JP5219973B2 - Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same - Google Patents

Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same Download PDF

Info

Publication number
JP5219973B2
JP5219973B2 JP2009219287A JP2009219287A JP5219973B2 JP 5219973 B2 JP5219973 B2 JP 5219973B2 JP 2009219287 A JP2009219287 A JP 2009219287A JP 2009219287 A JP2009219287 A JP 2009219287A JP 5219973 B2 JP5219973 B2 JP 5219973B2
Authority
JP
Japan
Prior art keywords
negative electrode
copper foil
copper
phase particles
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009219287A
Other languages
Japanese (ja)
Other versions
JP2011070830A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2009219287A priority Critical patent/JP5219973B2/en
Publication of JP2011070830A publication Critical patent/JP2011070830A/en
Application granted granted Critical
Publication of JP5219973B2 publication Critical patent/JP5219973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な圧延銅箔、特に、せん断加工においてダレが発生しにくい圧延銅箔、ならびにこれを用いた負極集電体、負極板および電池に関する。   The present invention relates to a rolled copper foil suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, in particular, a rolled copper foil that does not easily sag in a shearing process, and a negative electrode collector using the same. The present invention relates to an electric body, a negative electrode plate, and a battery.

携帯電話、ノート型パソコン等のポータブル機器の普及に伴い、小型で高容量の二次電池の需要が伸びている。また、電気自動車やハイブリッド車等に用いられる中・大型の二次電池の需要も急増している。二次電池のなかでも、リチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されている。
リチウムイオン二次電池としては、アルミニウム箔にLiCoO2、LiNiO2、LiMn24等の化合物をコーティングしたものを正極として用い、銅箔に炭素質材料等を活物質としてコーティングしたものを負極に用いるものが知られている(図4)。
With the widespread use of portable devices such as mobile phones and notebook computers, the demand for small, high-capacity secondary batteries is growing. In addition, demand for medium- and large-sized secondary batteries used in electric vehicles, hybrid vehicles, and the like is also increasing rapidly. Among secondary batteries, lithium ion secondary batteries are used in many fields because of their light weight and high energy density.
As a lithium ion secondary battery, an aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode, and a copper foil coated with a carbonaceous material or the like as an active material is used as a negative electrode. What is used is known (FIG. 4).

銅箔には圧延銅箔と電解銅箔がある。圧延銅箔は、圧延による加工歪が材料中に蓄えられて硬化するため、二次電池負極板の材料として、強度、伸び、疲労特性等の点で優れている。市販されている圧延銅箔の多くは、タフピッチ銅または無酸素銅といった純銅を素材とするものである。圧延銅箔の製造プロセスでは、タフピッチ銅または無酸素銅のインゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で18、12、9、6μm等の所定厚みに仕上げる。   Copper foil includes rolled copper foil and electrolytic copper foil. The rolled copper foil is excellent in terms of strength, elongation, fatigue characteristics and the like as a material for the secondary battery negative electrode plate because the processing strain due to rolling is stored in the material and is cured. Many of the commercially available rolled copper foils are made of pure copper such as tough pitch copper or oxygen-free copper. In the rolled copper foil manufacturing process, tough pitch copper or oxygen-free copper ingots are hot-rolled, then cold-rolled and annealed repeatedly, and finally in the final cold-rolled thickness of 18, 12, 9, 6 μm, etc. Finish.

一般的に、銅箔負極板の製造は、電解銅箔や粗面加工した後の圧延銅箔を用いて、次のプロセスで行われる。
(1)活物質と結着剤とを溶剤に混練分散したペーストを、銅箔の片面もしくは両面に塗布して負極板材とする。
(2)150〜200℃の温度で数時間から数十時間加熱し乾燥する。
(3)必要に応じ、負極板材に加圧する。
(4)せん断加工を施し、所定形状の負極板へ成型する。
せん断加工とは、板材にせん断変形を加え材料を分離する加工法を言い、例としては、プレス機による打ち抜き加工、シャーリングによる切断加工、丸刃スリッターによる切断加工等がある。
Generally, manufacture of a copper foil negative electrode plate is performed in the following process using electrolytic copper foil or rolled copper foil after roughening.
(1) A paste obtained by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a copper foil to obtain a negative electrode plate material.
(2) Heat at 150 to 200 ° C. for several hours to several tens of hours to dry.
(3) Pressurize the negative electrode plate material as necessary.
(4) A shearing process is performed to form a negative electrode plate having a predetermined shape.
The shearing process refers to a processing method in which a plate material is subjected to shear deformation to separate materials, and examples include punching with a press, cutting with shearing, cutting with a round blade slitter, and the like.

リチウムイオン二次電池では、充電時にはリチウムイオンが正極から負極に移動し、放電時にはリチウムイオンが負極から正極に移動する。リチウムイオンの移動に伴って負極活物質が膨張収縮するため、銅箔は充放電によって機械的な繰り返しストレスを受ける。このストレスにより負極活物質が銅箔から剥離したり銅箔に亀裂が生じたりすると、電池の充放電サイクル寿命が短くなる。そこで、サイクル寿命の向上を目的に、銅箔の改善が試みられてきた。   In a lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions move from the negative electrode to the positive electrode during discharging. Since the negative electrode active material expands and contracts as the lithium ions move, the copper foil is subjected to mechanical repeated stress due to charge and discharge. When the negative electrode active material is peeled off from the copper foil or cracked in the copper foil due to this stress, the charge / discharge cycle life of the battery is shortened. Therefore, attempts have been made to improve the copper foil for the purpose of improving the cycle life.

特開2000−303128(特許文献1)では、電池製造工程で受ける熱履歴によって圧延銅箔が再結晶を起こして強度が低下してしまうこと(軟化)を防止するため、合金元素を添加して固溶させると共に、添加元素の酸化物形成を防止するために酸素含有量を30ppm以下に抑えている。
特開2008−4462(特許文献2)では、電解銅箔の結晶粒を加熱処理によって大きくすることにより、充放電時の膨張圧縮によって結晶粒間に生じる歪を低減し、充放電サイクル特性を改善している。
In JP-A-2000-303128 (Patent Document 1), an alloying element is added in order to prevent the rolled copper foil from being recrystallized due to the thermal history received in the battery manufacturing process and the strength is lowered (softening). In addition to solid solution, the oxygen content is suppressed to 30 ppm or less in order to prevent oxide formation of the additive element.
In Japanese Patent Application Laid-Open No. 2008-4462 (Patent Document 2), by increasing the crystal grains of the electrolytic copper foil by heat treatment, distortion generated between the crystal grains due to expansion and compression during charge / discharge is reduced, and charge / discharge cycle characteristics are improved. doing.

銅箔の結晶組織レベルの改善については、フレキシブルプリント回路(FPC)基板用圧延銅箔の分野でも様々な検討が行われている。例えば、特開2000−212661(特許文献3)ではFPC用圧延銅箔の屈曲性と軟化特性の改良を目的として、タフピッチ銅中の酸素濃度を限定してCu2O介在物量を調整している。特開2000−256765(特許文献4、「0019」)では、直径1〜5μmの介在物量、および直径が5μm以上の介在物量を抑制すると屈曲性が改良されることを報告している。特開2003−193211(特許文献5、「0029」)では極薄化エッチング加工を施した後の表面を平滑化する目的で、大きな介在物の生成を防止している。
上記のようにFPCの分野では、第二相粒子(介在物)に着目した幾つかの発明が開示され、FPCの特性に対する第二相粒子の弊害が指摘されている。さらに、第二相粒子は圧延の過程で銅箔にピンホールを発生させ、このピンホールがFPCの銅箔回路断線の原因となる。ピンホール発生に至らなくても、第二相粒子の存在や脱落により銅箔回路の形状に異常が生じることもある。このように、FPC用途では第二相粒子は原則として好ましくないものであった。そのため、従来技術では第二相粒子の総量を制限しており、特定サイズの第二相粒子を圧延銅箔、特に電池負極用圧延銅箔の特性改善のために積極的に利用するものではなかった(特許文献3〜5)。
Various studies have been conducted in the field of rolled copper foil for flexible printed circuit (FPC) substrates to improve the crystal structure level of copper foil. For example, JP 2000-212661 (Patent Document 3) adjusts the amount of Cu 2 O inclusions by limiting the oxygen concentration in tough pitch copper for the purpose of improving the flexibility and softening characteristics of FPC rolled copper foil. . Japanese Patent Application Laid-Open No. 2000-256765 (Patent Document 4, “0019”) reports that the flexibility is improved by suppressing the amount of inclusions having a diameter of 1 to 5 μm and the amount of inclusions having a diameter of 5 μm or more. Japanese Patent Laid-Open No. 2003-19311 (Patent Document 5, “0029”) prevents the formation of large inclusions for the purpose of smoothing the surface after the ultra-thin etching process.
As described above, in the field of FPC, several inventions focusing on second-phase particles (inclusions) have been disclosed, and the adverse effects of second-phase particles on the characteristics of FPC have been pointed out. Further, the second phase particles generate a pinhole in the copper foil during the rolling process, and this pinhole causes the copper foil circuit breakage of the FPC. Even if pinholes do not occur, abnormalities may occur in the shape of the copper foil circuit due to the presence or loss of the second phase particles. Thus, for FPC applications, the second phase particles are not preferred in principle. Therefore, the total amount of the second phase particles is limited in the prior art, and the second phase particles having a specific size are not actively used for improving the characteristics of the rolled copper foil, particularly the rolled copper foil for battery negative electrode. (Patent Documents 3 to 5).

特開2000−303128号公報JP 2000-303128 A 特開2008−4462号公報JP 2008-4462 A 特開2000−212661号公報JP 2000-212661 A 特開2000−256765号公報JP 2000-256765 A 特開2003−193211号公報Japanese Patent Laid-Open No. 2003-19311

一方、二次電池負極集電体用の圧延銅箔において、従来から負極板製造プロセスにおける歩留低下の要因になりながら、解決に至っていない課題がある。せん断加工の際にせん断圧力で銅箔表面が塑性変形してダレが発生する問題である(せん断加工後の銅箔断面を示す図2参照)。ダレは、生産効率を低下させるのみならず、負極活物質と銅箔との密着性を阻害して電池性能を低下させる。   On the other hand, in the rolled copper foil for the negative electrode current collector of the secondary battery, there is a problem that has not yet been solved while causing a decrease in yield in the negative electrode plate manufacturing process. This is a problem in which the surface of the copper foil is plastically deformed by shearing pressure during shearing (see FIG. 2 showing a cross section of the copper foil after shearing). The sagging not only lowers the production efficiency, but also inhibits the adhesion between the negative electrode active material and the copper foil to lower the battery performance.

ダレの発生は、乾燥工程の熱履歴における銅箔の軟化により助長される。軟化を抑制するだけなら、特許文献1で提案されているように、圧延銅箔素材を銅合金化すれば良い。しかし銅に合金元素を添加すると、導電性が低下するだけでなく、せん断加工の際にプレス金型や刃の寿命が短くなる。さらに、合金化により圧延銅箔の製造コストが上昇するという問題もある。一方、負極集電体用圧延銅箔のダレを防止するために、純銅素材の金属組織を制御することは、これまで検討されていなかった。
そこで、本発明では、銅箔素材を銅合金化することなく、純銅素材のまま、せん断加工性を改善し、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な、せん断加工性に優れた圧延銅箔ならびにこれを用いた負極集電体、負極板および二次電池を提供することを目的とする。
The occurrence of sagging is promoted by the softening of the copper foil in the thermal history of the drying process. If only the softening is to be suppressed, the rolled copper foil material may be made into a copper alloy as proposed in Patent Document 1. However, when an alloy element is added to copper, not only the conductivity is lowered, but also the life of the press die and the blade is shortened during the shearing process. Furthermore, there is a problem that the manufacturing cost of the rolled copper foil increases due to alloying. On the other hand, in order to prevent sagging of the rolled copper foil for a negative electrode current collector, it has not been studied so far to control the metal structure of a pure copper material.
Therefore, in the present invention, the copper foil material is not made into a copper alloy, it is a pure copper material, the shear workability is improved, and it is suitable as a negative electrode current collector material for secondary batteries including lithium ion secondary batteries. An object of the present invention is to provide a rolled copper foil excellent in shear workability, and a negative electrode current collector, a negative electrode plate and a secondary battery using the same.

本発明者は、乾燥工程を経て軟化した圧延銅箔につき、せん断加工性を改善する方策を鋭意研究した。その結果、非金属介在物、析出物、晶出物等の第二相粒子を、その寸法、形態、組成に応じて適正な頻度で銅の母地中に分散させれば、せん断加工性が向上することを見出した。本発明は、この発見に基づき成されたものであり、下記圧延銅箔、負極集電体、負極板および二次電池を提供する。
(1)二次電池の負極集電体として用いられる銅または銅合金箔であって、銅または銅合金の母地中に分散する第二相粒子のうち、直径1〜5μmの第二相粒子が500〜5000個/mm2、直径5μmを超える第二相粒子が10個/mm2未満であり、直径1〜5μmの第二相粒子の90%以上が、5.0以下のアスペクト比を有することを特徴とする負極集電体用圧延銅箔
(2)直径1〜5μmの第二相粒子の90%以上が酸化銅であることを特徴とする、上記(1)に記載の負極集電体用圧延銅箔。
)酸素を150〜300質量ppm含有するタフピッチ銅を素材として製造されることを特徴とする、上記(1)または2)に記載の負極集電体用圧延銅箔。
)上記タフピッチ銅の酸素および銀を除く微量元素の合計が25質量ppm以下であることを特徴とする、上記()に記載の負極集電体用圧延銅箔。
)上記微量元素中の硫黄濃度が10質量ppm以下であることを特徴とする、上記()または()に記載の負極集電体用圧延銅箔。
)上記(1)〜()いずれか1項に記載の圧延銅箔より構成される負極集電体。
)上記()に記載の負極集電体の少なくとも片面に、炭素質材料または黒鉛質材料を主成分とする負極活物質層を有する負極板。
)上記()に記載の負極集電体の少なくとも片面に、金属リチウム、金属スズ、スズ化合物、ケイ素単体、およびケイ素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。
)上記(7)または()に記載の負極板を、セパレータを介し、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板と絶縁することで極板群を構成し、該極板群を電池ケースに収容し、非水電解液を注液してなる二次電池。


This inventor earnestly researched the policy which improves shear workability about the rolled copper foil softened through the drying process. As a result, if the second phase particles such as non-metallic inclusions, precipitates, and crystallized substances are dispersed in the copper matrix at an appropriate frequency according to the size, form, and composition, the shear workability is improved. I found it to improve. This invention is made | formed based on this discovery, and provides the following rolled copper foil, a negative electrode collector, a negative electrode plate, and a secondary battery.
(1) A copper or copper alloy foil used as a negative electrode current collector of a secondary battery, and among the second phase particles dispersed in the copper or copper alloy matrix, second phase particles having a diameter of 1 to 5 μm There 500-5000 pieces / mm 2, Ri second phase particles der less than 10 / mm 2 having a diameter exceeding 5 [mu] m, more than 90 percent of the second-phase particles having a diameter of 1 to 5 [mu] m, 5.0 or less aspect ratio negative electrode current collector rolled copper foil and having a.
(2 ) The rolled copper foil for a negative electrode current collector according to the above (1 ), wherein 90% or more of the second phase particles having a diameter of 1 to 5 μm are copper oxide.
( 3 ) The rolled copper foil for a negative electrode current collector according to (1) or ( 2), wherein the rolled copper foil is made of tough pitch copper containing 150 to 300 mass ppm of oxygen.
( 4 ) The rolled copper foil for a negative electrode current collector according to ( 3 ) above, wherein the total amount of trace elements excluding oxygen and silver in the tough pitch copper is 25 mass ppm or less.
( 5 ) The rolled copper foil for a negative electrode current collector according to ( 3 ) or ( 4 ) above, wherein the sulfur concentration in the trace element is 10 mass ppm or less.
( 6 ) The negative electrode electrical power collector comprised from the rolled copper foil of any one of said (1)-( 5 ).
( 7 ) The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material or a graphite material as a main component on the at least single side | surface of the negative electrode collector as described in said ( 6 ).
( 8 ) An active material containing at least one selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound on at least one surface of the negative electrode current collector described in ( 6 ) above. A negative electrode plate having a layer.
(9) above (7) or the negative electrode plate according to (8), via a separator, the electrode plate group by insulating the lithium transition metal composite oxide as the positive electrode plate composed mainly of the positive electrode active material A secondary battery comprising the electrode plate group in a battery case and injecting a non-aqueous electrolyte.


本発明の負極集電体用圧延銅箔は、せん断加工の際にダレが発生しにくく、従来の圧延銅箔に比べ、生産効率が高く、二次電池負極材料として使用すると優れた電池性能を確保できる。   The rolled copper foil for a negative electrode current collector of the present invention is less prone to sag during shearing, has a higher production efficiency than conventional rolled copper foil, and has excellent battery performance when used as a secondary battery negative electrode material. It can be secured.

銅合金の母地中に第二相粒子が分散している構造を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the structure where the 2nd phase particle is disperse | distributing in the base material of a copper alloy. せん断加工後の銅箔断面を示す概略図である。It is the schematic which shows the copper foil cross section after a shearing process. 第二相粒子の長径L2および短径L1を示す概略図である。It is the schematic which shows the major axis L2 and the minor axis L1 of 2nd phase particle | grains. 一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery.

(第二相粒子の寸法と頻度)
本発明の第二相粒子とは、銅に他の元素が含まれる場合に生成し、銅母相(マトリックス)とは異なる相を形成する粒子をいう。直径1〜5μmおよび直径5μmを超える第二相粒子の数は、鏡面仕上げした銅箔圧延面(圧延面に平行、かつ厚み方向と直交する面)を任意に500箇所選択して得られた1視野0.002mm2の走査電子顕微鏡写真(図1参照)から該当する直径範囲の粒子数を測定して得られる。ここで、直径とは、図3のように粒子の短径(L1)と長径(L2)を測定し、L1とL2の平均値をいう。
(Size and frequency of second phase particles)
The second phase particles of the present invention are particles that are formed when other elements are contained in copper and that form a phase different from the copper matrix (matrix). The number of second phase particles having a diameter of 1 to 5 μm and a diameter exceeding 5 μm was obtained by arbitrarily selecting 500 mirror-finished copper foil rolled surfaces (surfaces parallel to the rolled surface and perpendicular to the thickness direction). It is obtained by measuring the number of particles in the corresponding diameter range from a scanning electron micrograph (see FIG. 1) having a field of view of 0.002 mm 2 . Here, the diameter means the average value of L1 and L2 by measuring the short diameter (L1) and long diameter (L2) of the particles as shown in FIG.

本発明では、直径が1μm以上5μm以下の第二相粒子を500個/mm2以上、5000個/mm2以下に規定する。銅箔が直径1〜5μmの第二相粒子を500個/mm2以上の頻度で含有すると、せん断加工で生じるダレが小さくなる。これは第二相粒子がクラックの起点として作用することにより、せん断加工後半における銅の破壊が促進されるためである。
直径1〜5μmの第二相粒子が500個/mm2未満であると、クラックの起点が少なくなるためダレが大きくなる。一方、5000個/mm2を超えると、充放電ストレスを受けた際に銅箔に亀裂が発生しやすくなり、電池の充放電サイクル寿命が短くなる。
充放電サイクル寿命への弊害は、大きな第二相粒子ほど増大する。そこで、上記に加え、直径5μmを超える第二相粒子を10個/mm2未満に規定する。
In the present invention, the number of second phase particles having a diameter of 1 μm or more and 5 μm or less is defined as 500 / mm 2 or more and 5000 / mm 2 or less. When the copper foil contains second phase particles having a diameter of 1 to 5 μm at a frequency of 500 particles / mm 2 or more, sagging caused by shearing is reduced. This is because the breakage of copper in the latter half of the shearing process is promoted by the second phase particles acting as crack starting points.
When the number of second phase particles having a diameter of 1 to 5 μm is less than 500 particles / mm 2 , the starting point of cracks is reduced, and sagging increases. On the other hand, if it exceeds 5000 / mm 2 , cracks are likely to occur in the copper foil when subjected to charge / discharge stress, and the charge / discharge cycle life of the battery is shortened.
The adverse effect on the charge / discharge cycle life increases with larger second phase particles. Therefore, in addition to the above, the number of second phase particles having a diameter exceeding 5 μm is defined to be less than 10 particles / mm 2 .

(第二相粒子の形態)
第二相粒子には、その組成や銅箔の製造履歴に応じ種々の形態のものがある。第二相粒子の形態もせん断加工性に影響し、等方的形態の第二相粒子ほど、せん断加工性の改善効果が大きくなる。
直径1〜5μmの第二相粒子に占める5.0以下のアスペクト比(長径と短径との比)を有する第二相粒子が90%未満であると、クラックの起点となる第二相粒子が少なくなり、せん断加工性の改善効果が著しく小さくなる。また、構造が不均一となるので充放電ストレスを受けた際に銅箔に亀裂が発生しやすくなり、電池の充放電サイクル寿命が短くなる。そこで、直径1〜5μmの第二相粒子の90%以上が、5.0以下のアスペクト比を有することが好ましい。更に好ましくは94%以上である。
ここで、本発明での第二相粒子の形態とは、圧延面に平行で、かつ厚み方向と直交する断面において観察される形態である。アスペクト比は、長径(L2)に対する短径(L1)の割合L2/L1であり、上記記載のとおり第二相粒子数を測定する際に得られた直径1〜5μmの第二相粒子のアスペクト比である。
(Form of second phase particles)
There are various types of second phase particles depending on the composition and production history of the copper foil. The form of the second phase particles also affects the shear processability, and the effect of improving the shear processability increases as the isotropic form of the second phase particles.
If the second phase particles having an aspect ratio (ratio of major axis to minor axis) of 5.0 or less in the second phase particles having a diameter of 1 to 5 μm are less than 90%, the second phase particles serving as the starting point of cracks And the effect of improving the shear workability is significantly reduced. Moreover, since the structure is not uniform, the copper foil is easily cracked when subjected to charge / discharge stress, and the charge / discharge cycle life of the battery is shortened. Therefore, it is preferable that 90% or more of the second phase particles having a diameter of 1 to 5 μm have an aspect ratio of 5.0 or less. More preferably, it is 94% or more.
Here, the form of the second phase particles in the present invention is a form observed in a cross section parallel to the rolling surface and perpendicular to the thickness direction. The aspect ratio is the ratio L2 / L1 of the short diameter (L1) to the long diameter (L2), and the aspect ratio of the second phase particles having a diameter of 1 to 5 μm obtained when measuring the number of second phase particles as described above. Is the ratio.

(第二相粒子の組成および製法)
本発明の銅箔に第二相粒子を導入する方法として、
(a)クロム、ジルコニウム等の固体銅中での溶解度が少ない金属元素を、純銅に添加して析出させる方法、
(b)酸素、硫黄等の非金属元素を純銅に添加して、酸化銅、硫化銅などの化合物を生成させる方法、
(c)金属元素と非金属元素を同時に添加し両者の化合物(例えば、Ni2Si、MgP、Al23、MnS等)を生成させる方法、
などがある。
クロム、ジルコニウム等は熱間圧延、溶体化処理で固溶され、時効処理で直径1μm未満の微細粒子として析出し、析出硬化作用を示す。直径1μm以上の第二相粒子を形成するためには、上記時効処理を比較的高い温度で長時間行い析出物粒子を成長させればよいが、強度の低下を伴う。
酸素を純銅へ添加すると、粒子径が制御しやすく、硬質で圧延変形しにくく等方性に優れた酸化銅粒子を形成できる。
硫黄は銅中への溶解度が非常に低く(600℃で1質量ppm程度)、含有量のほとんどが硫化銅となる。しかし、硫化銅は圧延で長く延びやすく、5.0以下のアスペクト比を達成することが困難となる。
Ni2Si、MgP、Al23、MnS等の第二相粒子の場合、鋳造時に粗大な粒子が形成されやすい。粗大粒子は充放電サイクル寿命を低下させる。粗大粒子を減らすためには、鋳造条件を制御し粒子の成長を抑えること、高温の熱処理により鋳造で生成した粒子を固溶させること、が必要である。
(Composition and production method of second phase particles)
As a method of introducing the second phase particles into the copper foil of the present invention,
(A) a method of adding a metal element having a low solubility in solid copper, such as chromium and zirconium, to pure copper and precipitating it,
(B) a method of generating a compound such as copper oxide or copper sulfide by adding a nonmetallic element such as oxygen or sulfur to pure copper;
(C) a method of simultaneously adding a metallic element and a nonmetallic element to form a compound of both (for example, Ni 2 Si, MgP, Al 2 O 3 , MnS, etc.),
and so on.
Chromium, zirconium, and the like are dissolved in the hot rolling and solution treatment, and are precipitated as fine particles having a diameter of less than 1 μm by the aging treatment, and exhibit precipitation hardening action. In order to form the second phase particles having a diameter of 1 μm or more, the aging treatment may be performed for a long time at a relatively high temperature to grow the precipitate particles, but this is accompanied by a decrease in strength.
When oxygen is added to pure copper, it is easy to control the particle diameter, and it is possible to form copper oxide particles that are hard, hard to deform by rolling, and excellent in isotropy.
Sulfur has very low solubility in copper (about 1 mass ppm at 600 ° C.), and most of the content is copper sulfide. However, copper sulfide tends to extend long by rolling, and it becomes difficult to achieve an aspect ratio of 5.0 or less.
In the case of second phase particles such as Ni 2 Si, MgP, Al 2 O 3 and MnS, coarse particles are likely to be formed during casting. Coarse particles reduce the charge / discharge cycle life. In order to reduce the coarse particles, it is necessary to control the casting conditions to suppress the growth of the particles and to dissolve the particles produced by casting by high-temperature heat treatment.

上記の第二相粒子の寸法、頻度、形態を得るためには、酸素を純銅に添加し酸化銅粒子を生成させる方法が、上記方法のなかで最も好適である。
酸化銅粒子を利用して本発明の第二相粒子の寸法、頻度、形態を達成するためには、直径1〜5μmの第二相粒子に占める酸化銅の割合を、90%以上、より好ましくは96%以上に調整することが好ましい。酸化銅からなる第二相粒子は、一般に銅マトリックス中で等方性に優れた形態で存在し、かつ適切な硬度を有するため、せん断加工の際に銅マトリックス内でクラックの起点となりやすいからである。
In order to obtain the size, frequency, and form of the second phase particles, a method of adding oxygen to pure copper to produce copper oxide particles is most preferable among the above methods.
In order to achieve the size, frequency, and morphology of the second phase particles of the present invention using copper oxide particles, the proportion of copper oxide in the second phase particles having a diameter of 1 to 5 μm is more preferably 90% or more. Is preferably adjusted to 96% or more. The second phase particles made of copper oxide are generally present in a copper matrix in an isotropic form and have an appropriate hardness, so that they tend to start cracks in the copper matrix during shearing. is there.

(銅箔素材)
従来から圧延銅箔の素材として使用されているものとして、タフピッチ銅(JIS−C1100)および無酸素銅(JIS−C1020)が挙げられる。タフピッチ銅は、100〜500質量ppmの酸素および、10〜100質量ppmの不可避的不純物(酸素を除く)を含有する純銅であり、銅分は99.90質量%以上に規格化されている。無酸素銅は、10質量ppm以下の酸素および、10〜100質量ppmの不可避的不純物(酸素を除く)を含有する。これら不可避的不純物の元素の一部は、銅中で第二相粒子(介在物、晶出物、析出物等)を形成する。
上記タフピッチ銅を改良して、本発明の第二相粒子の寸法および頻度、形態を得ることが可能である。すなわち、酸素を150質量ppm以上300質量ppm以下、微量元素(酸素および銀を除く、銅以外の元素)の合計を25質量ppm以下、この微量元素中に含まれる硫黄を10質量ppm以下に調整することで、本発明に好適な銅箔用素材が得られる。
(Copper foil material)
Conventionally used as a material for rolled copper foil includes tough pitch copper (JIS-C1100) and oxygen-free copper (JIS-C1020). Tough pitch copper is pure copper containing 100 to 500 mass ppm of oxygen and 10 to 100 mass ppm of inevitable impurities (excluding oxygen), and the copper content is standardized to 99.90 mass% or more. Oxygen-free copper contains 10 mass ppm or less of oxygen and 10 to 100 mass ppm of inevitable impurities (excluding oxygen). Some of these inevitable impurity elements form second-phase particles (inclusions, crystallized substances, precipitates, etc.) in copper.
By improving the tough pitch copper, it is possible to obtain the size, frequency and form of the second phase particles of the present invention. That is, oxygen is adjusted to 150 mass ppm to 300 mass ppm, the total of trace elements (elements other than copper excluding oxygen and silver) is adjusted to 25 mass ppm or less, and sulfur contained in the trace element is adjusted to 10 mass ppm or less. By doing so, a copper foil material suitable for the present invention is obtained.

ここで、酸素が150質量ppm未満になると、直径1〜5μmの第二相粒子数が500個/mm2を下回る。また、酸素が300質量ppmを超えると、直径1〜5μmの第二相粒子数が5000個/mm2を超え、400質量ppmを超えると、更に直径5μm以上の第二相粒子が10個/mm2以上になる。
銅中の、酸素および銀を除く微量元素は、第二相粒子として存在する酸化銅粒子のなかに混入して粒子の寸法や形態を変化させる。また、微量元素の酸化物、微量元素と銅の化合物、微量元素同士の化合物等が、新たな第二相粒子として生成する。したがって、微量元素が増加すると、第二相粒子の寸法、頻度、形態の制御が困難になる。そこで、本発明のタフピッチ銅では酸素および銀を除く微量元素の合計が25質量ppm以下であることが好ましい。なお、銀は安定で反応性が低い元素のため、0.1質量%以下であれば、酸化銅粒子の性状を変化させたり、銅中で新たな第二相粒子を形成したりすることはない。したがって本発明では銀は微量元素に加算しない。銅に銀を添加すると、導電性を低下させることなく、耐熱性や強度を改善することができる。銀が0.1質量%を超えると銅箔の延性が低下する。
Here, when oxygen becomes less than 150 mass ppm, the number of second phase particles having a diameter of 1 to 5 μm is less than 500 particles / mm 2 . Further, when the oxygen exceeds 300 mass ppm, the number of second phase particles having a diameter of 1 to 5 μm exceeds 5000 / mm 2, and when the oxygen exceeds 400 mass ppm, the number of second phase particles having a diameter of 5 μm or more is 10 / mm 2 or more.
Trace elements other than oxygen and silver in the copper are mixed in the copper oxide particles existing as the second phase particles and change the size and form of the particles. In addition, trace element oxides, trace element-copper compounds, trace element compounds, and the like are generated as new second-phase particles. Therefore, when the amount of trace elements increases, it becomes difficult to control the size, frequency, and form of the second phase particles. Therefore, in the tough pitch copper of the present invention, the total of trace elements excluding oxygen and silver is preferably 25 mass ppm or less. In addition, since silver is a stable and low reactive element, if it is 0.1% by mass or less, it is not possible to change the properties of the copper oxide particles or to form new second phase particles in the copper. Absent. Accordingly, silver is not added to the trace elements in the present invention. When silver is added to copper, heat resistance and strength can be improved without lowering conductivity. When silver exceeds 0.1 mass%, the ductility of copper foil will fall.

銅中に比較的高濃度で含有されている微量元素として硫黄がある。硫黄は、タフピッチ銅インゴットを溶製する際に、原料に付着する油分等から容易に混入するため、特に注意が必要である。硫黄が混入すると第二相粒子のアスペクト比が大きくなり、硫黄が10質量ppmを超えると、5.0以下のアスペクト比を有する直径1〜5μmの第二相粒子が90%未満となる。   There is sulfur as a trace element contained in copper at a relatively high concentration. Since sulfur is easily mixed from the oil or the like adhering to the raw material when melting a tough pitch copper ingot, special care is required. When sulfur is mixed, the aspect ratio of the second phase particles is increased. When sulfur exceeds 10 mass ppm, the second phase particles having an aspect ratio of 5.0 or less and having a diameter of 1 to 5 μm are less than 90%.

(銅箔の製造方法)
タフピッチ銅の製造方法も、本発明の第二相粒子の寸法、頻度、形態に影響を及ぼす。タフピッチ銅の製造工程では、電気銅、銅スクラップ等の純銅原料を溶解し、酸素濃度を調整した後、この溶銅を冷却して凝固させ、インゴットを製造する。酸化銅粒子は、凝固の過程で銅の母地のなかに生成する。凝固速度を遅くすると酸化銅粒子は大きくなり、凝固速度を速くすると酸化銅粒子は小さくなる。
インゴットは、熱間圧延により厚さ10mm程度の板に加工され、その後焼鈍と冷間圧延を繰り返して箔に仕上げられる。酸化銅粒子は硬質であり冷間圧延では変形しないが、熱間圧延では変形する。熱間圧延温度が高いほど変形は大きく(アスペクト比が大きく)なり、圧延温度が980℃を超えると5.0以下のアスペクト比を有する直径1〜5μmの第二相粒子を90%以上に調整することが難しくなる。
(Manufacturing method of copper foil)
The method for producing tough pitch copper also affects the size, frequency, and morphology of the second phase particles of the present invention. In the production process of tough pitch copper, pure copper raw materials such as electrolytic copper and copper scrap are dissolved, and after adjusting the oxygen concentration, the molten copper is cooled and solidified to produce an ingot. Copper oxide particles are produced in the copper matrix during the solidification process. When the solidification rate is decreased, the copper oxide particles are increased, and when the solidification rate is increased, the copper oxide particles are decreased.
The ingot is processed into a plate having a thickness of about 10 mm by hot rolling, and then finished by annealing and cold rolling. The copper oxide particles are hard and do not deform by cold rolling, but deform by hot rolling. The higher the hot rolling temperature, the larger the deformation (the aspect ratio becomes larger). When the rolling temperature exceeds 980 ° C., the second phase particles having an aspect ratio of 5.0 or less and a diameter of 1 to 5 μm are adjusted to 90% or more. It becomes difficult to do.

(電池の構成)
本発明に関わる負極板および二次電池は、上記銅箔を負極集電体として用いることを特徴とするものであり、本発明の圧延銅箔以外の構成については限定されず、一般に用いられている公知のものを用いることができる。
(Battery configuration)
The negative electrode plate and the secondary battery according to the present invention are characterized by using the copper foil as a negative electrode current collector, and are not limited and generally used except for the rolled copper foil of the present invention. Known ones can be used.

(負極板)
本発明の負極板は、本発明の負極集電体と、負極集電体の片面もしくは両面に結着剤と共に付着される負極活物質より構成される。
負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料;等が挙げられる。
前記金属としては、リチウム、アルミニウム、マグネシウム、スズ、けい素等を挙げることができる。
前記金属酸化物としては、スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。
前記金属硫化物としては、スズ硫化物、チタン硫化物等が挙げられる。
前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
(Negative electrode plate)
The negative electrode plate of the present invention is composed of the negative electrode current collector of the present invention and a negative electrode active material attached to one or both surfaces of the negative electrode current collector together with a binder.
Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.
Examples of the carbonaceous material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, and mesophase pitch carbon. And graphite materials or carbonaceous materials obtained by subjecting mesophase pitch-based carbon fibers, mesophase microspheres, etc. to heat treatment at 500 to 3000 ° C.
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide.
Examples of the metal sulfide include tin sulfide and titanium sulfide.
Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。負極用結着剤としては、カルボキシメチルセルロース(CMC)およびスチレンブタジエンゴム(SBR)を含む混合物が挙げられる。CMCおよびSBRを含む結着剤を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物等が挙げられる。
The negative electrode active material-containing layer can contain a binder. Examples of the negative electrode binder include a mixture containing carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR). By using a binder containing CMC and SBR, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include graphites such as acetylene black and powdered expanded graphite, pulverized carbon fibers, and pulverized graphitized carbon fibers.

(正極)
正極は、正極集電体と、前記正極集電体の片面もしくは両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質含有層は、例えば、正極活物質と結着剤とを含有する。正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。正極用結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、またはフッ素ゴムのようなゴム系樹脂を用いることができる。
正極活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物等をさらに含有することができる。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
The positive electrode active material-containing layer contains, for example, a positive electrode active material and a binder. Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more. As the binder for the positive electrode, a thermoplastic resin such as a fluorine resin, a polyolefin resin, a styrene resin, or an acrylic resin, or a rubber resin such as a fluorine rubber can be used.
The positive electrode active material-containing layer can further contain, as a conductive auxiliary material, acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状もしくは固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, and γ-butyrolactone. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

(原料)
銅箔の原料には、スクラップは使用せず、高品位の電気銅を用いた。酸素濃度は酸化第二銅を添加することで調整した。微量元素の影響を調べる実験では、高品位電気銅に銀又は微量元素を添加した。
微量元素を添加せずに作製した試料につき、グロー放電質量分析法(GD−MS)による全元素定量分析を行った。その結果、検出された元素とその濃度(質量ppm)は、S:3.2、Fe:0.8、As:0.4、Sb:0.7、Bi:0.2、Pb:0.1、Se:0.2、Te:0.1、Ag:8.3であり、これ以外の元素は分析下限0.1質量ppmで検出されなかった。すなわち銀又は微量元素を添加しない場合、原料由来の銅と酸素以外の元素の合計は14.0質量ppmであり、これから銀を除いた微量元素の濃度は5.7質量ppmであった。
(material)
As a raw material for the copper foil, high-quality electrolytic copper was used without using scrap. The oxygen concentration was adjusted by adding cupric oxide. In experiments for examining the effects of trace elements, silver or trace elements were added to high-grade electrolytic copper.
Samples prepared without adding trace elements were subjected to quantitative analysis of all elements by glow discharge mass spectrometry (GD-MS). As a result, the detected elements and their concentrations (mass ppm) were S: 3.2, Fe: 0.8, As: 0.4, Sb: 0.7, Bi: 0.2, Pb: 0.00. 1, Se: 0.2, Te: 0.1, Ag: 8.3. No other elements were detected at the analysis lower limit of 0.1 mass ppm. That is, when silver or a trace element was not added, the total of elements other than copper and oxygen derived from the raw material was 14.0 ppm by mass, and the concentration of the trace element excluding silver was 5.7 ppm by mass.

(圧延銅箔の作製)
高周波誘導炉を用い、内径60mmの黒鉛るつぼ中で3kgの高品位電気銅を溶解し、必要に応じて微量元素を添加した後、酸化第二銅を添加した。次に、この溶湯を鋳型に注湯し、厚み30mm、幅60mm、高さ約150mmの直方体形状のインゴットを製造した。その際、冷却速度を変化させるために、鋳込み温度および鋳型の材質を以下のように変化させた。
(1)鋳込み温度:1100〜1300℃の範囲で変化させた。鋳込み温度を下げることにより凝固速度が速くなる。
(2)鋳型材質:レンガ、黒鉛、鋳鉄、純銅の四種類の条件で行った。
(Production of rolled copper foil)
Using a high-frequency induction furnace, 3 kg of high-grade electrolytic copper was dissolved in a graphite crucible having an inner diameter of 60 mm, trace elements were added as necessary, and cupric oxide was added. Next, this molten metal was poured into a mold to produce a rectangular parallelepiped ingot having a thickness of 30 mm, a width of 60 mm, and a height of about 150 mm. At that time, in order to change the cooling rate, the casting temperature and the material of the mold were changed as follows.
(1) Casting temperature: It was changed in the range of 1100-1300 ° C. The solidification rate is increased by lowering the casting temperature.
(2) Mold material: Performed under four types of conditions: brick, graphite, cast iron, and pure copper.

次に、このインゴットを800〜1000℃の範囲の所定温度に保持した加熱炉に3時間挿入し、加熱炉から取り出し後、厚さ8mmまで熱間圧延した。熱延材表面の酸化スケールをグラインダーで除去した。その後、再結晶焼鈍と冷間圧延を繰り返して、最終の圧延で箔厚みを18μm〜6μmに仕上げた。
最終圧延の加工度が90%になるように、最終焼鈍の板厚を調整した。ここで圧延加工度rは、r=(to−t)/to(t:圧延後の厚み、to:圧延前の厚み)とする。
得られた圧延銅箔について、下記方法により、第二相粒子、引張強さと伸び、せん断加工性およびサイクル寿命を評価した。
Next, this ingot was inserted into a heating furnace maintained at a predetermined temperature in the range of 800 to 1000 ° C. for 3 hours, taken out from the heating furnace, and hot rolled to a thickness of 8 mm. The oxidized scale on the surface of the hot rolled material was removed with a grinder. Then, recrystallization annealing and cold rolling were repeated, and the foil thickness was finished to 18 μm to 6 μm by the final rolling.
The plate thickness of the final annealing was adjusted so that the final rolling workability was 90%. Here, the degree of rolling r is r = (to-t) / to (t: thickness after rolling, to: thickness before rolling).
About the obtained rolled copper foil, the following method evaluated the 2nd phase particle | grains, tensile strength and elongation, shear workability, and cycle life.

(第二相粒子の評価)
負極活物質の乾燥工程を模して圧延銅箔試料を200℃で1時間加熱した。圧延面を機械研磨して鏡面に仕上げた後、走査電子顕微鏡を用いて、第二相粒子の寸法および個数を測定した。直径1〜5μmの第二相粒子および直径5μmを超える第二相粒子の個数測定は視野0.002mm2の顕微鏡写真500枚に対して行った。
上記測定に使用した直径1〜5μmの第二相粒子のアスペクト比を測定し、アスペクト比が5.0以下の粒子の割合を求めた。また、直径1〜5μmの第二相粒子を任意で50個選択し、それぞれについてEDS(エネルギー分散型X線分析装置)により成分を分析し、50個中の酸化銅粒子の割合を求めた。ここで、銅濃度と酸素濃度の合計が90質量%以上の第二相粒子を酸化銅粒子と定義した。
(Evaluation of second phase particles)
The rolled copper foil sample was heated at 200 ° C. for 1 hour to simulate the drying process of the negative electrode active material. After the rolled surface was mechanically polished to a mirror surface, the size and number of the second phase particles were measured using a scanning electron microscope. The number of second phase particles having a diameter of 1 to 5 μm and second phase particles having a diameter exceeding 5 μm was measured on 500 micrographs having a visual field of 0.002 mm 2 .
The aspect ratio of the second phase particles having a diameter of 1 to 5 μm used in the above measurement was measured, and the ratio of particles having an aspect ratio of 5.0 or less was determined. Further, 50 second-phase particles having a diameter of 1 to 5 μm were arbitrarily selected, and the components were analyzed by EDS (energy dispersive X-ray analyzer) for each to determine the ratio of the copper oxide particles in the 50 particles. Here, the second phase particles having a total copper concentration and oxygen concentration of 90% by mass or more were defined as copper oxide particles.

(引張試験)
負極活物質の乾燥工程を模して圧延銅箔試料を200℃で1時間加熱した。加熱後の試料に対し、IPC(Institute for Interconnecting and Packaging Electronics Circuits)規格、IPC−TM−650;Method 2.4.19に準じて引張強さと伸びを求めた。試験片は、幅12.7mm、長さ150mmとし、試験片の長さ方向が圧延方向と平行になるように採取した。引張り速度は50mm/minとした。
(せん断加工性の評価方法)
負極活物質の乾燥工程を模して圧延銅箔試料を200℃で1時間加熱した。次に、プレス打ち抜き加工により、円形の試料を打ち抜いた。ダイスの孔径は5.000mmとした。ポンチは円筒形とし、その直径は、試料厚みに応じて次の通りとした。厚み18μmの試料:4.994mm、厚み12μmの試料:4.996mm、厚み9μmの試料:4.997mm、厚み6μmの試料:4.998mm。打ち抜き速度は10mm/minとし、材料押さえは行わなかった。
打ち抜いた試料の破面を断面から観察し、図2に示すダレの寸法を測定した。測定位置は、圧延方向に平行な破面部位とした。ダレが箔厚の1/5以下の場合に良好なせん断加工性が得られたと判定した。
(Tensile test)
The rolled copper foil sample was heated at 200 ° C. for 1 hour to simulate the drying process of the negative electrode active material. The tensile strength and elongation were calculated | required according to IPC (Institute for Interconnecting and Packaging Electronics Circuits) specification, IPC-TM-650; Method 2.4.19 with respect to the sample after a heating. The test piece was 12.7 mm in width and 150 mm in length, and was collected so that the length direction of the test piece was parallel to the rolling direction. The pulling speed was 50 mm / min.
(Evaluation method of shear workability)
The rolled copper foil sample was heated at 200 ° C. for 1 hour to simulate the drying process of the negative electrode active material. Next, a circular sample was punched out by press punching. The die hole diameter was 5.000 mm. The punch was cylindrical and the diameter was as follows according to the sample thickness. 18 μm thick sample: 4.994 mm, 12 μm thick sample: 4.996 mm, 9 μm thick sample: 4.997 mm, 6 μm thick sample: 4.998 mm. The punching speed was 10 mm / min, and no material pressing was performed.
The fracture surface of the punched sample was observed from the cross section, and the size of the sagging shown in FIG. 2 was measured. The measurement position was a fracture surface portion parallel to the rolling direction. When the sagging was 1/5 or less of the foil thickness, it was determined that good shear workability was obtained.

(サイクル寿命の評価方法)
以下の手順で図4に示す円筒型のリチウムイオン二次電池を作製し、サイクル寿命を測定した。
(Evaluation method of cycle life)
The cylindrical lithium ion secondary battery shown in FIG. 4 was produced by the following procedure, and the cycle life was measured.

(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、そして増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、200℃で1時間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(2)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50重量%水性分散体7重量部、増粘剤としてカルボキシルメチルセルロース1重量%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して、200℃で1時間加熱乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(1) A thickener aqueous solution dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of carboxymethylcellulose as a thickener. 23 parts by weight was kneaded and dispersed to obtain a negative electrode paste. This negative electrode paste was applied on both sides of a rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 200 ° C. for 1 hour, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(2) LiCoO 2 powder 50 parts by weight as a positive electrode active material, acetylene black 1.5 parts by weight as a conductive agent, PTFE 50% by weight aqueous dispersion 7 parts by weight, carboxymethylcellulose 1% by weight aqueous solution 41 as a thickener .5 parts by weight was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, and dried by heating at 200 ° C. for 1 hour. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.

(3)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(4)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これら手順の後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、エチルメチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1.0モル溶解した電解液を所定量注液した。この電解液を正極活物質層および負極活物質層内に含浸させた。
(3) A battery case 8 accommodates an electrode group wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(4) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these procedures, a non-aqueous electrolyte is injected, the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2, and the cylindrical lithium having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh is used. An ion secondary battery was produced.
(5) The electrolytic solution was prepared by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 20% by volume of methyl propionate. A predetermined amount of electrolyte was injected. This electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用い、充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が500回以上になった場合に良好なサイクル特性が得られたと判定した。   Charge / discharge cycle characteristics were evaluated using the produced batteries. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life. Charging conditions: Constant current-constant voltage charging at 4.2V for 2 hours, and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates The battery was charged to 40 mA (0.05 CmA). Discharge conditions: Discharge to a discharge end voltage of 3.0 V with a constant current of 780 mA (1 CmA). It was determined that good cycle characteristics were obtained when the cycle life reached 500 times or more.

実施例A(酸素濃度および鋳造条件の影響)
酸素濃度および鋳造条件が直径1〜5μmの第二相粒子の個数へ及ぼす影響を、実施例3、6〜8、10、12〜14および17〜19ならびに比較例1、2、4、5、9、11、15、16および20〜22で検討した。結果を表1に示す。
種々の酸素濃度の溶湯を鋳型および鋳込み温度を変えて鋳造し、インゴットを製造した。インゴットを900℃で3時間加熱した後に厚み8mmまで熱間圧延を行い、冷間圧延と焼鈍を繰り返して厚みを6〜18μmの箔に仕上げ、第二相粒子、引張り強さと伸び、せん断加工性およびサイクル寿命を評価した。純銅鋳型には冷却水配管を通して水冷し、他の鋳型は空冷とした。鋳型材質の影響としては、レンガ<黒鉛<鋳鉄<純銅の順に凝固速度が速くなる。また、鋳込み温度が低いほど凝固速度が速くなる。この実験(実施例1)では微量元素を添加していないので、銀は8.3質量ppmであり、酸素および銀を除く微量元素の合計は5.7質量ppm、硫黄は3.2質量ppmである。
Example A (effect of oxygen concentration and casting conditions)
The effects of the oxygen concentration and casting conditions on the number of second phase particles having a diameter of 1 to 5 μm are described in Examples 3, 6 to 8, 10, 12 to 14, and 17 to 19 and Comparative Examples 1, 2, 4, 5, 9, 11, 15, 16 and 20-22. The results are shown in Table 1.
Ingots were produced by casting molten metal having various oxygen concentrations at different molds and casting temperatures. The ingot is heated at 900 ° C. for 3 hours, then hot rolled to a thickness of 8 mm, repeated cold rolling and annealing to finish a foil with a thickness of 6 to 18 μm, second phase particles, tensile strength and elongation, shear processability And the cycle life was evaluated. The pure copper mold was water-cooled through a cooling water pipe, and the other molds were air-cooled. As an influence of the mold material, the solidification rate increases in the order of brick <graphite <cast iron <pure copper. Also, the lower the casting temperature, the faster the solidification rate. In this experiment (Example 1), since no trace element was added, silver was 8.3 mass ppm, the total of trace elements excluding oxygen and silver was 5.7 mass ppm, and sulfur was 3.2 mass ppm. It is.

評価結果を表1に示す。鋳造条件が同じ場合、酸素濃度の上昇に伴い、直径1〜5μmの第二相粒子の個数が増加している(比較例1及び2、実施例3、7、12〜14、比較例15及び16)。また、酸素濃度が高くなると直径5μmを超える第二相粒子が生成し、その個数は酸素濃度上昇とともに増加している(実施例14、比較例15及び16)。なお、各試料とも、直径1〜5μmの第二相粒子の内、アスペクト比が5.0以上の粒子の割合は90%以上、酸化銅粒子の割合は90%以上である。
酸素濃度が150〜300質量ppmで、適切な凝固速度でインゴットが製造された、実施例3、6〜8、10、12〜14および17〜19では、本発明が規定するサイズと数の第二相粒子が得られ、良好なせん断加工性とサイクル寿命が得られている。
酸素濃度が150質量ppmに満たない比較例1、2および20〜22では、直径1〜5μmの粒子が500個/mm2未満であり、その結果ダレが箔厚の1/5を超えている。
酸素濃度が300質量ppmを超える比較例15および16では、直径1〜5μmの粒子が5000個/mm2を超え、さらに比較例16では直径5μmを超える粒子が10個/mm2を超えている。その結果、比較例15、16のサイクル寿命は500回に満たない。
The evaluation results are shown in Table 1. When the casting conditions are the same, the number of second-phase particles having a diameter of 1 to 5 μm increases as the oxygen concentration increases (Comparative Examples 1 and 2, Examples 3, 7, 12 to 14, Comparative Example 15 and 16). Further, when the oxygen concentration is increased, second-phase particles having a diameter of more than 5 μm are generated, and the number thereof increases with an increase in oxygen concentration (Example 14, Comparative Examples 15 and 16). In each sample, among the second phase particles having a diameter of 1 to 5 μm, the proportion of the particles having an aspect ratio of 5.0 or more is 90% or more, and the proportion of the copper oxide particles is 90% or more.
In Examples 3, 6 to 8, 10, 12 to 14 and 17 to 19 in which ingots were produced with an oxygen concentration of 150 to 300 ppm by mass and an appropriate solidification rate, the sizes and numbers defined by the present invention were adjusted. Two-phase particles are obtained, and good shear processability and cycle life are obtained.
In Comparative Examples 1, 2, and 20 to 22 in which the oxygen concentration is less than 150 ppm by mass, the number of particles having a diameter of 1 to 5 μm is less than 500 / mm 2 , and as a result, sagging exceeds 1/5 of the foil thickness. .
In Comparative Examples 15 and 16 in which the oxygen concentration exceeds 300 mass ppm, the number of particles having a diameter of 1 to 5 μm exceeds 5000 / mm 2 , and in Comparative Example 16, the number of particles having a diameter of more than 5 μm exceeds 10 / mm 2 . . As a result, the cycle life of Comparative Examples 15 and 16 is less than 500 times.

純銅鋳型を使用した比較例4、および融点直上の1100℃で鋳込んだ比較例5は、凝固速度が速過ぎたため、ダレ低減に寄与しない直径1μm未満の微細な第二相粒子が多く析出し、直径1〜5μmの粒子が500個/mm2を下回ってしまった。このためダレが箔厚の1/5を超えた。
1300℃の高温で鋳込んだ比較例9、およびレンガ製鋳型を使用した比較例11は、凝固速度が遅過ぎたため、第二相粒子が顕著に粗大化した。その結果、直径5μmを超える粒子が10個/mm2を超え、サイクル寿命が顕著に低下した。さらに、比較例11については、粒子の粗大化により直径1〜5μmの粒子が500個/mm2を下回ってしまい、ダレが箔厚の1/5を超えた。
In Comparative Example 4 using a pure copper mold and Comparative Example 5 cast at 1100 ° C. immediately above the melting point, since the solidification rate was too high, a lot of fine second-phase particles having a diameter of less than 1 μm that do not contribute to reduction of dripping were precipitated. The number of particles having a diameter of 1 to 5 μm was less than 500 particles / mm 2 . For this reason, sagging exceeded 1/5 of foil thickness.
In Comparative Example 9 cast at a high temperature of 1300 ° C. and Comparative Example 11 using a brick mold, the solidification rate was too slow, and thus the second phase particles were significantly coarsened. As a result, the number of particles having a diameter exceeding 5 μm exceeded 10 particles / mm 2 , and the cycle life was significantly reduced. Further, in Comparative Example 11, particles having a diameter of 1 to 5 μm were less than 500 particles / mm 2 due to the coarsening of the particles, and sagging exceeded 1/5 of the foil thickness.

実施例B(熱間圧延条件の影響)
熱間圧延条件が直径1〜5μmおよび直径5μmを超える第二相粒子の個数へ及ぼす影響を、実施例13、23〜26ならびに比較例27で検討した。
酸素濃度を約250質量ppmに調整した溶湯を1200℃で鋳鉄製の鋳型に鋳込みインゴットを製造した。インゴットを種々の温度(熱間圧延温度)に保持した加熱炉に3時間挿入し、加熱炉から取り出し後、厚さ8mmまで熱間圧延した。その後、再結晶焼鈍と冷間圧延を繰り返し、厚みを12μmに仕上げて評価した。なお、微量元素を添加してないので、銀は8.3質量ppmであり、酸素および銀を除く微量元素の合計は5.7質量ppm、硫黄は3.2質量ppmである。
Example B (Influence of hot rolling conditions)
The effects of hot rolling conditions on the number of second phase particles having a diameter of 1 to 5 μm and a diameter of more than 5 μm were examined in Examples 13, 23 to 26 and Comparative Example 27.
An ingot was manufactured by casting a molten metal whose oxygen concentration was adjusted to about 250 ppm by mass into a cast iron mold at 1200 ° C. The ingot was inserted into a heating furnace maintained at various temperatures (hot rolling temperature) for 3 hours, removed from the heating furnace, and hot rolled to a thickness of 8 mm. Thereafter, recrystallization annealing and cold rolling were repeated, and the thickness was finished to 12 μm for evaluation. In addition, since the trace element is not added, silver is 8.3 mass ppm, the total of trace elements except oxygen and silver is 5.7 mass ppm, and sulfur is 3.2 mass ppm.

評価結果を表2に示す。熱間圧延温度が高くなるに従い、5.0以下のアスペクト比を有する直径1〜5μmの第二相粒子の割合が低くなっている。各試料とも、直径1〜5μmの第二相粒子中の酸化銅粒子割合は90%以上である。
980℃以下の温度で熱間圧延を行った実施例13、23〜26では、直径1〜5μmの第二相粒子の90%以上が5.0以下のアスペクト比を有しており、良好なせん断加工性とサイクル寿命が得られた。
一方、980℃を超える1000℃で熱間圧延を行った比較例27では、直径1〜5μmの第二相粒子の頻度は500〜5000個/mm2であったものの、5.0以下のアスペクト比を有する第二相粒子は90%未満であった。長く延びた第二相粒子はダレ低減に寄与しないばかりでなくサイクル寿命の劣化も招くため、比較例27のダレは箔厚の1/5を超え、サイクル寿命は500回に満たなかった。
なお、熱間圧延温度が800℃と低温であった実施例23では、良好なせん断加工性とサイクル寿命は得られたが、熱間圧延中のインゴット表面に軽い割れが発生したので、割れ部分を面削で除去した後、箔に加工した。したがって、安定した製造はやや困難であった。
The evaluation results are shown in Table 2. As the hot rolling temperature increases, the proportion of second phase particles having an aspect ratio of 5.0 or less and a diameter of 1 to 5 μm is decreasing. In each sample, the ratio of the copper oxide particles in the second phase particles having a diameter of 1 to 5 μm is 90% or more.
In Examples 13, 23 to 26, which were hot-rolled at a temperature of 980 ° C. or less, 90% or more of the second phase particles having a diameter of 1 to 5 μm had an aspect ratio of 5.0 or less, which was favorable. Shear processability and cycle life were obtained.
On the other hand, in Comparative Example 27 in which hot rolling was performed at 1000 ° C. exceeding 980 ° C., the frequency of second phase particles having a diameter of 1 to 5 μm was 500 to 5000 particles / mm 2 , but an aspect ratio of 5.0 or less. Second phase particles having a ratio were less than 90%. Since the extended second phase particles not only contribute to the reduction of sagging but also deteriorate the cycle life, the sagging of Comparative Example 27 exceeded 1/5 of the foil thickness, and the cycle life was less than 500 times.
In Example 23 where the hot rolling temperature was as low as 800 ° C., good shear workability and cycle life were obtained, but light cracks occurred on the surface of the ingot during hot rolling. Was removed by chamfering and then processed into a foil. Therefore, stable production was somewhat difficult.

実施例C(微量元素の影響)
微量元素がサイクル寿命へ及ぼす影響を、微量元素を添加することにより、実施例12、28〜30、33、35、37、39および40ならびに比較例31、32、34、36および38で検討した。
高品位電気銅を溶解し、微量元素混入を想定し所定元素を所定量添加後、酸素濃度を約220質量ppmに調整した。この溶湯を1200℃で鋳鉄製鋳型に鋳込みインゴットを製造した。900℃で3時間加熱した後に厚み8mmまで熱間圧延を行い、冷間圧延と焼鈍を繰り返して厚みを12μmに仕上げ、第二相粒子、せん断加工性およびサイクル寿命を評価した。
評価結果を表3に示す。ここで、微量元素合計とは、銅、酸素および銀以外の元素の合計濃度であり、元々含有する濃度(5.7質量ppm)に添加元素量を加算することで求めている。また、硫黄合計は、元々含有する硫黄濃度(3.2質量ppm)に添加硫黄量を加算したものである。
実施例28〜30ならびに比較例31および32は硫黄を添加したものである。硫化銅の生成および酸化銅への硫黄の混入により、直径1〜5μmの第二相粒子に占めるアスペクト比が5.0以下の粒子の割合が低下し、直径1〜5μmの第二相粒子に占める酸化銅粒子の割合も減少した。硫黄が10質量ppmを超える比較例31および32では、直径1〜5μmの第二相粒子のアスペクト比が5.0以上の粒子の割合が90%未満であり、酸化銅粒子の割合も90%未満であった。その結果、ダレが箔厚の1/5を超え、サイクル寿命が500回を下回った。
Example C (effect of trace elements)
The effects of trace elements on cycle life were examined in Examples 12, 28-30, 33, 35, 37, 39 and 40 and Comparative Examples 31, 32, 34, 36 and 38 by adding trace elements. .
High-grade electrolytic copper was dissolved, a predetermined amount of element was added, assuming a trace element mixture, and the oxygen concentration was adjusted to about 220 ppm by mass. This molten metal was cast into a cast iron mold at 1200 ° C. to produce an ingot. After heating at 900 ° C. for 3 hours, hot rolling was performed to a thickness of 8 mm, and cold rolling and annealing were repeated to finish the thickness to 12 μm, and the second phase particles, shear workability and cycle life were evaluated.
The evaluation results are shown in Table 3. Here, the trace element total is the total concentration of elements other than copper, oxygen, and silver, and is obtained by adding the amount of added elements to the concentration originally contained (5.7 mass ppm). The total sulfur is obtained by adding the amount of added sulfur to the sulfur concentration (3.2 mass ppm) originally contained.
Examples 28 to 30 and Comparative Examples 31 and 32 are obtained by adding sulfur. Due to the formation of copper sulfide and the mixing of sulfur into copper oxide, the proportion of particles having an aspect ratio of 5.0 or less in the second phase particles having a diameter of 1 to 5 μm is reduced, and the second phase particles having a diameter of 1 to 5 μm are formed. The proportion of copper oxide particles occupied also decreased. In Comparative Examples 31 and 32 where sulfur exceeds 10 ppm by mass, the proportion of particles having an aspect ratio of 5.0 or more of the second phase particles having a diameter of 1 to 5 μm is less than 90%, and the proportion of copper oxide particles is also 90%. Was less than. As a result, sagging exceeded 1/5 of the foil thickness and the cycle life was less than 500 times.

実施例33および比較例34は、原料へのすずめっき付き銅スクラップ混入を想定し、溶湯に微量のすずを添加したものである。酸化すずの生成および酸化銅へのすずの混入により、直径1〜5μmの第二相粒子に占める酸化銅粒子の割合が減少し、第二相粒子が大型化した。この結果、直径1〜5μmの粒子数が減少し、直径5μmを超える粒子が増加した。酸素および銀以外の微量元素の合計が25質量ppmを超える比較例34では、酸化銅粒子の割合が90%未満となり、直径5μm以上の粒子が10個/mm2を超え、サイクル寿命が500回に満たなかった。
実施例35および比較例36は、原料への黄銅スクラップ混入を想定し、溶湯に微量の亜鉛を添加したものである。すずを添加した場合と同様の結果が得られた。
実施例37および比較例38は、品位の低い電気銅を原料として用いたことを想定し、溶湯に電気銅の主要な不可避的不純物と想定される微量元素を添加したものである。微量元素増量により、酸化銅粒子の割合が減少し、直径1〜5μmの第二相粒子に占めるアスペクト比が5.0以上の粒子の割合が低下し、直径5μmを超える粒子が増加した。酸素、銀以外の微量元素の合計が25質量ppmを超える比較例38では、直径1〜5μmの第二相粒子に占めるアスペクト比が5.0以上の粒子の割合が90%未満で、酸化銅粒子の割合も90%未満であった。その結果、ダレが箔厚の1/5を超え、サイクル寿命が500回に満たなかった。
実施例39および40は、強度および耐熱性を改善するために、銀を添加したものである。本発明が規定するサイズと数の第二相粒子が得られ、良好なせん断加工性とサイクル寿命が得られている。少量の銀を添加しても本発明の効果が発揮されることが示されている。
In Example 33 and Comparative Example 34, a small amount of tin was added to the molten metal assuming that copper scrap with tin plating was mixed into the raw material. Due to the formation of tin oxide and the inclusion of tin in the copper oxide, the proportion of the copper oxide particles in the second phase particles having a diameter of 1 to 5 μm was reduced, and the second phase particles were enlarged. As a result, the number of particles having a diameter of 1 to 5 μm decreased, and the number of particles having a diameter exceeding 5 μm increased. In Comparative Example 34 in which the total amount of trace elements other than oxygen and silver exceeds 25 mass ppm, the ratio of the copper oxide particles is less than 90%, the number of particles having a diameter of 5 μm or more exceeds 10 particles / mm 2 , and the cycle life is 500 times. It was less than.
In Example 35 and Comparative Example 36, a small amount of zinc was added to the molten metal assuming that brass scrap was mixed into the raw material. Similar results were obtained as when tin was added.
In Example 37 and Comparative Example 38, it was assumed that low-grade electrolytic copper was used as a raw material, and trace elements assumed to be main inevitable impurities of electrolytic copper were added to the molten metal. By increasing the amount of trace elements, the proportion of copper oxide particles decreased, the proportion of particles having an aspect ratio of 5.0 or more in the second phase particles having a diameter of 1 to 5 μm decreased, and the number of particles exceeding 5 μm in diameter increased. In Comparative Example 38 where the total amount of trace elements other than oxygen and silver exceeds 25 mass ppm, the proportion of particles having an aspect ratio of 5.0 or more in the second phase particles having a diameter of 1 to 5 μm is less than 90%, and copper oxide The proportion of particles was also less than 90%. As a result, sagging exceeded 1/5 of the foil thickness, and the cycle life was less than 500 times.
In Examples 39 and 40, silver was added to improve strength and heat resistance. The size and number of second phase particles defined by the present invention are obtained, and good shear workability and cycle life are obtained. It has been shown that the effect of the present invention is exhibited even when a small amount of silver is added.

Figure 0005219973
Figure 0005219973

Figure 0005219973
Figure 0005219973

Figure 0005219973
Figure 0005219973

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (9)

二次電池の負極集電体として用いられる銅または銅合金箔であって、銅または銅合金の母地中に分散する第二相粒子のうち、直径1〜5μmの第二相粒子が500〜5000個/mm2、直径5μmを超える第二相粒子が10個/mm2未満であり、直径1〜5μmの第二相粒子の90%以上が、5.0以下のアスペクト比を有することを特徴とする負極集電体用圧延銅箔。 Of copper or copper alloy foil used as a negative electrode current collector of a secondary battery, among second phase particles dispersed in a copper or copper alloy matrix, second phase particles having a diameter of 1 to 5 μm are 500 to 5000 / mm 2, Ri second phase particles der less than 10 / mm 2 having a diameter exceeding 5 [mu] m, more than 90% of the second-phase particles having a diameter 1~5μm is 5.0 to have the following aspect ratio A rolled copper foil for a negative electrode current collector. 直径1〜5μmの第二相粒子の90%以上が、酸化銅であることを特徴とする、請求項1に記載の負極集電体用圧延銅箔。 The rolled copper foil for a negative electrode current collector according to claim 1, wherein 90% or more of the second phase particles having a diameter of 1 to 5 µm are copper oxide. 酸素を150〜300質量ppm含有するタフピッチ銅を素材として製造されることを特徴とする、請求項1または2に記載の負極集電体用圧延銅箔。 The rolled copper foil for a negative electrode current collector according to claim 1 or 2 , wherein the rolled copper foil is made of tough pitch copper containing 150 to 300 ppm by mass of oxygen. 上記タフピッチ銅の酸素および銀を除く微量元素の合計が25質量ppm以下であることを特徴とする、請求項に記載の負極集電体用圧延銅箔。 4. The rolled copper foil for a negative electrode current collector according to claim 3 , wherein the total amount of trace elements excluding oxygen and silver in the tough pitch copper is 25 mass ppm or less. 上記微量元素中の硫黄濃度が10質量ppm以下であることを特徴とする、請求項またはに記載の負極集電体用圧延銅箔。 The rolled copper foil for a negative electrode current collector according to claim 3 or 4 , wherein a sulfur concentration in the trace element is 10 mass ppm or less. 請求項1〜いずれか1項に記載の圧延銅箔より構成される負極集電体。 The negative electrode electrical power collector comprised from the rolled copper foil of any one of Claims 1-5 . 請求項に記載の負極集電体の少なくとも片面に、炭素質材料または黒鉛質材料を主成分とする負極活物質層を有する負極板。 The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material or a graphite material as a main component on the at least single side | surface of the negative electrode collector of Claim 6 . 請求項に記載の負極集電体の少なくとも片面に、金属リチウム、金属スズ、スズ化合物、ケイ素単体、およびケイ素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。 A negative electrode having an active material layer containing at least one selected from the group consisting of metallic lithium, metallic tin, tin compounds, simple silicon, and silicon compounds on at least one surface of the negative electrode current collector according to claim 6. Board. 請求項7または8に記載の負極板を、セパレータを介し、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板と絶縁することで極板群を構成し、該極板群を電池ケースに収容し、非水電解液を注液してなる二次電池。 An electrode plate group is formed by insulating the negative electrode plate according to claim 7 or 8 from a positive electrode plate having a lithium transition metal composite oxide as a main component of the positive electrode active material via a separator, and the electrode plate group is A secondary battery that is housed in a battery case and injected with a non-aqueous electrolyte.
JP2009219287A 2009-09-24 2009-09-24 Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same Active JP5219973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009219287A JP5219973B2 (en) 2009-09-24 2009-09-24 Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009219287A JP5219973B2 (en) 2009-09-24 2009-09-24 Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2011070830A JP2011070830A (en) 2011-04-07
JP5219973B2 true JP5219973B2 (en) 2013-06-26

Family

ID=44015933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009219287A Active JP5219973B2 (en) 2009-09-24 2009-09-24 Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5219973B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822669B2 (en) 2011-02-18 2015-11-24 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene using the same
JP5850720B2 (en) * 2011-06-02 2016-02-03 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene
WO2012165548A1 (en) * 2011-06-02 2012-12-06 Jx日鉱日石金属株式会社 Copper foil for manufacturing graphene and graphene manufacturing method
JP5721609B2 (en) 2011-11-15 2015-05-20 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene
JP5873711B2 (en) * 2011-12-27 2016-03-01 古河電気工業株式会社 Copper foil, secondary battery electrode, secondary battery, and printed circuit board
CN103255310A (en) * 2012-02-15 2013-08-21 日立电线株式会社 Rolled copper foil and preparation thereof
KR102171605B1 (en) * 2013-08-21 2020-10-29 신에쓰 가가꾸 고교 가부시끼가이샤 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
JP6078024B2 (en) 2014-06-13 2017-02-08 Jx金属株式会社 Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
JP6712561B2 (en) * 2017-03-21 2020-06-24 Jx金属株式会社 Rolled copper foil for flexible printed circuit board, copper clad laminate using the same, flexible printed circuit board, and electronic device
CN117597800A (en) * 2021-06-30 2024-02-23 松下知识产权经营株式会社 Lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332335B2 (en) * 1997-09-05 2002-10-07 日本製箔株式会社 Method for manufacturing current collector for secondary battery
JP3859384B2 (en) * 1999-03-08 2006-12-20 日鉱金属株式会社 Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
JP3709109B2 (en) * 1999-11-16 2005-10-19 日鉱金属加工株式会社 Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate
JP3911184B2 (en) * 2002-03-28 2007-05-09 日鉱金属株式会社 Copper alloy rolled foil
JP4743020B2 (en) * 2006-06-26 2011-08-10 ソニー株式会社 Electrode current collector and manufacturing method thereof, battery electrode and manufacturing method thereof, and secondary battery

Also Published As

Publication number Publication date
JP2011070830A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5219973B2 (en) Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN105637106B (en) Copper alloy foil
JP5666378B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
KR101953412B1 (en) Rolled copper foil for secondary battery collector and production method therefor
KR101403498B1 (en) Anode active material for secondary battery and secondary battery including the same
KR20160075604A (en) Aluminum alloy foil for electrode current collector, and method for producing same
WO2013129664A1 (en) Electrolytic copper foil, and negative electrode collector for secondary battery
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP3262019B2 (en) Method for producing negative electrode material for lithium ion secondary battery
CN109686983B (en) Rolled copper foil for secondary battery negative electrode collector, method for producing same, secondary battery negative electrode using same, and secondary battery
JP2014136821A (en) Copper alloy film, anode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of copper alloy film
KR20170117036A (en) Powder, an electrode including the powder, and a battery
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5698196B2 (en) Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
KR20140053285A (en) Rolled copper foil for secondary battery collector and production method therefor
US20160181601A1 (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP2013001982A (en) Rolled copper foil
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5739044B1 (en) Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2012177171A (en) Aluminum alloy foil for lithium ion battery electrode current collector, and method for producing the same
JP2015030893A (en) Copper alloy foil and secondary battery negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5219973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250