JP5698196B2 - Electrolytic copper foil, and secondary battery current collector and secondary battery using the same - Google Patents

Electrolytic copper foil, and secondary battery current collector and secondary battery using the same Download PDF

Info

Publication number
JP5698196B2
JP5698196B2 JP2012181019A JP2012181019A JP5698196B2 JP 5698196 B2 JP5698196 B2 JP 5698196B2 JP 2012181019 A JP2012181019 A JP 2012181019A JP 2012181019 A JP2012181019 A JP 2012181019A JP 5698196 B2 JP5698196 B2 JP 5698196B2
Authority
JP
Japan
Prior art keywords
intensity ratio
diffraction intensity
heating
maximum value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012181019A
Other languages
Japanese (ja)
Other versions
JP2014037583A (en
Inventor
倫也 古曳
倫也 古曳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012181019A priority Critical patent/JP5698196B2/en
Priority to TW102127920A priority patent/TWI490374B/en
Priority to KR1020130097285A priority patent/KR101564139B1/en
Publication of JP2014037583A publication Critical patent/JP2014037583A/en
Application granted granted Critical
Publication of JP5698196B2 publication Critical patent/JP5698196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な電解銅箔、並びにそれを用いた二次電池集電体、および二次電池に関する。   The present invention relates to an electrolytic copper foil suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, a secondary battery current collector using the same, and a secondary battery.

携帯電話、ノート型パソコン等のポータブル機器の普及に伴い、小型で高容量の二次電池の需要が伸びている。また、電気自動車やハイブリッド車等に用いられる中・大型の二次電池の需要も急増している。二次電池のなかでも、リチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されている。
リチウムイオン二次電池としては、アルミニウム箔にLiCoO2、LiNiO2、LiMn24等の化合物をコーティングしたものを正極として用い、銅箔に炭素質材料等を活物質としてコーティングしたものを負極に用いるものが知られている。
With the widespread use of portable devices such as mobile phones and notebook computers, the demand for small, high-capacity secondary batteries is growing. In addition, demand for medium- and large-sized secondary batteries used in electric vehicles, hybrid vehicles, and the like is also increasing rapidly. Among secondary batteries, lithium ion secondary batteries are used in many fields because of their light weight and high energy density.
As a lithium ion secondary battery, an aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode, and a copper foil coated with a carbonaceous material or the like as an active material is used as a negative electrode. What is used is known.

一般的に、銅箔負極板は、電解銅箔や圧延銅箔を用いて次のプロセスで製造される。
(1)活物質と結着剤とを溶剤に混練分散したペーストを、集電体となる銅箔の片面もしくは両面に塗布して負極板材とする。
(2)150〜300℃の温度で数時間から数十時間加熱し乾燥する。
(3)必要に応じ、負極板材に加圧する。
(4)せん断加工を施し、所定形状の負極板へ成型する。
Generally, a copper foil negative electrode plate is manufactured by the following process using electrolytic copper foil or rolled copper foil.
(1) A paste obtained by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a copper foil serving as a current collector to form a negative electrode plate material.
(2) Heat and dry at 150 to 300 ° C. for several hours to several tens of hours.
(3) Pressurize the negative electrode plate material as necessary.
(4) A shearing process is performed to form a negative electrode plate having a predetermined shape.

特許文献1には、集電体の薄肉化を行うと、集電体の強度が脆弱なものとなってしまい高温で保存した場合や充放電を繰り返した場合、集電体からの活物質の剥離、脱落が生じ、時には充放電中に集電体の破断による容量低下を促すといった問題に対して、集電体の強度を向上させることで、電池の充放電サイクル特性を改善する技術が開示されている。具体的には、集電体の引張り強度及び延び等の機械的特性が(200)と(100)面のピーク強度比の影響を受けること、およびさらに前記ピーク強度比に適切な範囲が存在することを知見し、非酸素雰囲気下で銅または銅合金を加熱処理することにより、この(200)と(100)面のピーク強度比を特定の範囲内に収める技術が開示されている。   In Patent Document 1, when the current collector is thinned, the strength of the current collector becomes weak, and when it is stored at a high temperature or when charging and discharging are repeated, the active material from the current collector Disclosed is a technique for improving the charge / discharge cycle characteristics of a battery by improving the strength of the current collector, in response to problems such as peeling and dropping, and sometimes urging capacity reduction due to current collector breakage during charge / discharge. Has been. Specifically, the mechanical properties such as the tensile strength and elongation of the current collector are affected by the peak intensity ratio of the (200) and (100) planes, and there is an appropriate range for the peak intensity ratio. Thus, a technique is disclosed in which the peak intensity ratio between the (200) and (100) planes falls within a specific range by heat-treating copper or a copper alloy in a non-oxygen atmosphere.

また、特許文献2には、炭素などの電極活物質が銅などの一般に金属表面との親和力が乏しいこと、そのために電極活物質にバインダーとして樹脂を加えたコーティング層を銅箔表面に設けたとしても依然としてコーティング層は銅箔表面との密着性が低いことから、銅箔を陰極用に巻回しなどの加工を施すなどした際に、活物質と銅箔表面との密着不良が起こることにより、集電体である活物質と銅箔との抵抗の増加、陰極としての耐久性や寿命にも問題が残るという事情に対して、銅箔表面との親和力が元々乏しいコーティングと銅箔表面との密着性を向上させた銅箔に関する技術が開示されている。具体的には、銅箔側の特定の結晶方位の存在比率が、銅箔表面の酸化物皮膜の炭素などのコーティング層との密着性を大きく左右し、この特定の結晶方位の存在比率が特定の範囲の際に、コーティング層との密着性が著しく改善されることを知見し、特定の結晶方位として、銅箔の200面と220面との結晶方位の積分強度比率(200)/(220)に着目し、この積分強度比を最終焼鈍後の冷間圧延率を調整することにより、特定の範囲内に収める技術が開示されている。   Further, in Patent Document 2, it is assumed that an electrode active material such as carbon is generally poor in affinity with a metal surface such as copper, and for that reason, a coating layer obtained by adding a resin as a binder to the electrode active material is provided on the copper foil surface. However, since the adhesion of the coating layer to the copper foil surface is still low, when the copper foil is wound for the cathode, the active material and the copper foil surface cause poor adhesion. In contrast to the increase in resistance between the active material that is the current collector and the copper foil, and the problem that durability and life as a cathode still remain, the coating with the copper foil surface is originally poor in affinity with the copper foil surface. A technique related to copper foil with improved adhesion is disclosed. Specifically, the abundance ratio of the specific crystal orientation on the copper foil side greatly affects the adhesion of the oxide film on the copper foil surface to the coating layer such as carbon, and the abundance ratio of this specific crystal orientation is specified. In this range, it was found that the adhesion with the coating layer was remarkably improved, and as a specific crystal orientation, the integrated intensity ratio (200) / (220) of the crystal orientation of the 200 plane and the 220 plane of the copper foil. In particular, a technique is disclosed in which the integrated intensity ratio is adjusted within a specific range by adjusting the cold rolling rate after the final annealing.

特開2003−142106号公報JP 2003-142106 A 特開平11−310864号公報JP-A-11-310864

ところで、特許文献1、2ともに銅または銅合金の特定の結晶方位を制御してサイクル特性あるいは耐久性などの物性の向上を試みる技術が開示されているものの、当該物性は活物質を塗布する前の状態の銅または銅合金にて評価している。   By the way, although both patent documents 1 and 2 disclose a technique for controlling a specific crystal orientation of copper or a copper alloy to try to improve physical properties such as cycle characteristics or durability, the physical properties are before application of an active material. The copper or copper alloy in the state of is evaluated.

一方で、たとえ特定の結晶方位の制御を実現することができても、充放電サイクル特性の観点から不十分なものもあり、実際にはばらつきが存在していた。   On the other hand, even if the control of a specific crystal orientation can be realized, there are some inadequate from the viewpoint of charge / discharge cycle characteristics, and in fact, there are variations.

このばらつきにつき、その原因を検討した結果、活物質の銅または銅合金への塗布後の乾燥工程で通常行われる150℃〜200℃で1時間程度の加熱処理において、乾燥工程での熱量のばらつきにより、銅または銅合金の結晶方位が変化した結果、充放電サイクル特性が安定しない結果となっているという知見を得た。そこで、特定の結晶方位の加熱処理前後での変化幅を一定範囲以内とすることによりこの課題を解決することができることを見出し、本発明を完成させるに至った。   As a result of investigating the cause of this variation, variation in the amount of heat in the drying step in heat treatment at 150 ° C. to 200 ° C. for about 1 hour, which is usually performed in the drying step after application of the active material to copper or copper alloy, As a result, the crystal orientation of copper or copper alloy was changed, and as a result, the charge / discharge cycle characteristics became unstable. Therefore, the inventors have found that this problem can be solved by setting the change width of the specific crystal orientation before and after the heat treatment within a certain range, and have completed the present invention.

すなわち、本発明は、以下のとおりである。
(1)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が30%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(2)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が10%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(3)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が5%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(4)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が30%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(5)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が10%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(6)銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が5%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(7)200℃で1時間加熱後の前記(200)面と(111)面との回折強度比(200)/(111)が0.25〜5.00である(1)〜(6)のいずれかに記載の電解銅箔。
(8)前記回折強度比(200)/(111)について、以下の式で求められる変化率の最小値が負の値である(1)〜(7)のいずれかに記載の電解銅箔。
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
(9)(1)〜(8)のいずれかに記載の電解銅箔の製造方法であって、
少なくとも銅源を含む電解用水溶液に、ニカワを電解用水溶液に対して質量割合で2ppm以上添加し、対限界電流密度比が0.170以下となるように調整した製箔条件にて電解を行うことを特徴とする方法。
(10)(1)〜(8)のいずれかに記載の電解銅箔を用いた二次電池集電体。
(11)(1)〜(8)のいずれかに記載の電解銅箔を集電体に用いた二次電池。
That is, the present invention is as follows.
(1) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating for 1 hour at a temperature of 120 ° C., 130 ° C., 150 ° C. or 200 ° C. Electrolysis in which the maximum value of the rate of change obtained by the following formula is 30% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source Copper foil.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
(2) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating for 1 hour at a temperature of 120 ° C., 130 ° C., 150 ° C. or 200 ° C. Electrolysis in which the maximum value of the rate of change obtained by the following equation is 10% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source Copper foil.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
(3) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating at 120 ° C, 130 ° C, 150 ° C or 200 ° C for 1 hour. Electrolysis in which the maximum value of the rate of change obtained by the following equation is 5% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source Copper foil.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
(4) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating for 1 hour at a temperature of 120 ° C., 130 ° C., 150 ° C. or 200 ° C. For the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source, the maximum absolute value of the rate of change defined below is 30% or less. Some electrolytic copper foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
(5) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating for 1 hour at a temperature of 120 ° C., 130 ° C., 150 ° C. or 200 ° C. For the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source, the maximum absolute value of the rate of change defined below is 10% or less. Some electrolytic copper foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
(6) In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy before and after heating for 1 hour at a temperature of 120 ° C., 130 ° C., 150 ° C. or 200 ° C. For the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using as a radiation source, the maximum absolute value of the rate of change defined below is 5% or less. Some electrolytic copper foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
(7) The diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane after heating at 200 ° C. for 1 hour is from 0.25 to 5.00 (1) to (6) Electrolytic copper foil in any one of.
(8) The electrolytic copper foil according to any one of (1) to (7), wherein the minimum value of the change rate obtained by the following formula is a negative value for the diffraction intensity ratio (200) / (111).
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
(9) A method for producing an electrolytic copper foil according to any one of (1) to (8),
At least 2 ppm of nickel is added to the aqueous solution for electrolysis containing at least a copper source in a mass ratio with respect to the aqueous solution for electrolysis, and electrolysis is performed under foil-making conditions adjusted so that the limiting current density ratio is 0.170 or less. A method characterized by that.
(10) A secondary battery current collector using the electrolytic copper foil according to any one of (1) to (8).
(11) A secondary battery using the electrolytic copper foil according to any one of (1) to (8) as a current collector.

本発明によれば、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な、充放電サイクル寿命に優れる電解銅箔、並びにこれを用いた二次電池集電体二次電池を提供する。   According to the present invention, an electrolytic copper foil excellent in charge / discharge cycle life, which is suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, and a secondary battery current collector using the same. Provide the next battery.

一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery.

(電解銅箔)
本実施形態における電解銅箔は、銅あるいは銅合金からなる電解銅箔であり、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金のCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の絶対値の最大値が30%以下である。ここで、(200)、(111)の各面における回折強度は、XRDにおけるピーク強度、あるいはピークの積分強度から測定され、回折強度比はこれらの強度の比率から算出される指数である。
(Electrolytic copper foil)
The electrolytic copper foil in the present embodiment is an electrolytic copper foil made of copper or a copper alloy, and before or after heating for 1 hour at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. The maximum absolute value of the rate of change obtained by the following equation for the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction using CuKα rays of a copper alloy as a radiation source The value is 30% or less. Here, the diffraction intensity on each of the surfaces (200) and (111) is measured from the peak intensity in XRD or the integrated intensity of the peak, and the diffraction intensity ratio is an index calculated from the ratio of these intensities.

変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100   Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100

また、本実施形態の電解銅箔においては、200℃で1時間加熱後の回折強度比(200)/(111)の値が、0.25〜5.00の範囲にあることが好ましく、特に好ましくは0.25〜4.00の範囲にあることである。さらに、前記回折強度比(200)/(111)について、以下のように求められる変化率の絶対値の最大値が30%以下になることが、加熱を加えても結晶性が安定している為、サイクル特性のバラツキが抑制される観点から好ましい。また、回折強度比(200)/(111)の値の変化率の最小値が負の値をとらない場合、変化率の最大値が30%以下になることが好ましい。   Moreover, in the electrolytic copper foil of this embodiment, it is preferable that the value of the diffraction intensity ratio (200) / (111) after heating at 200 ° C. for 1 hour is in the range of 0.25 to 5.00. Preferably, it is in the range of 0.25 to 4.00. Furthermore, with respect to the diffraction intensity ratio (200) / (111), the maximum value of the absolute value of the change rate obtained as follows is 30% or less, and the crystallinity is stable even when heating is applied. Therefore, it is preferable from the viewpoint of suppressing variation in cycle characteristics. In addition, when the minimum value of the change rate of the diffraction intensity ratio (200) / (111) does not take a negative value, the maximum value of the change rate is preferably 30% or less.

ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値および変化率の最小値の絶対値の値の内、大きい方の値とする。
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
Here, the maximum value of the absolute value of the change rate is the larger of the absolute value of the maximum value of the change rate and the absolute value of the minimum value of the change rate obtained by the following formula.
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100

別の側面から、本発明は、上述した回折強度比(200)/(111)の値の変化率の絶対値の最大値、あるいは当該変化率の最大値が10%以下である電解銅箔を提供する。
さらに、別の側面から、本発明は、上述した回折強度比(200)/(111)の値の変化率の絶対値の最大値、あるいは当該変化率の最大値が5%以下である電解銅箔を提供する。
From another aspect, the present invention provides an electrolytic copper foil in which the absolute value of the change rate of the diffraction intensity ratio (200) / (111) described above is the maximum value or the maximum value of the change rate is 10% or less. provide.
Furthermore, from another aspect, the present invention provides an electrolytic copper having a maximum absolute value of the rate of change of the above-described diffraction intensity ratio (200) / (111) or a maximum value of the rate of change of 5% or less. Provide foil.

本実施形態に電解銅箔の厚みは、引張り強度を高めることにより活物質脱落を抑制できることから、その値が大きいほど好ましい。しかし、集電体厚みが大きくなると電池内部の空隙体積が少なくなり、エネルギー密度が低下するので15μm以下が好ましく、6〜12μmの範囲が最適である。   In the present embodiment, the thickness of the electrolytic copper foil is preferably as large as possible because the active material can be prevented from falling off by increasing the tensile strength. However, when the current collector thickness is increased, the void volume inside the battery is decreased and the energy density is decreased. Therefore, the thickness is preferably 15 μm or less, and the range of 6 to 12 μm is optimal.

また、電解銅箔に使用する銅合金としては、銅に亜鉛、銀、スズを0.01〜30重量%添加した銅合金が好ましい。また、純度の高い銅を用いてもよい。これらの銅あるいは銅合金は、非水電解質二次電池への適用において必要となる耐力、耐熱性、可撓性、導電率等の特性を満たすものであれば良く、特にリン(P)や鉄(Fe)、銀(Ag)といった銅に微量添加される元素の添加量を制御することで、電池性能に悪影響を及ぼさない範囲で前記特性を向上させることができる。また、不可避不純物として含まれるニッケル(Ni)、スズ(Sn)等についても電池性能に悪影響を及ぼさない範囲であれば許容されるものである。   Moreover, as a copper alloy used for electrolytic copper foil, the copper alloy which added 0.01-30 weight% of zinc, silver, and tin to copper is preferable. Moreover, you may use copper with high purity. These copper or copper alloys only need to satisfy characteristics such as proof stress, heat resistance, flexibility, and conductivity required for application to non-aqueous electrolyte secondary batteries. In particular, phosphorus (P) and iron By controlling the amount of element added to copper such as (Fe) and silver (Ag), the above characteristics can be improved within a range that does not adversely affect battery performance. Further, nickel (Ni), tin (Sn), and the like contained as inevitable impurities are acceptable as long as they do not adversely affect the battery performance.

このような電解銅箔は、少なくとも銅源、および必要に応じてその他の金属成分を含む電解用水溶液に、ニカワを添加し、対限界電流密度比が一定範囲となるように調整した製箔条件にて電解を行うことで得ることができる。   Such electrolytic copper foil is prepared by adding nickel to an aqueous solution for electrolysis containing at least a copper source and, if necessary, other metal components, and adjusting the foil production conditions so that the ratio of current density to limit is within a certain range. It can be obtained by performing electrolysis at.

ここで、電解用水溶液に添加するニカワの量は、電解用水溶液に対して重量割合で2ppm以上、好ましくは6ppm以上である。
また、電流密度を、対限界電流密度比が0.170以下、好ましくは0.160以下となるように調整する。
本発明において、対限界電流密度比は、次式により算出する。
対限界電流密度比=実際の電流密度/限界電流密度
限界電流密度は、銅濃度、硫酸濃度、給液速度、極間距離、電解液温度によって変化するが、本発明では、正常めっき(銅が層状に析出している状態)と粗化めっき(焼けメッキ、銅が結晶状(球状や針状や樹氷状等)に析出している状態、凹凸がある。)との境界となる製箔条件である電流密度を限界電流密度と定義し、ハルセル試験にて正常めっきとなる限界(焼けメッキとなる直前)の電流密度(目視判断)を限界電流密度とした。
Here, the amount of glue added to the aqueous solution for electrolysis is 2 ppm or more, preferably 6 ppm or more, by weight with respect to the aqueous solution for electrolysis.
Further, the current density is adjusted so that the ratio of the limiting current density is 0.170 or less, preferably 0.160 or less.
In the present invention, the limit current density ratio is calculated by the following equation.
Ratio of current density to limit = actual current density / limit current density The limit current density varies depending on the copper concentration, sulfuric acid concentration, liquid supply speed, distance between electrodes, and electrolyte temperature. Foil-making conditions that serve as a boundary between the layered state) and rough plating (burnt plating, copper is deposited in a crystalline form (spherical, needle-like, rime-like, etc., with irregularities)) Was defined as the critical current density, and the critical current density (visual judgment) at which the normal plating in the hull cell test was achieved (immediately before burn plating) was defined as the critical current density.

具体的にはハルセル試験において、銅濃度、硫酸濃度、電解液温度を銅箔の製造条件に設定し、ハルセル試験を行う。そして、当該電解液組成、電解液温度における銅層形成状態(銅が層状に析出しているか結晶状に形成しているか)を調査する。そして、株式会社山本鍍金試験器製の電流密度早見表に基づいて、テストピースの正常めっきと粗化めっきとの境界が存在する箇所のテストピースの位置から、当該境界の位置における電流密度を求めた。そして、当該境界の位置における電流密度を限界電流密度と規定した。これにより、当該電解液組成、電解液温度での限界電流密度が分かる。一般的には極間距離が短いと、限界電流密度が高くなる傾向にある。実施例において、ハルセル試験に使用したテストピースは株式会社山本鍍金試験器製のハルセル試験用横銅板とした。   Specifically, in the hull cell test, the hull cell test is performed by setting the copper concentration, the sulfuric acid concentration, and the electrolyte temperature to the production conditions of the copper foil. Then, the electrolytic solution composition and the copper layer formation state at the electrolytic solution temperature (whether copper is deposited in a layered form or a crystalline form) are investigated. Then, based on the current density chart made by Yamamoto Metal Testing Co., Ltd., the current density at the boundary position is obtained from the position of the test piece where the boundary between normal plating and rough plating of the test piece exists. It was. The current density at the boundary position was defined as the limit current density. Thereby, the limiting current density in the said electrolyte solution composition and electrolyte temperature is known. Generally, when the distance between the electrodes is short, the limit current density tends to increase. In the examples, the test piece used for the hull cell test was a copper plate for hull cell test manufactured by Yamamoto Metal Testing Co., Ltd.

なお、従来は銅箔粒子の形状を整えるため対限界電流密度比を0.17より大きくして電解銅箔を製造するのが通例であった。ハルセル試験の方法は例えば「めっき実務読本」 丸山 清 著 日刊工業新聞社 1983年6月30日の157ページから160ページに記載されている。   Conventionally, in order to adjust the shape of the copper foil particles, it was customary to produce an electrolytic copper foil with a limiting current density ratio larger than 0.17. The method of the Hull cell test is described in, for example, “Plating Practice Reader” by Kiyoshi Maruyama, Nikkan Kogyo Shimbun, Ltd., pages 157 to 160 on June 30, 1983.

このようにして得られる電解銅箔では、金属組織が微細になり、ニカワが平均的に銅箔内に取り込まれた状態となる。また、平均的にニカワが取り込まれた電解銅箔は、熱処理を経ても金属組織が変化しにくくなり、結晶方位も安定することになる。その結果、この銅箔を用いて集電体とし、負極を作製し電池としたときに、その電池の充放電サイクル特性も向上する。   In the electrolytic copper foil obtained in this way, the metal structure becomes fine and the glue is averagely taken into the copper foil. Further, the electrolytic copper foil in which glue is taken in on average is less likely to change the metal structure even after heat treatment, and the crystal orientation is stabilized. As a result, when the copper foil is used as a current collector to produce a negative electrode and a battery, the charge / discharge cycle characteristics of the battery are also improved.

(電池の構成)
本実施形態における負極板及び二次電池は、上記銅箔を負極集電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。また、典型的な二次電池は、例えば、負極板がリチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群と、非水電解液と、この極板群及び非水電解質を収容する電池ケースとを備える。
(Battery configuration)
The negative electrode plate and the secondary battery in the present embodiment are characterized by using the copper foil as a negative electrode current collector. Other configurations are not limited, and commonly used known ones are used. Can be used. In addition, a typical secondary battery includes, for example, a positive electrode plate in which a negative electrode plate is mainly composed of a lithium transition metal composite oxide as a main component of a positive electrode active material, an electrode plate group insulatively arranged via a separator, and a non-aqueous electrolyte. And a battery case containing the electrode plate group and the non-aqueous electrolyte.

(負極)
負極は、上記負極集電体と、負極集電体の片面もしくは両面に形成される負極活物質より構成される。負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
(Negative electrode)
A negative electrode is comprised from the said negative electrode collector and the negative electrode active material formed in the single side | surface or both surfaces of a negative electrode collector. Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.

前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料又は炭素質材料等が挙げられる。
前記金属としては、リチウム、アルミニウム、マグネシウム、すず、けい素等が挙げられる。
前記金属酸化物としては、スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。前記金属硫化物としては、スズ硫化物、チタン硫化物等が挙げられる。前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
Examples of the carbonaceous material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, and mesophase pitch carbon. Examples thereof include graphite materials or carbonaceous materials obtained by subjecting mesophase pitch-based carbon fibers, mesophase microspheres, etc. to heat treatment at 500 to 3000 ° C.
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。結着剤としては、カルボキシメチルセルロース(CMC)及びスチレンブタジエン(SBR)を含む混合物が挙げられる。CMC及びSBRを含む結着剤を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等が挙げられる。
本発明は、このようにして得られる二次電池集電体を提供する。
The negative electrode active material-containing layer can contain a binder. Examples of the binder include a mixture containing carboxymethyl cellulose (CMC) and styrene butadiene (SBR). By using a binder containing CMC and SBR, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.
The present invention provides a secondary battery current collector thus obtained.

(正極)
正極は、正極集電体と、前記正極集電体の片面もしくは両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質含有層は、例えば、活物質と結着剤とを含有する。正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、又はフッ素ゴムのようなゴム系樹脂を用いることができる。
活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することができる。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
The positive electrode active material-containing layer contains, for example, an active material and a binder. Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more. As the binder, a fluoroelastomer resin, a polyolefin resin, a styrene resin, a thermoplastic elastomer resin such as an acrylic resin, or a rubber resin such as fluororubber can be used.
The active material-containing layer may further contain acetylene black, graphite such as powdered expanded graphite, carbon fiber pulverized material, graphitized carbon fiber pulverized material, and the like as a conductive auxiliary material.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状もしくは固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, and γ-butyrolactone. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

本発明は、二次電池集電体から構成される負極、並びにこれらの部材を含み、後述するようにして構成される二次電池を提供する。   This invention provides the secondary battery comprised as follows, including the negative electrode comprised from a secondary battery electrical power collector, and these members.

(製造例1)
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置した。この電解槽の中に、表1に記載濃度の添加剤を含有した硫酸銅水溶液を導入した。そして、表1に記載の対限界電流密度比に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、続いて、後述する発明例1の電解銅箔を製造した。銅箔の厚みは10μmとした。
(Production Example 1)
In the electrolytic cell, a titanium rotating drum having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm were arranged around the drum. An aqueous copper sulfate solution containing additives having the concentrations shown in Table 1 was introduced into this electrolytic cell. And it adjusted to the limiting current density ratio of Table 1, copper was deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum was peeled off, and then the electrolytic copper foil of Invention Example 1 to be described later Manufactured. The thickness of the copper foil was 10 μm.

(製造例2〜9)
表1に示した添加量、および対限界電流密度比とした以外は、製造例1と同様の条件で、電解銅箔を製造した。なお、製造例2、3、4、5の板厚はそれぞれ12μm、8μm、18μm、10μmとした。また、製造例6〜9の板厚は10μmとした。また、製造例2〜9についても、剥ぎ取った銅箔を、続いて後述する発明例又は比較例の電解銅箔の製造に供した。
(Production Examples 2-9)
An electrolytic copper foil was produced under the same conditions as in Production Example 1 except that the addition amount shown in Table 1 and the ratio of the limiting current density were used. The plate thicknesses of Production Examples 2, 3, 4, and 5 were 12 μm, 8 μm, 18 μm, and 10 μm, respectively. Further, the thicknesses of Production Examples 6 to 9 were 10 μm. Moreover, also about the manufacture examples 2-9, the stripped copper foil was used for manufacture of the electrolytic copper foil of the invention example or comparative example mentioned later.

Figure 0005698196
Figure 0005698196

(発明例1〜5)
製造例1〜5の電解銅箔につき、加熱処理を行った。なお、それぞれの電解銅箔について、加熱処理を、120℃で1時間、130℃で1時間、150℃で1時間、200℃で1時間行った。それぞれの加熱後の(200)面および(111)面のCuKα線を線源とするXRDによる回折強度を測定した。
さらに、(200)面、(111)面の結晶方位における回折強度比(200)/(111)の変化率の最大値、最小値および変化率の絶対値の最大値、ならびに変化値の最大値、最小値および変化値の絶対値の最大値を以下の式にて求めた。
結果を表2に示す。
(Invention Examples 1 to 5)
About the electrolytic copper foil of the manufacture examples 1-5, heat processing was performed. In addition, about each electrolytic copper foil, heat processing were performed at 120 degreeC for 1 hour, 130 degreeC for 1 hour, 150 degreeC for 1 hour, and 200 degreeC for 1 hour. The diffraction intensity by XRD using CuKα rays on the (200) plane and (111) plane after each heating as a radiation source was measured.
Furthermore, the maximum value of the change rate of the diffraction intensity ratio (200) / (111) in the crystal orientation of the (200) plane and the (111) plane, the minimum value, the maximum absolute value of the change rate, and the maximum value of the change value The maximum value of the absolute value of the minimum value and the change value was obtained by the following formula.
The results are shown in Table 2.

※1 変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
※2 変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の絶対値の最大値は、上述の変化率の最大値の絶対値の値および変化率の最小値の絶対値の値の内、大きい方の値とした。
※3 変化値の最小値=(加熱後の回折強度比最小値)−(加熱前の回折強度比)
※4 変化値の最大値=(加熱後の回折強度比最大値)−(加熱前の回折強度比)
変化値の絶対値の最大値は、上述の変化値の最大値の絶対値の値および変化値の最小値の絶対値の値の内、大きい方の値とした。
* 1 Minimum value of change rate = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
* 2 Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
The maximum value of the absolute value of the change rate is the larger value of the absolute value of the maximum value of the change rate and the absolute value of the minimum value of the change rate.
* 3 Minimum value of change value = (Minimum value of diffraction intensity ratio after heating)-(Diffraction intensity ratio before heating)
* 4 Maximum change value = (Maximum diffraction intensity ratio after heating)-(Diffraction intensity ratio before heating)
The maximum value of the absolute value of the change value is the larger value of the absolute value of the maximum value of the change value and the absolute value of the minimum value of the change value.

(比較例1〜4)
それぞれ製造例6〜9で得られた電解銅箔について、発明例1と同様の手順で加熱処理を行った。また、(200)面、(111)面の結晶方位における回折強度比(200)/(111)の変化率の最大値および最小値、ならびに変化値の最大値および最小値を求めた。
結果を表2に示す。
(Comparative Examples 1-4)
About the electrolytic copper foil obtained by manufacture examples 6-9, respectively, the heat processing was performed in the same procedure as invention example 1. Further, the maximum value and the minimum value of the change rate of the diffraction intensity ratio (200) / (111) in the crystal orientation of the (200) plane and the (111) plane, and the maximum value and the minimum value of the change value were obtained.
The results are shown in Table 2.

Figure 0005698196
Figure 0005698196

(充放電サイクル特性の評価)
上述の実施例、比較例で得られた銅箔につき、図1に示す円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、そして増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、200℃で30分間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(2)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50%水性ディスパージョン7重量部、増粘剤としてカルボキシルメチルセルロース1%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して200℃で1時間加熱し乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(3)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(4)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これらの後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、エチルメチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1.0モル溶かした電解液を所定量注液した。この電解液を正極活物質層及び負極活物質層内に含浸させた。
(Evaluation of charge / discharge cycle characteristics)
A cylindrical lithium ion secondary battery shown in FIG. 1 was prepared by the following procedure for the copper foils obtained in the above-described examples and comparative examples, and the cycle life was measured.
(1) A thickener aqueous solution dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of carboxymethylcellulose as a thickener. 23 parts by weight was kneaded and dispersed to obtain a negative electrode paste. This negative electrode paste was applied on both sides of a rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 200 ° C. for 30 minutes, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(2) 50 parts by weight of LiCoO 2 powder as a positive electrode active material, 1.5 parts by weight of acetylene black as a conductive agent, 7 parts by weight of PTFE 50% aqueous dispersion as a binder, 41.5% aqueous solution of carboxymethyl cellulose as a thickener A weight part was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, heated at 200 ° C. for 1 hour and dried. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.
(3) A battery case 8 accommodates an electrode group wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(4) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these, a non-aqueous electrolyte is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2 to form a cylindrical lithium ion having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh. A secondary battery was produced.
(5) The electrolytic solution was obtained by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 20% by volume of methyl propionate. A predetermined amount of electrolyte was injected. This electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

次に、上記の実施例及び比較例で得られた電池について、各20個の電池を用いて、充放電サイクル特性を評価した。   Next, about the battery obtained by said Example and comparative example, the charge / discharge cycle characteristic was evaluated using each 20 batteries.

そこで、充放電サイクル特性は、20℃の環境下において、以下の充電条件および放電条件からなる充放電サイクルを繰り返して、評価した。
−充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電する事とした
−放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した
この時、3サイクル目における容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数した。充放電サイクル数の平均値の結果を表3に示す。
Therefore, the charge / discharge cycle characteristics were evaluated by repeating a charge / discharge cycle comprising the following charge conditions and discharge conditions in an environment of 20 ° C.
-Charging conditions: Constant current for 2 hours at 4.2V -Constant voltage charging and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates -Discharge condition: Discharged to a discharge end voltage of 3.0 V at a constant current of 780 mA (1 CmA), and the capacity at the third cycle is the initial capacity. The number of cycles was counted until the discharge capacity decreased to 80% of the initial capacity. Table 3 shows the results of the average number of charge / discharge cycles.

Figure 0005698196
Figure 0005698196

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (11)

銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が30%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. An electrolytic copper foil in which the maximum value of the change rate obtained by the following formula is 30% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が10%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. An electrolytic copper foil in which the maximum value of the change rate obtained by the following formula is 10% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下の式で求められる変化率の最大値が5%以下である電解銅箔。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. An electrolytic copper foil in which the maximum value of the change rate obtained by the following formula is 5% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が30%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. Electrolytic copper whose maximum value of the absolute value of the rate of change defined below is 30% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction Foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が10%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. Electrolytic copper whose maximum value of the absolute value of the rate of change defined below is 10% or less with respect to the diffraction intensity ratio (200) / (111) between (200) plane and (111) plane in X-ray diffraction Foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
銅あるいは銅合金からなる電解銅箔において、120℃、130℃、150℃および200℃のいずれかの温度で1時間の加熱の前後にて、前記銅あるいは銅合金の表面におけるCuKα線を線源とするX線回折における(200)面と(111)面との回折強度比(200)/(111)について、以下で定義される変化率の絶対値の最大値が5%以下である電解銅箔。
ここで、変化率の絶対値の最大値は、以下の式で求められる変化率の最大値の絶対値の値または変化率の最小値の絶対値の値の内大きい値である。
変化率の最大値=((加熱後の回折強度比最大値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
In an electrolytic copper foil made of copper or a copper alloy, CuKα rays on the surface of the copper or copper alloy are used as a radiation source before and after heating at any one of 120 ° C., 130 ° C., 150 ° C. and 200 ° C. for 1 hour. Electrolytic copper whose maximum value of the absolute value of the rate of change defined below is 5% or less with respect to the diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane in X-ray diffraction Foil.
Here, the maximum value of the absolute value of the change rate is a larger value of the absolute value of the maximum value of the change rate or the absolute value of the minimum value of the change rate obtained by the following equation.
Maximum value of change rate = ((maximum value of diffraction intensity ratio after heating) − (diffraction intensity ratio before heating)) / (diffraction intensity ratio before heating) × 100
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
200℃で1時間加熱後の前記(200)面と(111)面との回折強度比(200)/(111)が0.25〜5.00である請求項1〜6のいずれか一項に記載の電解銅箔。   The diffraction intensity ratio (200) / (111) between the (200) plane and the (111) plane after heating at 200 ° C for 1 hour is 0.25 to 5.00. The electrolytic copper foil of description. 前記回折強度比(200)/(111)について、以下の式で求められる変化率の最小値が負の値である請求項1〜7のいずれか一項に記載の電解銅箔。
変化率の最小値=((加熱後の回折強度比最小値)−(加熱前の回折強度比))/(加熱前の回折強度比) × 100
The electrolytic copper foil as described in any one of Claims 1-7 whose minimum value of the rate of change calculated | required by the following formula | equation is a negative value about the said diffraction intensity ratio (200) / (111).
Minimum value of rate of change = ((Minimum value of diffraction intensity ratio after heating) − (Diffraction intensity ratio before heating)) / (Diffraction intensity ratio before heating) × 100
請求項1〜8のいずれか一項に記載の電解銅箔の製造方法であって、
少なくとも銅源を含む電解用水溶液に、ニカワを電解用水溶液に対して質量割合で2ppm以上添加し、対限界電流密度比が0.170以下となるように調整した製箔条件にて電解を行うことを特徴とする方法。
It is a manufacturing method of the electrolytic copper foil as described in any one of Claims 1-8,
At least 2 ppm of nickel is added to the aqueous solution for electrolysis containing at least a copper source in a mass ratio with respect to the aqueous solution for electrolysis, and electrolysis is performed under foil-making conditions adjusted so that the limiting current density ratio is 0.170 or less. A method characterized by that.
請求項1〜8のいずれか一項に記載の電解銅箔を用いた二次電池集電体。   The secondary battery electrical power collector using the electrolytic copper foil as described in any one of Claims 1-8. 請求項1〜8のいずれか一項に記載の電解銅箔を集電体に用いた二次電池。   The secondary battery which used the electrolytic copper foil as described in any one of Claims 1-8 for the electrical power collector.
JP2012181019A 2012-08-17 2012-08-17 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same Active JP5698196B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012181019A JP5698196B2 (en) 2012-08-17 2012-08-17 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
TW102127920A TWI490374B (en) 2012-08-17 2013-08-05 Electrolytic copper foil, and a secondary battery collector and a secondary battery using the same
KR1020130097285A KR101564139B1 (en) 2012-08-17 2013-08-16 Electrolytic copper foil, and secondary battery collector and secondary battery using electrolytic copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181019A JP5698196B2 (en) 2012-08-17 2012-08-17 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2014037583A JP2014037583A (en) 2014-02-27
JP5698196B2 true JP5698196B2 (en) 2015-04-08

Family

ID=50268815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181019A Active JP5698196B2 (en) 2012-08-17 2012-08-17 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same

Country Status (3)

Country Link
JP (1) JP5698196B2 (en)
KR (1) KR101564139B1 (en)
TW (1) TWI490374B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500566B1 (en) * 2014-03-20 2015-03-12 일진머티리얼즈 주식회사 Electrolytic copper foil, current collector, anode and lithium battery comprising foil
KR101500565B1 (en) * 2014-03-20 2015-03-12 일진머티리얼즈 주식회사 Electrolytic copper foil, current collector, anode and lithium battery comprising foil
KR101798195B1 (en) * 2015-10-21 2017-11-15 엘에스엠트론 주식회사 Electrolytic copper foil, and Current collector for lithium secondary battery and Secondary battery comprising the same
KR102581018B1 (en) * 2016-01-25 2023-09-20 에스케이넥실리스 주식회사 Electrolytic copper foil with high strength for current collector of lithium secondary battery and lithium secondary battery comprising the same
KR101734840B1 (en) * 2016-11-11 2017-05-15 일진머티리얼즈 주식회사 Electrolytic copper foil of secondary battery enhanced for flexibility resistance and manufacturing method thereof
KR101733408B1 (en) * 2016-11-11 2017-05-10 일진머티리얼즈 주식회사 Electrolytic Copper Foil for secondary battery and manufacturing method thereof
JP7075332B2 (en) * 2018-11-30 2022-05-25 三洋電機株式会社 Secondary battery and its manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431803A (en) * 1990-05-30 1995-07-11 Gould Electronics Inc. Electrodeposited copper foil and process for making same
US6866765B2 (en) 2000-07-07 2005-03-15 Hitachi Metals, Ltd. Electrolytic copper-plated R-T-B magnet and plating method thereof
JP4704025B2 (en) 2004-12-21 2011-06-15 Jx日鉱日石金属株式会社 Roughening rolled copper foil for high frequency circuit and method for producing the same
JP5255229B2 (en) * 2006-04-28 2013-08-07 三井金属鉱業株式会社 Electrolytic copper foil, surface-treated copper foil using the electrolytic copper foil, copper-clad laminate using the surface-treated copper foil, and method for producing the electrolytic copper foil
JP5365866B2 (en) 2009-09-11 2013-12-11 トヨタ自動車株式会社 Method for measuring thermal history of rolled copper foil
JP5345974B2 (en) 2010-06-01 2013-11-20 Jx日鉱日石金属株式会社 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN102959135B (en) * 2010-07-01 2016-03-09 三井金属矿业株式会社 Electrolytic copper foil and its manufacture method

Also Published As

Publication number Publication date
KR20140023236A (en) 2014-02-26
KR101564139B1 (en) 2015-10-28
TW201428138A (en) 2014-07-16
TWI490374B (en) 2015-07-01
JP2014037583A (en) 2014-02-27

Similar Documents

Publication Publication Date Title
EP2787563B1 (en) Lithium secondary battery having improved safety and stability
US8748036B2 (en) Non-aqueous secondary battery
JP5698196B2 (en) Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
KR101073223B1 (en) anode mixture for lithium secondary battery and Lithium secondary battery using the same
US10529978B2 (en) Nonaqueous electrolyte secondary battery
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
JP2010267540A (en) Nonaqueous electrolyte secondary battery
WO2012144177A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
JPWO2018110263A1 (en) Composite graphite particles, production method thereof and use thereof
JP2017520892A (en) Positive electrode for lithium battery
JP4026356B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP4113593B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN113994512A (en) Lithium secondary battery and method for manufacturing the same
KR102368088B1 (en) lithium secondary battery
US20200403224A1 (en) Lithium molybdate anode material
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP4114259B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2017075091A (en) Free carbon graphite particle and production method therefor, lithium ion secondary cattery anode and lithium ion secondary cattery
JP4456668B2 (en) Nonaqueous secondary battery and its positive electrode
JP4585229B2 (en) Nonaqueous electrolyte secondary battery
JP2015125972A (en) Nonaqueous electrolyte secondary battery
WO2022145107A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, method for manufacturing same, and method for inspecting same, and non-aqueous electrolyte secondary battery and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150212

R150 Certificate of patent or registration of utility model

Ref document number: 5698196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250