JP5345974B2 - Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same - Google Patents

Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Download PDF

Info

Publication number
JP5345974B2
JP5345974B2 JP2010125982A JP2010125982A JP5345974B2 JP 5345974 B2 JP5345974 B2 JP 5345974B2 JP 2010125982 A JP2010125982 A JP 2010125982A JP 2010125982 A JP2010125982 A JP 2010125982A JP 5345974 B2 JP5345974 B2 JP 5345974B2
Authority
JP
Japan
Prior art keywords
negative electrode
foil
copper alloy
copper
alloy foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010125982A
Other languages
Japanese (ja)
Other versions
JP2011253680A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010125982A priority Critical patent/JP5345974B2/en
Publication of JP2011253680A publication Critical patent/JP2011253680A/en
Application granted granted Critical
Publication of JP5345974B2 publication Critical patent/JP5345974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な圧延銅箔、並びにそれを用いた負極集電体、負極板及び電池に関する。   The present invention relates to a rolled copper foil suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, and a negative electrode current collector, a negative electrode plate and a battery using the rolled copper foil.

携帯電話、ノート型パソコン等のポータブル機器の普及に伴い、小型で高容量の二次電池の需要が伸びている。また、電気自動車やハイブリッド車等に用いられる中・大型の二次電池の需要も急増している。二次電池の中でも、リチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されている。
リチウムイオン二次電池としては、アルミニウム箔にLiCoO2、LiNiO2、LiMn24等の化合物をコーティングしたものを正極として用い、銅箔に炭素質材料等を活物質としてコーティングしたものを負極に用いるものが知られている(図1に一般的な二次電池の構造を示す)。
With the widespread use of portable devices such as mobile phones and notebook computers, the demand for small, high-capacity secondary batteries is growing. In addition, demand for medium- and large-sized secondary batteries used in electric vehicles, hybrid vehicles, and the like is also increasing rapidly. Among secondary batteries, lithium ion secondary batteries are used in many fields because of their light weight and high energy density.
As a lithium ion secondary battery, an aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode, and a copper foil coated with a carbonaceous material or the like as an active material is used as a negative electrode. What is used is known (a structure of a general secondary battery is shown in FIG. 1).

銅箔には圧延銅箔と電解銅箔がある。圧延銅箔は、強度、疲労特性等の点で二次電池負極板の材料として優れている。二次電池負極板材料として市販されている圧延銅箔の多くは、タフピッチ銅(JIS−C1100)を素材とするものである。タフピッチ銅とは、0.01〜0.05質量%の酸素を含有する純銅であり、銅分は99.90質量%以上に規格化されている(以下、質量%を%と表記する)。
圧延銅箔の製造プロセスでは、タフピッチ銅のインゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で、例えば35〜5μmの範囲の所定の厚みに仕上げる。
Copper foil includes rolled copper foil and electrolytic copper foil. The rolled copper foil is excellent as a material for the secondary battery negative electrode plate in terms of strength, fatigue characteristics, and the like. Many of the rolled copper foils marketed as secondary battery negative electrode plate materials are made of tough pitch copper (JIS-C1100). Tough pitch copper is pure copper containing 0.01 to 0.05 mass% oxygen, and the copper content is standardized to 99.90 mass% or more (hereinafter, mass% is expressed as%).
In the manufacturing process of the rolled copper foil, a tough pitch copper ingot is hot-rolled, and then cold-rolling and annealing are repeated, and finally it is finished to a predetermined thickness in the range of, for example, 35 to 5 μm by final cold-rolling.

一般的に、銅箔負極板は、電解銅箔や圧延銅箔を用いて次のプロセスで製造される。
(1)活物質と結着剤とを溶剤に混練分散したペーストを、集電体となる銅箔の片面もしくは両面に塗布して負極板材とする。
(2)150〜300℃の温度で数十分から数十時間加熱し乾燥する。
(3)必要に応じ、負極板材に加圧する。
(4)せん断加工を施し、所定形状の負極板へ成型する。
せん断加工の例としては、プレス機による打ち抜き加工、シャーリングによる切断加工、丸刃スリッターによる切断加工等がある。
Generally, a copper foil negative electrode plate is manufactured by the following process using electrolytic copper foil or rolled copper foil.
(1) A paste obtained by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a copper foil serving as a current collector to form a negative electrode plate material.
(2) Heat and dry at a temperature of 150 to 300 ° C. for several tens of minutes to several tens of hours.
(3) Pressurize the negative electrode plate material as necessary.
(4) A shearing process is performed to form a negative electrode plate having a predetermined shape.
Examples of shearing include punching with a press, cutting with shearing, and cutting with a round blade slitter.

タフピッチ銅又は無酸素銅を素材とする従来の圧延銅箔は、上記(2)乾燥工程において再結晶を起こして銅箔強度が低下(軟化)し、引張強さが200MPa近くまで低下する。このような軟らかい銅箔は、電池製造工程での負極板の巻き取り、巻回による極板群の製造時に高張力の負荷がかけられて箔切れを起こしやすくなる。
また、リチウムイオン二次電池では、充電時にはリチウムイオンが正極から負極に移動し、放電時にはリチウムイオンが負極から正極に移動する。リチウムイオンの移動に伴って負極活物質が膨張収縮するため、銅箔は充放電によって機械的な繰り返しストレスを受ける。そのため軟化した銅箔は、充放電による機械的な繰り返しストレスを受けて変形し、銅箔表面に塗布された活物質が剥離しやすくなり、銅箔自体も損傷しやすくなる。
In the conventional rolled copper foil made of tough pitch copper or oxygen-free copper, recrystallization occurs in the above (2) drying step, the copper foil strength is reduced (softened), and the tensile strength is reduced to nearly 200 MPa. Such a soft copper foil is subject to high tension load during winding of the negative electrode plate in the battery manufacturing process and manufacturing of the electrode plate group by winding, and the foil easily breaks.
In the lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions move from the negative electrode to the positive electrode during discharging. Since the negative electrode active material expands and contracts as the lithium ions move, the copper foil is subjected to mechanical repeated stress due to charge and discharge. Therefore, the softened copper foil is deformed by repeated mechanical stress due to charging / discharging, and the active material applied to the surface of the copper foil is easily peeled off, and the copper foil itself is easily damaged.

二次電池の小型化に伴い、負極集電体である銅箔の薄肉化が進んでいる。銅箔が薄肉化すると、箔の切れ、変形、損傷等がよりいっそう生じやすくなるため、熱履歴で軟化しない銅箔への要求がさらに高まっている。
このような課題に対応するため、タフピッチ銅を素材とする圧延銅箔に替わり、銅合金を素材とする圧延銅箔(以下、銅合金箔)が提案されている。
With the miniaturization of secondary batteries, the copper foil, which is a negative electrode current collector, is becoming thinner. When the copper foil is thinned, the foil is more likely to be cut, deformed, damaged, etc., and thus the demand for a copper foil that does not soften due to thermal history is further increased.
In order to deal with such problems, a rolled copper foil made of a copper alloy (hereinafter referred to as copper alloy foil) has been proposed instead of a rolled copper foil made of tough pitch copper.

特開2000−303128(特許文献1)では、無酸素銅にCr、Zn、Ag、Ca、Sn、Sb又はBiを0.005又は0.01%添加した銅合金箔が開示されている。特開2003−286528(特許文献2)では、0.063〜0.231%のSnを含有し、水素濃度と酸素濃度を適正に調整した銅合金箔が開示されている。この銅箔はピンホールと屈曲寿命が改善されており、リチウムイオン二次電池の負極集電体にも使用できる。   Japanese Unexamined Patent Publication No. 2000-303128 (Patent Document 1) discloses a copper alloy foil obtained by adding 0.005 or 0.01% of Cr, Zn, Ag, Ca, Sn, Sb or Bi to oxygen-free copper. Japanese Unexamined Patent Application Publication No. 2003-286528 (Patent Document 2) discloses a copper alloy foil containing 0.063 to 0.231% of Sn and appropriately adjusting the hydrogen concentration and the oxygen concentration. This copper foil has improved pinholes and flex life, and can be used as a negative electrode current collector of a lithium ion secondary battery.

一方、二次電池の特性や製造性を改善する目的で、銅箔の結晶方位についても種々検討されている。特開2003−142106(特許文献3)では、銅箔のI(200)/I(111)を0.3〜4.0に調整することで、銅箔の伸びと強度を高め、負極活物質との密着性を改善している。ここで、I(hkl)は銅箔表面に対しX線回折で求めた(hkl)面の積分強度である。ただし、該発明の実施例が開示している銅箔は電解銅箔である。同様に特開2009−4370(特許文献4)でも、電解銅箔に対しI(200)/I(111)を0.5〜1.5に調整し活物質との密着性を改善している。
特開平11−310864(特許文献5)では銅箔のI(200)/I(220)を0.3以上に調整し活物質との密着性を改善している。開示されている銅箔は、タフピッチ銅を素材とし最終冷間圧延加工度を20〜99%とした圧延銅箔である。特開2007−142106(特許文献6)では、銅箔のI(200)/I(220)を0.4以上に調整することで、負極活物質の膨張収縮による応力を緩和している。この銅箔は電解法でも圧延法でも製造できるが、製造方法の詳細は開示されていない。
On the other hand, for the purpose of improving the characteristics and manufacturability of the secondary battery, various studies have been made on the crystal orientation of the copper foil. JP-A-2003-142106 (Patent Document 3) increases the elongation and strength of the copper foil by adjusting I (200) / I (111) of the copper foil to 0.3 to 4.0, and the negative electrode active material Improved adhesion. Here, I (hkl) is the integrated intensity of the (hkl) plane obtained by X-ray diffraction with respect to the copper foil surface. However, the copper foil which the Example of this invention has disclosed is an electrolytic copper foil. Similarly, in JP 2009-4370 (Patent Document 4), I (200) / I (111) is adjusted to 0.5 to 1.5 with respect to the electrolytic copper foil to improve the adhesion with the active material. .
In JP-A-11-310864 (Patent Document 5), I (200) / I (220) of the copper foil is adjusted to 0.3 or more to improve the adhesion with the active material. The disclosed copper foil is a rolled copper foil using tough pitch copper as a raw material and a final cold rolling degree of 20 to 99%. In Japanese Patent Application Laid-Open No. 2007-142106 (Patent Document 6), the stress due to expansion and contraction of the negative electrode active material is relaxed by adjusting I (200) / I (220) of the copper foil to 0.4 or more. Although this copper foil can be manufactured by an electrolytic method or a rolling method, details of the manufacturing method are not disclosed.

特開2000−303128号公報JP 2000-303128 A 特開2003−286528号公報JP 2003-286528 A 特開2003−142106号公報JP 2003-142106 A 特開2009−4370号公報JP 2009-4370 A 特開平11−310864号公報JP-A-11-310864 特開2007−142106号公報JP 2007-142106 A

二次電池負極集電体用の圧延銅箔において、従来から負極板製造プロセスにおける歩留低下の要因になりながら、解決に至っていない課題がある。せん断加工の際にせん断圧力で銅箔表面が塑性変形してダレが発生する問題である。図2は、銅箔左端上から下にせん断力が加えられたせん断加工後の銅箔断面を示す。ダレは、生産効率を低下させるのみならず、負極活物質と銅箔との密着性を阻害して電池性能を低下させるが、上記従来の技術においては課題として意識されていなかった。   In the rolled copper foil for secondary battery negative electrode current collectors, there has been a problem that has not been solved yet, although it has been a factor in yield reduction in the negative electrode plate manufacturing process. This is a problem that the surface of the copper foil is plastically deformed by shearing pressure during the shearing process. FIG. 2 shows a cross section of the copper foil after the shearing process in which a shearing force is applied from the upper left side to the lower side of the copper foil. The sagging not only reduces the production efficiency, but also inhibits the adhesion between the negative electrode active material and the copper foil to lower the battery performance. However, the conventional technique has not been recognized as a problem.

ダレの発生は、乾燥工程の熱履歴における銅箔の軟化により助長される。軟化を抑制するためには、前記特許文献で提案されているように圧延銅箔素材を銅合金化すればよい。しかし、銅合金化し軟化を抑制するだけでは、タフピッチ銅箔又は無酸素銅箔に対しダレが小さくなる効果は認められるものの、ダレが充分に小さいレベルには改善されていなかった。
本発明は、せん断加工の際のダレ発生が改善され、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な圧延銅合金箔ならびにこれを用いた負極集電体、負極板および二次電池を提供することを目的とする。
The occurrence of sagging is promoted by the softening of the copper foil in the thermal history of the drying process. In order to suppress the softening, the rolled copper foil material may be made into a copper alloy as proposed in the patent document. However, the effect of reducing the sagging with respect to the tough pitch copper foil or the oxygen-free copper foil is recognized only by copper alloying and suppressing softening, but the sagging is not improved to a sufficiently small level.
The present invention improves the occurrence of sagging during shearing, and a rolled copper alloy foil suitable as a negative electrode current collector material for secondary batteries including lithium ion secondary batteries, and a negative electrode current collector using the same, An object is to provide a negative electrode plate and a secondary battery.

本発明者は、銅合金圧延箔につき、せん断加工の際のダレを小さくする方策を鋭意研究した。その結果、従来の乾燥工程の熱処理でほとんど軟化しない銅合金圧延箔においても、本発明の特定条件下での熱処理を経ることでダレが生じやすくなり、このときのダレの大きさは該熱処理後の銅合金箔の結晶方位と良い相関を示すこと、該熱処理後にもダレが生じにくい銅合金箔は良好なサイクル寿命を示すことを知見した。そこで、該熱処理後の結晶方位を最適化すべく、銅合金箔の成分組成および製造条件を調整し本発明を成すに至った。
すなわち本発明は、下記構成を有する。
(1)0.05〜0.22質量%のSnを含有し残部Cu及び不純物からなる無酸素銅ベースで、80%IACS以上の導電率を有する二次電池の負極集電体用圧延銅合金箔であり、300℃で30分間加熱した後の結晶方位が、
10≦ (5・I (220)/I0 (220) + 2・I(111)/I0(111) + I (311)/I0 (311)) ≦20
(hkl):銅合金箔表面に対しX線回折で求めた(hkl)面の積分強度
0 (hkl):銅粉末に対しX線回折で求めた(hkl)面の積分強度
なる関係を示すとともに、前記300℃で30分間加熱後の引張り強さが400MPa以上であることを特徴とする銅合金箔。
(2)更に0.1質量%以下のAgを含有することを特徴とする(1)記載の圧延銅合金箔。
(3)上記(1)又は(2)に記載の圧延銅合金箔より構成される負極集電体。
(4)上記(3)に記載の負極集電体の少なくとも片面に、炭素質材料を主成分とする負極活物質層を有する負極板。
(5)上記(3)に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、ケイ素単体、及びケイ素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。
(6)上記(4)又は(5)記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに極板群及び非水電解液を収容する電池ケースとから構成される二次電池。
The inventor diligently studied a method for reducing the sag during shearing of the copper alloy rolled foil. As a result, even in a copper alloy rolled foil that is hardly softened by the heat treatment of the conventional drying process, sagging is likely to occur through the heat treatment under the specific conditions of the present invention, and the size of the sagging at this time is determined after the heat treatment. It has been found that the copper alloy foil shows a good correlation with the crystal orientation of the copper alloy foil, and that the copper alloy foil which does not easily sag after the heat treatment exhibits a good cycle life. Therefore, in order to optimize the crystal orientation after the heat treatment, the composition of the copper alloy foil and the production conditions were adjusted to arrive at the present invention.
That is, the present invention has the following configuration.
(1) A rolled copper alloy for a negative electrode current collector of a secondary battery containing 0.05 to 0.22% by mass of Sn and containing a balance of Cu and impurities and having an electric conductivity of 80% IACS or more. It is a foil, and the crystal orientation after heating at 300 ° C. for 30 minutes is
10 ≦ (5 · I (220) / I 0 (220) + 2 · I (111) / I 0 (111) + I (311) / I 0 (311) ) ≦ 20
I (hkl) : Integrated strength of (hkl) plane obtained by X-ray diffraction with respect to copper alloy foil surface I 0 (hkl) : Relation of integral strength of (hkl) plane obtained by X-ray diffraction with respect to copper powder And a tensile strength after heating at 300 ° C. for 30 minutes is 400 MPa or more.
(2) The rolled copper alloy foil according to (1), further containing 0.1% by mass or less of Ag.
(3) A negative electrode current collector composed of the rolled copper alloy foil according to (1) or (2).
(4) A negative electrode plate having a negative electrode active material layer mainly composed of a carbonaceous material on at least one surface of the negative electrode current collector described in (3) above.
(5) An active material containing at least one selected from the group consisting of metallic lithium, metallic tin, tin compounds, simple silicon, and silicon compounds on at least one surface of the negative electrode current collector described in (3) above A negative electrode plate having a layer.
(6) An electrode plate group in which the negative electrode plate described in (4) or (5) above is insulated and disposed via a separator and a positive electrode plate having a lithium transition metal composite oxide as a main component of the positive electrode active material, non-aqueous electrolysis A secondary battery comprising a liquid and a battery case containing an electrode plate group and a non-aqueous electrolyte.

一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery. せん断加工後の銅箔断面を示す概略図である。It is the schematic which shows the copper foil cross section after a shearing process.

本発明では、銅合金箔の結晶方位、強度(圧延前の引張強さ)および耐熱性(熱処理後の引張強さ)を最適化することにより、せん断加工の際のダレを小さく、さらに電池に組み込まれた後の充放電サイクル寿命を改善した。また、結晶方位、強度および耐熱性を最適化する手段として、無酸素銅にSnを添加した合金を銅合金箔の素材として用い、そのSn濃度および圧延加工条件を制御した。以下、目的とする結晶方位、強度、耐熱性等の銅合金箔の特性、その手段としての銅合金箔の成分、圧延加工等の製造条件の順で詳細を説明する。   In the present invention, by optimizing the crystal orientation, strength (tensile strength before rolling) and heat resistance (tensile strength after heat treatment) of the copper alloy foil, the sagging during shearing is reduced, and the battery is further reduced. Improved charge / discharge cycle life after incorporation. Further, as a means for optimizing the crystal orientation, strength and heat resistance, an alloy obtained by adding Sn to oxygen-free copper was used as a material for the copper alloy foil, and its Sn concentration and rolling process conditions were controlled. Hereinafter, the details of the characteristics of the copper alloy foil such as the target crystal orientation, strength, and heat resistance, the components of the copper alloy foil as its means, and the manufacturing conditions such as rolling will be described in detail.

(結晶方位)
銅箔負極板は、活物質ペーストを塗布して乾燥工程の熱処理を経た後に、せん断加工が行われて成型される。そのため、せん断加工の際のダレ防止を目的とする本発明の圧延銅合金箔では該熱処理を経た後の結晶方位を問題とする。本発明が想定する該熱処理での熱負荷レベルは、300℃で30分間の熱処理に相当する。これは従来の熱負荷の基準である200℃で30分(特許文献1)などの条件より極めて厳しい条件である。なお、銅箔の結晶方位について言及した前記特許文献は、いずれも熱処理前の結晶方位を検討したものであり、せん断加工の際のダレについては全く意識されていなかったため熱処理後の結晶方位については検討されていなかった。
(Crystal orientation)
The copper foil negative electrode plate is formed by applying an active material paste and undergoing a heat treatment in a drying process, followed by a shearing process. Therefore, in the rolled copper alloy foil of the present invention intended to prevent sagging during shearing, the crystal orientation after the heat treatment is a problem. The heat load level in the heat treatment assumed by the present invention corresponds to a heat treatment at 300 ° C. for 30 minutes. This is a condition that is extremely stricter than the conventional condition such as 30 minutes at 200 ° C. (patent document 1), which is the standard for heat load. The above-mentioned patent documents that refer to the crystal orientation of the copper foil all examined the crystal orientation before the heat treatment, and were not aware of the sag at the time of shearing, so the crystal orientation after the heat treatment was It was not examined.

300℃で30分間の加熱処理を施した銅合金箔について、板面の結晶方位とせん断加工の際のダレとの関係を実験的に検討したところ、ダレ減少に最も有効な成分は(220)であり、次に有効な方位は(111)であり、(311)方位についても若干の効果が認められた。また、次式で与えられるKがダレの大きさと良い相関を持ち、Kを10〜20、好ましくは10〜18に制御することによりダレが改善されることが判明した。ここで、I(hkl)は銅箔表面に対しX線回折で求めた(hkl)面の積分強度である。
K= 5・I (220)/I0 (220) + 2・I(111)/I0(111) + I (311)/I0 (311)
The copper alloy foil heat-treated at 300 ° C. for 30 minutes was experimentally examined for the relationship between the crystal orientation of the plate surface and sag during shearing. The most effective component for sag reduction was (220) The next effective orientation is (111), and a slight effect was also observed for the (311) orientation. Further, it has been found that K given by the following equation has a good correlation with the size of the sagging, and that sagging is improved by controlling K to 10 to 20, preferably 10 to 18. Here, I (hkl) is the integrated intensity of the (hkl) plane obtained by X-ray diffraction with respect to the copper foil surface.
K = 5 · I (220) / I 0 (220) + 2 · I (111) / I 0 (111) + I (311) / I 0 (311)

300℃で30分間加熱後のKが、10未満になるとダレが大きくなる(以下、Kは300℃で30分間加熱後の値とする)。大きなダレは、負極活物質と銅箔との密着性を阻害し、電池の充放電サイクル寿命を短くする。一方、Kが20を超えると銅合金箔が脆くなるため、充放電ストレスを受けた際に銅合金箔に亀裂が発生しやすくなり、やはり電池の充放電サイクル寿命が短くなる。   When K after heating at 300 ° C. for 30 minutes is less than 10, dripping increases (hereinafter, K is a value after heating at 300 ° C. for 30 minutes). The large sagging hinders the adhesion between the negative electrode active material and the copper foil and shortens the charge / discharge cycle life of the battery. On the other hand, if K exceeds 20, the copper alloy foil becomes brittle, so that the copper alloy foil is easily cracked when subjected to charge / discharge stress, and the charge / discharge cycle life of the battery is also shortened.

(銅合金箔の強度に関する耐熱性)
本発明の銅合金箔に求められる耐熱性として、300℃で30分間加熱後の引張強さを400MPa以上に規定する。加熱後の引張強さが400MPa未満になると、充放電ストレスにより銅箔が変形し、電池の充放電サイクル寿命が短くなる。より好ましい300℃で30分間加熱後の引張強さは450MPa以上である。
ここで、300℃で30分間加熱後に400MPa以上の引張強さを維持するためには、圧延上がりの状態で480MPa以上の引張強さを有していることが好ましい。より好ましい圧延上がりの引張強さは520MPa以上である。
(Heat resistance related to the strength of copper alloy foil)
As the heat resistance required for the copper alloy foil of the present invention, the tensile strength after heating at 300 ° C. for 30 minutes is defined as 400 MPa or more. When the tensile strength after heating is less than 400 MPa, the copper foil is deformed by charge / discharge stress, and the charge / discharge cycle life of the battery is shortened. More preferably, the tensile strength after heating at 300 ° C. for 30 minutes is 450 MPa or more.
Here, in order to maintain a tensile strength of 400 MPa or more after heating at 300 ° C. for 30 minutes, it is preferable to have a tensile strength of 480 MPa or more in a rolled state. A more preferable tensile strength after rolling is 520 MPa or more.

(銅合金箔の導電率)
タフピッチ銅を素材とする従来の圧延銅箔の導電率は約100%IACSであるが、素材を銅合金化することにより、銅箔の導電率は低下して電池性能が低下する傾向がある。本発明のSnを含む圧延銅箔の導電率は、80%IACS以上、好ましくは83%IACS以上であり、このレベルであると電池性能は低下しない。
(Conductivity of copper alloy foil)
The conductivity of a conventional rolled copper foil made of tough pitch copper is about 100% IACS. However, when the material is made of a copper alloy, the conductivity of the copper foil is lowered and the battery performance tends to be lowered. The electrical conductivity of the rolled copper foil containing Sn of the present invention is 80% IACS or more, preferably 83% IACS or more, and battery performance does not deteriorate at this level.

(成分)
本発明の銅合金箔に含有されるSnは0.05〜0.22%、好ましくは0.10〜0.17%である。Snを0.05%以上にすることで、圧延上がりの引張強さを480MPa以上、300℃で30分間加熱後の引張強さを400MPa以上、さらにKを10以上に調整することが可能となる。Snを0.10%以上にすることで、圧延上がりの引張強さを520MPa以上、300℃で30分間加熱後の引張強さを450MPa以上に調整することが可能となる。
一方、Snを0.22%以下にすることで導電率を80%IACS以上、Kを20以下に調整することが可能となる。Snを0.17%以下にすることで導電率を83%IACS以上、Kを18以下に調整することが可能となる。
(component)
Sn contained in the copper alloy foil of the present invention is 0.05 to 0.22%, preferably 0.10 to 0.17%. By making Sn 0.05% or more, it becomes possible to adjust the tensile strength after rolling to 480 MPa or more, the tensile strength after heating at 300 ° C. for 30 minutes to 400 MPa or more, and further K to 10 or more. . By making Sn 0.10% or more, it becomes possible to adjust the tensile strength after rolling to 520 MPa or more and the tensile strength after heating at 300 ° C. for 30 minutes to 450 MPa or more.
On the other hand, by setting Sn to 0.22% or less, it becomes possible to adjust the conductivity to 80% IACS or more and K to 20 or less. By making Sn 0.17% or less, the conductivity can be adjusted to 83% IACS or more and K to 18 or less.

当業者が通常使用する純銅材料には、JIS−C1020に規格する無酸素銅、JIS−C1100に規格するタフピッチ銅、JIS−C1201、C1220、C1221に規格するりん脱酸銅がある。無酸素銅溶湯の酸素濃度は通常0.001%以下であり、タフピッチ銅溶湯の酸素濃度は通常0.01〜0.05%である。りん脱酸銅は0.004〜0.04%のPを含有する。本発明の銅合金箔では、無酸素銅溶湯にSnを添加する。従って、本発明の銅合金箔の酸素濃度は0.001%以下であり、酸素濃度の調整は、溶湯のカーボン脱酸等の当業者公知の技術により行うことができる。
一方、Snをタフピッチ銅に添加するとSnが酸化物粒子を形成し、Snの強度、耐熱性および結晶方位に対する作用効果が得られないだけでなく、酸化物粒子が充放電ストレスを受けた際にクラックの起点となり電池の充放電サイクル寿命が短くなる。また、りん脱酸銅にSnを添加すると導電率や耐応力腐食割れ性が不足する。
Pure copper materials commonly used by those skilled in the art include oxygen-free copper standardized by JIS-C1020, tough pitch copper standardized by JIS-C1100, and phosphorous deoxidized copper standardized by JIS-C1201, C1220, and C1221. The oxygen concentration of the oxygen-free copper melt is usually 0.001% or less, and the oxygen concentration of the tough pitch copper melt is usually 0.01 to 0.05%. Phosphorus deoxidized copper contains 0.004 to 0.04% P. In the copper alloy foil of the present invention, Sn is added to the oxygen-free molten copper. Therefore, the oxygen concentration of the copper alloy foil of the present invention is 0.001% or less, and the oxygen concentration can be adjusted by techniques known to those skilled in the art, such as carbon deoxidation of molten metal.
On the other hand, when Sn is added to tough pitch copper, Sn forms oxide particles, and not only the effects of Sn on strength, heat resistance and crystal orientation are obtained, but also when the oxide particles are subjected to charge / discharge stress. It becomes the starting point of the crack and the charge / discharge cycle life of the battery is shortened. Moreover, when Sn is added to phosphorous deoxidized copper, conductivity and stress corrosion cracking resistance are insufficient.

本発明の銅合金箔は、0.1%以下のAgを含有することができる。Agを添加することにより、導電率を低下させずに耐熱性を改善することができる。0.1%を超えるAgを添加すると耐熱性はさらに向上するが、製造コストが増加することに加え、延性が低下し箔への圧延加工が難しくなる。より好ましいAg濃度は0.06%以下である。なお、銅箔の溶解原料となる電気銅は、不可避的不純物として、通常Agを0.001%程度含有する。   The copper alloy foil of the present invention can contain 0.1% or less of Ag. By adding Ag, the heat resistance can be improved without lowering the electrical conductivity. When Ag exceeding 0.1% is added, the heat resistance is further improved, but in addition to an increase in production cost, ductility is lowered and rolling into a foil becomes difficult. A more preferable Ag concentration is 0.06% or less. In addition, the electrolytic copper used as the melting material of the copper foil usually contains about 0.001% of Ag as an unavoidable impurity.

(銅箔の製造方法)
インゴットの溶製では、まずカーボンによる脱酸反応を利用して溶銅中の酸素濃度を0.001%以下に下げ、その後合金元素を添加する。次に、インゴットを熱間圧延により厚さ10mm程度の板とし、その後冷間圧延と再結晶焼鈍を繰り返し、最後に冷間圧延で所定厚み(一般的には35〜5μm)に仕上げる。厚みが5μm以下になると、単位面積当たりの引張強さが高くても破断しやすくなる。一方、35μmを超えると、負極板が厚くなるため二次電池を小型化しにくくなる。
(Manufacturing method of copper foil)
In the melting of an ingot, first, the oxygen concentration in molten copper is lowered to 0.001% or less by utilizing a deoxidation reaction with carbon, and then an alloy element is added. Next, the ingot is made into a plate having a thickness of about 10 mm by hot rolling, and then cold rolling and recrystallization annealing are repeated, and finally finished to a predetermined thickness (generally 35 to 5 μm) by cold rolling. When the thickness is 5 μm or less, it tends to break even if the tensile strength per unit area is high. On the other hand, if it exceeds 35 μm, the negative electrode plate becomes thick, and it becomes difficult to reduce the size of the secondary battery.

再結晶焼鈍は、炉温が300〜800℃の範囲、焼鈍時間が数秒間〜数時間の範囲で、焼鈍後の結晶粒径が所定の大きさ(通常は3〜30μm)になる条件で行われる。焼鈍後の材料は、焼鈍中に生成した表面酸化膜を除去するため、硫酸水溶液等を用いて酸洗される。
Kを制御する方法は、特定の方法に限定される訳ではないが、例えば、最終の冷間圧延条件を下記のように調整することで制御できる。
Recrystallization annealing is performed under the conditions that the furnace temperature is in the range of 300 to 800 ° C., the annealing time is in the range of several seconds to several hours, and the crystal grain size after annealing is a predetermined size (usually 3 to 30 μm). Is called. The material after annealing is pickled using a sulfuric acid aqueous solution or the like in order to remove the surface oxide film generated during the annealing.
The method of controlling K is not limited to a specific method, but can be controlled, for example, by adjusting the final cold rolling conditions as follows.

最終再結晶焼鈍後の最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の箔厚に仕上げてゆく。Kには、最終冷間圧延における総加工度と1パスあたりの加工度が影響を及ぼす。ここで、総加工度Rは、最終冷間圧延における板厚減少率であり、R=(T0−T)/T0(T0:最終冷間圧延前の厚み、T:最終冷間圧延後の厚み)で与えられる。また、1パスあたりの加工度rとは、圧延ロールを1回通過したときの板厚減少率であり、r=(t0−t)/t0(t0:圧延ロール通過前の厚み、t:圧延ロール通過後の厚み)で与えられる。 In the final cold rolling after the final recrystallization annealing, the material is repeatedly passed between a pair of rolling rolls to finish the target foil thickness. K is influenced by the total degree of work in the final cold rolling and the degree of work per pass. Here, the total workability R is a sheet thickness reduction rate in the final cold rolling, and R = (T 0 −T) / T 0 (T 0 : thickness before final cold rolling, T: final cold rolling) Later thickness). Further, the processing degree r per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (t 0 -t) / t 0 (t 0 : thickness before passing the rolling roll, t: thickness after passing through the rolling roll).

加工度rが40%を超えるパスにおいては、銅合金箔の金属組織にせん断変形が生じ、このせん断変形はKを高める作用をする。最終圧延において、rが40%を超えるパスを3回以上行うことで、Kを10以上に調整することができる。該パス回数の上限値についてはKの点からは規制されないが、rが40%を超える高加工度のパス数が増えると、箔の圧延形状(平坦性)の調整が難しくなるので、一般的には5回以下に設定する。一方、rが60%を超えるパスを行うと、せん断変形が過剰に生じ、Kが20を超えてしまう。すなわち、rが40%を超え60%以下のパスを3〜5回行うことがダレ低減に有効である。
なお、最終冷間圧延において極薄箔まで圧延する際、1パスあたりの加工度を高くすると、圧延中に銅合金箔が破断しやすくなる。従って、従来は圧延性を重視してrは比較的低めに設定され、rが40%を超えるパスが行われたとしても、板厚が厚い初期の段階で一回行われる程度であった。
In a pass where the working degree r exceeds 40%, shear deformation occurs in the metal structure of the copper alloy foil, and this shear deformation acts to increase K. In the final rolling, K can be adjusted to 10 or more by performing passes in which r exceeds 40% three times or more. The upper limit of the number of passes is not restricted from the point of K, but it is difficult to adjust the rolling shape (flatness) of the foil when the number of passes with a high workability with r exceeding 40% increases. Set to 5 or less. On the other hand, if r exceeds 60%, shear deformation occurs excessively and K exceeds 20. In other words, it is effective in reducing sagging that the pass of r exceeding 40% and not more than 60% is performed 3 to 5 times.
In addition, when rolling to ultrathin foil in the final cold rolling, if the degree of processing per pass is increased, the copper alloy foil is likely to break during rolling. Therefore, conventionally, r is set relatively low with emphasis on rollability, and even if a pass exceeding 40% is performed, it is only performed once in the initial stage where the plate thickness is thick.

最終冷間圧延の総加工度Rは好ましくは81〜97%、更に好ましくは85〜94%である。Rが81%に満たないと、rを制御してもKを10以上に調整することが難しくなり、また300℃で30分間加熱後に400MPa以上の引張強さを得ることも難しくなる。   The total workability R of the final cold rolling is preferably 81 to 97%, more preferably 85 to 94%. If R is less than 81%, it becomes difficult to adjust K to 10 or more even if r is controlled, and it becomes difficult to obtain a tensile strength of 400 MPa or more after heating at 300 ° C. for 30 minutes.

(電池の構成)
本発明に関わる負極板及び二次電池は、上記銅箔を負極集電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。
(Battery configuration)
The negative electrode plate and the secondary battery according to the present invention are characterized by using the above copper foil as a negative electrode current collector, and other configurations are not limited, and commonly used known ones are used. Can be used.

(負極)
負極は、本発明の負極集電体と、負極集電体の片面もしくは両面に形成される負極活物質より構成される。負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる炭素質材料;等が挙げられる。
前記金属としては、リチウム、アルミニウム、マグネシウム、すず、ケイ素等が挙げられる。
前記金属酸化物としては、すず酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。前記金属硫化物としては、すず硫化物、チタン硫化物等が挙げられる。前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムすず合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
(Negative electrode)
A negative electrode is comprised from the negative electrode collector of this invention, and the negative electrode active material formed in the single side | surface or both surfaces of a negative electrode collector. Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.
Examples of the carbonaceous material include carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, mesophase pitch carbon, and mesophase pitch. And carbonaceous materials obtained by subjecting carbon fibers, mesophase microspheres and the like to heat treatment at 500 to 3000 ° C., and the like.
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。結着剤としては、カルボキシメチルセルロース(CMC)及びスチレンブタジエン(SBR)を含む混合物が挙げられる。CMC及びSBRを含む結着剤を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等が挙げられる。
The negative electrode active material-containing layer can contain a binder. Examples of the binder include a mixture containing carboxymethyl cellulose (CMC) and styrene butadiene (SBR). By using a binder containing CMC and SBR, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

(正極)
正極は、正極集電体と、前記正極集電体の片面もしくは両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質含有層は、例えば、活物質と結着剤とを含有する。正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、又はフッ素ゴムのようなゴム系樹脂を用いることができる。
活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することができる。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
The positive electrode active material-containing layer contains, for example, an active material and a binder. Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more. As the binder, a fluoroelastomer resin, a polyolefin resin, a styrene resin, a thermoplastic elastomer resin such as an acrylic resin, or a rubber resin such as fluororubber can be used.
The active material-containing layer may further contain acetylene black, graphite such as powdered expanded graphite, carbon fiber pulverized material, graphitized carbon fiber pulverized material, and the like as a conductive auxiliary material.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状もしくは固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, and γ-butyrolactone. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

(圧延銅箔の作製)
カーボン脱酸により酸素濃度を調整した溶銅に合金元素を添加した後、幅が600mm、厚みが200mmのインゴットに鋳造した。このインゴットを850℃で3時間加熱し、熱間圧延により厚み10mmの板にした。次に、表面の酸化スケールを研削除去し、冷間圧延により1.5mmの板とした。その後、再結晶焼鈍と冷間圧延を繰り返して、最終の圧延で厚みを17〜7μmに仕上げた。
最終再結晶焼鈍(最終冷間圧延直前の焼鈍)は連続焼鈍ラインを用いて行った。炉温を700℃とし、焼鈍後の結晶粒径が10μmになるように、材料の通板速度(炉内の滞留時間)を調整した。
最終冷間圧延における総加工度(R)を変化させるために、最終再結晶焼鈍を施す板厚を予め調整した。また、最終冷間圧延では1パスあたりの加工度(r)を種々変化させた。
(Production of rolled copper foil)
After adding an alloy element to the molten copper whose oxygen concentration was adjusted by carbon deoxidation, it was cast into an ingot having a width of 600 mm and a thickness of 200 mm. The ingot was heated at 850 ° C. for 3 hours and formed into a plate having a thickness of 10 mm by hot rolling. Next, the oxide scale on the surface was removed by grinding, and a 1.5 mm plate was formed by cold rolling. Then, recrystallization annealing and cold rolling were repeated, and the thickness was finished to 17 to 7 μm by final rolling.
The final recrystallization annealing (annealing immediately before the final cold rolling) was performed using a continuous annealing line. The furnace temperature was set to 700 ° C., and the material passing speed (residence time in the furnace) was adjusted so that the crystal grain size after annealing was 10 μm.
In order to change the total workability (R) in the final cold rolling, the thickness of the plate to be subjected to final recrystallization annealing was adjusted in advance. In the final cold rolling, the degree of processing (r) per pass was variously changed.

(成分)
銅合金母地中の酸素濃度を不活性ガス溶融−赤外線吸収法で、合金元素をICP−質量分析法で分析した。ここで、合金元素の分析には銅箔試料を用いたが、O分析には1.5mmの板から採取した試料を用いた。これは、箔試料では質量に対する表面積の比率が非常に大きいため(例えば1gの試料の場合、厚さ1.5mmの板の表面積は1.5cm2に対し、厚さ10μmの箔の表面積は220cm2)、銅箔試料を用いて酸素を分析すると、表面の酸化膜及び吸着水膜中の酸素が加算され、酸素分析値が銅箔中の酸素濃度より0.005%程度増加するためである。なお、箔試料を用い、これが無酸素銅ベースの箔であることを判定するためには、試料の金属組織を観察し、酸化物粒子が存在しないこと(直径2μm以上の酸化物粒子が0.01個/mm2以下)を確認すればよい。
(component)
The oxygen concentration in the copper alloy matrix was analyzed by an inert gas melting-infrared absorption method, and the alloy elements were analyzed by ICP-mass spectrometry. Here, a copper foil sample was used for the analysis of the alloy element, but a sample taken from a 1.5 mm plate was used for the O analysis. This is because the ratio of the surface area to the mass of the foil sample is very large (for example, in the case of a 1 g sample, the surface area of a 1.5 mm thick plate is 1.5 cm 2 while the surface area of a 10 μm thick foil is 220 cm. 2 ) When oxygen is analyzed using a copper foil sample, oxygen in the surface oxide film and adsorbed water film is added, and the oxygen analysis value is increased by about 0.005% from the oxygen concentration in the copper foil. . In addition, in order to determine that this is an oxygen-free copper-based foil using a foil sample, the metal structure of the sample is observed, and no oxide particles are present (the oxide particles having a diameter of 2 μm or more are 0. (01 / mm 2 or less) may be confirmed.

(引張強さ、導電率)
負極活物質の乾燥工程を模して銅合金箔試料を300℃で30分間加熱した。加熱前後の試料に対し、IPC(Institute for Interconnecting and Packaging Electronics Circuits)規格、IPC−TM−650;Method 2.4.19に準じて引張強さを求めた。試験片は、幅12.7mm、長さ150mmとし、試験片の長さ方向が圧延方向と平行になるように採取した。引張り速度は50mm/minとした。また、最終冷間圧延上がり(300℃で30分間加熱前)の試料に対し、引張り試験用の試験片を用い四端子法により20℃での導電率を求めた。
(Tensile strength, conductivity)
The copper alloy foil sample was heated at 300 ° C. for 30 minutes to simulate the drying process of the negative electrode active material. The tensile strength was calculated | required according to IPC (Institute for Interconnecting and Packaging Electronics Circuits) specification, IPC-TM-650; Method 2.4.19 with respect to the sample before and behind a heating. The test piece was 12.7 mm in width and 150 mm in length, and was collected so that the length direction of the test piece was parallel to the rolling direction. The pulling speed was 50 mm / min. Moreover, the electrical conductivity in 20 degreeC was calculated | required with the four-terminal method using the test piece for a tension test with respect to the sample of final cold rolling completion (before heating for 30 minutes at 300 degreeC).

(結晶方位)
負極活物質の乾燥工程を模して銅合金箔試料を300℃で30分間加熱した。加熱後の試料に対し、X線回折により銅箔表面における(220)、(111)および(311)の各面のX線強度を求めた。この値をあらかじめ測定しておいた微粉末銅(関東化学株式会社製、銅(粉末)、鹿1級、>99.85%、100−200mesh)での各面の積分強度で割り、I (220)/I0 (220)、I(111)/I0(111)およびI (311)/I0 (311)の値を求めた。X線回折はCo管球を用いて行い、ピーク強度の積分値は、(220):2θ=86〜91°、(111):2θ=47〜55°、(311):2θ=107〜113°(θは回折角度)の範囲で測定した。
(Crystal orientation)
The copper alloy foil sample was heated at 300 ° C. for 30 minutes to simulate the drying process of the negative electrode active material. The X-ray intensity of each surface of (220), (111) and (311) on the copper foil surface was determined by X-ray diffraction for the heated sample. Fine powder of copper this value measured in advance (Kanto Chemical Co., copper (powder), deer first grade,> 99.85%, 100-200 mesh) divided by the integrated intensity of each surface in, I ( 220) / I 0 (220) , I (111) / I 0 (111) and I (311) / I 0 (311) were determined. X-ray diffraction is performed using a Co tube, and the integrated values of peak intensities are (220): 2θ = 86-91 °, (111): 2θ = 47-55 °, (311): 2θ = 107-113. Measurements were made in the range of ° (θ is the diffraction angle).

(ダレの評価)
負極活物質の乾燥工程を模して銅合金箔試料を300℃で30分間加熱した。次に、プレス打ち抜き加工により、円形の試料を打ち抜いた。ダイスの孔径は5.000mmとした。ポンチは円筒形とし、その直径は、試料厚みに応じて次の通りとした。厚み17μmの試料:4.995mm、厚み12μmの試料:4.996mm、厚み10μmの試料:4.997mm、厚み7μmの試料:4.998mm。打ち抜き速度は10mm/minとし、材料押さえは行わなかった。
打ち抜いた試料の破面を断面から観察し、図2に示すダレの寸法を測定した。測定位置は、圧延方向に平行な破面部位とした。ダレが箔厚の1/5以下の場合に良好なせん断加工性が得られたと判定した。
(Dare evaluation)
The copper alloy foil sample was heated at 300 ° C. for 30 minutes to simulate the drying process of the negative electrode active material. Next, a circular sample was punched out by press punching. The die hole diameter was 5.000 mm. The punch was cylindrical and the diameter was as follows according to the sample thickness. 17 μm thick sample: 4.995 mm, 12 μm thick sample: 4.996 mm, 10 μm thick sample: 4.997 mm, 7 μm thick sample: 4.998 mm. The punching speed was 10 mm / min, and no material pressing was performed.
The fracture surface of the punched sample was observed from the cross section, and the size of the sagging shown in FIG. 2 was measured. The measurement position was a fracture surface portion parallel to the rolling direction. When the sagging was 1/5 or less of the foil thickness, it was determined that good shear workability was obtained.

(サイクル寿命)
厚み10μmの試料については、図1に示す円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、そして増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、300℃で30分間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(2)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50重量%水性ディスパージョン7重量部、増粘剤としてカルボキシルメチルセルロース1重量%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して200℃で1時間加熱し乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(3)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(4)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これらの後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、エチルメチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1.0モル溶かした電解液を所定量注液した。この電解液を正極活物質層及び負極活物質層内に含浸させた。
(Cycle life)
For a sample having a thickness of 10 μm, a cylindrical lithium ion secondary battery shown in FIG. 1 was prepared by the following procedure, and the cycle life was measured.
(1) A thickener aqueous solution dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of carboxymethylcellulose as a thickener. 23 parts by weight was kneaded and dispersed to obtain a negative electrode paste. This negative electrode paste was applied on both sides of the rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 300 ° C. for 30 minutes, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(2) LiCoO 2 powder 50 parts by weight as a positive electrode active material, acetylene black 1.5 parts by weight as a conductive agent, PTFE 50% by weight aqueous dispersion 7 parts by weight, and carboxymethyl cellulose 1% by weight aqueous solution 41 as a thickener .5 parts by weight was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, heated at 200 ° C. for 1 hour and dried. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.
(3) A battery case 8 accommodates an electrode group wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(4) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these, a non-aqueous electrolyte is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2 to form a cylindrical lithium ion having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh. A secondary battery was produced.
(5) The electrolytic solution was obtained by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 20% by volume of methyl propionate. A predetermined amount of electrolyte was injected. The electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用い、充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が600回以上になった場合に良好なサイクル特性、700回以上になった場合に特に良好なサイクル特性が得られたと判定した。   Charge / discharge cycle characteristics were evaluated using the produced batteries. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life. Charging conditions: Constant current-constant voltage charging at 4.2V for 2 hours, and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates To 40 mA (0.05 CmA). Discharge conditions: Discharge was performed at a constant current of 780 mA (1 CmA) to a discharge end voltage of 3.0 V. It was determined that good cycle characteristics were obtained when the cycle life was 600 times or more, and particularly good cycle characteristics were obtained when the cycle life was 700 times or more.

評価結果を表1及び2に示す。各実施例及び比較例の最終冷間圧延で採用した方式毎の各パスの加工度は表3に示す。
箔厚が10μmの発明例1〜10及び15〜23では、無酸素銅に0.05〜0.22%のSnおよび0.1%以下のAgを添加し、総加工度Rが81〜97%、rが40%を超えるパス回数が3〜5回、rが60%以下であった。その結果、80%IACS以上の導電率と480MPa以上の引張り強さが得られ、300℃で30分間加熱後の引張り強さが400MPa以上、300℃で30分間加熱後のKが10〜20となった。このため、ダレが箔厚の1/5以下と小さく、600回以上の良好なサイクル寿命が得られた。
これらの中で、Snが0.10〜0.17%、Rが85〜95%の発明例3〜6、15〜17、19〜22では、83%IACS以上の導電率と520MPa以上の引張り強さが得られ、300℃で30分間加熱後の引張り強さが450MPa以上、300℃で30分間加熱後のKが18以下となり、700回以上の非常に良好なサイクル寿命が得られた。
箔厚が10μmとは異なる発明例31〜38についても、同様に合金成分および圧延条件を調整することにより、300℃で30分間加熱後の引張り強さが400MPa以上、Kが10〜20となり、ダレが箔厚の1/5以下に改善されていることを確認した。
The evaluation results are shown in Tables 1 and 2. Table 3 shows the degree of processing of each pass for each method employed in the final cold rolling of each example and comparative example.
In Invention Examples 1 to 10 and 15 to 23 having a foil thickness of 10 μm, 0.05 to 0.22% Sn and 0.1% or less of Ag are added to oxygen-free copper, and the total processing degree R is 81 to 97. %, The number of passes in which r exceeds 40% was 3 to 5, and r was 60% or less. As a result, an electrical conductivity of 80% IACS or higher and a tensile strength of 480 MPa or higher were obtained. Tensile strength after heating at 300 ° C. for 30 minutes was 400 MPa or higher, and K after heating at 300 ° C. for 30 minutes was 10-20. became. For this reason, sagging was as small as 1/5 or less of the foil thickness, and a good cycle life of 600 times or more was obtained.
Among these, in Invention Examples 3 to 6, 15 to 17, and 19 to 22 with Sn of 0.10 to 0.17% and R of 85 to 95%, a conductivity of 83% IACS or more and a tensile of 520 MPa or more Strength was obtained, the tensile strength after heating at 300 ° C. for 30 minutes was 450 MPa or more, K after heating at 300 ° C. for 30 minutes was 18 or less, and a very good cycle life of 700 times or more was obtained.
For Invention Examples 31 to 38 having a foil thickness different from 10 μm, the tensile strength after heating at 300 ° C. for 30 minutes is 400 MPa or more and K is 10 to 20 by adjusting the alloy components and rolling conditions in the same manner. It was confirmed that sagging was improved to 1/5 or less of the foil thickness.

比較例11は従来の無酸素銅であり、比較例12は無酸素銅にSnを添加したものの添加量が0.05%満たなかったものである。これらでは300℃での30分間加熱後のKが10未満になったため、ダレが箔厚の1/5を超え、銅箔と活物質との充分な密着性が得られなかった。また、300℃での30分間加熱により引張強さが400MPa未満まで低下したため、充放電の繰り返しストレスにより銅箔が変形した。その結果、充放電の繰り返しストレスを受けて活物質が剥離しサイクル寿命が600回に満たなかった。
比較例13は0.22%を超えるSnを添加したものである。300℃での30分間加熱後のKが20を超えたため銅箔が脆くなり、繰り返しストレスを受けた際に銅箔に亀裂が入り、サイクル寿命が600回に満たなかった。さらに、導電率が80%IACSを下回ったため、発熱や電圧損失が無視できなくなり、目的とする二次電池を製造できなくなった。
比較例14では酸素が0.001%を超えたため、添加したSnの一部が酸化して酸化Snとなった。その結果、充放電の繰り返しストレスを受けた際に、酸化Snを起点として銅箔に亀裂が生じ、サイクル寿命が600回に満たなかった。また、酸化したSnはCuの耐熱性および結晶方位の改善に寄与しないため、同量のSnを添加した発明例3に対し、300℃での30分間加熱後のKおよび引張強さが低くなった。
Comparative Example 11 is a conventional oxygen-free copper, and Comparative Example 12 is a sample in which Sn is added to oxygen-free copper and the amount added is less than 0.05%. In these, since K after heating at 300 ° C. for 30 minutes became less than 10, the sagging exceeded 1/5 of the foil thickness, and sufficient adhesion between the copper foil and the active material could not be obtained. Moreover, since the tensile strength decreased to less than 400 MPa by heating at 300 ° C. for 30 minutes, the copper foil was deformed by repeated charge and discharge stress. As a result, the active material peeled off under repeated charge / discharge stress, and the cycle life was less than 600 times.
In Comparative Example 13, Sn exceeding 0.22% was added. The copper foil became brittle because K after heating at 300 ° C. for 30 minutes exceeded 20, and the copper foil cracked when subjected to repeated stress, and the cycle life was less than 600 times. Furthermore, since the conductivity was less than 80% IACS, heat generation and voltage loss could not be ignored, and the intended secondary battery could not be manufactured.
In Comparative Example 14, since oxygen exceeded 0.001%, a part of the added Sn was oxidized to become oxidized Sn. As a result, when subjected to repeated charge and discharge stress, the copper foil cracked starting from Sn oxide, and the cycle life was less than 600 times. Also, oxidized Sn does not contribute to the improvement of the heat resistance and crystal orientation of Cu, and therefore K and tensile strength after heating at 300 ° C. for 30 minutes are lower than Example 3 to which the same amount of Sn was added. It was.

比較例24〜27は、1パスあたりの加工度rが40%を超えるパス回数が3回に満たなかったものである。ダレが箔厚の1/5を超え、銅箔と活物質との充分な密着性が得られなかった。その結果、充放電の繰り返しストレスを受けて活物質が剥離しサイクル寿命が600回に満たなかった。箔厚が10μmとは異なる比較例34、39についても、rが40%を超えるパス回数が3回に満たなかったため、ダレが箔厚の1/5を超えた。
比較例28はrが60%を超えるパスが行われたものである。300℃での30分間加熱後のKが20を超えたため銅箔が脆くなり、繰り返しストレスを受けた際に銅箔に亀裂が入り、サイクル寿命が600回に満たなかった。
比較例29は総加工度Rが81%に満たなかったものである。300℃で30分間加熱後のKが10未満になったため、ダレが箔厚の1/5を超え、銅箔と活物質との充分な密着性が得られなかった。また、300℃での30分間加熱により引張強さが400MPa未満まで低下したため、充放電の繰り返しストレスにより銅箔が変形した。その結果、充放電の繰り返しストレスを受けて塑活物質が剥離しサイクル寿命が600回に満たなかった。
比較例30は総加工度Rが97%を超えたものである。300℃での30分間加熱後のKが20を超えたため銅箔が脆くなり、繰り返しストレスを受けた際に銅箔に亀裂が入り、サイクル寿命が600回に満たなかった。
In Comparative Examples 24-27, the number of passes in which the degree of processing r per pass exceeds 40% was less than three. The sagging exceeded 1/5 of the foil thickness, and sufficient adhesion between the copper foil and the active material could not be obtained. As a result, the active material peeled off under repeated charge / discharge stress, and the cycle life was less than 600 times. Also in Comparative Examples 34 and 39 having a foil thickness different from 10 μm, the number of passes in which r exceeded 40% was less than 3, and the sagging exceeded 1/5 of the foil thickness.
In Comparative Example 28, a pass in which r exceeds 60% was performed. The copper foil became brittle because K after heating at 300 ° C. for 30 minutes exceeded 20, and the copper foil cracked when subjected to repeated stress, and the cycle life was less than 600 times.
In Comparative Example 29, the total degree of processing R was less than 81%. Since K after heating at 300 ° C. for 30 minutes was less than 10, sagging exceeded 1/5 of the foil thickness, and sufficient adhesion between the copper foil and the active material could not be obtained. Moreover, since the tensile strength decreased to less than 400 MPa by heating at 300 ° C. for 30 minutes, the copper foil was deformed by repeated charge and discharge stress. As a result, the plastic active material peeled due to repeated charge and discharge stress, and the cycle life was less than 600 times.
In Comparative Example 30, the total degree of processing R exceeds 97%. The copper foil became brittle because K after heating at 300 ° C. for 30 minutes exceeded 20, and the copper foil cracked when subjected to repeated stress, and the cycle life was less than 600 times.

Figure 0005345974
Figure 0005345974

Figure 0005345974
Figure 0005345974

Figure 0005345974
Figure 0005345974

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (6)

0.05〜0.22質量%のSnを含有し残部Cu及び不純物からなる無酸素銅ベースで、80%IACS以上の導電率を有する二次電池の負極集電体用圧延銅合金箔であり、300℃で30分間加熱した後の結晶方位が、
10≦ (5・I (220)/I0 (220) + 2・I(111)/I0(111) + I (311)/I0 (311)) ≦20
(hkl):銅合金箔表面に対しX線回折で求めた(hkl)面の積分強度
0 (hkl):銅粉末に対しX線回折で求めた(hkl)面の積分強度
なる関係を示すとともに、前記300℃で30分間加熱後の引張り強さが400MPa以上であることを特徴とする圧延銅合金箔。
It is a rolled copper alloy foil for a negative electrode current collector of a secondary battery having an electric conductivity of 80% IACS or more based on oxygen-free copper base containing 0.05 to 0.22% by mass of Sn and the balance being Cu and impurities. The crystal orientation after heating at 300 ° C. for 30 minutes is
10 ≦ (5 · I (220) / I 0 (220) + 2 · I (111) / I 0 (111) + I (311) / I 0 (311) ) ≦ 20
I (hkl) : Integrated intensity of (hkl) plane obtained by X-ray diffraction with respect to copper alloy foil surface I 0 (hkl) : Relation of integral intensity of (hkl) plane obtained by X-ray diffraction with respect to copper powder A rolled copper alloy foil having a tensile strength of 400 MPa or more after heating at 300 ° C. for 30 minutes.
更に0.1質量%以下のAgを含有することを特徴とする請求項1記載の圧延銅合金箔。   Furthermore, 0.1 mass% or less of Ag is contained, The rolled copper alloy foil of Claim 1 characterized by the above-mentioned. 請求項1又は2に記載の圧延銅合金箔より構成される負極集電体。   A negative electrode current collector composed of the rolled copper alloy foil according to claim 1. 請求項3に記載の負極集電体の少なくとも片面に、炭素質材料を主成分とする負極活物質層を有する負極板。   The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material as a main component on the at least single side | surface of the negative electrode collector of Claim 3. 請求項3に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、ケイ素単体、及びケイ素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。   A negative electrode having an active material layer containing at least one selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound on at least one surface of the negative electrode current collector according to claim 3. Board. 請求項4又は5記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに極板群及び非水電解液を収容する電池ケースとから構成される二次電池。   6. An electrode plate group in which the negative electrode plate according to claim 4 or 5 is insulatively arranged via a separator having a lithium transition metal composite oxide as a main component of a positive electrode active material and a separator, and an electrode plate group And a battery case containing a non-aqueous electrolyte.
JP2010125982A 2010-06-01 2010-06-01 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Active JP5345974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125982A JP5345974B2 (en) 2010-06-01 2010-06-01 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125982A JP5345974B2 (en) 2010-06-01 2010-06-01 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2011253680A JP2011253680A (en) 2011-12-15
JP5345974B2 true JP5345974B2 (en) 2013-11-20

Family

ID=45417455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125982A Active JP5345974B2 (en) 2010-06-01 2010-06-01 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5345974B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5918623B2 (en) * 2012-05-17 2016-05-18 株式会社Shカッパープロダクツ Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
JP5201432B1 (en) * 2012-05-17 2013-06-05 日立電線株式会社 Rolled copper foil
JP5698196B2 (en) 2012-08-17 2015-04-08 Jx日鉱日石金属株式会社 Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
HUE050836T2 (en) * 2014-02-25 2021-01-28 Nippon Steel Corp Negative electrode active substance material, negative electrode, and cell
JP5739044B1 (en) * 2014-06-16 2015-06-24 株式会社Shカッパープロダクツ Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
WO2018012376A1 (en) * 2016-07-14 2018-01-18 パナソニック株式会社 Lithium secondary battery
JP7075332B2 (en) * 2018-11-30 2022-05-25 三洋電機株式会社 Secondary battery and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911184B2 (en) * 2002-03-28 2007-05-09 日鉱金属株式会社 Copper alloy rolled foil

Also Published As

Publication number Publication date
JP2011253680A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
TWI502085B (en) Copper alloy foil
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5722813B2 (en) Electrode copper foil and negative electrode current collector for secondary battery
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5219973B2 (en) Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
CN109686983B (en) Rolled copper foil for secondary battery negative electrode collector, method for producing same, secondary battery negative electrode using same, and secondary battery
JP2014136821A (en) Copper alloy film, anode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of copper alloy film
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5698196B2 (en) Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
JP2013001982A (en) Rolled copper foil
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5739044B1 (en) Copper alloy foil for negative electrode current collector of secondary battery, method for producing copper alloy foil for negative electrode current collector of secondary battery, negative electrode for secondary battery, and secondary battery
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R150 Certificate of patent or registration of utility model

Ref document number: 5345974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250