脱酸銅をベースとしており、Pの特性への弊害を発現させないようにP濃度を制限している。
特開2003−286528(特許文献5)では、0.063〜0.231%のSnを含有し、水素濃度と酸素濃度を適正に調整した銅合金箔が開示されている。この銅箔はピンホールと屈曲寿命が改善されており、リチウムイオン二次電池の負極集電体にも使用できる。
Japanese Patent Application Laid-Open No. 2000-303128 discloses a copper alloy foil obtained by adding 50 or 100 ppm of Cr, Zr, Ag, Cd, Sn, Sb, or Bi to oxygen-free copper.
Japanese Unexamined Patent Application Publication No. 2000-133276 (Patent Document 2) discloses a copper alloy foil containing Zn in a range of 10 to 35%.
In JP-A-11-339811 (Patent Document 3), Cu-0.1% Fe-0.03% P, Cu-0.3% Cr-0.25% Sn-0.2% Zn and Cu-0. A copper alloy foil made of 1% Ni is disclosed.
JP-A-2000-328159 (Patent Document 4) contains 0.002 to 0.045% P, and 0.006 to 0.25% Fe or / and 0.005 to 0.25%. A copper alloy foil added with Ag is disclosed. These alloys are based on phosphorous-deoxidized copper, and the P concentration is limited so as not to cause adverse effects on the properties of P.
Japanese Patent Application Laid-Open No. 2003-286528 (Patent Document 5) discloses a copper alloy foil containing 0.063 to 0.231% of Sn and appropriately adjusting the hydrogen concentration and the oxygen concentration. This copper foil has improved pinholes and flex life, and can be used as a negative electrode current collector of a lithium ion secondary battery.

特開2000−303128号公報JP 2000-303128 A 特開2000−133276号公報JP 2000-133276 A 特開平11−339811号公報JP 11-339811 A 特開2000−328159号公報JP 2000-328159 A 特開2003−286528号公報JP 2003-286528 A

特許文献1の銅合金箔は460〜480MPaの引張強さを有しているが、その耐熱性は、200℃で30分の熱履歴後の400〜430MPaの引張強さを目標にしており、更に高温でも引張強さを維持する銅箔は目的とされていなかった。特許文献2では実施例のなかで最も導電率が高い合金はCu−10%Zn(JIS−C2200)であり、その導電率は44%IACSに過ぎない(日本伸銅協会:伸銅品データブック(1997))。特許文献3のFe−P、Cr等の析出物が形成される銅合金箔では、より高い強度と耐熱性が得られるものの、箔が脆くなり極薄箔への圧延が困難であった。そして、Fe−P粒子が析出するCu−Fe−P合金、及びCr粒子が析出するCu−Cr−Sn−Zn合金では、550MPaの引張強さが得られているが、Cu−Ni合金の引張強さは、ぎりぎり500MPaに達するレベルである。特許文献4で使用されるAgは高価なために添加量が制限されることに加え、300℃で5分の熱履歴後の引張強さを目標にしており、更に長時間でも引張強さを維持する銅箔は目的とされていなかった。
本発明者らの検討結果によれば、従来の負極集電体用銅合金箔のなかでは、特許文献5の無酸素銅をベースとするCu−Sn合金が、特性、製造性、コストのバランスに比較的優れていたが、二次電池の充放電サイクル特性という点では充分なものではなかった。
Although the copper alloy foil of Patent Document 1 has a tensile strength of 460 to 480 MPa, its heat resistance is targeted to a tensile strength of 400 to 430 MPa after a thermal history of 30 minutes at 200 ° C., Furthermore, a copper foil that maintains the tensile strength even at high temperatures has not been aimed. In Patent Document 2, the alloy having the highest conductivity among the examples is Cu-10% Zn (JIS-C2200), and its conductivity is only 44% IACS (Japan Copper and Brass Association: Copper Products Data Book). (1997)). In the copper alloy foil in which precipitates such as Fe-P and Cr of Patent Document 3 are formed, higher strength and heat resistance can be obtained, but the foil becomes brittle and it has been difficult to roll into an ultrathin foil. And in the Cu-Fe-P alloy in which Fe-P particles are precipitated and the Cu-Cr-Sn-Zn alloy in which Cr particles are precipitated, a tensile strength of 550 MPa is obtained. The strength is at a level that reaches 500 MPa. Since Ag used in Patent Document 4 is expensive, the amount of addition is limited, and the target is tensile strength after 5 minutes of heat history at 300 ° C. The copper foil to maintain was not intended.
According to the examination results of the present inventors, among conventional copper alloy foils for negative electrode current collectors, the Cu—Sn alloy based on oxygen-free copper of Patent Document 5 has a balance of characteristics, manufacturability, and cost. However, it was not sufficient in terms of charge / discharge cycle characteristics of the secondary battery.

近年、リチウムイオン二次電池の性能に対する要求は高度化している。これに伴い、負極集電体用の圧延銅箔に対しては、高張力が付加される製造工程中や、二次電池使用時に充放電のストレスを受けた際に、箔に破れが生じず、活物質が剥離しない性能が更に強く求められている。
本発明はCu−Sn合金箔を改良することにより、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な、充放電サイクル寿命に優れる圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池を提供することを目的とする。
In recent years, the demand for the performance of lithium ion secondary batteries has been advanced. Along with this, the rolled copper foil for the negative electrode current collector is not torn during the manufacturing process where high tension is applied or when it is subjected to charge / discharge stress when using a secondary battery. Further, there is a strong demand for the ability of the active material not to peel off.
The present invention improves the Cu-Sn alloy foil, and is suitable as a negative electrode current collector material for secondary batteries such as lithium ion secondary batteries. An object of the present invention is to provide a negative electrode current collector, a negative electrode plate, and a secondary battery.

本発明者は、上記課題を解決すべく鋭意研究した結果、下記発明をなすに至った。
(1) 0.05〜0.22質量%のSnを含有し残部Cu及び不純物からなる無酸素銅ベースの銅合金箔であり、圧延方向と成す角度が0度、22.5度、45度、67.5度及び90度となる5つの方向にヤング率を測定し、該5つのヤング率のうちの最大の値をEmax、最小の値をEminとしたときに、Emax/Eminが1.3以下であり、480MPa以上の引張り強さ及び80%IACS以上の導電率を有するとともに、300℃で30分間加熱後に400MPa以上の引張り強さを維持することを特徴とする、二次電池の負極集電体用圧延銅箔。
(2) 更に0.1質量%以下のAgを含有することを特徴とする(1)記載の圧延銅箔。
) 上記(1)または(2)記載の圧延銅箔より構成される負極集電体。
) 上記()に記載の負極集電体の少なくとも片面に、炭素質材料又は黒鉛質材料を主成分とする負極活物質層を有する負極板。
) 上記()に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、けい素単体、及びけい素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。
) 上記()又は()記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに極板群及び非水電解液を収容する電池ケースとから構成される二次電池。
As a result of intensive studies to solve the above problems, the present inventor has made the following invention.
(1) An oxygen-free copper-based copper alloy foil containing 0.05 to 0.22% by mass of Sn and the balance being Cu and impurities, and the angle formed with the rolling direction is 0 degrees, 22.5 degrees, and 45 degrees , 67.5 degrees, and 90 degrees, the Young's modulus is measured, and when Emax / Emin is the maximum value among the five Young's modulus and Emin is the minimum value, Emax / Emin is 1. 3 Ri der hereinafter and having the above tensile strength and 80% IACS or more conductivity 480 MPa, characterized that you keep the tensile strength of at least 400MPa after heating at 300 ° C. 30 min, the secondary battery Rolled copper foil for negative electrode current collector.
(2) The rolled copper foil according to (1), further containing 0.1% by mass or less of Ag.
( 3 ) The negative electrode electrical power collector comprised from the rolled copper foil of the said (1) or (2) description.
( 4 ) The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material or a graphite material as a main component on the at least single side | surface of the negative electrode collector as described in said ( 3 ).
( 5 ) At least one surface selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound is contained on at least one surface of the negative electrode current collector described in the above ( 3 ). A negative electrode plate having an active material layer.
( 6 ) An electrode plate group in which the negative electrode plate described in the above ( 4 ) or ( 5 ) is insulated and disposed through a positive electrode plate having a lithium transition metal composite oxide as a main component of a positive electrode active material and a separator, non-aqueous electrolysis A secondary battery comprising a liquid and a battery case containing an electrode plate group and a non-aqueous electrolyte.

本発明における圧延銅箔のヤング率の、圧延方向に対する測定方向を示す略図である。It is the schematic which shows the measurement direction with respect to the rolling direction of the Young's modulus of the rolled copper foil in this invention. 一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery.

(銅箔の成分)
本発明では、銅箔の強度と耐熱性を改善するために無酸素銅にSnを添加している。Sn濃度が0.05%以上、好ましくは0.10%以上であると強度と耐熱性に優れた銅箔が得られる。一方、Sn濃度が0.22%を超えると、導電率が低下して二次電池の負極集電体用として不適当になる。より好ましくは0.15%以下であり、この場合83%IACSを以上の導電率が安定して得られる。
(Copper foil components)
In the present invention, Sn is added to oxygen-free copper in order to improve the strength and heat resistance of the copper foil. When the Sn concentration is 0.05% or more, preferably 0.10% or more, a copper foil excellent in strength and heat resistance can be obtained. On the other hand, if the Sn concentration exceeds 0.22%, the electrical conductivity is lowered and it becomes unsuitable for the negative electrode current collector of the secondary battery. More preferably, it is 0.15% or less. In this case, the above conductivity of 83% IACS can be obtained stably.

本発明の銅合金箔は、無酸素銅の溶湯にSnを添加することにより溶製する。無酸素銅溶湯の酸素濃度は、通常10ppm以下である。タフピッチ銅溶湯のように100〜500ppmの酸素を含む溶湯にSnを添加すると、Snが酸化して酸化すずを形成し、Snの耐熱性改善効果が得られない。SnはCu中に固溶した状態でCuの耐熱性を改善するが、酸化物として析出してしまったSn成分はCuの耐熱性改善に寄与しないためである。酸素濃度の調整は、溶湯のカーボン脱酸等の当業者公知の技術により行うことができる。   The copper alloy foil of the present invention is melted by adding Sn to an oxygen-free copper melt. The oxygen concentration of the oxygen-free copper melt is usually 10 ppm or less. When Sn is added to a molten metal containing 100 to 500 ppm of oxygen such as a tough pitch copper molten metal, Sn is oxidized to form tin oxide, and the effect of improving the heat resistance of Sn cannot be obtained. This is because Sn improves the heat resistance of Cu in a state of being dissolved in Cu, but the Sn component deposited as an oxide does not contribute to the improvement of the heat resistance of Cu. The oxygen concentration can be adjusted by techniques known to those skilled in the art, such as carbon deoxidation of molten metal.

本発明の銅合金箔は、0.1%以下のAgを含有することができる。Agを添加することにより、導電率を低下させずに耐熱性を改善することができる。0.1%を超えるAgを添加すると耐熱性はさらに向上するが、製造コストが増加することに加え、延性が低下し箔への圧延加工が難しくなる。より好ましいAg濃度は0.06%以下である。なお、銅箔の溶解原料となる電気銅は、不可避的不純物として、通常Agを10ppm程度含有する。   The copper alloy foil of the present invention can contain 0.1% or less of Ag. By adding Ag, the heat resistance can be improved without lowering the electrical conductivity. When Ag exceeding 0.1% is added, the heat resistance is further improved, but in addition to an increase in production cost, ductility is lowered and rolling into a foil becomes difficult. A more preferable Ag concentration is 0.06% or less. In addition, the electrolytic copper used as the melting material of the copper foil usually contains about 10 ppm of Ag as an inevitable impurity.

(銅箔の特性)
充放電ストレスによる銅箔の変形が生じず、電池の信頼性を更に向上させるには、乾燥工程を経た後に400MPa以上の引張強さを保つことが好ましい。本発明で求められる乾燥工程での熱負荷レベルは、300℃で30分間の熱処理に相当する。これは従来の熱負荷の基準である200℃で30分(特許文献1)、300℃で5分(特許文献4)などの条件より極めて厳しい条件である。
本発明の圧延銅箔は、300℃で30分間加熱後の引張強さが、好ましくは400MPa以上、より好ましくは450MPa以上である。なお、本発明の銅箔は完全に再結晶すると引張強さが200MPa近くまで下がり、400MPa以上の引張強さが維持される場合、300℃で30分間加熱後の銅箔の金属組織に再結晶は生じていない。このレベルの引張強さの低下は、金属組織の回復現象によるものである。
ここで、300℃で30分間加熱後に400MPa以上の引張強さを維持するためには、圧延上がりの状態で、480MPa以上、好ましくは520MPa以上の引張強さを有している必要がある。
Sn濃度が0.05%以上であると、上記条件加熱後の引張強さが400MPa以上、0.10%以上であると450MPa以上になる。
(Characteristics of copper foil)
In order to further improve the reliability of the battery without causing deformation of the copper foil due to charge / discharge stress, it is preferable to maintain a tensile strength of 400 MPa or more after the drying process. The heat load level in the drying process required in the present invention corresponds to a heat treatment at 300 ° C. for 30 minutes. This is a condition that is extremely stricter than the conventional heat load standard of 200 ° C. for 30 minutes (Patent Document 1) and 300 ° C. for 5 minutes (Patent Document 4).
The rolled copper foil of the present invention has a tensile strength after heating at 300 ° C. for 30 minutes, preferably 400 MPa or more, more preferably 450 MPa or more. In addition, when the copper foil of the present invention is completely recrystallized, the tensile strength decreases to nearly 200 MPa, and when the tensile strength of 400 MPa or more is maintained, the copper foil is recrystallized in the metal structure of the copper foil after heating at 300 ° C. for 30 minutes. Has not occurred. This decrease in tensile strength is due to the recovery of the metal structure.
Here, in order to maintain a tensile strength of 400 MPa or more after heating at 300 ° C. for 30 minutes, it is necessary to have a tensile strength of 480 MPa or more, preferably 520 MPa or more in the state after rolling.
When the Sn concentration is 0.05% or more, the tensile strength after heating under the above conditions is 400 MPa or more, and when it is 0.10% or more, it becomes 450 MPa or more.

タフピッチ銅を素材とする従来の圧延銅箔の導電率は約100%IACSであるが、素材を銅合金化することにより、銅箔の導電率は低下して電池性能が低下する傾向がある。本発明の圧延銅箔の導電率は、好ましくは80%IACS以上、更に好ましくは83%IACS以上であり、このレベルであると電池性能は低下しない。   The conductivity of a conventional rolled copper foil made of tough pitch copper is about 100% IACS. However, when the material is made of a copper alloy, the conductivity of the copper foil is lowered and the battery performance tends to be lowered. The electrical conductivity of the rolled copper foil of the present invention is preferably 80% IACS or higher, more preferably 83% IACS or higher, and battery performance does not deteriorate at this level.

(銅箔のヤング率)
銅の単結晶のヤング率(縦弾性係数、応力/伸び)には異方性があり、結晶の方向によってヤング率が顕著に変化する。圧延銅箔は多くの結晶粒の集合体であり、各結晶粒の内部では原子が一定方向に配列しているが、その向きは結晶粒ごとに異なる。ただし、各結晶粒がランダムに配向しているわけではなく、凝固、圧延、再結晶といった製造工程の過程で、結晶粒の方向に偏りが生じている。したがって、通常の圧延銅箔のヤング率は、応力を付加する方向により変化する。すなわち同じ応力で引っ張っても、引っ張る方向により、銅箔の伸び(弾性伸び)が変化する。このように方向によって特性が異なる性質は異方性と称される。
従来、負極用銅箔の機械的特性は、箔切れ防止等の電池の製造ラインでの生産性を配慮して調整されてきた。したがって、負極用銅箔のヤング率については、ラインで張力が付加される圧延方向の絶対値のみが注目され、その異方性については全く配慮されなかった。しかし、本発明者らはヤング率の異方性が大きい銅箔を負極集電体として用いると、充放電ストレスを受けた際に、伸びの異方性により銅箔にしわが入り、このしわに起因して活物質が剥離することを知見した。
本発明者らが検討した結果、圧延方向と成す角度が0度、22.5度、45度、67.5度及び90度となる5つの方向にヤング率を測定し、これら5つのヤング率のうちの最大の値をEmax、最小の値をEminとしたときに、ヤング率異方性の指標としてEmax/Eminが1.3以下、好ましくは1.25以下であると充放電サイクル寿命が顕著に改善されることを発見した。
なお、上記のとおり、本発明の銅箔は活物質の加熱乾燥工程で再結晶しないため、該乾燥工程の前後でヤング率の異方性が変化することは無い。
(Young's modulus of copper foil)
The Young's modulus (longitudinal elastic modulus, stress / elongation) of a copper single crystal is anisotropic, and the Young's modulus changes significantly depending on the crystal direction. A rolled copper foil is an aggregate of many crystal grains, and atoms are arranged in a certain direction inside each crystal grain, but the direction differs for each crystal grain. However, each crystal grain is not randomly oriented, and the direction of the crystal grain is biased in the course of the manufacturing process such as solidification, rolling, and recrystallization. Therefore, the Young's modulus of a normal rolled copper foil varies depending on the direction in which stress is applied. That is, even if it is pulled with the same stress, the elongation (elastic elongation) of the copper foil changes depending on the pulling direction. Such a property having different characteristics depending on the direction is called anisotropy.
Conventionally, the mechanical properties of the negative electrode copper foil have been adjusted in consideration of productivity in the battery production line such as prevention of foil breakage. Therefore, with regard to the Young's modulus of the negative electrode copper foil, only the absolute value in the rolling direction in which tension is applied in the line was noted, and the anisotropy was not considered at all. However, when the present inventors used a copper foil having a large Young's modulus anisotropy as a negative electrode current collector, the copper foil wrinkled due to the anisotropy of elongation when subjected to charge / discharge stress. It was found that the active material peels due to this.
As a result of investigations by the present inventors, Young's modulus was measured in five directions in which the angle formed with the rolling direction was 0 degree, 22.5 degrees, 45 degrees, 67.5 degrees, and 90 degrees, and these five Young's moduli were measured. When Emax / Emin is 1.3 or less, preferably 1.25 or less as an index of Young's modulus anisotropy when the maximum value is Emax and the minimum value is Emin, the charge / discharge cycle life is Found significant improvement.
In addition, as above-mentioned, since the copper foil of this invention does not recrystallize in the heat drying process of an active material, the anisotropy of a Young's modulus does not change before and after this drying process.

(銅箔の製造方法)
インゴットの溶製では、まずカーボンによる脱酸反応を利用して溶銅中の酸素濃度を10ppm以下に下げ、その後Snを添加する。溶銅中の酸素濃度が10ppmを超える状態でSnを添加すると、Snが酸化し、酸化すずの介在物が生成してしまう。次に、インゴットを熱間圧延により厚さ10mm程度の板とし、その後冷間圧延と再結晶焼鈍を繰り返し、最後に冷間圧延で所定厚み(一般的には35〜5μm)に仕上げる。厚みが5μm以下になると、単位面積当たりの引張強さが高くても破断しやすくなる。一方、35μmを超えると、負極板が厚くなるため二次電池を小型化しにくくなる。
(Manufacturing method of copper foil)
In the melting of the ingot, first, the oxygen concentration in the molten copper is lowered to 10 ppm or less by utilizing a deoxidation reaction by carbon, and then Sn is added. When Sn is added in a state where the oxygen concentration in the molten copper exceeds 10 ppm, Sn is oxidized, and inclusions of tin oxide are generated. Next, the ingot is made into a plate having a thickness of about 10 mm by hot rolling, and then cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined thickness (generally 35 to 5 μm) by cold rolling. When the thickness is 5 μm or less, it tends to break even if the tensile strength per unit area is high. On the other hand, if it exceeds 35 μm, the negative electrode plate becomes thick, and it becomes difficult to reduce the size of the secondary battery.

再結晶焼鈍は、炉温が300〜800℃の範囲、焼鈍時間が数秒間〜数時間の範囲で、焼鈍後の結晶粒径が所定の大きさ(通常は3〜30μm)になる条件で行われる。焼鈍後の材料は、焼鈍中に生成した表面酸化膜を除去するため、硫酸水溶液等を用いて酸洗される。
ヤング率の異方性を制御する方法は、特定の方法に限定される訳ではないが、例えば、最終の冷間圧延条件を下記のように調整することで制御できる。
最終再結晶焼鈍後の最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の箔厚に仕上げてゆく。ヤング率の異方性には、最終冷間圧延における総加工度と1パスあたりの加工度が影響を及ぼす。ここで、総加工度Rは、最終冷間圧延における板厚減少率であり、R=(T0−T)/T0(T0:最終冷間圧延前の厚み、T:最終冷間圧延後の厚み)で与えられる。また、1パスあたりの加工度rとは、圧延ロールを1回通過したときの板厚減少率であり、r=(t0−t)/t0(t0:圧延ロール通過前の厚み、t:圧延ロール通過後の厚み)で与えられる。
Recrystallization annealing is performed under the conditions that the furnace temperature is in the range of 300 to 800 ° C., the annealing time is in the range of several seconds to several hours, and the crystal grain size after annealing is a predetermined size (usually 3 to 30 μm). Is called. The material after annealing is pickled using a sulfuric acid aqueous solution or the like in order to remove the surface oxide film generated during the annealing.
The method for controlling the anisotropy of the Young's modulus is not limited to a specific method, but can be controlled, for example, by adjusting the final cold rolling conditions as follows.
In the final cold rolling after the final recrystallization annealing, the material is repeatedly passed between a pair of rolling rolls to finish the target foil thickness. The Young's modulus anisotropy is influenced by the total workability in the final cold rolling and the workability per pass. Here, the total workability R is a sheet thickness reduction rate in the final cold rolling, and R = (T 0 −T) / T 0 (T 0 : thickness before final cold rolling, T: final cold rolling) Later thickness). Further, the processing degree r per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (t 0 -t) / t 0 (t 0 : thickness before passing the rolling roll, t: thickness after passing through the rolling roll).

総加工度Rを高くすると銅箔の引張強さは高くなるが、ヤング率の異方性が大きくなる。Rは好ましくは97%以下、より好ましくは94%未満にすることで、Emax/Eminを1.3以下、好ましくは1.25以下に調整できる。一方、Rが80%より低いと圧延上がりの引張り強さを480MPa以上に調整することが難しくなる。従って、最終冷間圧延の総加工度Rは好ましくは80〜97%、更に好ましくは85〜94%である。
最終冷間圧延において極薄箔まで圧延する際、1パスあたりの加工度を低くすると、必然的に圧延時間が長くなる。従って、従来は圧延の生産性を重視して、1パスあたりの加工度rは比較的高めに設定されていた。
最終冷間圧延の1パスあたりの加工度rを50%以上とすると、銅箔の金属組織にせん断変形が生じる。その結果、ヤング率の異方性が助長され、Rを80〜97%にしてもEma/Eminが1.3を超えてしまう。そこで、最終冷間圧延での全パス中の最大加工度rmaxは好ましくは50%未満、より好ましくは43%以下である。一方、最小加工度rminは、本発明の銅箔の引張強さやヤング率に影響を及ぼさないものの、rを小さくするとパス回数が増え圧延に時間がかかることになる。従って、生産性をも考慮すると、rminは好ましくは10%以上、より好ましくは15%以上である。
Increasing the total working degree R increases the tensile strength of the copper foil, but increases the anisotropy of the Young's modulus. By making R preferably 97% or less, more preferably less than 94%, Emax / Emin can be adjusted to 1.3 or less, preferably 1.25 or less. On the other hand, if R is lower than 80%, it becomes difficult to adjust the tensile strength after rolling to 480 MPa or more. Therefore, the total working degree R of the final cold rolling is preferably 80 to 97%, more preferably 85 to 94%.
When rolling to ultrathin foil in the final cold rolling, if the degree of processing per pass is lowered, the rolling time is inevitably increased. Therefore, conventionally, the workability r per pass has been set to be relatively high with an emphasis on the productivity of rolling.
If the working degree r per pass of the final cold rolling is 50% or more, shear deformation occurs in the metal structure of the copper foil. As a result, anisotropy of Young's modulus is promoted, and even if R is 80 to 97%, Ema / Emin exceeds 1.3. Therefore, the maximum working degree r max in all passes in the final cold rolling is preferably less than 50%, more preferably 43% or less. On the other hand, the minimum degree of processing r min does not affect the tensile strength and Young's modulus of the copper foil of the present invention, but if r is reduced, the number of passes increases and rolling takes time. Therefore, in consideration of productivity, r min is preferably 10% or more, more preferably 15% or more.

(電池の構成)
本発明に関わる負極板及び二次電池は、上記銅箔を負極集電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。
(Battery configuration)
The negative electrode plate and the secondary battery according to the present invention are characterized by using the above copper foil as a negative electrode current collector, and other configurations are not limited, and commonly used known ones are used. Can be used.

(負極)
負極は、本発明の負極集電体と、負極集電体の片面もしくは両面に形成される負極活物質より構成される。負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料又は炭素質材料;等が挙げられる。
前記金属としては、リチウム、アルミニウム、マグネシウム、すず、けい素等が挙げられる。
前記金属酸化物としては、すず酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。前記金属硫化物としては、すず硫化物、チタン硫化物等が挙げられる。前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムすず合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
(Negative electrode)
A negative electrode is comprised from the negative electrode collector of this invention, and the negative electrode active material formed in the single side | surface or both surfaces of a negative electrode collector. Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.
Examples of the carbonaceous material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, and mesophase pitch carbon. , Graphite materials or carbonaceous materials obtained by subjecting mesophase pitch carbon fibers, mesophase spherules, etc. to heat treatment at 500 to 3000 ° C.
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。結着剤としては、例えば、有機溶剤系のポリフッ化ビニリデン(PVDF)、水分散系のスチレンブタジエンゴム(SBR)等を用いることができる。SBRには、増粘剤として、例えばカルボキシメチルセルロース(CMC)を併用することができる。SBRとCMCの混合物を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等が挙げられる。
The negative electrode active material-containing layer can contain a binder. As the binder, for example, organic solvent-based polyvinylidene fluoride (PVDF), water-dispersed styrene butadiene rubber (SBR), or the like can be used. SBR can be used in combination with, for example, carboxymethylcellulose (CMC) as a thickener. By using a mixture of SBR and CMC, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

(正極)
正極は、正極集電体と、前記正極集電体の片面又は両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。
正極活物質含有層には結着剤を含有させることができる。結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、又はフッ素ゴムのようなゴム系樹脂を用いることができる。その一例として、ポリテトラフルオロエチレン(PTFE)が挙げられる。結着剤には、増粘剤としては、例えばCMCを併用することができる。
活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することができる。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more.
The positive electrode active material-containing layer can contain a binder. As the binder, a fluoroelastomer resin, a polyolefin resin, a styrene resin, a thermoplastic elastomer resin such as an acrylic resin, or a rubber resin such as fluororubber can be used. One example is polytetrafluoroethylene (PTFE). As the thickener, for example, CMC can be used in combination with the binder.
The active material-containing layer may further contain acetylene black, graphite such as powdered expanded graphite, carbon fiber pulverized material, graphitized carbon fiber pulverized material, and the like as a conductive auxiliary material.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状又は固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ-butyrolactone, and methyl propionate. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

(圧延銅箔の作製)
電気銅を溶解し、カーボン脱酸により酸素濃度を調整した後、SnおよびAgを添加し、幅が500mm、厚みが200mmのインゴットに鋳造した。このインゴットを850℃で3時間加熱し、熱間圧延により厚み10mmの板にした。次に、表面の酸化スケールを研削除去し、冷間圧延により1.5mmの板とした。その後、再結晶焼鈍と冷間圧延を繰り返して、最終の圧延で厚みを18〜6μmに仕上げた。
最終再結晶焼鈍(最終冷間圧延直前の焼鈍)は連続焼鈍ラインを用いて行った。炉温を700℃とし、焼鈍後の結晶粒径が10μmになるように、材料の通板速度(炉内の滞留時間)を調整した。
最終冷間圧延における総加工度(R)を変化させるために、最終再結晶焼鈍を施す板厚を予め調整した。また、最終冷間圧延では1パスあたりの加工度(r)を種々変化させた。
(Production of rolled copper foil)
After electrolytic copper was dissolved and the oxygen concentration was adjusted by carbon deoxidation, Sn and Ag were added and cast into an ingot having a width of 500 mm and a thickness of 200 mm. The ingot was heated at 850 ° C. for 3 hours and formed into a plate having a thickness of 10 mm by hot rolling. Next, the oxide scale on the surface was removed by grinding, and a 1.5 mm plate was formed by cold rolling. Thereafter, recrystallization annealing and cold rolling were repeated, and the final rolling finished to a thickness of 18 to 6 μm.
The final recrystallization annealing (annealing immediately before the final cold rolling) was performed using a continuous annealing line. The furnace temperature was set to 700 ° C., and the material passing speed (residence time in the furnace) was adjusted so that the crystal grain size after annealing was 10 μm.
In order to change the total workability (R) in the final cold rolling, the thickness of the plate to be subjected to final recrystallization annealing was adjusted in advance. In the final cold rolling, the degree of processing (r) per pass was variously changed.

(成分)
銅合金母地中の酸素濃度を不活性ガス溶融−赤外線吸収法で、Sn及びAg濃度をICP−質量分析法で分析した。ここで、Sn及びAg分析には銅箔試料を用いたが、O分析には1.5mmの板から採取した試料を用いた。これは、箔試料では質量に対する表面積の比率が非常に大きいため(例えば1gの試料の場合、厚さ1.5mmの板の表面積は1.5cm2に対し、厚さ10μmの箔の表面積は220cm2)、銅箔試料を用いて酸素を分析すると、表面の酸化膜及び吸着水膜中の酸素が加算され、酸素分析値が銅箔中の酸素濃度より50ppm程度増加するためである。なお、箔試料を用い、これが無酸素銅ベースの箔であることを判定するためには、試料の金属組織を観察し、酸化物粒子が存在しないこと(直径2μm以上の酸化物粒子が0.01個/mm2以下)を確認すればよい。なお、SnおよびAg濃度は質量%の小数点以下2桁まで求めた。
(component)
The oxygen concentration in the copper alloy matrix was analyzed by an inert gas melting-infrared absorption method, and the Sn and Ag concentrations were analyzed by ICP-mass spectrometry. Here, a copper foil sample was used for Sn and Ag analysis, but a sample collected from a 1.5 mm plate was used for O analysis. This is because the ratio of the surface area to the mass of the foil sample is very large (for example, in the case of a 1 g sample, the surface area of a 1.5 mm thick plate is 1.5 cm 2 while the surface area of a 10 μm thick foil is 220 cm. 2 ) When oxygen is analyzed using a copper foil sample, oxygen in the surface oxide film and adsorbed water film is added, and the oxygen analysis value is increased by about 50 ppm from the oxygen concentration in the copper foil. In addition, in order to determine that this is an oxygen-free copper-based foil using a foil sample, the metal structure of the sample is observed, and no oxide particles are present (the oxide particles having a diameter of 2 μm or more are 0. (01 / mm 2 or less) may be confirmed. In addition, Sn and Ag density | concentration were calculated | required to 2 digits below the decimal point of the mass%.

(引張強さ、導電率)
負極活物質の乾燥工程を模して圧延銅箔試料を300℃で30分間加熱した。加熱前及び加熱後の試料に対し、IPC(Institute for Interconnecting and Packaging Electronics Circuits)規格、IPC−TM−650;Method 2.4.19に準じて引張強さを求めた。試験片は、幅12.7mm、長さ150mmとし、試験片の長さ方向が圧延方向と平行になるように採取した。引張り速度は50mm/minとした。
最終圧延上がり(300℃で30分間加熱前)の試料に対し引張り試験用の試験片を用い、四端子法により20℃での導電率を求めた。
(Tensile strength, conductivity)
The rolled copper foil sample was heated at 300 ° C. for 30 minutes to simulate the drying process of the negative electrode active material. The tensile strength was calculated | required according to IPC (Institute for Interconnecting and Packaging Electronics Circuits) specification, IPC-TM-650; Method 2.4.19 with respect to the sample before a heating and after a heating. The test piece was 12.7 mm in width and 150 mm in length, and was collected so that the length direction of the test piece was parallel to the rolling direction. The pulling speed was 50 mm / min.
Using a test piece for a tensile test on the sample after the final rolling (before heating at 300 ° C. for 30 minutes), the conductivity at 20 ° C. was determined by the four-terminal method.

(ヤング率)
最終圧延上がり(300℃で30分間加熱前)の銅箔試料につき、振動法によりヤング率を測定した。測定装置には日本テクノプラス株式会社製の片持ち式薄板ヤング率測定装置、TE−RTを用いた。
試料は幅3.2mm、長さ15mmの短冊形状とし、振動長さを10mmとした。図1に示すように、試料の長手方向が圧延方向と成す角度をα(度)とし、α=0、22.5、45、67.5及び90となる5つの方向から試料を採取した。これら5方向の試料のそれぞれにつきヤング率を4回測定して平均値を求め、5つの平均値のうちの最大のものをEmax、最小のものをEminとし、Emax/Eminの数値を求めた。
(Young's modulus)
The Young's modulus of the copper foil sample after final rolling (before heating at 300 ° C. for 30 minutes) was measured by a vibration method. As a measuring device, a cantilever type thin plate Young's modulus measuring device, TE-RT manufactured by Nippon Techno Plus Co., Ltd. was used.
The sample had a strip shape with a width of 3.2 mm and a length of 15 mm, and the vibration length was 10 mm. As shown in FIG. 1, the angle formed by the longitudinal direction of the sample and the rolling direction was α (degrees), and samples were collected from five directions where α = 0, 22.5, 45, 67.5, and 90. The Young's modulus was measured four times for each of the samples in these five directions to obtain an average value, and Emax / Emin was determined by setting Emax as the maximum of the five average values and Emin as the minimum.

(サイクル寿命)
図2に示す円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてSBR5重量部、そして増粘剤としてCMC1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、300℃で30分間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(2)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50重量%水性ディスパージョン7重量部、増粘剤としてCMC1重量%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して200℃で1時間加熱し乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(3)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(4)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これらの後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、メチルエチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてLiPF6を1.0モル溶かした電解液を所定量注液した。この電解液を正極活物質層及び負極活物質層内に含浸させた。
(Cycle life)
A cylindrical lithium ion secondary battery shown in FIG. 2 was produced by the following procedure, and the cycle life was measured.
(1) 50 parts by weight of scaly graphite powder as a negative electrode active material, 5 parts by weight of SBR as a binder, and 23 parts by weight of a thickener aqueous solution dissolved in 99 parts by weight of water with respect to 1 part by weight of CMC as a thickener, By kneading and dispersing, a negative electrode paste was obtained. This negative electrode paste was applied on both sides of the rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 300 ° C. for 30 minutes, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(2) LiCoO 2 powder 50 parts by weight as a positive electrode active material, acetylene black 1.5 parts by weight as a conductive agent, PTFE 50% by weight aqueous dispersion 7 parts by weight, CMC 1% by weight aqueous solution 41.5 as a thickener A weight part was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, heated at 200 ° C. for 1 hour and dried. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.
(3) A battery case 8 accommodates an electrode group wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(4) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these, a non-aqueous electrolyte is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2 to form a cylindrical lithium ion having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh. A secondary battery was produced.
(5) The electrolyte is a predetermined amount of an electrolyte prepared by dissolving 1.0 mol of LiPF 6 as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of methyl ethyl carbonate, and 20% by volume of methyl propionate. did. The electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用い、充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が600回以上になった場合に良好なサイクル特性が得られたと判定した。   Charge / discharge cycle characteristics were evaluated using the produced batteries. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life. Charging conditions: Constant current-constant voltage charging at 4.2V for 2 hours, and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates The battery was charged to 40 mA (0.05 CmA). Discharge conditions: Discharge to a discharge end voltage of 3.0 V with a constant current of 780 mA (1 CmA). It was determined that good cycle characteristics were obtained when the cycle life was 600 times or more.

評価結果を表1に示す。各実施例の最終冷間圧延で採用した方式毎の各パスの加工度は表2に示す。ここで、SnまたはAg濃度が<0.01%の実施例では、SnまたはAgの添加が行われておらず、これら濃度は不可避的不純物のレベルである。
発明例は0.05〜0.22質量%のSnを含有し、80%IACS以上の導電率と480MPa以上の引張り強さを有している。これら発明例は300℃で30分間焼鈍後に400MPa以上の引張り強さを維持し、Emax/Eminが1.3以下である。その結果、600回以上の良好なサイクル寿命が得られている。
ここで、ヤング率の測定値の一例として発明例2のデータを示すと、0度:110.8GPa、22.5度:114.9GPa、45度:117.6GPa、67.5度:125.8GPa、90度:133.5GPaであった。従って、Emax=133.5GPa、Emin=110.8GPaより、Emax/Emin=1.20であった。
The evaluation results are shown in Table 1. Table 2 shows the degree of processing of each pass for each method employed in the final cold rolling of each example. Here, in the examples where the Sn or Ag concentration is <0.01%, Sn or Ag is not added, and these concentrations are unavoidable impurity levels.
The inventive example contains 0.05 to 0.22 mass% of Sn, and has a conductivity of 80% IACS or more and a tensile strength of 480 MPa or more. These invention examples maintain a tensile strength of 400 MPa or more after annealing at 300 ° C. for 30 minutes, and Emax / Emin is 1.3 or less. As a result, a good cycle life of 600 times or more is obtained.
Here, the data of Invention Example 2 is shown as an example of the measured value of Young's modulus: 0 degrees: 110.8 GPa, 22.5 degrees: 114.9 GPa, 45 degrees: 117.6 GPa, 67.5 degrees: 125. It was 8 GPa and 90 degrees: 133.5 GPa. Therefore, Emax / Emin = 1.20 from Emax = 133.5 GPa and Emin = 110.8 GPa.

発明例1〜4及び比較例5〜7は、0.12%のSn含有無酸素銅について、総加工度Rを90%とし、1パスあたりの加工度rを種々変化させ、厚さを10μmに仕上げたものである。1パスあたりの加工度の最大値を50%以上とした比較例5〜7では、Emax/Eminが1.3を超えた。その結果、充放電の繰り返しストレスを受けた際に銅箔にしわが入り、銅箔表面に塗布された活物質が剥離し、サイクル寿命が600回に満たなかった。
発明例9〜14及び比較例8、15は、0.12%のSnを添加した無酸素銅について、1パスあたりの最大加工度rmaxを40%程度とし、総加工度Rを種々変化させ、厚さを7μmに仕上げたものである。総加工度が80%未満であった比較例8では、圧延上がりの引張強さが480MPa未満となった。この影響により、300℃で30分間の熱履歴を受けた後の引張強さが400MPaを下回り、充放電ストレスにより銅箔が塑性変形した。総加工度が97%を超えた比較例15では、Emax/Eminが1.3を超え、充放電ストレスにより銅箔にしわが生じた。そのため、比較例8及び15では銅箔表面の活物質が剥離し、サイクル寿命が600回に満たなかった。
Inventive Examples 1 to 4 and Comparative Examples 5 to 7 have 0.12% Sn-containing oxygen-free copper, the total workability R is 90%, the workability r per pass is variously changed, and the thickness is 10 μm. It is finished. In Comparative Examples 5 to 7 in which the maximum value of the processing degree per pass was 50% or more, Emax / Emin exceeded 1.3. As a result, the copper foil wrinkled when subjected to repeated charge / discharge stress, the active material applied to the copper foil surface peeled off, and the cycle life was less than 600 times.
Inventive Examples 9 to 14 and Comparative Examples 8 and 15 are the oxygen-free copper to which 0.12% of Sn is added, the maximum working degree r max per pass is about 40%, and the total working degree R is variously changed. The thickness is finished to 7 μm. In Comparative Example 8 in which the total workability was less than 80%, the tensile strength after rolling was less than 480 MPa. Due to this influence, the tensile strength after receiving a heat history at 300 ° C. for 30 minutes was less than 400 MPa, and the copper foil was plastically deformed by charge / discharge stress. In Comparative Example 15 in which the total workability exceeded 97%, Emax / Emin exceeded 1.3, and wrinkles were generated in the copper foil due to charge / discharge stress. Therefore, in Comparative Examples 8 and 15, the active material on the surface of the copper foil was peeled off, and the cycle life was less than 600 times.

発明例16〜18は、発明例1〜4の箔厚10μm及び発明例9〜14の箔厚7μmに対して18μm、12μm及び6μmの箔厚としても、本発明の範囲内であれば箔厚に関係なく目的とする効果が得られることを示す。   Invention Examples 16 to 18 have a foil thickness of 18 μm, 12 μm and 6 μm with respect to a foil thickness of 10 μm of Invention Examples 1 to 4 and a foil thickness of 7 μm of Invention Examples 9 to 14, and a foil thickness within the scope of the present invention. It shows that the intended effect can be obtained regardless of

発明例21〜27、29及び30並びに比較例19、20、28及び31は、銅箔の成分の影響を検証したものである。
発明例21〜27はSn含有量が0.05〜0.22質量%の範囲であれば本発明の目的とする効果が得られることを示す。
比較例19は従来の無酸素銅であり、活物質乾燥工程における300℃での30分間の熱履歴により、銅箔の引張強さが200MPa近くまで低下した。また、比較例20は無酸素銅にSnを添加したものの添加量が0.05%未満であっため、300℃での30分間の熱履歴により、引張強さが400MPaを下回った。そのため、比較例19及び20の銅箔は、充放電の繰り返しストレスを受けて塑性変形して銅箔表面の活物質が剥離し、サイクル寿命が600回に満たなかった。
比較例28は0.22%を超えるSnを添加したために導電率が80%IACSを下回ったものである。導電率が80%IACSを下回ると、発熱や電圧損失が無視できなくなり目的とする二次電池を製造できなくなる。
Inventive Examples 21-27, 29 and 30 and Comparative Examples 19, 20, 28 and 31 verify the influence of the components of the copper foil.
Invention Examples 21 to 27 show that the intended effect of the present invention can be obtained if the Sn content is in the range of 0.05 to 0.22 mass%.
Comparative Example 19 is conventional oxygen-free copper, and the tensile strength of the copper foil was reduced to nearly 200 MPa due to the heat history at 300 ° C. for 30 minutes in the active material drying step. In Comparative Example 20, the addition amount of Sn added to oxygen-free copper was less than 0.05%, and the tensile strength was less than 400 MPa due to the thermal history at 300 ° C. for 30 minutes. Therefore, the copper foils of Comparative Examples 19 and 20 were plastically deformed by repeated charge / discharge stress, and the active material on the surface of the copper foil was peeled off, and the cycle life was less than 600 times.
In Comparative Example 28, since Sn exceeding 0.22% was added, the conductivity was lower than 80% IACS. If the conductivity is less than 80% IACS, heat generation and voltage loss cannot be ignored, and the intended secondary battery cannot be manufactured.

発明例29及び30はAgを好ましい範囲で添加して、導電率を低下させることなく耐熱性を向上させており、300℃で30分間加熱後の引張強さが、同量のSnを添加した発明例26よりも高い。
比較例31は酸素が10ppmを超えているので、添加したSnの一部が酸化して酸化Snとなった。酸化物として析出してしまったSn成分はCuの耐熱性改善に寄与しないため、300℃で30分間加熱後の引張強さが400MPaを下回り、充放電の繰り返しストレスを受けた際に銅箔が塑性変形し活物質が剥離すると共に、酸化Snを起点として銅箔にクラックが生じた。その結果、サイクル寿命が600回を大きく下回った。
Inventive Examples 29 and 30 added Ag in a preferable range to improve the heat resistance without lowering the electrical conductivity, and the same amount of Sn was added as the tensile strength after heating at 300 ° C. for 30 minutes. It is higher than Invention Example 26.
In Comparative Example 31, since oxygen exceeded 10 ppm, a part of the added Sn was oxidized to be oxidized Sn. Since the Sn component deposited as an oxide does not contribute to improving the heat resistance of Cu, the tensile strength after heating at 300 ° C. for 30 minutes is less than 400 MPa, and the copper foil is subjected to repeated charge / discharge stress. While the plastic material was deformed and the active material was peeled off, cracks occurred in the copper foil starting from Sn oxide. As a result, the cycle life was significantly less than 600 times.

Figure 0005416077
Figure 0005416077

Figure 0005416077
Figure 0005416077

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (6)

0.05〜0.22質量%のSnを含有し残部Cu及び不純物からなる無酸素銅ベースの銅合金箔であり、圧延方向と成す角度が0度、22.5度、45度、67.5度及び90度となる5つの方向にヤング率を測定し、該5つのヤング率のうちの最大の値をEmax、最小の値をEminとしたときに、Emax/Eminが1.3以下であり、480MPa以上の引張り強さ及び80%IACS以上の導電率を有するとともに、300℃で30分間加熱後に400MPa以上の引張り強さを維持することを特徴とする、二次電池の負極集電体用圧延銅箔。 An oxygen-free copper-based copper alloy foil containing 0.05 to 0.22% by mass of Sn and the balance being Cu and impurities, and the angle formed with the rolling direction is 0 degrees, 22.5 degrees, 45 degrees, and 67. When Young's modulus is measured in five directions of 5 degrees and 90 degrees, and Emax / Emin is 1.3 or less when the maximum value of the five Young's modulus is Emax and the minimum value is Emin. Ah is, which has a higher tensile strength and 80% IACS or more conductivity 480 MPa, characterized that you keep the tensile strength of at least 400MPa after heating at 300 ° C. 30 minutes, the anode current of the rechargeable battery Rolled copper foil for electric bodies. 更に0.1質量%以下のAgを含有することを特徴とする請求項1記載の圧延銅箔。   Furthermore, 0.1 mass% or less of Ag is contained, The rolled copper foil of Claim 1 characterized by the above-mentioned. 請求項1または2記載の圧延銅箔より構成される負極集電体。 Claim 1 or 2 negative electrode current collector composed of rolled copper foil according. 請求項に記載の負極集電体の少なくとも片面に、炭素質材料又は黒鉛質材料を主成分とする負極活物質層を有する負極板。 The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material or a graphite material as a main component on the at least single side | surface of the negative electrode collector of Claim 3 . 請求項に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、けい素単体、及びけい素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。 An active material layer containing at least one selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound is formed on at least one surface of the negative electrode current collector according to claim 3. A negative electrode plate. 請求項又は記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに極板群及び非水電解液を収容する電池ケースとから構成される二次電池。 6. An electrode plate group in which the negative electrode plate according to claim 4 or 5 is insulatively arranged via a separator having a lithium transition metal composite oxide as a main component of a positive electrode active material and a separator, and an electrode plate group And a battery case containing a non-aqueous electrolyte.
JP2010272827A 2009-12-07 2010-12-07 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Active JP5416077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010272827A JP5416077B2 (en) 2009-12-07 2010-12-07 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009277642 2009-12-07
JP2009277642 2009-12-07
JP2010272827A JP5416077B2 (en) 2009-12-07 2010-12-07 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2011142071A JP2011142071A (en) 2011-07-21
JP5416077B2 true JP5416077B2 (en) 2014-02-12

Family

ID=44457765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010272827A Active JP5416077B2 (en) 2009-12-07 2010-12-07 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5416077B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490673B2 (en) * 2010-03-15 2014-05-14 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5490761B2 (en) * 2011-09-01 2014-05-14 Jx日鉱日石金属株式会社 Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5845413B2 (en) * 2012-02-07 2016-01-20 パナソニックIpマネジメント株式会社 Electronic device with thin battery
JP5722813B2 (en) * 2012-03-02 2015-05-27 Jx日鉱日石金属株式会社 Electrode copper foil and negative electrode current collector for secondary battery
KR101516225B1 (en) 2013-05-03 2015-05-04 주식회사 제낙스 Non-woven collector, method of fabricating a battery with the same and system for fabricating the same
JP5453565B1 (en) 2013-06-13 2014-03-26 Jx日鉱日石金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911184B2 (en) * 2002-03-28 2007-05-09 日鉱金属株式会社 Copper alloy rolled foil
JP4428715B2 (en) * 2006-09-29 2010-03-10 日鉱金属株式会社 Copper alloy foil
JP2009242846A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Copper alloy foil

Also Published As

Publication number Publication date
JP2011142071A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP6041779B2 (en) Copper alloy foil
JP5219973B2 (en) Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN109686983B (en) Rolled copper foil for secondary battery negative electrode collector, method for producing same, secondary battery negative electrode using same, and secondary battery
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
WO2013129664A1 (en) Electrolytic copper foil, and negative electrode collector for secondary battery
JP2014136821A (en) Copper alloy film, anode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of copper alloy film
JP2007095568A (en) Lithium secondary battery and method of manufacturing same
KR101564139B1 (en) Electrolytic copper foil, and secondary battery collector and secondary battery using electrolytic copper foil
JP2013001982A (en) Rolled copper foil
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN117165811A (en) Rolled copper foil for secondary battery negative electrode collector, secondary battery negative electrode collector and secondary battery using the copper foil, and method for producing rolled copper foil for secondary battery negative electrode collector
JP5739044B1 (en) Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP2015030893A (en) Copper alloy foil and secondary battery negative electrode
JP2013001983A (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

R150 Certificate of patent or registration of utility model

Ref document number: 5416077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250