JP5365866B2 - Method for measuring thermal history of rolled copper foil - Google Patents

Method for measuring thermal history of rolled copper foil Download PDF

Info

Publication number
JP5365866B2
JP5365866B2 JP2009210185A JP2009210185A JP5365866B2 JP 5365866 B2 JP5365866 B2 JP 5365866B2 JP 2009210185 A JP2009210185 A JP 2009210185A JP 2009210185 A JP2009210185 A JP 2009210185A JP 5365866 B2 JP5365866 B2 JP 5365866B2
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
negative electrode
peak intensity
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009210185A
Other languages
Japanese (ja)
Other versions
JP2011058992A (en
Inventor
隆行 白根
裕明 今西
和宏 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009210185A priority Critical patent/JP5365866B2/en
Publication of JP2011058992A publication Critical patent/JP2011058992A/en
Application granted granted Critical
Publication of JP5365866B2 publication Critical patent/JP5365866B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、圧延銅箔の熱履歴測定方法に関する。圧延銅箔は、例えば、リチウムイオン二次電池の負極集電体に用いられる。本発明は、かかる圧延銅箔の熱履歴を測定する方法に用いることができる。   The present invention relates to a method for measuring the thermal history of a rolled copper foil. A rolled copper foil is used for the negative electrode collector of a lithium ion secondary battery, for example. The present invention can be used in a method for measuring the thermal history of such rolled copper foil.

リチウムイオン二次電池は、例えば、それぞれシート状の集電体に電極活物質を塗工した正極シートと負極シートとを、セパレータを介して重ね合わせて捲回した捲回電極体を備えている。かかるリチウムイオン二次電池の負極集電体には、圧延銅箔が用いられる場合がある。   A lithium ion secondary battery includes, for example, a wound electrode body in which a positive electrode sheet and a negative electrode sheet each coated with an electrode active material on a sheet-like current collector are overlapped and wound via a separator. . A rolled copper foil may be used for the negative electrode current collector of such a lithium ion secondary battery.

ところで、特開2008−4462号公報(特許文献1)には、電解法によって得られた銅箔を、さらに電解槽中に浸漬して表面に銅微粒子を析出させ、両面を粗面化した電解銅箔をリチウムイオン二次電池の負極集電体に用いることが提案されている。この電解銅箔について、X線回折像において、220面による回折のピーク強度I(220)と、200面による回折のピーク強度I(200)との比I(220)/I(200)が、I(220)/I(200)>1の関係を満たす電解銅箔が好ましいとされている。   Incidentally, in Japanese Patent Application Laid-Open No. 2008-4462 (Patent Document 1), a copper foil obtained by an electrolysis method is further immersed in an electrolytic bath to deposit copper fine particles on the surface, and both surfaces are roughened. It has been proposed to use a copper foil for a negative electrode current collector of a lithium ion secondary battery. For this electrolytic copper foil, in the X-ray diffraction image, the ratio I (220) / I (200) of the peak intensity I (220) of diffraction by the 220 plane and the peak intensity I (200) of diffraction by the 200 plane is Electrolytic copper foil satisfying the relationship of I (220) / I (200)> 1 is considered preferable.

なお、リチウムイオン二次電池に関する技術分野ではないが、特開2003−7710号公報(特許文献2)には、熱処理前後のシリコンウェハのX線回折強度比に基づいてシリコンウェハに施す熱処理条件を決定する方法が開示されている。また、特許2867311号公報(特許文献3)には、所定粒径の未焼成セラミック粉末を原料として作成した試験片を熱処理した際に析出する析出結晶の結晶化度を、X線回折法によって、結晶のX線強度の変化で測る方法が開示されている。また、特開昭61−175554号公報(特許文献4)には、X線回折を用いた金属管の非破壊検査方法が開示されている。また、特公平3−69973号公報(特許文献5)には、先行技術として焼鈍中の鋼板にX線回折を行い、そこから得られる情報をフィードバックさせて鋼板の製造方法を精密化する方法が挙げられている。また、特開2006−348348号公報(特許文献6)には、一酸化珪素の蒸着膜の形成に使用される粉末焼結型の一酸化珪素系蒸着材料の選定に、X線回折を用いた技術が開示されている。   Although it is not a technical field related to a lithium ion secondary battery, Japanese Patent Application Laid-Open No. 2003-7710 (Patent Document 2) describes heat treatment conditions applied to a silicon wafer based on the X-ray diffraction intensity ratio of the silicon wafer before and after the heat treatment. A method of determining is disclosed. In addition, in Japanese Patent No. 28673111 (Patent Document 3), the degree of crystallinity of a precipitated crystal that precipitates when a test piece prepared using an unfired ceramic powder having a predetermined particle size as a raw material is heat-treated by an X-ray diffraction method. A method of measuring by changing the X-ray intensity of a crystal is disclosed. Japanese Patent Laid-Open No. 61-175554 (Patent Document 4) discloses a nondestructive inspection method for metal tubes using X-ray diffraction. Japanese Patent Publication No. 3-69973 (Patent Document 5) discloses, as a prior art, a method for performing X-ray diffraction on a steel plate being annealed and feeding back information obtained therefrom to refine the steel plate manufacturing method. Are listed. Japanese Patent Laid-Open No. 2006-348348 (Patent Document 6) uses X-ray diffraction to select a powder-sintered silicon monoxide vapor deposition material used for forming a vapor deposition film of silicon monoxide. Technology is disclosed.

特開2008−4462号公報JP 2008-4462 A 特開2003−7710号公報JP 2003-7710 A 特許2867311号Japanese Patent No. 2,867,311 特開昭61−175554号公報JP-A 61-175554 特公平3−69973号公報Japanese Examined Patent Publication No. 3-69973 特開2006−348348号公報JP 2006-348348 A

本発明者は、圧延銅箔からなる負極集電体に負極活物質を塗工した負極シートを用いたリチウムイオン二次電池を検討している。かかる負極シートを得る工程では、例えば、圧延銅箔からなる負極集電体に負極活物質を塗布した後で高温雰囲気に晒して乾燥させている。かかる負極シートの乾燥工程は、連続して搬送される帯状の負極シートを乾燥炉に通して行う。負極集電体に用いられた圧延銅箔は、かかる乾燥工程において熱に晒される。圧延銅箔は熱に晒されると表面に銅酸化物を含む不純物層が形成される場合がある。本発明者は、圧延銅箔からなる負極集電体に不純物層が過度に形成されると、負極集電体の電気抵抗が高くなり、リチウムイオン二次電池の特性が低下する場合があると考えた。そして、負極シートを製造する際の乾燥工程で、負極集電体としての圧延銅箔に付与される熱を管理することで、圧延銅箔の表面に銅酸化物を含む不純物層が過度に形成されるのを防止できると考えた。しかしながら、かかる負極シートの乾燥工程で、圧延銅箔からなる負極集電体に付与される熱を適切に測定する方法は確立されていない。   This inventor is examining the lithium ion secondary battery using the negative electrode sheet which apply | coated the negative electrode active material to the negative electrode collector which consists of rolled copper foil. In the step of obtaining such a negative electrode sheet, for example, a negative electrode active material is applied to a negative electrode current collector made of a rolled copper foil and then dried by exposure to a high temperature atmosphere. The drying process of the negative electrode sheet is performed by passing the belt-shaped negative electrode sheet that is continuously conveyed through a drying furnace. The rolled copper foil used for the negative electrode current collector is exposed to heat in the drying step. When the rolled copper foil is exposed to heat, an impurity layer containing copper oxide may be formed on the surface. The present inventor said that when an impurity layer is excessively formed on a negative electrode current collector made of rolled copper foil, the electric resistance of the negative electrode current collector is increased, and the characteristics of the lithium ion secondary battery may be deteriorated. Thought. And, in the drying process when manufacturing the negative electrode sheet, by controlling the heat applied to the rolled copper foil as the negative electrode current collector, an impurity layer containing copper oxide is excessively formed on the surface of the rolled copper foil I thought that it can be prevented. However, a method for appropriately measuring the heat applied to the negative electrode current collector made of a rolled copper foil in the drying step of the negative electrode sheet has not been established.

圧延銅箔からなる負極集電体の熱履歴を測定する方法としては、例えば、圧延銅箔に熱電対を取り付けて、圧延銅箔に実際に作用する熱を測る方法がある。しかしながら、負極シートの乾燥工程は、連続して搬送される帯状の負極シートを乾燥炉に通して行う。このため負極シートに熱電対を取り付けて搬送することは難しく、圧延銅箔に実際に作用する熱を測るのは難しい。そこで、本発明は、圧延銅箔からなる負極集電体の熱履歴を測定する方法としてより適切な方法を提案する。   As a method of measuring the thermal history of the negative electrode current collector made of rolled copper foil, for example, there is a method of attaching a thermocouple to the rolled copper foil and measuring the heat actually acting on the rolled copper foil. However, the drying process of the negative electrode sheet is performed by passing the belt-shaped negative electrode sheet conveyed continuously through a drying furnace. For this reason, it is difficult to attach and transport a thermocouple to the negative electrode sheet, and it is difficult to measure the heat actually acting on the rolled copper foil. Therefore, the present invention proposes a more appropriate method for measuring the thermal history of a negative electrode current collector made of rolled copper foil.

本発明に係る圧延銅箔の熱履歴測定方法は、検査対象となる圧延銅箔について、X線回析によって200面と220面とのピーク強度比を求めるピーク強度比測定工程と、予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係と、ピーク強度比測定工程によって得られたピーク強度比とに基づいて、検査対象となる圧延銅箔の熱履歴を求める熱履歴算出工程とを備えている。本発明の熱履歴測定方法によれば、検査対象となる圧延銅箔のピーク強度比から圧延銅箔の熱履歴を測定することができる。   The method for measuring the thermal history of a rolled copper foil according to the present invention includes a peak intensity ratio measuring step for obtaining a peak intensity ratio between the 200 plane and the 220 plane by X-ray diffraction for the rolled copper foil to be inspected, and is obtained in advance. The heat for obtaining the thermal history of the rolled copper foil to be inspected based on the correlation between the peak strength ratio obtained for the rolled copper foil and the thermal history and the peak strength ratio obtained by the peak strength ratio measurement process. A history calculation step. According to the thermal history measuring method of the present invention, the thermal history of the rolled copper foil can be measured from the peak intensity ratio of the rolled copper foil to be inspected.

また、圧延銅箔からなる負極集電体に負極活物質が塗工された負極シートを有するリチウムイオン二次電池の製造方法において、X線回析によって得られた負極集電体の200面と220面とのピーク強度比と、予め求められた前記負極集電体について得られた200面と220面とのピーク強度比と熱履歴との相関関係とに基づいて、前記負極集電体が受けた熱量を推定し、負極シートの良否判定を行う検査工程を備えていてもよい。
また、圧延銅箔からなる負極集電体に負極活物質を塗工した負極シートを有するリチウムイオン二次電池は、上記製造方法により製造されているのが好ましい
Further, in a method of manufacturing a lithium ion secondary battery having a negative electrode sheet in which a negative electrode active material is coated on a negative electrode current collector made of rolled copper foil, the 200 surface of the negative electrode current collector obtained by X-ray diffraction, Based on the peak intensity ratio with the 220 plane and the correlation between the peak intensity ratio between the 200 plane and the 220 plane obtained for the negative electrode current collector obtained in advance and the thermal history, the negative electrode current collector You may provide the test process which estimates the received heat quantity and performs quality determination of a negative electrode sheet.
Moreover, it is preferable that the lithium ion secondary battery which has the negative electrode sheet which apply | coated the negative electrode active material to the negative electrode collector which consists of rolled copper foil is manufactured with the said manufacturing method .

また、本発明に係るリチウムイオン二次電池の検査方法は、圧延銅箔からなる負極集電体に負極活物質を塗工した負極シートを有するリチウムイオン二次電池の検査方法である。このリチウムイオン二次電池の検査方法は、リチウムイオン二次電池から取り出した負極シートについて、X線回析における200面と220面とのピーク強度比を求めるピーク強度比測定工程;及び、予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係と、ピーク強度比測定工程で得られた負極シートのピーク強度比とに基づいて、リチウムイオン二次電池内で生じた熱を推定する工程;を有している。この圧延銅箔の熱履歴測定方法によれば、リチウムイオン二次電池内でどの程度の熱が発生したかを調べることができる。   Moreover, the inspection method of the lithium ion secondary battery which concerns on this invention is an inspection method of the lithium ion secondary battery which has the negative electrode sheet which apply | coated the negative electrode active material to the negative electrode collector which consists of rolled copper foil. This lithium ion secondary battery inspection method includes a peak intensity ratio measuring step for obtaining a peak intensity ratio between the 200 plane and the 220 plane in X-ray diffraction for the negative electrode sheet taken out from the lithium ion secondary battery; Based on the correlation between the peak intensity ratio and thermal history obtained for the obtained rolled copper foil, and the peak intensity ratio of the negative electrode sheet obtained in the peak intensity ratio measurement step, it occurred in the lithium ion secondary battery Estimating heat. According to this method for measuring the heat history of a rolled copper foil, it is possible to examine how much heat is generated in the lithium ion secondary battery.

X線回析を模式的に示す図。The figure which shows a X-ray diffraction typically. 圧延銅箔と電解銅箔のX線回折を示す図。The figure which shows the X-ray diffraction of a rolled copper foil and an electrolytic copper foil. 120℃の恒温雰囲気に晒された圧延銅箔のX線回析を示す図。The figure which shows the X-ray diffraction of the rolled copper foil exposed to 120 degreeC constant temperature atmosphere. 140℃の恒温雰囲気に晒された圧延銅箔のX線回析を示す図。The figure which shows the X-ray diffraction of the rolled copper foil exposed to the 140 degreeC constant temperature atmosphere. 160℃の恒温雰囲気に晒された圧延銅箔のX線回析を示す図。The figure which shows the X-ray diffraction of the rolled copper foil exposed to the 160 degreeC constant temperature atmosphere. 180℃の恒温雰囲気に晒された圧延銅箔のX線回析を示す図。The figure which shows the X-ray diffraction of the rolled copper foil exposed to the 180 degreeC constant temperature atmosphere. 120℃の恒温雰囲気に晒された圧延銅箔のX線回析を部分的に拡大した図。The figure which expanded partially the X-ray diffraction of the rolled copper foil exposed to the 120 degreeC constant temperature atmosphere. 140℃の恒温雰囲気に晒された圧延銅箔のX線回析を部分的に拡大した図。The figure which expanded partially the X-ray diffraction of the rolled copper foil exposed to the 140 degreeC constant temperature atmosphere. 160℃の恒温雰囲気に晒された圧延銅箔のX線回析を部分的に拡大した図。The figure which expanded partially the X-ray diffraction of the rolled copper foil exposed to the 160 degreeC constant temperature atmosphere. 180℃の恒温雰囲気に晒された圧延銅箔のX線回析を部分的に拡大した図。The figure which expanded partially the X-ray diffraction of the rolled copper foil exposed to the 180 degreeC constant temperature atmosphere. 異なった温度の恒温雰囲気に30秒間晒された圧延銅箔のX線回析を示す図。The figure which shows the X-ray diffraction of the rolled copper foil exposed to the constant temperature atmosphere of different temperature for 30 second. ピーク強度比と恒温雰囲気の温度との関係を示す図。The figure which shows the relationship between a peak intensity ratio and the temperature of a constant temperature atmosphere. リチウムイオン二次電池を模式的に示す図。The figure which shows a lithium ion secondary battery typically. リチウムイオン二次電池の捲回電極体を模式的に示す図。The figure which shows typically the winding electrode body of a lithium ion secondary battery. 本発明の一実施形態に係る負極シートの製造工程を模式的に示す図。The figure which shows typically the manufacturing process of the negative electrode sheet which concerns on one Embodiment of this invention. リチウムイオン二次電池を搭載した車両を示す図。The figure which shows the vehicle carrying a lithium ion secondary battery.

以下、本発明の一実施形態に係る圧延銅箔の熱履歴測定方法を説明する。
本発明の一実施形態に係る圧延銅箔の熱履歴測定方法は、検査対象となる圧延銅箔について、X線回析(XRD:X-ray diffraction)によって得られる200面と220面とのピーク強度比を求める。そして、予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係に基づいて、検査対象となる圧延銅箔の熱履歴を求めている。かかる圧延銅箔の熱履歴測定方法によれば、例えば、負極シートの乾燥工程において、圧延銅箔が実際に受けた熱をより的確に知ることができる。そして、圧延銅箔に形成される不純物層を低減できるように、負極シートの乾燥工程のプロセスをより適切に管理することができる。また、X線によって圧延銅箔を検査するので、負極シートに対する配線が不要である。このため、かかる圧延銅箔の熱履歴測定方法は、乾燥炉に連続して搬送される帯状の負極シートの乾燥工程にも適用し易い。
Hereinafter, the thermal history measuring method of the rolled copper foil which concerns on one Embodiment of this invention is demonstrated.
The method for measuring the thermal history of a rolled copper foil according to an embodiment of the present invention is the peak of 200 plane and 220 plane obtained by X-ray diffraction (XRD) for the rolled copper foil to be inspected. Find the intensity ratio. And based on the correlation of the peak intensity ratio and heat history obtained about the rolled copper foil calculated | required previously, the heat history of the rolled copper foil used as test object is calculated | required. According to the method for measuring the heat history of the rolled copper foil, for example, in the drying process of the negative electrode sheet, the heat actually received by the rolled copper foil can be more accurately known. And the process of the drying process of a negative electrode sheet can be managed more appropriately so that the impurity layer formed in rolled copper foil can be reduced. Moreover, since the rolled copper foil is inspected by X-rays, wiring for the negative electrode sheet is unnecessary. For this reason, this heat history measuring method of rolled copper foil is easy to apply also to the drying process of the strip | belt-shaped negative electrode sheet conveyed continuously to a drying furnace.

以下、圧延銅箔のX線回析を説明する。図1は、X線回折を示す概略図である。X線回折では、X線発生源22から照射されるX線24を試料26(圧延銅箔)の試料面26aに照射する。試料面26aは、圧延銅箔の圧延された面である。この際、試料26を所定の走査軸αで回転走査しながらX線24を照射し、試料26によって回析されたX線28を検査器30でとらえる。例えば、試料の走査角をθ、検出器の走査角を2θで走査する。次に試料から回析されてくるX線を検出器でとらえる。そして、X線の回析方向と入射方向の角度差(2θ)と、回析X線強度(I)を測定する。このように入射されるX線に対して、試料の走査角をθとし、検出器の走査角を2θとして走査する測定方法は2θ/θ測定(2θ/θスキャン法)と言われている。かかるX線回折は、種々の検査装置メーカーから市販されているX線回折装置を用いて検査できる。例えば、株式会社リガク製のX線回折装置RINT−2000を用いることができる。   Hereinafter, X-ray diffraction of the rolled copper foil will be described. FIG. 1 is a schematic diagram showing X-ray diffraction. In the X-ray diffraction, the X-ray 24 irradiated from the X-ray generation source 22 is irradiated to the sample surface 26a of the sample 26 (rolled copper foil). The sample surface 26a is a rolled surface of the rolled copper foil. At this time, the X-ray 24 is irradiated while the sample 26 is rotationally scanned with a predetermined scanning axis α, and the X-ray 28 diffracted by the sample 26 is captured by the inspection device 30. For example, the scan angle of the sample is scanned by θ, and the scan angle of the detector is scanned by 2θ. Next, X-rays diffracted from the sample are captured by a detector. Then, the angle difference (2θ) between the diffraction direction and the incident direction of X-rays and the diffraction X-ray intensity (I) are measured. A measurement method for scanning the incident X-ray with the sample scanning angle θ and the detector scanning angle 2θ is called 2θ / θ measurement (2θ / θ scanning method). Such X-ray diffraction can be inspected using X-ray diffractometers commercially available from various inspection apparatus manufacturers. For example, Rigaku Corporation X-ray diffraction apparatus RINT-2000 can be used.

なお、図1における3つの走査軸は、θ軸が試料軸、α軸があおり軸、β軸が面内回転軸と呼ばれる。また、X線24を照射する方向、試料26によって回析されたX線28を検査器30でとらえる方向に対して試料26を移動させる方法を例示した。これに限らず、X線24を照射する方向、試料26によって回析されたX線28を検査器30でとらえる方向を、試料26に対して移動させてもよい。   In the three scanning axes in FIG. 1, the θ axis is called a sample axis, the α axis is an axis, and the β axis is called an in-plane rotation axis. Moreover, the method of moving the sample 26 in the direction in which the X-ray 24 is irradiated and the direction in which the X-ray 28 diffracted by the sample 26 is captured by the inspection device 30 is illustrated. The direction in which the X-ray 24 is irradiated and the direction in which the X-ray 28 diffracted by the sample 26 is captured by the inspection device 30 may be moved with respect to the sample 26.

多結晶体である銅箔のX線回折では、例えば、図2に示すように、111面と200面と220面とにピーク強度が生じる。ここで、111面と200面と220面とは、いわゆるミラー指数で規定された結晶格子面である。本発明者の知見では、通常の圧延銅箔Aでは、図2に示すように、111面のピーク強度I(111)に比べて200面のピーク強度I(200)や220面のピーク強度I(220)が高くなる。これに対して、特許文献1に開示されているような電解銅箔Bでは、200面のピーク強度I(200)や220面のピーク強度I(220)に比べて111面のピーク強度I(111)が高くなる。このように、圧延銅箔と電解銅箔では、X線回折の結果が異なることからもわかるように、結晶構造が大きく異なる。なお、200面のピーク強度I(200)は、2θが50°付近に現れ、220面のピーク強度I(220)は2θが74°付近に現れる。   In the X-ray diffraction of a copper foil which is a polycrystal, for example, as shown in FIG. 2, peak intensities are generated on the 111, 200 and 220 planes. Here, the 111 plane, the 200 plane, and the 220 plane are crystal lattice planes defined by a so-called Miller index. According to the knowledge of the present inventor, in normal rolled copper foil A, as shown in FIG. 2, the peak intensity I (200) on the 200 plane and the peak intensity I on the 220 plane compared to the peak intensity I (111) on the 111 plane. (220) becomes higher. On the other hand, in the electrolytic copper foil B as disclosed in Patent Document 1, the peak intensity I (111) of the 111 plane compared to the peak intensity I (200) of the 200 plane and the peak intensity I (220) of the 220 plane. 111) becomes higher. Thus, as can be seen from the fact that the results of X-ray diffraction are different between the rolled copper foil and the electrolytic copper foil, the crystal structures are greatly different. Note that the peak intensity I (200) of the 200 plane appears when 2θ is around 50 °, and the peak intensity I (220) of the 220 plane appears when 2θ is around 74 °.

本発明者は、熱履歴が既知の圧延銅箔についてX線回折を行い、それぞれ200面のピーク強度I(200)と220面のピーク強度I(220)を得た。圧延銅箔は、熱履歴によって、200面のピーク強度I(200)と220面のピーク強度I(220)が変化する。以下、図3〜図6にその一例を示す。   The inventor performed X-ray diffraction on a rolled copper foil having a known thermal history, and obtained a peak intensity I (200) of 200 planes and a peak intensity I (220) of 220 planes, respectively. In the rolled copper foil, the peak intensity I (200) on the 200 plane and the peak intensity I (220) on the 220 plane change depending on the thermal history. Hereinafter, an example is shown in FIGS.

例えば、図3は、120℃の恒温雰囲気に10秒、30秒、600秒の所定の秒数晒した圧延銅箔のX線回折をそれぞれ示している。また、図3では、120℃の恒温雰囲気に10秒晒した圧延銅箔のX線回折データをx11、120℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折データをx12、120℃の恒温雰囲気に600秒晒した圧延銅箔のX線回折データをx13としている。なお、図7は、かかる図3に示すX線回折の結果を部分的に拡大した図である。   For example, FIG. 3 shows X-ray diffraction of a rolled copper foil exposed to a constant temperature atmosphere of 120 ° C. for a predetermined number of seconds of 10 seconds, 30 seconds, and 600 seconds. Further, in FIG. 3, X-ray diffraction data of rolled copper foil exposed to a constant temperature atmosphere of 120 ° C. for 10 seconds is x11, and X-ray diffraction data of rolled copper foil exposed to a constant temperature atmosphere of 120 ° C. for 30 seconds is x12, 120 ° C. X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere for 600 seconds is x13. FIG. 7 is a partially enlarged view of the result of the X-ray diffraction shown in FIG.

また、図4は、140℃の恒温雰囲気に10秒、30秒、600秒の所定の秒数晒した圧延銅箔のX線回折をそれぞれ示している。また、図4では、140℃の恒温雰囲気に10秒晒した圧延銅箔のX線回折をx21、140℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折をx22、140℃の恒温雰囲気に600秒晒した圧延銅箔のX線回折をx23としている。なお、図8は、かかる図4に示すX線回折の結果を部分的に拡大した図である。   FIG. 4 shows X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 140 ° C. for a predetermined number of seconds of 10 seconds, 30 seconds, and 600 seconds, respectively. In FIG. 4, the X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 140 ° C. for 10 seconds is x21, the X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 140 ° C. for 30 seconds is x22, 140 ° C. The X-ray diffraction of the rolled copper foil exposed to the atmosphere for 600 seconds is x23. FIG. 8 is a partially enlarged view of the result of the X-ray diffraction shown in FIG.

また、図5は、160℃の恒温雰囲気に10秒、30秒、600秒の所定の秒数晒した圧延銅箔のX線回折をそれぞれ示している。また、図5では、160℃の恒温雰囲気に10秒晒した圧延銅箔のX線回折をx31、160℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折をx32、160℃の恒温雰囲気に600秒晒した圧延銅箔のX線回折をx33としている。なお、図9は、かかる図5に示すX線回折の結果を部分的に拡大した図である。   FIG. 5 shows X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 160 ° C. for a predetermined number of seconds of 10 seconds, 30 seconds, and 600 seconds, respectively. In FIG. 5, x-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 160 ° C. for 10 seconds is x31, and X-ray diffraction of the rolled copper foil exposed to the constant temperature atmosphere of 160 ° C. for 30 seconds is x32, 160 ° C. The X-ray diffraction of the rolled copper foil exposed to the atmosphere for 600 seconds is x33. FIG. 9 is a partially enlarged view of the result of the X-ray diffraction shown in FIG.

また、図6は、180℃の恒温雰囲気に10秒、30秒、600秒の所定の秒数晒した圧延銅箔のX線回折をそれぞれ示している。また、図6では、180℃の恒温雰囲気に10秒晒した圧延銅箔のX線回折をx41、180℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折をx42、180℃の恒温雰囲気に600秒晒した圧延銅箔のX線回折をx43としている。なお、図10は、かかる図6に示すX線回折の結果を部分的に拡大した図である。   FIG. 6 shows X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for a predetermined number of seconds of 10 seconds, 30 seconds, and 600 seconds, respectively. In FIG. 6, the X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for 10 seconds is x41, and the X-ray diffraction of the rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for 30 seconds is x42, 180 ° C. The X-ray diffraction of the rolled copper foil exposed to the atmosphere for 600 seconds is x43. FIG. 10 is a partially enlarged view of the result of the X-ray diffraction shown in FIG.

さらに、図3から図6に、それぞれ加熱処理を施していない圧延銅箔のX線回折の結果をX0で示している。なお、図3から図6では、各X線回折の結果が重ならないように、各X線回折の結果を少しずつずらして示している。   Further, in FIGS. 3 to 6, X-ray diffraction results of the rolled copper foils not subjected to the heat treatment are indicated by X0. In FIGS. 3 to 6, the results of the X-ray diffraction are slightly shifted so that the results of the X-ray diffraction do not overlap.

図3から図6に示すように、圧延銅箔の200面のピーク強度I(200)は、付与される熱によって影響を受け易く、付与される熱が大きくなると200面のピーク強度I(200)が高くなる傾向がある。これに対して、圧延銅箔の220面のピーク強度I(220)は、200面のピーク強度I(200)に比べて、熱の影響を受け難い。   As shown in FIG. 3 to FIG. 6, the peak intensity I (200) of the rolled copper foil on the 200 plane is easily affected by the applied heat, and when the applied heat increases, the peak intensity I (200 on the 200 plane) is increased. ) Tends to be high. On the other hand, the peak intensity I (220) on the 220 plane of the rolled copper foil is less susceptible to heat than the peak intensity I (200) on the 200 plane.

また、圧延銅箔は熱に晒されることによって表面に銅酸化物を含む不純物層が形成される場合がある。かかる不純物層が形成された場合には、圧延銅箔のX線回折において、ミラー指数で規定される特定の面W(2θが45.2付近)に僅かなピークが発現する。リチウムイオン二次電池の負極集電体として用いる場合には、かかる不純物層が発現しないことが望ましい。   Further, when the rolled copper foil is exposed to heat, an impurity layer containing copper oxide may be formed on the surface. When such an impurity layer is formed, a slight peak appears on a specific surface W (2θ is around 45.2) defined by the Miller index in the X-ray diffraction of the rolled copper foil. When used as a negative electrode current collector of a lithium ion secondary battery, it is desirable that such an impurity layer does not appear.

例えば、図7〜図10に示すように、圧延銅箔はある程度以上の熱に晒されることによって、不純物層が形成された場合には、不純物層に起因して、2θが45.2付近(Wで示す箇所)にX線回折にピークが生じる。例えば、図7に示すように、圧延銅箔を120℃の恒温雰囲気に30秒晒した場合(x12)では、不純物層に起因するX線回折のピークは発現しないが、120℃の恒温雰囲気に600秒晒した場合(x13)では、不純物層に起因するX線回折のピークが発現する。図8及び図9に示すように、140℃の恒温雰囲気に晒す場合や160℃の恒温雰囲気に晒す場合では、同様に、当該恒温雰囲気に30秒晒した場合(x22、x32)では不純物層に起因するX線回折のピークは発現しないが、当該恒温雰囲気に600秒晒した場合(x23、x33)では不純物層に起因するX線回折のピークが発現する。これに対して、180℃の恒温雰囲気に晒す場合では、図10に示すように、恒温雰囲気に30秒晒した場合(x42)でも不純物層に起因するX線回折のピークが発現する。   For example, as shown in FIGS. 7 to 10, when an impurity layer is formed by exposing the rolled copper foil to a certain amount of heat, 2θ is around 45.2 due to the impurity layer ( A peak occurs in the X-ray diffraction at a position indicated by W. For example, as shown in FIG. 7, when the rolled copper foil is exposed to a constant temperature atmosphere of 120 ° C. for 30 seconds (x12), an X-ray diffraction peak due to the impurity layer does not appear, but the constant temperature atmosphere of 120 ° C. When exposed for 600 seconds (x13), an X-ray diffraction peak due to the impurity layer appears. As shown in FIGS. 8 and 9, when exposed to a constant temperature atmosphere of 140 ° C. or exposed to a constant temperature atmosphere of 160 ° C., similarly, when exposed to the constant temperature atmosphere for 30 seconds (x22, x32), The resulting X-ray diffraction peak does not appear, but when exposed to the constant temperature atmosphere for 600 seconds (x23, x33), the X-ray diffraction peak due to the impurity layer appears. On the other hand, when exposed to a constant temperature atmosphere of 180 ° C., as shown in FIG. 10, even when exposed to a constant temperature atmosphere for 30 seconds (x42), an X-ray diffraction peak due to the impurity layer appears.

本発明者は、上記のような圧延銅箔のX線回折の結果から、以下の(1)〜(4)の事象を見出した。(1)180℃よりも低い温度域の恒温雰囲気に晒して圧延銅箔を加熱する場合、加熱時間が30秒以内であれば、200面のピーク強度I(200)と220面のピーク強度I(220)との比と、圧延銅箔が受けた熱(熱履歴)との間に一応の相関関係が見られる。   The present inventor found the following events (1) to (4) from the result of X-ray diffraction of the rolled copper foil as described above. (1) When heating a rolled copper foil by exposure to a constant temperature atmosphere lower than 180 ° C., the peak intensity I (200) on the 200 plane and the peak intensity I on the 220 plane are within 30 seconds. There is a temporary correlation between the ratio to (220) and the heat (heat history) received by the rolled copper foil.

(2)180℃よりも高い温度域の恒温雰囲気に晒して圧延銅箔を加熱する場合には、圧延銅箔に不純物層が発現し易い。(3)180℃よりも低い温度域の恒温雰囲気に晒した場合であっても、加熱時間が30秒よりも長くなると、圧延銅箔に不純物層が発現する場合がある。(4)圧延銅箔に不純物層が過度に発現すると、X線回折のピーク強度の傾向が変わる。リチウムイオン二次電池の負極集電体に用いられる圧延銅箔としては、不純物層が過度に発現することは望ましくない。   (2) When the rolled copper foil is heated by exposure to a constant temperature atmosphere in a temperature range higher than 180 ° C., an impurity layer is likely to appear in the rolled copper foil. (3) Even if it is a case where it exposes to the constant temperature atmosphere of a temperature range lower than 180 degreeC, when a heating time becomes longer than 30 second, an impurity layer may express in rolled copper foil. (4) When the impurity layer appears excessively in the rolled copper foil, the tendency of the peak intensity of X-ray diffraction changes. As the rolled copper foil used for the negative electrode current collector of the lithium ion secondary battery, it is not desirable that the impurity layer is excessively developed.

これに対して、180℃よりも低い温度域の恒温雰囲気に晒して圧延銅箔を加熱する場合で加熱時間が30秒以内であれば、圧延銅箔に不純物層が発現し難く、X線回折のピーク強度が同じような傾向を示す。この場合、加熱時間が同じであれば、加熱温度が高くなるにつれて200面のピーク強度I(200)が上がるものの、220面のピーク強度I(220)はほとんど変化が見られない。また、200面のピーク強度I(200)のみでは、圧延銅箔の個体差も生じる。そこで、本発明者は、200面のピーク強度I(200)と220面のピーク強度I(220)との比から圧延銅箔が受けた熱(熱履歴)を推定することを考えた。   On the other hand, when heating the rolled copper foil by exposure to a constant temperature atmosphere lower than 180 ° C., if the heating time is within 30 seconds, the impurity layer hardly appears on the rolled copper foil, and X-ray diffraction The peak intensities show the same tendency. In this case, if the heating time is the same, the peak intensity I (200) on the 200 plane increases as the heating temperature increases, but the peak intensity I (220) on the 220 plane hardly changes. Moreover, individual differences of the rolled copper foil also occur only with the peak intensity I (200) on the 200 plane. Then, this inventor considered estimating the heat | fever (heat history) which the rolled copper foil received from ratio of the peak intensity I (200) of 200 planes, and the peak intensity I (220) of 220 planes.

例えば、上述した図3〜図6から恒温雰囲気に30秒晒した場合の圧延銅箔のX線回折のデータを集めると、図11に示すようになる。図11中、x0は加熱処理を施していない圧延銅箔のX線回折のデータである。x12は120℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータである。x22は140℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータである。x32は160℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータである。x42は180℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータである。   For example, when X-ray diffraction data of the rolled copper foil is collected from the above-described FIGS. 3 to 6 when exposed to a constant temperature atmosphere for 30 seconds, it is as shown in FIG. In FIG. 11, x0 is X-ray diffraction data of a rolled copper foil that has not been heat-treated. x12 is X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere at 120 ° C. for 30 seconds. x22 is X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere of 140 ° C. for 30 seconds. x32 is X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere of 160 ° C. for 30 seconds. x42 is X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for 30 seconds.

また、図12は、恒温雰囲気に30秒晒した場合の圧延銅箔のX線回折のデータについて、200面のピーク強度I(200)と220面のピーク強度I(220)との比(ここでは、ピーク強度比I(200)/I(220)という。)と、恒温雰囲気の温度との関係を示している。なお、図12中、プロットx12は、120℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータから得られるピーク強度比I(200)/I(220)を示している。また、プロットx22は、140℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータから得られるピーク強度比I(200)/I(220)を示している。プロットx32は、160℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータから得られるピーク強度比I(200)/I(220)を示している。   FIG. 12 shows the ratio of the peak intensity I (200) on the 200 plane to the peak intensity I (220) on the 220 plane (here) for the X-ray diffraction data of the rolled copper foil when exposed to a constant temperature atmosphere for 30 seconds. Shows the relationship between the peak intensity ratio I (200) / I (220)) and the temperature of the constant temperature atmosphere. In FIG. 12, a plot x12 represents a peak intensity ratio I (200) / I (220) obtained from X-ray diffraction data of a rolled copper foil exposed to a constant temperature atmosphere at 120 ° C. for 30 seconds. Plot x22 shows the peak intensity ratio I (200) / I (220) obtained from the X-ray diffraction data of the rolled copper foil exposed to a constant temperature atmosphere of 140 ° C. for 30 seconds. Plot x32 shows the peak intensity ratio I (200) / I (220) obtained from the X-ray diffraction data of the rolled copper foil exposed to a constant temperature atmosphere at 160 ° C. for 30 seconds.

なお、180℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータx42は、図10に示すように、不純物層に起因するピークWが見られる。この場合、ピーク強度比I(200)/I(220)が不純物層の影響を受けている可能性を否定できない。このため、図12には、180℃の恒温雰囲気に30秒晒した圧延銅箔のX線回折のデータx42を採用していない。   In addition, in the x-ray diffraction data x42 of the rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for 30 seconds, a peak W due to the impurity layer is seen as shown in FIG. In this case, the possibility that the peak intensity ratio I (200) / I (220) is affected by the impurity layer cannot be denied. For this reason, FIG. 12 does not employ the X-ray diffraction data x42 of the rolled copper foil exposed to a constant temperature atmosphere of 180 ° C. for 30 seconds.

表1は、図11及び図12に示すデータについて、圧延銅箔を恒温雰囲気に30秒晒した際の熱処理温度、当該圧延銅箔のX線回折データ中の200面のピーク強度I(200)、220面のピーク強度I(220)、ピーク強度比I(200)/I(220)をそれぞれ示している。

Figure 0005365866
Table 1 shows the heat treatment temperature when the rolled copper foil is exposed to a constant temperature atmosphere for 30 seconds with respect to the data shown in FIGS. 11 and 12, and the peak intensity I (200) of the 200 planes in the X-ray diffraction data of the rolled copper foil. , 220 plane peak intensity I (220) and peak intensity ratio I (200) / I (220), respectively.
Figure 0005365866

また、図12に示すように、恒温雰囲気に30秒晒した場合の圧延銅箔のX線回折のデータについて、ピーク強度比I(200)/I(220)と、恒温雰囲気の温度との関係から、近似曲線Lを得ることができる。かかる近似曲線Lは、実際にはより多くのデータをとって算出するとよい。また、近似曲線Lは、1次式近似、2次式近似など種々の適当な手法で得るとよい。図12に示す例では、近似曲線Lは2次式近似で得ている。   Further, as shown in FIG. 12, regarding the X-ray diffraction data of the rolled copper foil when exposed to a constant temperature atmosphere for 30 seconds, the relationship between the peak intensity ratio I (200) / I (220) and the temperature of the constant temperature atmosphere. From this, an approximate curve L can be obtained. The approximate curve L is actually calculated by taking more data. The approximate curve L may be obtained by various appropriate methods such as linear approximation and quadratic approximation. In the example shown in FIG. 12, the approximate curve L is obtained by quadratic approximation.

次に、熱履歴が未知の検査対象となる圧延銅箔についてX線回折を行い、ピーク強度比I(200)/I(220)を得る(ピーク強度比測定工程)。そして、上記のように、ピーク強度比I(200)/I(220)と熱履歴との相関関係を予め求めておき、ピーク強度比測定工程によって得られたピーク強度比I(200)/I(220)と当該相関関係とに基づいて、検査対象となる圧延銅箔の熱履歴を求める(熱履歴算出工程)。   Next, X-ray diffraction is performed on the rolled copper foil to be inspected whose thermal history is unknown to obtain the peak intensity ratio I (200) / I (220) (peak intensity ratio measuring step). Then, as described above, the correlation between the peak intensity ratio I (200) / I (220) and the thermal history is obtained in advance, and the peak intensity ratio I (200) / I obtained by the peak intensity ratio measuring step is obtained. Based on (220) and the correlation, the thermal history of the rolled copper foil to be inspected is obtained (thermal history calculation step).

例えば、ピーク強度比測定工程によって、検査対象となる圧延銅箔から得られたピーク強度比I(200)/I(220)をY1とする。この場合、図12に示すように、かかるピーク強度比Y1と、ピーク強度比I(200)/I(220)と熱履歴との相関関係を示す近似曲線Lとに基づいて、30秒の恒温雰囲気に圧延銅箔を晒した際の熱処理温度に相当するT1を求めることができる。   For example, the peak intensity ratio I (200) / I (220) obtained from the rolled copper foil to be inspected in the peak intensity ratio measuring step is set to Y1. In this case, as shown in FIG. 12, the constant temperature of 30 seconds is based on the peak intensity ratio Y1 and the approximate curve L indicating the correlation between the peak intensity ratio I (200) / I (220) and the thermal history. T1 corresponding to the heat treatment temperature when the rolled copper foil is exposed to the atmosphere can be obtained.

このように、本発明者は、上述の相関関係に基づいて、ピーク強度比I(200)/I(220)から圧延銅箔の熱履歴を推定できると考えた。ここで、熱履歴は、所定の時間、所定温度の恒温雰囲気に圧延銅箔を晒し、当該恒温雰囲気の温度と、圧延銅箔のピーク強度比I(200)/I(220)との相関関係Lを得ている。そして、熱履歴が未知の検査対象となる圧延銅箔のピーク強度比Y1と、当該相関関係Lとに基づいて、検査対象となる圧延銅箔の熱履歴として、30秒の恒温雰囲気に圧延銅箔を晒した際の熱処理温度に相当する温度T1を得ている。すなわち、ここでは、ピーク強度比がY1であった検査対象となる圧延銅箔について、温度T1の恒温雰囲気に30秒晒したのと概ね同様の状態と推定できる。このように、この圧延銅箔の熱履歴測定方法によれば、厳密な意味での圧延銅箔の熱履歴、すなわち、圧延銅箔がどのような熱に晒されたかを完全に計測することはできないが、所定の熱処理温度の恒温雰囲気に30秒晒した場合に相当する熱処理温度を概ね推定できる。   Thus, the inventor considered that the thermal history of the rolled copper foil can be estimated from the peak intensity ratio I (200) / I (220) based on the above-described correlation. Here, the thermal history is obtained by exposing the rolled copper foil to a constant temperature atmosphere at a predetermined temperature for a predetermined time, and the correlation between the temperature of the constant temperature atmosphere and the peak strength ratio I (200) / I (220) of the rolled copper foil. L is obtained. Then, based on the peak strength ratio Y1 of the rolled copper foil to be inspected whose thermal history is unknown and the correlation L, the rolled copper foil is heated to a constant temperature atmosphere of 30 seconds as the thermal history of the rolled copper foil to be inspected. A temperature T1 corresponding to the heat treatment temperature when the foil is exposed is obtained. That is, here, it can be estimated that the rolled copper foil to be inspected whose peak intensity ratio is Y1 is almost the same state as that exposed to a constant temperature atmosphere at temperature T1 for 30 seconds. Thus, according to the method for measuring the thermal history of the rolled copper foil, it is possible to completely measure the heat history of the rolled copper foil in a strict sense, that is, what kind of heat the rolled copper foil was exposed to. Although not possible, it is possible to roughly estimate the heat treatment temperature corresponding to exposure to a constant temperature atmosphere at a predetermined heat treatment temperature for 30 seconds.

次に、実際に、リチウムイオン二次電池に用いられる負極シートについて、圧延銅箔の熱履歴測定方法を説明する。   Next, the thermal history measurement method of rolled copper foil is demonstrated about the negative electrode sheet | seat actually used for a lithium ion secondary battery.

この実施形態では、リチウムイオン二次電池1000は、図13に示すように、捲回電極体100を備えている。図13に示すリチウムイオン二次電池1000では、矩形の電池ケース300内に収容した捲回電極体100を電解液(図示省略)に浸漬させている。捲回電極体100は、図14に示すように、セパレータ102、104を介して、正極シート101と負極シート103とを重ね合わせて捲回している。セパレータ102、104は、イオン性物質が透過可能な膜であり、この実施形態では、ポリプロピレン製の微多孔膜が用いられている。   In this embodiment, the lithium ion secondary battery 1000 includes a wound electrode body 100 as shown in FIG. In the lithium ion secondary battery 1000 shown in FIG. 13, the wound electrode body 100 housed in a rectangular battery case 300 is immersed in an electrolytic solution (not shown). As shown in FIG. 14, the wound electrode body 100 is wound by overlapping a positive electrode sheet 101 and a negative electrode sheet 103 with separators 102 and 104 interposed therebetween. Separator 102,104 is a film | membrane which an ionic substance can permeate | transmit, and the microporous film made from a polypropylene is used in this embodiment.

正極シート101は、この実施形態では、アルミニウム箔からなる正極集電体131の両面に正極活物質を含む電極材料132が塗工されている。当該電極材料132に含まれる正極活物質としては、例えば、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)やこれらの遷移金属置換体などが挙げられる。 In this embodiment, the positive electrode sheet 101 is coated with an electrode material 132 containing a positive electrode active material on both surfaces of a positive electrode current collector 131 made of an aluminum foil. Examples of the positive electrode active material included in the electrode material 132 include lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and transition metal substitutes thereof. It is done.

負極シート103は、この実施形態では、圧延銅箔からなる負極集電体141の両面に負極活物質を含む電極材料142が塗工されている。当該電極材料142に含まれる負極活物質としては、例えば、グラファイト(Graphite)やアモルファスカーボン(Amorphous Carbon)などの炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物などが挙げられる。具体的には、この実施形態では、負極活物質としてグラファイトを用い、かかるグラファイトと、カルボキシメチルセルロース(carboxymethylcellulose:CMC)と、水とを重量比で98:1:250になるように混合し、さらに、負極活物質としてのグラファイトに対して1.02重量部のスチレンブタジエンラバー(styrene-butadiene rubber:SBR)を均一に分散させたペーストを負極集電体141に塗工している。   In this embodiment, the negative electrode sheet 103 is coated with an electrode material 142 containing a negative electrode active material on both surfaces of a negative electrode current collector 141 made of rolled copper foil. Examples of the negative electrode active material included in the electrode material 142 include carbon-based materials such as graphite and amorphous carbon, lithium-containing transition metal oxides, and transition metal nitrides. Specifically, in this embodiment, graphite is used as the negative electrode active material, and the graphite, carboxymethylcellulose (CMC), and water are mixed at a weight ratio of 98: 1: 250, A paste in which 1.02 parts by weight of styrene-butadiene rubber (SBR) is uniformly dispersed with respect to graphite as a negative electrode active material is applied to the negative electrode current collector 141.

かかる負極の電極材料142の塗工工程は、例えば、図15に示すように、塗布装置400(例えば、ダイコータ)を用いて、所定の塗工重量(例えば、片面の塗工重量が3.2mg/cm)で負極集電体141の両面に塗布する。その後、乾燥炉410に負極集電体141を通して塗布した電極材料142を乾燥させている。この実施形態では、120℃の恒温雰囲気を有する乾燥炉410に所定時間通過させて、電極材料142を乾燥させた。この際、負極集電体141の搬送速度は40m/minとした。なお、図15に示す例では、負極集電体141の長さ方向に沿って3本のラインで電極材料142が塗工されている。電極材料142は、負極集電体141の幅方向の両側の縁から離して、それぞれ所定の幅で、所定の間隔を空けて塗工されている。塗工された電極材料142は、何れも同じ幅である。図15に示す負極集電体141は、幅方向に設定された5本の切断ラインz1〜z5に沿って切断されることによって、図14に示す負極シート103が得られる。 For example, as shown in FIG. 15, the coating process of the negative electrode material 142 is performed using a coating apparatus 400 (for example, a die coater) with a predetermined coating weight (for example, a coating weight of one side of 3.2 mg). / cm 2 ) on both surfaces of the negative electrode current collector 141. Thereafter, the electrode material 142 applied to the drying furnace 410 through the negative electrode current collector 141 is dried. In this embodiment, the electrode material 142 was dried by passing through a drying furnace 410 having a constant temperature atmosphere of 120 ° C. for a predetermined time. At this time, the conveyance speed of the negative electrode current collector 141 was set to 40 m / min. In the example shown in FIG. 15, the electrode material 142 is applied in three lines along the length direction of the negative electrode current collector 141. The electrode material 142 is coated with a predetermined width and a predetermined interval apart from both edges in the width direction of the negative electrode current collector 141. All of the applied electrode materials 142 have the same width. The negative electrode current collector 141 shown in FIG. 15 is cut along five cutting lines z1 to z5 set in the width direction, whereby the negative electrode sheet 103 shown in FIG. 14 is obtained.

この場合、負極シート103の負極集電体141に不純物層が過度に形成されないように、乾燥炉410の温度を適切に管理したい。しかしながら、負極シート103に熱電対を取り付けて、乾燥工程における負極シート103の熱履歴を測定することは、配線等の取り回しが難しく現実的でない。そこで、この実施形態では、負極シート103の搬送経路において、乾燥炉410よりも下流側にX線回折装置420を設けている。そして、乾燥炉410を通過した位置で、負極集電体141のX線回折を行い、負極集電体141のピーク強度比I(200)/I(220)を得ている。そして、図12に示すように、予め得られた圧延銅箔のピーク強度比I(200)/I(220)と、熱履歴との相関関係Lを基に、当該検査対象となる負極集電体141の熱履歴を求めている。   In this case, it is desired to appropriately control the temperature of the drying furnace 410 so that an impurity layer is not excessively formed on the negative electrode current collector 141 of the negative electrode sheet 103. However, it is not practical to attach a thermocouple to the negative electrode sheet 103 and measure the thermal history of the negative electrode sheet 103 in the drying process because it is difficult to handle wiring and the like. Therefore, in this embodiment, an X-ray diffraction apparatus 420 is provided on the downstream side of the drying furnace 410 in the conveyance path of the negative electrode sheet 103. Then, the X-ray diffraction of the negative electrode current collector 141 is performed at the position that has passed through the drying furnace 410, and the peak intensity ratio I (200) / I (220) of the negative electrode current collector 141 is obtained. Then, as shown in FIG. 12, based on the correlation L between the peak intensity ratio I (200) / I (220) of the rolled copper foil obtained in advance and the thermal history, the negative electrode current collector to be inspected The heat history of the body 141 is obtained.

この実施形態では、負極シート103のうち、電極材料142が塗工されていない未塗工部S1と、電極材料142が塗工された塗工部S2とでそれぞれX線回折を行い、圧延銅箔のピーク強度比I(200)/I(220)を得た。この場合、電極材料142が塗工された塗工部S2では、電極材料142が塗工されていない未塗工部S1よりも圧延銅箔が受ける熱は小さい。未塗工部S2で得られるピーク強度比I(200)/I(220)をYS2とし、塗工部S1で得られるピーク強度比I(200)/I(220)をYS1とする。図12に示すように、かかるピーク強度比YS1、YS2と、相関関係Lとに基づいて、未塗工部S1における負極集電体141の熱履歴TS1と、塗工部S2における負極集電体141の熱履歴TS2をそれぞれ求めることができる。 In this embodiment, in the negative electrode sheet 103, X-ray diffraction is performed in each of the uncoated portion S1 where the electrode material 142 is not coated and the coated portion S2 where the electrode material 142 is coated. A peak intensity ratio I (200) / I (220) of the foil was obtained. In this case, in the coating part S2 to which the electrode material 142 is applied, the heat received by the rolled copper foil is smaller than in the uncoated part S1 to which the electrode material 142 is not applied. The uncoated portion S2 in the resulting peak intensity ratio I (200) / I (220) and Y S2, the peak intensity ratio I (200) obtained in the coating section S1 / I a (220) and Y S1. As shown in FIG. 12, based on the peak intensity ratios Y S1 and Y S2 and the correlation L, the thermal history T S1 of the negative electrode current collector 141 in the uncoated part S1 and the negative electrode in the coated part S2 The thermal history T S2 of the current collector 141 can be obtained respectively.

この熱履歴TS1、TS2は、それぞれ図12に示す、ピーク強度比I(200)/I(220)と熱処理温度との相関関係Lに基づいて求められている。図12に示す相関関係Lは、圧延銅箔のピーク強度比I(200)/I(220)と、30秒の恒温雰囲気に圧延銅箔を晒した際の熱処理温度との相関関係を示す近似曲線Lである。したがって、上記の方法で求められた熱履歴TS1、TS2は、それぞれ30秒の恒温雰囲気に圧延銅箔を晒した際の熱処理温度を示している。すなわち、この実施形態では、未塗工部S1では、温度TS1の恒温雰囲気に圧延銅箔を30秒晒したのと同程度の熱処理が負極集電体141に施されていると推定される。また、塗工部S2では、温度TS2の恒温雰囲気に圧延銅箔を30秒晒したのと同程度の熱処理が負極集電体141に施されていると推定される。 The thermal histories T S1 and T S2 are obtained based on the correlation L between the peak intensity ratio I (200) / I (220) and the heat treatment temperature shown in FIG. The correlation L shown in FIG. 12 is an approximation showing the correlation between the peak intensity ratio I (200) / I (220) of the rolled copper foil and the heat treatment temperature when the rolled copper foil is exposed to a constant temperature atmosphere for 30 seconds. Curve L. Therefore, the thermal histories T S1 and T S2 obtained by the above method indicate the heat treatment temperature when the rolled copper foil is exposed to a constant temperature atmosphere of 30 seconds. That is, in this embodiment, in the uncoated part S1, it is presumed that the negative electrode current collector 141 is subjected to the same heat treatment as when the rolled copper foil was exposed to a constant temperature atmosphere of the temperature T S1 for 30 seconds. . In addition, in the coating part S2, it is presumed that the negative electrode current collector 141 is subjected to the same heat treatment as when the rolled copper foil was exposed to a constant temperature atmosphere of the temperature T S2 for 30 seconds.

このように、この圧延銅箔の熱履歴測定方法は、リチウムイオン二次電池1000に用いられる負極集電体の熱履歴を測定することができる。ここでは、所定温度の恒温雰囲気に圧延銅箔を30秒晒した場合に、何℃の恒温雰囲気に晒した場合と同程度の熱処理がされたかを推定することができる。この場合、リチウムイオン二次電池1000の製造工程において、負極シート103について、X線回析によって得られた負極集電体141の200面と220面とのピーク強度比I(200)/I(220)に基づいて、負極シート103の良否判定を行う検査工程を備えていてもよい。   Thus, this heat history measurement method of the rolled copper foil can measure the heat history of the negative electrode current collector used in the lithium ion secondary battery 1000. Here, when the rolled copper foil is exposed to a constant temperature atmosphere at a predetermined temperature for 30 seconds, it can be estimated how much heat treatment is performed at the same temperature as when exposed to a constant temperature atmosphere. In this case, in the manufacturing process of the lithium ion secondary battery 1000, for the negative electrode sheet 103, the peak intensity ratio I (200) / I (200) / 220 of the negative electrode current collector 141 obtained by X-ray diffraction is obtained. 220), an inspection process for determining the quality of the negative electrode sheet 103 may be provided.

本発明者の知見では、170℃以下の恒温雰囲気に圧延銅箔を30秒晒す加熱処理では、X線回折において、不純物層が発現したことに起因するピークが生じないことを見出した。また、本発明者の知見では、熱処理温度が170℃では、ピーク強度比I(200)/I(220)は、約10.8を示す。そこで、リチウムイオン二次電池1000に用いられる負極シート103では、乾燥工程後に未塗工部S1で測定されるピーク強度比I(200)/I(220)が10.8以下であれば、負極集電体141に不純物層が発現している可能性が低いと考えられる。   According to the knowledge of the present inventor, it has been found that in the heat treatment in which the rolled copper foil is exposed to a constant temperature atmosphere of 170 ° C. or lower for 30 seconds, a peak due to the appearance of the impurity layer does not occur in X-ray diffraction. Further, according to the knowledge of the present inventor, when the heat treatment temperature is 170 ° C., the peak intensity ratio I (200) / I (220) shows about 10.8. Therefore, in the negative electrode sheet 103 used for the lithium ion secondary battery 1000, if the peak intensity ratio I (200) / I (220) measured in the uncoated part S1 after the drying process is 10.8 or less, the negative electrode It is considered that the possibility that the impurity layer is developed in the current collector 141 is low.

この場合、例えば、乾燥工程後の未塗工部S1のピーク強度比I(200)/I(220)を測定する。そして、当該ピーク強度比I(200)/I(220)が10.8以下である場合に、負極シート103を良品とし、当該ピーク強度比I(200)/I(220)が10.8よりも大きい負極シート103を不良として判定するとよい。   In this case, for example, the peak intensity ratio I (200) / I (220) of the uncoated part S1 after the drying process is measured. When the peak intensity ratio I (200) / I (220) is 10.8 or less, the negative electrode sheet 103 is regarded as a non-defective product, and the peak intensity ratio I (200) / I (220) is from 10.8. The larger negative electrode sheet 103 may be determined as defective.

また、負極シート103の乾燥工程において、乾燥炉410の温度管理等にも利用できる。すなわち、乾燥工程後の未塗工部S1のピーク強度比I(200)/I(220)が10.8以下となるように、乾燥炉410の温度を管理するとよい。また、例えば、リチウムイオン二次電池1000は、乾燥工程後の負極集電体のピーク強度比I(200)/I(220)が10.8以下のものを用いるとよい。これにより、負極シート103の負極集電体141に不純物層が少ないリチウムイオン二次電池1000を安定して生産することができる。   Further, in the drying process of the negative electrode sheet 103, it can be used for temperature management of the drying furnace 410 and the like. That is, the temperature of the drying furnace 410 may be controlled so that the peak intensity ratio I (200) / I (220) of the uncoated part S1 after the drying process is 10.8 or less. In addition, for example, a lithium ion secondary battery 1000 with a negative electrode current collector having a peak intensity ratio I (200) / I (220) of 10.8 or less after the drying step may be used. Thereby, the lithium ion secondary battery 1000 with few impurity layers in the negative electrode current collector 141 of the negative electrode sheet 103 can be stably produced.

また、負極集電体のピーク強度比I(200)/I(220)が10.8以下のリチウムイオン二次電池は、負極集電体141に生じる不純物層が発現している可能性が低い。このような負極集電体141を備えたリチウムイオン二次電池1000は、電池特性に優れており、高い出力特性を有していることが期待できる。リチウムイオン二次電池1000は、例えば、図16に模式的に示すように、ハイブリッド自動車、電気自動車、燃料電池自動車などの車両1に搭載されるモーター(電動機)用の電池1000に、好適に用いることができる。これらの車両は、高出力を発揮でき、また性能が経年的に安定した電池が求められる。この場合、上記のように負極シートを評価し、選別することによって、車両用のリチウムイオン二次電池の性能を向上させることができ、ひいては性能の良い車両を安定して供給することができる。   In addition, in a lithium ion secondary battery having a negative electrode current collector peak intensity ratio I (200) / I (220) of 10.8 or less, it is unlikely that an impurity layer generated in the negative electrode current collector 141 is developed. . The lithium ion secondary battery 1000 provided with such a negative electrode current collector 141 is excellent in battery characteristics and can be expected to have high output characteristics. For example, as schematically shown in FIG. 16, the lithium ion secondary battery 1000 is suitably used for a battery 1000 for a motor (electric motor) mounted on a vehicle 1 such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. be able to. These vehicles are required to have high output power and stable battery performance over time. In this case, by evaluating and selecting the negative electrode sheet as described above, the performance of the lithium ion secondary battery for vehicles can be improved, and as a result, a vehicle with good performance can be supplied stably.

リチウムイオン二次電池1000は、放充電を繰り返す中で発熱することがある。このような場合に、リチウムイオン二次電池1000の中(例えば、捲回電極体100の中)で、どの程度の熱が発生したかを適切に調べるのは難しい。上述した圧延銅箔の熱履歴測定方法は、圧延銅箔からなる負極集電体に負極活物質を塗工した負極シートを有するリチウムイオン二次電池を検査するリチウムイオン二次電池の検査方法として適用できる。すなわち、このリチウムイオン二次電池の検査方法は、ピーク強度比測定工程と、リチウムイオン二次電池内で生じた熱を推定する工程(推定工程)とを有しているとよい。ピーク強度比測定工程では、リチウムイオン二次電池から取り出した負極シートについて、X線回析における200面と220面とのピーク強度比を求める。リチウムイオン二次電池内で生じた熱を推定する工程(推定工程)では、予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係と、ピーク強度比測定工程で得られた負極シートのピーク強度比に基づいて、リチウムイオン二次電池内で生じた熱を推定する。   The lithium ion secondary battery 1000 may generate heat while repeatedly being discharged and charged. In such a case, it is difficult to appropriately examine how much heat is generated in the lithium ion secondary battery 1000 (for example, in the wound electrode body 100). The method for measuring the thermal history of the rolled copper foil described above is a method for inspecting a lithium ion secondary battery that inspects a lithium ion secondary battery having a negative electrode sheet in which a negative electrode active material is coated on a negative electrode current collector made of rolled copper foil. Applicable. That is, this lithium ion secondary battery inspection method preferably includes a peak intensity ratio measurement step and a step of estimating heat generated in the lithium ion secondary battery (estimation step). In the peak intensity ratio measurement step, the peak intensity ratio between the 200 plane and the 220 plane in the X-ray diffraction is determined for the negative electrode sheet taken out from the lithium ion secondary battery. In the process of estimating the heat generated in the lithium ion secondary battery (estimation process), the correlation between the peak intensity ratio obtained for the rolled copper foil and the thermal history obtained in advance and the peak intensity ratio measurement process are used. Based on the peak intensity ratio of the negative electrode sheet thus obtained, heat generated in the lithium ion secondary battery is estimated.

このリチウムイオン二次電池の検査方法によれば、例えば、リチウムイオン二次電池から取り出した負極シートについて、X線回析における200面と220面とのピーク強度比I(200)/I(220)を求める(ピーク強度比測定工程)。そして、予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係(例えば、図12参照)と、上記ピーク強度比測定工程で得られた負極シートのピーク強度比とに基づいて、リチウムイオン二次電池内で生じた熱を推定することができる(推定工程)。これにより、例えば、ピーク強度比I(200)/I(220)が12の場合、図12に示すように、リチウムイオン二次電池1000内で負極集電体141が受けた熱が、温度Tの恒温雰囲気に30秒晒されたのと同程度の熱であったと推定できる。このように、このリチウムイオン二次電池の検査方法(圧延銅箔の熱履歴測定方法)によれば、乾燥工程の熱処理で負極集電体141が受けた熱量よりも、リチウムイオン二次電池1000が充放電されることによって生じた熱量が大きい場合に、リチウムイオン二次電池1000内でどの程度の熱が発生したのかを推定することができる。 According to this inspection method for a lithium ion secondary battery, for example, with respect to the negative electrode sheet taken out from the lithium ion secondary battery, the peak intensity ratio I (200) / I (220) between the 200 plane and the 220 plane in X-ray diffraction. ) (Peak intensity ratio measurement step). Then, the correlation between the peak intensity ratio obtained for the rolled copper foil obtained in advance and the thermal history (see, for example, FIG. 12) and the peak intensity ratio of the negative electrode sheet obtained in the peak intensity ratio measurement step Based on this, heat generated in the lithium ion secondary battery can be estimated (estimation step). Thus, for example, when the peak intensity ratio I (200) / I (220) is 12, the heat received by the negative electrode current collector 141 in the lithium ion secondary battery 1000 is changed to the temperature T as shown in FIG. It can be estimated that the heat was about the same as that exposed to a constant temperature atmosphere of x for 30 seconds. Thus, according to this inspection method for lithium ion secondary batteries (heat history measurement method for rolled copper foil), the lithium ion secondary battery 1000 is more than the amount of heat received by the negative electrode current collector 141 during the heat treatment in the drying process. It is possible to estimate how much heat is generated in the lithium ion secondary battery 1000 when the amount of heat generated by charging and discharging is large.

上述したように、このリチウムイオン二次電池の検査方法(圧延銅箔の熱履歴測定方法)によれば、リチウムイオン二次電池1000内でどの程度の熱が発生したかを調べることができる。例えば、リチウムイオン二次電池1000の安全性試験では、リチウムイオン二次電池1000を異常な方法で使用し、リチウムイオン二次電池1000内で高温の熱を発生させる場合がある。このリチウムイオン二次電池の検査方法(圧延銅箔の熱履歴測定方法)は、このような安全性試験において、リチウムイオン二次電池1000内にどの程度の熱が生じたかを調べる方法として用いることができる。   As described above, according to this lithium ion secondary battery inspection method (heat history measurement method of rolled copper foil), how much heat is generated in the lithium ion secondary battery 1000 can be examined. For example, in the safety test of the lithium ion secondary battery 1000, the lithium ion secondary battery 1000 may be used in an abnormal manner to generate high-temperature heat in the lithium ion secondary battery 1000. This inspection method of lithium ion secondary battery (heat history measurement method of rolled copper foil) is used as a method for examining how much heat is generated in the lithium ion secondary battery 1000 in such a safety test. Can do.

以上、本発明の一実施形態に係る圧延銅箔の熱履歴測定方法及び当該圧延銅箔の熱履歴測定方法を用いたリチウムイオン二次電池の検査方法を説明したが、本発明に係る圧延銅箔の熱履歴測定方法及びリチウムイオン二次電池の検査方法は上記に限定されない。   As mentioned above, although the thermal history measurement method of the rolled copper foil which concerns on one Embodiment of this invention and the inspection method of the lithium ion secondary battery using the thermal history measurement method of the said rolled copper foil were demonstrated, the rolled copper which concerns on this invention The method for measuring the heat history of the foil and the method for inspecting the lithium ion secondary battery are not limited to the above.

例えば、上述の実施形態では、図12に示すように、圧延銅箔を恒温雰囲気に30秒晒した場合について、当該恒温雰囲気の温度と、圧延銅箔のピーク強度比I(200)/I(220)との相関関係Lを導いている。本発明では、かかる相関関係を得る場合に、圧延銅箔を恒温雰囲気に晒す時間は30秒に限定されない。また、本発明では、かかる相関関係を得る場合に、恒温雰囲気の温度を一定にして、恒温雰囲気に晒す時間を変化させて、当該恒温雰囲気に圧延銅箔を晒す時間と、圧延銅箔のピーク強度比I(200)/I(220)との相関関係Lを導いてもよい。例えば、図3に示すように、恒温雰囲気の温度を120℃で一定にして、当該恒温雰囲気に晒す時間を変化させた圧延銅箔からピーク強度比I(200)/I(220)を求める。そして、当該恒温雰囲気に圧延銅箔を晒した時間と、当該ピーク強度比I(200)/I(220)との相関関係を得てもよい。   For example, in the above-described embodiment, as shown in FIG. 12, when the rolled copper foil is exposed to a constant temperature atmosphere for 30 seconds, the temperature of the constant temperature atmosphere and the peak strength ratio I (200) / I ( 220). In the present invention, when obtaining such a correlation, the time for exposing the rolled copper foil to a constant temperature atmosphere is not limited to 30 seconds. Further, in the present invention, when obtaining such correlation, the temperature of the constant temperature atmosphere is kept constant, the time of exposure to the constant temperature atmosphere is changed, the time of exposing the rolled copper foil to the constant temperature atmosphere, and the peak of the rolled copper foil A correlation L with the intensity ratio I (200) / I (220) may be derived. For example, as shown in FIG. 3, the peak intensity ratio I (200) / I (220) is obtained from a rolled copper foil in which the temperature of the constant temperature atmosphere is kept constant at 120 ° C. and the time of exposure to the constant temperature atmosphere is changed. And you may obtain the correlation with the time which exposed the rolled copper foil to the said constant temperature atmosphere, and the said peak intensity ratio I (200) / I (220).

このように、圧延銅箔について得られたピーク強度比と熱履歴との相関関係については、種々の相関関係を採用することができる。そして、検査対象となる圧延銅箔のピーク強度比I(200)/I(220)から、当該圧延銅箔の熱履歴を求める場合には、採用した相関関係に基づいて適切に評価するとよい。   As described above, various correlations can be adopted for the correlation between the peak intensity ratio and the thermal history obtained for the rolled copper foil. And when calculating | requiring the thermal history of the said rolled copper foil from the peak intensity ratio I (200) / I (220) of the rolled copper foil used as a test object, it is good to evaluate appropriately based on the employ | adopted correlation.

すなわち、所定の温度の恒温雰囲気に圧延銅箔を晒した時間と、ピーク強度比I(200)/I(220)との相関関係を用いる場合には、検査対象となる圧延銅箔のピーク強度比I(200)/I(220)から導かれる熱履歴は、当該恒温雰囲気に晒された時間で評価される。また、圧延銅箔を所定の時間晒した恒温雰囲気の温度と、ピーク強度比I(200)/I(220)との相関関係(例えば、図12の相関関係L)を用いる場合には、検査対象となる圧延銅箔のピーク強度比I(200)/I(220)から導かれる熱履歴は、圧延銅箔を晒した恒温雰囲気の温度で評価される。このように、検査対象となる圧延銅箔のピーク強度比I(200)/I(220)が同じであっても、採用する相関関係によって、圧延銅箔の熱履歴の評価が異なる。   That is, when the correlation between the time during which the rolled copper foil is exposed to a constant temperature atmosphere at a predetermined temperature and the peak intensity ratio I (200) / I (220) is used, the peak intensity of the rolled copper foil to be inspected is used. The thermal history derived from the ratio I (200) / I (220) is evaluated by the time exposed to the constant temperature atmosphere. Moreover, when using the correlation (for example, correlation L of FIG. 12) with the temperature of the constant temperature atmosphere which exposed the rolled copper foil for the predetermined time, and peak intensity ratio I (200) / I (220), it test | inspects. The thermal history derived from the peak intensity ratio I (200) / I (220) of the rolled copper foil as an object is evaluated at the temperature of the constant temperature atmosphere to which the rolled copper foil is exposed. Thus, even if the peak intensity ratio I (200) / I (220) of the rolled copper foil to be inspected is the same, the evaluation of the thermal history of the rolled copper foil differs depending on the correlation employed.

1 車両
22 X線発生源
24 X線
26 試料
26a 試料面
28 回折されたX線
30 検査器
100 捲回電極体
101 正極シート
102、104 セパレータ
103 負極シート
131 正極集電体
132 正極の電極材料
141 負極集電体
142 負極の電極材料
300 電池ケース
400 塗布装置
410 乾燥炉
420 X線回折装置
1000 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Vehicle 22 X-ray generation source 24 X-ray 26 Sample 26a Sample surface 28 Diffracted X-ray 30 Inspection device 100 Winding electrode body 101 Positive electrode sheet 102, 104 Separator 103 Negative electrode sheet 131 Positive electrode current collector 132 Positive electrode material 141 Negative electrode current collector 142 Negative electrode material 300 Battery case 400 Coating device 410 Drying furnace 420 X-ray diffraction device 1000 Lithium ion secondary battery

Claims (5)

圧延銅箔の熱履歴を測定する熱履歴測定方法であって、
検査対象となる圧延銅箔について、X線回析によって200面と220面とのピーク強度比を求めるピーク強度比測定工程と、
予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係と、前記ピーク強度比測定工程によって得られたピーク強度比とに基づいて、前記検査対象となる圧延銅箔の熱履歴を求める熱履歴算出工程と
を備えた圧延銅箔の熱履歴測定方法。
A thermal history measurement method for measuring the thermal history of a rolled copper foil,
For a rolled copper foil to be inspected, a peak intensity ratio measuring step for obtaining a peak intensity ratio between the 200 plane and the 220 plane by X-ray diffraction,
Based on the correlation between the peak strength ratio obtained in advance for the rolled copper foil and the thermal history, and the peak strength ratio obtained by the peak strength ratio measurement step, the rolled copper foil to be inspected A method for measuring the thermal history of a rolled copper foil, comprising a thermal history calculation step for obtaining a thermal history.
圧延銅箔からなる負極集電体に負極活物質が塗工された負極シートを有するリチウムイオン二次電池の製造方法であって、
前記負極シートについて、X線回析によって得られた前記負極集電体の200面と220面とのピーク強度比と、予め求められた前記負極集電体について得られた200面と220面とのピーク強度比と熱履歴との相関関係とに基づいて、前記負極集電体が受けた熱量を推定し、前記負極シートの良否判定を行う検査工程を備えた、リチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery having a negative electrode sheet coated with a negative electrode active material on a negative electrode current collector made of rolled copper foil,
For the negative electrode sheet, the peak intensity ratio between the 200 and 220 surfaces of the negative electrode current collector obtained by X-ray diffraction, and the 200 and 220 surfaces obtained for the negative electrode current collector obtained in advance. Manufacture of a lithium ion secondary battery comprising an inspection step for estimating the amount of heat received by the negative electrode current collector based on the correlation between the peak intensity ratio and the thermal history of the negative electrode sheet Method.
請求項2に記載の製造方法により製造された、リチウムイオン二次電池。 A lithium ion secondary battery manufactured by the manufacturing method according to claim 2 . 請求項3に記載のリチウムイオン二次電池を搭載した車両。   A vehicle equipped with the lithium ion secondary battery according to claim 3. 圧延銅箔からなる負極集電体に負極活物質を塗工した負極シートを有するリチウムイオン二次電池の検査方法であって、
前記リチウムイオン二次電池から取り出した前記負極シートについて、X線回析における200面と220面とのピーク強度比を求めるピーク強度比測定工程と、
予め求められた圧延銅箔について得られたピーク強度比と熱履歴との相関関係と、前記ピーク強度比測定工程で得られた前記負極シートのピーク強度比とに基づいて、前記リチウムイオン二次電池内で生じた熱を推定する工程とを有する、リチウムイオン二次電池の検査方法。
A method for inspecting a lithium ion secondary battery having a negative electrode sheet in which a negative electrode active material is applied to a negative electrode current collector made of rolled copper foil,
For the negative electrode sheet taken out from the lithium ion secondary battery, a peak intensity ratio measuring step for obtaining a peak intensity ratio between the 200 plane and the 220 plane in X-ray diffraction;
Based on the correlation between the peak strength ratio obtained in advance for the rolled copper foil and the thermal history, and the peak strength ratio of the negative electrode sheet obtained in the peak strength ratio measurement step, the lithium ion secondary A method for inspecting a lithium ion secondary battery, comprising a step of estimating heat generated in the battery.
JP2009210185A 2009-09-11 2009-09-11 Method for measuring thermal history of rolled copper foil Expired - Fee Related JP5365866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210185A JP5365866B2 (en) 2009-09-11 2009-09-11 Method for measuring thermal history of rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009210185A JP5365866B2 (en) 2009-09-11 2009-09-11 Method for measuring thermal history of rolled copper foil

Publications (2)

Publication Number Publication Date
JP2011058992A JP2011058992A (en) 2011-03-24
JP5365866B2 true JP5365866B2 (en) 2013-12-11

Family

ID=43946792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210185A Expired - Fee Related JP5365866B2 (en) 2009-09-11 2009-09-11 Method for measuring thermal history of rolled copper foil

Country Status (1)

Country Link
JP (1) JP5365866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698196B2 (en) 2012-08-17 2015-04-08 Jx日鉱日石金属株式会社 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310864A (en) * 1998-04-28 1999-11-09 Kobe Steel Ltd Copper foil excellent in adhesive property to coating layer
JP2007134272A (en) * 2005-11-14 2007-05-31 Sony Corp Current collector, anode, and battery

Also Published As

Publication number Publication date
JP2011058992A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
Xiao et al. From laboratory innovations to materials manufacturing for lithium-based batteries
Rauhala et al. Low-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—A post-mortem study
JP2015207416A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
Glenneberg et al. A concept for direct deposition of thin film batteries on flexible polymer substrate
Yoshimura et al. Measurement of the diffusion rate of Li in silicon by the use of bipolar cells
US20130273438A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
Prasanna et al. Polyethylene separator: Stretched and coated with porous nickel oxide nanoparticles for enhancement of its efficiency in Li-ion batteries
Assefa et al. Imaging the phase transformation in single particles of the lithium titanate anode for lithium-ion batteries
McGovern et al. A review of research needs in nondestructive evaluation for quality verification in electric vehicle lithium-ion battery cell manufacturing
JP2015520860A (en) Method for measuring electrode density and electrode porosity
EP3678241A2 (en) Electrolytic copper foil, method for producing same, and high-capacity li secondary battery negative electrode including same
JP7566400B2 (en) Method for inspecting the welding quality of electrode tab-electrode lead welds
Rashid et al. Experimental assessment and model development of cycling behavior in Li-ion coin cells
Köhler et al. Lithium diffusion in sputter-deposited lithium iron phosphate thin-films
JP6943659B2 (en) Method for analyzing lithium ion concentration distribution in lithium ion secondary battery electrode
JP5365866B2 (en) Method for measuring thermal history of rolled copper foil
CN115443553A (en) System and method for drying electrode
Morata et al. Operando probing of Li-insertion into LiMn 2 O 4 cathodes by spectroscopic ellipsometry
CN116682974B (en) Negative electrode sheet, secondary battery comprising same and electricity utilization device
WO2015059794A1 (en) Solid electrolyte, all-solid secondary battery using same, solid electrolyte manufacturing method, and all-solid secondary battery manufacturing method
JP2019083163A (en) Method for evaluating carbon
JP2021192348A (en) Active material, battery, and manufacturing method thereof
US20230243585A1 (en) Automated System for Drying Conditions of Electrodes for Secondary Battery
US20170077493A1 (en) Method for forming positive electrode for thin film lithium-ion rechargeable battery, positive electrode for thin film lithium-ion rechargeable battery, and thin film lithium-ion rechargeable battery
KR20220058196A (en) Method for estimating adhesion strength of electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R151 Written notification of patent or utility model registration

Ref document number: 5365866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees