JP5918623B2 - Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery - Google Patents

Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP5918623B2
JP5918623B2 JP2012113838A JP2012113838A JP5918623B2 JP 5918623 B2 JP5918623 B2 JP 5918623B2 JP 2012113838 A JP2012113838 A JP 2012113838A JP 2012113838 A JP2012113838 A JP 2012113838A JP 5918623 B2 JP5918623 B2 JP 5918623B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
copper foil
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012113838A
Other languages
Japanese (ja)
Other versions
JP2013242973A (en
Inventor
小平 宗男
宗男 小平
祥束 沢井
祥束 沢井
由香利 山崎
由香利 山崎
Original Assignee
株式会社Shカッパープロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Shカッパープロダクツ filed Critical 株式会社Shカッパープロダクツ
Priority to JP2012113838A priority Critical patent/JP5918623B2/en
Priority to KR1020130020880A priority patent/KR102003342B1/en
Publication of JP2013242973A publication Critical patent/JP2013242973A/en
Application granted granted Critical
Publication of JP5918623B2 publication Critical patent/JP5918623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極集電銅箔、係るリチウムイオン二次電池用負極集電銅箔を備える負極、及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode current collector copper foil for a lithium ion secondary battery, a negative electrode comprising such a negative electrode current collector copper foil for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、例えば携帯電話等の通信機器、ノート型パソコン、電動工具、ハイブリッドカー、電気自動車、大規模電力貯蔵設備等に用いられる。リチウムイオン二次電池は、正極、負極、正極と負極とを絶縁するセパレータ、及び正極と負極との間でリチウム(Li)イオンの移動を可能にする電解液から主に構成される。 Lithium ion secondary batteries are used, for example, in communication devices such as mobile phones, notebook computers, power tools, hybrid cars, electric vehicles, large-scale power storage facilities, and the like. Lithium ion secondary batteries are mainly composed of a positive electrode, a negative electrode, a separator that insulates the positive electrode from the negative electrode, and an electrolyte that enables lithium (Li + ) ions to move between the positive electrode and the negative electrode.

リチウムイオン二次電池用負極は、例えば負極集電体と、負極集電体に結着される負極活物質層と、を備える。負極集電体としては、例えば銅箔が用いられる。負極活物質層には、カーボンやグラファイト等の負極活物質のほか、アセチレンブラック等の導電助剤や、ポリビニリデンフロライド(PVDF)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)等の結着剤が含有されている。   A negative electrode for a lithium ion secondary battery includes, for example, a negative electrode current collector and a negative electrode active material layer bound to the negative electrode current collector. For example, a copper foil is used as the negative electrode current collector. In the negative electrode active material layer, in addition to a negative electrode active material such as carbon and graphite, conductive assistants such as acetylene black, polyvinylidene fluoride (PVDF), styrene / butadiene rubber (SBR), polyimide (PI), and the like are bonded. Contains a dressing.

上述のように、負極活物質としては、カーボン等の炭素系材料が主として使用されてきた。しかし、炭素系材料を用いたリチウムイオン二次電池では、充放電容量が理論値の372mAh/gにほぼ達しており、これ以上の高容量化を図ることは困難である。そこで、更なる高容量化を目的として、充放電容量の理論値が990mAh/gのスズ(Sn)や、4200mAh/gのシリコン(Si)等を主として用いる負極活物質の実用化が検討されている。   As described above, carbon-based materials such as carbon have been mainly used as the negative electrode active material. However, in a lithium ion secondary battery using a carbon-based material, the charge / discharge capacity almost reaches the theoretical value of 372 mAh / g, and it is difficult to increase the capacity beyond this. Therefore, for the purpose of further increasing the capacity, practical application of a negative electrode active material mainly using tin (Sn) with a theoretical value of charge / discharge capacity of 990 mAh / g, silicon (Si) with 4200 mAh / g, etc. has been studied. Yes.

これらのSnやSi等を主体とする高容量の負極活物質は、充電時にはリチウム(Li)と合金化して体積が大きく膨張し、放電時には収縮する。例えばSiの体積変化率は400%であり、従来のグラファイトが110%であるのに比べて著しく大きい。このため、これらを含む負極活物質層を保持する負極集電銅箔には、充放電に伴い大きな応力が発生する。これにより、負極活物質層が負極集電銅箔から剥離・脱落し、負極集電銅箔と負極活物質との電気的な接続状態が悪化して電池容量の低下を招くおそれがある。あるいは、負極集電銅箔が延伸してしまい、内部短絡を起こすおそれが高くなる。   These high-capacity negative electrode active materials mainly composed of Sn, Si, and the like are alloyed with lithium (Li) during charging and expand in volume, and contract during discharge. For example, the volume change rate of Si is 400%, which is significantly larger than that of conventional graphite of 110%. For this reason, a big stress generate | occur | produces with charging / discharging in the negative electrode current collection copper foil holding the negative electrode active material layer containing these. As a result, the negative electrode active material layer peels off from the negative electrode current collector copper foil, and the electrical connection between the negative electrode current collector copper foil and the negative electrode active material may deteriorate, leading to a decrease in battery capacity. Or a negative electrode current collection copper foil will extend | stretch, and there exists a possibility that an internal short circuit will be raise | generated.

そこで、例えば特許文献1,2では、高弾性率の材料を結着剤に用いて、負極集電銅箔にかかる応力を緩和する手法を採っている。すなわち、特許文献1では、Snを含む合金粉末を活物質粒子として用い、弾性率が3.0GPa以上の熱可塑性樹脂を結着剤(バインダ)として用いたリチウム二次電池用負極が提案されている。これにより、活物質粒子が充放電により膨張・収縮した際に、負極活物質層全体の変形を小さくすることができるとある。   Therefore, for example, Patent Documents 1 and 2 employ a technique of relaxing stress applied to the negative electrode current collector copper foil using a high elastic modulus material as a binder. That is, Patent Document 1 proposes a negative electrode for a lithium secondary battery using an alloy powder containing Sn as active material particles and using a thermoplastic resin having an elastic modulus of 3.0 GPa or more as a binder. Yes. Thereby, when the active material particles expand / contract due to charge / discharge, the deformation of the entire negative electrode active material layer can be reduced.

また、特許文献2では、負極活物質がSiまたはSi合金からなる粉末材料であり、結着剤としてポリイミド樹脂を含む合剤スラリーを集電体上に塗布して乾燥し、熱処理した負極電極が提案されている。なお、特許文献2にもあるように、ポリイミド樹脂等の高弾性率の結着剤に対しては、400℃前後で10時間程度の熱処理が施されることが多い。これにより、例えばポリイミド樹脂のイミド化を促す。   Further, in Patent Document 2, the negative electrode active material is a powder material made of Si or Si alloy, and a negative electrode that has been subjected to heat treatment by applying a mixture slurry containing a polyimide resin as a binder onto a current collector and drying the mixture. Proposed. Note that, as disclosed in Patent Document 2, a high-modulus binder such as polyimide resin is often subjected to heat treatment at around 400 ° C. for about 10 hours. Thereby, for example, imidization of a polyimide resin is promoted.

これに対し、例えば特許文献3では、表面に、硬質なコバルトメッキ層又はコバルト−ニッケル合金メッキ層が形成されてなる負極集電体用の銅箔が提案されている。これによ
り、結着剤に対する熱処理の後でも銅箔の軟化による引張強さの低下を抑制し、充放電サイクルの向上を図ることができるとある。
On the other hand, for example, Patent Document 3 proposes a copper foil for a negative electrode current collector in which a hard cobalt plating layer or a cobalt-nickel alloy plating layer is formed on the surface. Thereby, even after the heat treatment with respect to the binder, a decrease in tensile strength due to softening of the copper foil can be suppressed, and the charge / discharge cycle can be improved.

特開2007−149604号公報JP 2007-149604 A 特開2005−317309号公報JP 2005-317309 A 特許第4438541号公報Japanese Patent No. 4438541

しかしながら、特許文献1,2のように、高弾性率の結着剤を用いただけでは、負極活物質の膨張・収縮に対して充分ではない。上述のように、負極集電体である銅箔が、結着剤に対する熱処理で軟化して塑性変形し易くなってしまうからである。塑性変形が起こると、やはり充放電の繰返しによる負極集電体からの負極活物質層の剥離や脱落が起こり、充放電サイクル特性が低下してしまう。これにより、負極集電体と負極活物質との電気的な接続が悪化し、電池容量が低下してしまうおそれがある。またこの場合、リチウムイオン二次電池の寿命が短くなってしまう。   However, as in Patent Documents 1 and 2, just using a binder with a high elastic modulus is not sufficient for the expansion and contraction of the negative electrode active material. This is because, as described above, the copper foil as the negative electrode current collector is softened by the heat treatment on the binder and is easily plastically deformed. When plastic deformation occurs, the negative electrode active material layer is peeled off from the negative electrode current collector due to repeated charge / discharge, and the charge / discharge cycle characteristics are deteriorated. Thereby, the electrical connection between the negative electrode current collector and the negative electrode active material is deteriorated, and the battery capacity may be reduced. In this case, the life of the lithium ion secondary battery is shortened.

また、特許文献3では、硬質コバルトメッキ層等により引張強さを向上させてはいるが、銅箔が負極活物質層の体積膨張の応力に耐えきれなくなったときには塑性変形が起きてしまう。また、銅箔の表面にコバルトメッキ層又はコバルト−ニッケル合金メッキ層を設けることで、電池の特性にどのような影響を及ぼすかが定かではない。   In Patent Document 3, although the tensile strength is improved by a hard cobalt plating layer or the like, plastic deformation occurs when the copper foil cannot withstand the volume expansion stress of the negative electrode active material layer. In addition, it is not certain what kind of effect the characteristics of the battery have by providing a cobalt plating layer or a cobalt-nickel alloy plating layer on the surface of the copper foil.

本発明の目的は、充放電サイクル特性に優れたリチウムイオン二次電池用負極集電銅箔、係るリチウムイオン二次電池用負極集電銅箔を備える負極、及びリチウムイオン二次電池を提供することである。   An object of the present invention is to provide a negative electrode current collector copper foil for a lithium ion secondary battery excellent in charge / discharge cycle characteristics, a negative electrode including the negative electrode current collector copper foil for the lithium ion secondary battery, and a lithium ion secondary battery. That is.

本発明の第1の態様によれば、
少なくとも片面に負極活物質層が形成されてリチウムイオン二次電池用負極に組み込まれるリチウムイオン二次電池用負極集電銅箔であって、
前記リチウムイオン二次電池用負極に組み込まれるときには、
前記負極活物質層が少なくとも片面側に形成され、前記負極活物質層の体積変化による塑性変形を抑制する塑性変形抑制層と、
前記塑性変形抑制層および前記負極活物質層の間に配置され、前記負極活物質層の体積変化による応力を緩和する応力緩和層と、を備えることとなる
リチウムイオン二次電池用負極集電銅箔が提供される。
According to a first aspect of the invention,
A negative electrode current collector copper foil for a lithium ion secondary battery in which a negative electrode active material layer is formed on at least one side and incorporated in a negative electrode for a lithium ion secondary battery,
When incorporated in the negative electrode for lithium ion secondary battery,
The negative electrode active material layer is formed on at least one side, and a plastic deformation suppressing layer for suppressing plastic deformation due to a volume change of the negative electrode active material layer;
A negative current collector copper for a lithium ion secondary battery, comprising: a stress relaxation layer disposed between the plastic deformation suppression layer and the negative electrode active material layer and relieving stress due to a volume change of the negative electrode active material layer A foil is provided.

本発明の第2の態様によれば、
少なくとも片面に負極活物質層が形成されてリチウムイオン二次電池用負極に組み込まれるリチウムイオン二次電池用負極集電銅箔であって、
前記リチウムイオン二次電池用負極に組み込まれるときには、
前記負極活物質層が少なくとも片面側に形成され、平均粒径が小さく微細な結晶粒を持つ結晶組織を含む小粒結晶組織層と、
前記小粒結晶組織層および前記負極活物質層の間に配置され、前記小粒結晶組織層の結晶粒より平均粒径が大きな結晶粒を持つ結晶組織を含む大粒結晶組織層と、を備えることとなる
リチウムイオン二次電池用負極集電銅箔が提供される。
According to a second aspect of the invention,
A negative electrode current collector copper foil for a lithium ion secondary battery in which a negative electrode active material layer is formed on at least one side and incorporated in a negative electrode for a lithium ion secondary battery,
When incorporated in the negative electrode for lithium ion secondary battery,
The negative electrode active material layer is formed on at least one side, a small grain structure layer including a crystal structure having a small average grain size and fine crystal grains,
A large crystal structure layer including a crystal structure that is disposed between the small crystal structure layer and the negative electrode active material layer and has a crystal grain having an average grain size larger than that of the crystal grains of the small crystal structure layer. A negative electrode current collector copper foil for a lithium ion secondary battery is provided.

本発明の第3の態様によれば、
少なくとも片面に負極活物質層が形成されてリチウムイオン二次電池用負極に組み込まれるリチウムイオン二次電池用負極集電銅箔であって、
前記リチウムイオン二次電池用負極に組み込まれるときには、
前記負極活物質層が少なくとも片面側に形成され、圧延加工により生成した圧延組織を含む圧延組織層と、
前記圧延組織層および前記負極活物質層の間に配置され、前記負極活物質層を形成するときの熱処理により生成される再結晶組織を含む再結晶組織層と、を備えることとなる
リチウムイオン二次電池用負極集電銅箔が提供される。
According to a third aspect of the invention,
A negative electrode current collector copper foil for a lithium ion secondary battery in which a negative electrode active material layer is formed on at least one side and incorporated in a negative electrode for a lithium ion secondary battery,
When incorporated in the negative electrode for lithium ion secondary battery,
The negative electrode active material layer is formed on at least one side, and includes a rolled structure layer including a rolled structure generated by rolling,
A recrystallized structure layer that is disposed between the rolled structure layer and the negative electrode active material layer and includes a recrystallized structure generated by a heat treatment when forming the negative electrode active material layer. A negative electrode current collector copper foil for a secondary battery is provided.

本発明の第4の態様によれば、
前記塑性変形抑制層および前記応力緩和層にはそれぞれ異なる結晶組織が含まれ、
前記塑性変形抑制層の結晶組織中に含有される結晶粒の平均粒径より、前記塑性変形抑制層の結晶組織とは異なる前記応力緩和層の結晶組織中に含有される結晶粒の平均粒径が大きい
第1の態様に記載のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a fourth aspect of the invention,
Each of the plastic deformation suppression layer and the stress relaxation layer includes different crystal structures,
The average grain size of the crystal grains contained in the crystal structure of the stress relaxation layer, which is different from the average grain diameter of the crystal grains contained in the crystal structure of the plastic deformation suppression layer. The negative electrode current collection copper foil for lithium ion secondary batteries as described in a 1st aspect with large is provided.

本発明の第5の態様によれば、
前記塑性変形抑制層に含まれる結晶組織は、圧延加工により生成した圧延組織であり、
前記応力緩和層に含まれ、前記圧延組織とは異なる結晶組織は、前記負極活物質層を形成するときの熱処理により生成されることとなる再結晶組織である
第4の態様に記載のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a fifth aspect of the present invention,
The crystal structure contained in the plastic deformation suppressing layer is a rolled structure generated by rolling,
The lithium ion according to the fourth aspect, wherein the crystal structure that is included in the stress relaxation layer and is different from the rolled structure is a recrystallized structure that is generated by heat treatment when forming the negative electrode active material layer. A negative electrode current collector copper foil for a secondary battery is provided.

本発明の第6の態様によれば、
前記リチウムイオン二次電池用負極に組み込まれるときには、
矩形状に形成されており、
前記矩形状の一辺に平行な断面と、前記断面に直交する断面と、の少なくともいずれかにおいて、
前記所定の断面全体に対して前記再結晶組織が占める領域の面積比率が5%超90%未満である
第3又は第5の態様に記載のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a sixth aspect of the present invention,
When incorporated in the negative electrode for lithium ion secondary battery,
It is formed in a rectangular shape,
In at least one of a cross section parallel to one side of the rectangular shape and a cross section orthogonal to the cross section,
The negative electrode current collector copper foil for a lithium ion secondary battery according to the third or fifth aspect, wherein an area ratio of a region occupied by the recrystallized structure with respect to the entire predetermined cross section is more than 5% and less than 90% Is done.

本発明の第7の態様によれば、
無酸素銅を主成分とする
第1〜第6の態様のいずれかに記載のリチウムイオン二次電池用負極集電銅箔が提供される。
According to a seventh aspect of the present invention,
The negative electrode current collection copper foil for lithium ion secondary batteries in any one of the 1st-6th aspect which has oxygen-free copper as a main component is provided.

本発明の第8の態様によれば、
0.01質量%以上0.20質量%以下のZrを含有する
第1〜第7の態様のいずれかに記載のリチウムイオン二次電池用負極集電銅箔が提供される。
According to an eighth aspect of the present invention,
The negative electrode current collection copper foil for lithium ion secondary batteries in any one of the 1st-7th aspect containing 0.01 mass% or more and 0.20 mass% or less of Zr is provided.

本発明の第9の態様によれば、
第1〜第8の態様のいずれかに記載のリチウムイオン二次電池用負極集電銅箔が組み込まれ、
前記リチウムイオン二次電池用負極集電銅箔の少なくとも片面に形成され、Si又はSnの少なくともいずれかを含む前記負極活物質層と、
前記リチウムイオン二次電池用負極集電銅箔に接続されたタブリードと、を備える
リチウムイオン二次電池用負極が提供される。
According to a ninth aspect of the present invention,
The negative electrode current collector copper foil for a lithium ion secondary battery according to any one of the first to eighth aspects is incorporated,
The negative electrode active material layer formed on at least one surface of the negative electrode current collector copper foil for the lithium ion secondary battery and containing at least one of Si and Sn;
There is provided a negative electrode for a lithium ion secondary battery comprising a tab lead connected to the negative electrode current collector copper foil for the lithium ion secondary battery.

本発明の第10の態様によれば、
第9の態様に記載のリチウムイオン二次電池用負極と、
リチウムイオン二次電池用正極と、
前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極の間に挿入されたセパレータと、
前記セパレータが間に挿入された前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極が収容され、電解液が封入された容器と、を備える
リチウムイオン二次電池が提供される。
According to a tenth aspect of the present invention,
A negative electrode for a lithium ion secondary battery according to the ninth aspect;
A positive electrode for a lithium ion secondary battery;
A separator inserted between the negative electrode for lithium ion secondary battery and the positive electrode for lithium ion secondary battery;
There is provided a lithium ion secondary battery comprising: a negative electrode for a lithium ion secondary battery in which the separator is inserted; and a positive electrode for a lithium ion secondary battery accommodated therein and a container in which an electrolyte solution is enclosed.

本発明によれば、充放電サイクル特性に優れたリチウムイオン二次電池用負極集電銅箔、リチウムイオン二次電池用負極集電銅箔を備える負極、及びリチウムイオン二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode current collector copper foil for lithium ion secondary batteries excellent in charging / discharging cycling characteristics, the negative electrode provided with the negative electrode current collector copper foil for lithium ion secondary batteries, and a lithium ion secondary battery are provided. .

本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔が備えることとなる結晶組織の様子を例示する模式図である。It is a schematic diagram which illustrates the mode of the crystal structure which the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on one Embodiment of this invention is equipped. 本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池用負極の平面図である。It is a top view of the negative electrode for lithium ion secondary batteries which concerns on one Embodiment of this invention. 本発明の一実施形態に係るリチウムイオン二次電池の斜視断面図である。It is a perspective sectional view of a lithium ion secondary battery concerning one embodiment of the present invention. 実施形態1〜3及び比較例1に係るリチウムイオン二次電池用負極集電銅箔の圧延方向と垂直な断面を走査型電子顕微鏡で観察した反射電子像である。It is the reflected electron image which observed the cross section perpendicular | vertical to the rolling direction of the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on Embodiments 1-3 and the comparative example 1 with the scanning electron microscope. 比較例2,3に係るリチウムイオン二次電池用負極集電銅箔の圧延方向と垂直な断面を走査型電子顕微鏡で観察した反射電子像である。It is the reflection electron image which observed the cross section perpendicular | vertical to the rolling direction of the negative electrode current collection copper foil for lithium ion secondary batteries which concerns on the comparative examples 2 and 3 with the scanning electron microscope.

<本発明者等が得た知見>
上述のように、リチウムイオン二次電池用負極集電銅箔の少なくとも片面には負極活物質層が形成される。負極活物質層の形成時には、例えば400℃で10時間程度の熱処理が施される。このとき、負極集電銅箔が軟化して塑性変形し易くなってしまう。塑性変形した負極集電銅箔は、もはや負極活物質層の収縮に追従できず、負極活物質層の剥離や脱落を招く。そこで、例えば高耐熱性、高耐力の圧延銅箔を負極集電銅箔に用いることが考えられる。
<Knowledge obtained by the present inventors>
As described above, the negative electrode active material layer is formed on at least one surface of the negative electrode current collector copper foil for a lithium ion secondary battery. When forming the negative electrode active material layer, for example, heat treatment is performed at 400 ° C. for about 10 hours. At this time, the negative electrode current collector copper foil is softened and is easily plastically deformed. The plastically deformed negative electrode current collector copper foil can no longer follow the contraction of the negative electrode active material layer, and causes the negative electrode active material layer to peel off or drop off. Thus, for example, it is conceivable to use a rolled copper foil having high heat resistance and high yield strength as the negative electrode current collector copper foil.

しかしながら、本発明者等は、単に負極集電銅箔の耐熱性や耐力を向上させただけでは不充分であるとの知見を得た。すなわち、負極活物質層が充放電による膨張・収縮を繰り返すうち、たとえ高耐力の負極集電銅箔であっても、応力に耐えきれずにクラックが生じてしまうことがある。負極集電銅箔の端部などに切り欠き状の欠陥等が存在すると破断してしまうこともある。   However, the present inventors have found that it is insufficient to simply improve the heat resistance and proof strength of the negative electrode current collector copper foil. That is, while the negative electrode active material layer repeatedly expands and contracts due to charge and discharge, even a high yield strength negative electrode current collector copper foil may not withstand stress and may crack. If there is a notch-like defect or the like at the end of the negative electrode current collector copper foil, it may break.

本発明者等は、鋭意研究の結果、少なくとも片面に負極活物質層が形成されてリチウムイオン二次電池用負極に組み込まれるときには、所定の層構造となる負極集電銅箔において、負極活物質層の剥離や脱落を抑制し、かつ、負極集電銅箔のクラックや破断を抑制することができることを見いだした。   As a result of intensive studies, the present inventors have found that when a negative electrode active material layer is formed on at least one side and incorporated into a negative electrode for a lithium ion secondary battery, the negative electrode current collector copper foil having a predetermined layer structure has a negative electrode active material. It has been found that peeling and dropping of layers can be suppressed, and cracks and breaks of the negative electrode current collector copper foil can be suppressed.

すなわち、負極に組み込まれるときの負極集電銅箔の所定の層構造を、例えば、負極活物質層が少なくとも片面側に形成される塑性変形抑制層と、塑性変形抑制層および負極活物質層の間に配置される応力緩和層とすることができる。塑性変形抑制層は、負極活物質層の体積変化による負極集電銅箔の全体的な塑性変形を抑制する層である。応力緩和層は
、負極活物質層の体積変化による応力を緩和する層である。これにより、負極集電銅箔が上述の優れた効果を発揮する。
That is, the predetermined layer structure of the negative electrode current collector copper foil when incorporated into the negative electrode is, for example, a plastic deformation suppression layer in which the negative electrode active material layer is formed on at least one side, a plastic deformation suppression layer, and a negative electrode active material layer. It can be set as the stress relaxation layer arrange | positioned between. The plastic deformation suppression layer is a layer that suppresses the overall plastic deformation of the negative electrode current collector copper foil due to the volume change of the negative electrode active material layer. The stress relaxation layer is a layer that relaxes stress due to volume change of the negative electrode active material layer. Thereby, a negative electrode current collection copper foil exhibits the above-mentioned outstanding effect.

このような塑性変形抑制層および応力緩和層としての機能を持つ層には、例えばそれぞれ互いに異なる所定の結晶組織を含む層の組み合わせとする構成が考えられる。異なる結晶組織の一例としては、例えば含有される結晶粒の粒径が異なる結晶組織が挙げられる。   As such a layer having a function as a plastic deformation suppression layer and a stress relaxation layer, for example, a configuration in which layers each having a predetermined crystal structure different from each other is combined can be considered. As an example of the different crystal structures, for example, crystal structures having different crystal grain sizes can be cited.

つまり、この場合、塑性変形抑制層の結晶組織中に含有される結晶粒の平均粒径より、塑性変形抑制層の結晶組織とは異なる応力緩和層の結晶組織中に含有される結晶粒の平均粒径が大きくなるよう各層を構成する。すなわち、各層の層構造を、例えば、負極活物質層が少なくとも片面側に形成され、平均粒径が小さく微細な結晶粒を持つ結晶組織を含む小粒結晶組織層と、小粒結晶組織層および負極活物質層の間に配置され、小粒結晶組織層の結晶粒より平均粒径が大きな結晶粒を持つ結晶組織を含む大粒結晶組織層とすることができる。   That is, in this case, the average grain size contained in the crystal structure of the stress relaxation layer, which is different from the crystal grain structure of the plastic deformation suppression layer, than the average grain size of the crystal grains contained in the crystal structure of the plastic deformation suppression layer. Each layer is configured to have a large particle size. That is, the layer structure of each layer includes, for example, a small crystal structure layer including a crystal structure in which a negative electrode active material layer is formed on at least one side and has a small average particle size and fine crystal grains, and a small crystal structure layer and a negative electrode active layer. A large grain structure layer including a crystal structure having a crystal grain which is disposed between the material layers and has an average grain size larger than that of the crystal grains of the small grain structure layer can be obtained.

このように、結晶組織中の平均粒径が小さく結晶粒が比較的微細であると、高耐力で塑性変形の起こり難い層となる。また逆に、結晶粒が比較的大きいと、しなやかで追従性に優れ応力を緩和させる層となる。   Thus, when the average grain size in the crystal structure is small and the crystal grains are relatively fine, a layer having high proof stress and hardly undergoing plastic deformation is formed. On the other hand, when the crystal grains are relatively large, the layer is flexible and has excellent followability and relaxes the stress.

また、上述のような微細な結晶粒を持つ結晶組織としては、例えば圧延加工により生成した圧延組織が考えられる。また、比較的大きな結晶粒を持つ結晶組織としては、例えば負極活物質層を形成するときの熱処理により生成される再結晶組織が考えられる。つまり、各層を、例えば、負極活物質層が少なくとも片面側に形成され、圧延加工により生成した圧延組織を含む圧延組織層と、圧延組織層および負極活物質層の間に配置され、負極活物質層を形成するときの熱処理により生成される再結晶組織を含む再結晶組織層と、から構成することができる。   In addition, as the crystal structure having fine crystal grains as described above, for example, a rolled structure generated by rolling is conceivable. Further, as a crystal structure having relatively large crystal grains, for example, a recrystallized structure generated by heat treatment when forming the negative electrode active material layer can be considered. That is, each layer is disposed between a rolled structure layer and a negative electrode active material layer, each of which includes, for example, a negative electrode active material layer formed on at least one side and including a rolled structure generated by rolling, and the negative electrode active material And a recrystallized structure layer including a recrystallized structure generated by a heat treatment when forming the layer.

本発明は、このように発明者等が見いだした知見に基づくものである。   The present invention is based on the knowledge thus found by the inventors.

なお、本明細書において、負極集電銅箔とは、原則、リチウムイオン二次電池用負極に組み込まれる前の状態のものを指す。このとき、負極集電銅箔は、負極に組み込まれた後の状態とは異なり、上述のような所定の層構造となっていない場合がある。所定の層構造となる前の状態としては、例えば結晶組織として主に圧延組織のみを備える状態がある。よって、本明細書において、負極集電銅箔とは、主な結晶組織として圧延組織から構成される状態のものを指す場合がある。   In addition, in this specification, a negative electrode current collection copper foil points out the thing of the state before incorporating in the negative electrode for lithium ion secondary batteries in principle. At this time, the negative electrode current collector copper foil may not have the predetermined layer structure as described above, unlike the state after being incorporated into the negative electrode. As a state before the predetermined layer structure is obtained, for example, there is a state in which only a rolled structure is mainly provided as a crystal structure. Therefore, in this specification, the negative electrode current collector copper foil may refer to a state in which the main crystal structure is composed of a rolled structure.

但し、本明細書において、負極集電銅箔とは、リチウムイオン二次電池用負極に組み込まれた後のもの、つまり、所定の層構造となったものを指す場合がある。具体的には、負極集電銅箔とは、塑性変形抑制層と応力緩和層とを備える状態となったものを指す場合がある。または、負極集電銅箔とは、小粒結晶組織層と大粒結晶組織層とを備える状態となったものを指す場合がある。または、負極集電銅箔とは、圧延組織層と再結晶組織層とを備える状態となったものを指す場合がある。   However, in this specification, the negative electrode current collector copper foil may refer to a negative electrode current collector copper foil that has been incorporated into a negative electrode for a lithium ion secondary battery, that is, a negative layer structure. Specifically, the negative electrode current collector copper foil sometimes refers to a negative electrode current collector copper foil having a state in which a plastic deformation suppression layer and a stress relaxation layer are provided. Alternatively, the negative electrode current collector copper foil may refer to a negative electrode current collector copper foil that has a state of having a small crystal structure layer and a large crystal structure layer. Alternatively, the negative electrode current collector copper foil may refer to a layer having a rolled structure layer and a recrystallized structure layer.

<本発明の一実施形態>
(1)リチウムイオン二次電池の概略構成
まずは、本発明の一実施形態に係るリチウムイオン二次電池の概略構成について、図3及び図4を参照しながら説明する。図3は、本実施形態に係るリチウムイオン二次電池用負極1の平面図である。図4は、本実施形態に係るリチウムイオン二次電池50の斜視断面図である。
<One Embodiment of the Present Invention>
(1) Schematic Configuration of Lithium Ion Secondary Battery First, a schematic configuration of a lithium ion secondary battery according to an embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a plan view of the negative electrode 1 for a lithium ion secondary battery according to this embodiment. FIG. 4 is a perspective sectional view of the lithium ion secondary battery 50 according to this embodiment.

図4に示すように、リチウムイオン二次電池50は、図示しない電解液が封入された容器としての電池外挿缶5を備えている。電池外挿缶5には、タブリード12を備えたリチウムイオン二次電池用負極1(以下、単に「負極1」ともいう)と、タブリード22を備えたリチウムイオン二次電池用正極2(以下、単に「正極2」ともいう)とが、間にセパレータ3が挿入された状態で収容されている。   As shown in FIG. 4, the lithium ion secondary battery 50 includes a battery insertion can 5 as a container in which an electrolyte solution (not shown) is enclosed. The battery insertion can 5 includes a negative electrode 1 for a lithium ion secondary battery (hereinafter simply referred to as “negative electrode 1”) having a tab lead 12 and a positive electrode 2 for a lithium ion secondary battery (hereinafter referred to as “negative electrode 1”). (Also simply referred to as “positive electrode 2”) is accommodated with the separator 3 inserted therebetween.

また、図3に示すように、負極1は、リチウムイオン二次電池用負極集電銅箔10(以下、単に「負極集電銅箔10」ともいう)と、例えばその片面または両面に形成された負極活物質層11とを備える。上述のタブリード12は、負極集電銅箔10の露出領域10sに直接接続されている。リチウムイオン二次電池50及びリチウムイオン二次電池用負極1の詳細の構成については後述する。   Further, as shown in FIG. 3, the negative electrode 1 is formed on a negative electrode current collector copper foil 10 for lithium ion secondary batteries (hereinafter, also simply referred to as “negative electrode current collector copper foil 10”), for example, on one side or both sides thereof. Negative electrode active material layer 11. The above-described tab lead 12 is directly connected to the exposed region 10 s of the negative electrode current collector copper foil 10. Detailed configurations of the lithium ion secondary battery 50 and the negative electrode 1 for a lithium ion secondary battery will be described later.

(2)リチウムイオン二次電池用負極集電銅箔
次に、本発明の一実施形態に係るリチウムイオン二次電池用負極集電銅箔10、つまり、負極1に組み込まれて所定の層構造となる前の集電銅箔10について説明する。本実施形態において、負極集電銅箔10が備えることとなる所定の層構造は、圧延加工により生成した圧延組織と、負極活物質層11を形成するときの熱処理により生成される再結晶組織とであることとする。
(2) Negative electrode current collector copper foil for lithium ion secondary battery Next, the negative electrode current collector copper foil for lithium ion secondary battery 10 according to an embodiment of the present invention, that is, a predetermined layer structure incorporated in the negative electrode 1 The current collector copper foil 10 before becoming will be described. In the present embodiment, the predetermined layer structure that the negative electrode current collector copper foil 10 includes is a rolled structure generated by rolling and a recrystallized structure generated by heat treatment when forming the negative electrode active material layer 11. Suppose that

負極集電銅箔10は、例えば主表面としての圧延面を備える長尺状に形成され、厚さが20μm以下の圧延銅箔である。例えば、負極集電銅箔10の長手方向が圧延方向、つまり、圧延時の引き延ばし方向であり、短手方向が圧延方向とは垂直の方向である。   The negative electrode current collector copper foil 10 is, for example, a rolled copper foil that is formed in a long shape having a rolled surface as a main surface and has a thickness of 20 μm or less. For example, the longitudinal direction of the negative electrode current collector copper foil 10 is the rolling direction, that is, the extending direction during rolling, and the short direction is the direction perpendicular to the rolling direction.

負極集電銅箔10は、例えば銅合金材から構成されている。銅合金材中の銅(Cu)材としては、例えば無酸素銅(OFC:Oxygen-Free Copper)が用いられる。銅合金材には、例えば0.01質量%以上0.20質量%以下のジルコニウム(Zr)が含有されている。   The negative electrode current collector copper foil 10 is made of, for example, a copper alloy material. As the copper (Cu) material in the copper alloy material, for example, oxygen-free copper (OFC) is used. The copper alloy material contains, for example, 0.01 mass% or more and 0.20 mass% or less of zirconium (Zr).

また、Zrに加え、負極集電銅箔10の耐熱性や耐力を向上させる効果を有する元素が含有されていてもよい。このような元素として、例えば鉄(Fe)、スズ(Sn)、亜鉛(Zn)、ニッケル(Ni)、アルミニウム(Al)等が1.0質量%以上5.0質量%以下添加される場合や、Fe,Sn,Zn,Ni,シリコン(Si)、クロム(Cr)等が0.1質量%以上1.0質量%以下添加される場合等がある。   In addition to Zr, an element having an effect of improving the heat resistance and proof stress of the negative electrode current collector copper foil 10 may be contained. As such an element, for example, iron (Fe), tin (Sn), zinc (Zn), nickel (Ni), aluminum (Al) or the like is added in an amount of 1.0% by mass or more and 5.0% by mass or less. , Fe, Sn, Zn, Ni, silicon (Si), chromium (Cr), or the like may be added in an amount of 0.1% by mass to 1.0% by mass.

負極集電銅箔10は、少なくとも片面に負極活物質層11が形成されてリチウムイオン二次電池用負極1に組み込まれるよう構成される。このように、負極1に組み込まれて所定の層構造となる前の集電銅箔10は、例えば主に圧延組織のみを備える状態となっている。   The negative electrode current collector copper foil 10 is configured such that the negative electrode active material layer 11 is formed on at least one surface and is incorporated into the negative electrode 1 for a lithium ion secondary battery. As described above, the current collector copper foil 10 before being incorporated into the negative electrode 1 and having a predetermined layer structure is, for example, in a state mainly including only a rolled structure.

また、負極集電銅箔10は、負極1に組み込まれるときには、負極活物質層11が少なくとも片面側に形成される塑性変形抑制層としての圧延組織層と、圧延組織層および負極活物質層11の間に配置される応力緩和層としての再結晶組織層と、を備えることとなる。圧延組織層は、例えば圧延組織を含み、負極活物質層11の体積変化による塑性変形を抑制するよう構成される。また、再結晶組織層は、例えば再結晶組織を含み、負極活物質層11の体積変化による応力を緩和するよう構成される。各層の様子を、図1に例示する。   Further, when the negative electrode current collector copper foil 10 is incorporated into the negative electrode 1, a rolled structure layer as a plastic deformation suppressing layer in which the negative electrode active material layer 11 is formed on at least one side, a rolled structure layer, and the negative electrode active material layer 11. And a recrystallized structure layer as a stress relaxation layer disposed between the layers. The rolled structure layer includes, for example, a rolled structure and is configured to suppress plastic deformation due to a volume change of the negative electrode active material layer 11. The recrystallized structure layer includes, for example, a recrystallized structure, and is configured to relieve stress due to volume change of the negative electrode active material layer 11. The state of each layer is illustrated in FIG.

図1は、負極1に組み込まれるときに負極集電銅箔10が備えることとなる圧延組織層10pおよび再結晶組織層10rの様子を例示する模式図である。図1の模式図は、負極集電銅箔10の短手方向と平行な断面を示している。また、図1では、圧延組織層10p
の両面側に再結晶組織層10rが形成される例を示している。
FIG. 1 is a schematic view illustrating the appearance of a rolled structure layer 10p and a recrystallized structure layer 10r that the negative electrode current collector copper foil 10 will have when incorporated into the negative electrode 1. FIG. The schematic diagram of FIG. 1 shows a cross section parallel to the short direction of the negative electrode current collector copper foil 10. Moreover, in FIG. 1, the rolling structure layer 10p
This shows an example in which the recrystallized structure layer 10r is formed on both sides.

圧延組織層10p中に含有される圧延組織は、上述の銅合金材を圧延して負極集電銅箔10を製造する際、圧延加工によって生成した結晶組織である。圧延組織は、平均粒径が例えば0.3μm以下の比較的微細な結晶粒を有する。或いは、圧延組織に含まれる結晶粒の粒径の範囲は、例えば0.01μm超1.0μm未満である。図1に示すように、圧延組織中の結晶粒は、微細であるほか、圧延時の加圧方向、すなわち、負極集電銅箔10の厚さ方向に対して押しつぶされて、粒形が扁平あるいは針状(繊維状)となっている。このような結晶組織は高耐力を備え、例えば負極活物質層11の体積変化に応じて弾性変形を繰り返し、塑性変形には至り難いという特徴がある。   The rolled structure contained in the rolled structure layer 10p is a crystalline structure generated by rolling when the above-described copper alloy material is rolled to produce the negative electrode current collector copper foil 10. The rolled structure has relatively fine crystal grains having an average grain size of, for example, 0.3 μm or less. Alternatively, the range of the grain size of the crystal grains contained in the rolled structure is, for example, more than 0.01 μm and less than 1.0 μm. As shown in FIG. 1, the crystal grains in the rolled structure are fine and are crushed in the pressing direction during rolling, that is, in the thickness direction of the negative electrode current collector copper foil 10, so that the grain shape is flattened. Or it is acicular (fibrous). Such a crystal structure has a high proof stress, and is characterized in that it repeatedly undergoes elastic deformation according to, for example, a volume change of the negative electrode active material layer 11 and hardly reaches plastic deformation.

再結晶組織層10r中に含有される再結晶組織は、上述の熱処理により負極集電銅箔10上に負極活物質層11を形成して負極1を製造する際、負極集電銅箔10を構成する圧延組織の一部が再結晶されて生成される結晶組織である。再結晶組織は、平均粒径が例えば3μm以上の比較的大きな結晶粒を有する。或いは、再結晶組織に含まれる結晶粒の粒径の範囲は、例えば1.0μm以上10.0μm以下である。図1に示すように、再結晶組織中の結晶粒は、粒径が大きいほか、等軸状の個々の結晶粒が互いにほとんど隙間なく集合し、比較的明瞭な粒界によって区切られたモザイク状(パッチ状)となっている。このような結晶組織は負極活物質層11の体積変化による伸びをある程度許容して、圧延組織層10pとの間に緩衝作用が生まれ、また、負極集電銅箔10にしなやかさを与える。   The recrystallized structure contained in the recrystallized structure layer 10r is obtained by forming the negative electrode active material layer 11 on the negative electrode current collector copper foil 10 by the above-described heat treatment to produce the negative electrode current collector copper foil 10 when the negative electrode 1 is manufactured. This is a crystal structure that is generated by recrystallization of a part of the rolling structure that constitutes the structure. The recrystallized structure has relatively large crystal grains having an average grain size of, for example, 3 μm or more. Or the range of the particle size of the crystal grain contained in a recrystallized structure is 1.0 micrometer or more and 10.0 micrometers or less, for example. As shown in FIG. 1, the crystal grains in the recrystallized structure have a large grain size, and equiaxed individual crystal grains gather together with almost no gap and are separated by a relatively clear grain boundary. (Patch-like). Such a crystal structure allows a certain amount of elongation due to the volume change of the negative electrode active material layer 11, provides a buffering action with the rolled structure layer 10 p, and gives the negative electrode current collector copper foil 10 flexibility.

なお、これら圧延組織および再結晶組織中に含まれる結晶粒の平均粒径は、JIS H0501に規定の「伸銅品結晶粒度試験法」の「求積法」により求められる値である。すなわち、結晶組織中の所定の面積内に含まれる結晶粒の数から求められる値である。   In addition, the average particle diameter of the crystal grains contained in the rolled structure and the recrystallized structure is a value obtained by the “quadrature method” of the “copper grain size test method” defined in JIS H0501. That is, it is a value obtained from the number of crystal grains included in a predetermined area in the crystal structure.

再結晶組織を有する状態では、長尺状の負極集電銅箔10の短手方向と平行、つまり、圧延方向と垂直な断面において、断面全体に対して再結晶組織が占める領域の面積比率は例えば5%超90%未満となる。或いは、面積比率が10%以上80%以下となっていてもよい。また、再結晶組織が負極集電銅箔10の片面にのみ生成される場合には、面積比率は例えばこれらの範囲内の下限寄りになっていてもよい。この面積比率を満たしていれば、再結晶組織層には、再結晶組織のみならず圧延組織が含まれていてもよい。つまり、再結晶組織層は、再結晶組織のみからなる略均質な層であってもよく、再結晶組織の中に圧延組織が島状に残った層や、圧延組織の中に再結晶組織が島状に生成された層であってもよい。   In the state having the recrystallized structure, the area ratio of the region occupied by the recrystallized structure to the entire cross section in the cross section parallel to the short direction of the long negative electrode current collector copper foil 10, that is, perpendicular to the rolling direction is For example, it is more than 5% and less than 90%. Alternatively, the area ratio may be 10% or more and 80% or less. Moreover, when a recrystallized structure is produced | generated only on the single side | surface of the negative electrode current collection copper foil 10, the area ratio may be near the minimum in these ranges, for example. As long as this area ratio is satisfied, the recrystallized structure layer may contain not only the recrystallized structure but also a rolled structure. In other words, the recrystallized structure layer may be a substantially homogeneous layer consisting only of the recrystallized structure, and a layer in which the rolled structure remains in an island shape in the recrystallized structure or a recrystallized structure in the rolled structure. A layer generated in an island shape may be used.

但し、圧延方向には類似の結晶組織が並ぶ傾向があるので、たとえ全体として充分な量の再結晶組織が生成されていたとしても、圧延方向と平行な断面においては、必ずしも上述の面積比率を満たすとは限らない。   However, since similar crystal structures tend to be arranged in the rolling direction, even if a sufficient amount of recrystallized structure is generated as a whole, the above-mentioned area ratio is not necessarily obtained in a cross section parallel to the rolling direction. It does not always meet.

(3)リチウムイオン二次電池用負極集電銅箔の製造方法
次に、図2を参照しながら、リチウムイオン二次電池用負極集電銅箔10の製造方法、つまり、負極1に組み込まれて所定の層構造となる前の集電銅箔10の製造方法について説明する。図2は、本実施形態に係る負極集電銅箔10の製造工程を示すフロー図である。
(3) Method for Producing Negative Electrode Current Collected Copper Foil for Lithium Ion Secondary Battery Next, referring to FIG. A method for manufacturing the current collector copper foil 10 before the predetermined layer structure is obtained will be described. FIG. 2 is a flowchart showing a manufacturing process of the negative electrode current collector copper foil 10 according to this embodiment.

(銅合金材準備工程S10)
図2に示すように、まずは、原材料となる銅合金材としてのインゴット(鋳塊)を用意する。係るインゴットは、銅材として例えば無酸素銅を用い、例えば0.01質量%以上0.20質量%以下のジルコニウム(Zr)を添加し、これらを溶解して鋳造したものである。或いは、Zrに加えて、例えば上述の所定濃度の範囲内でFe,Sn,Zn,Ni
,Al,Si,Cr等の添加材が適宜添加されることもある。
(Copper alloy material preparation step S10)
As shown in FIG. 2, first, an ingot (ingot) as a copper alloy material as a raw material is prepared. Such an ingot uses, for example, oxygen-free copper as a copper material, and for example, 0.01 mass% or more and 0.20 mass% or less of zirconium (Zr) is added, and these are melted and cast. Alternatively, in addition to Zr, for example, Fe, Sn, Zn, Ni within the above-mentioned predetermined concentration range
, Al, Si, Cr, etc. may be added as appropriate.

(熱間圧延工程S20)
次に、上述のインゴットに対し、熱間圧延加工を施して板材を形成する。なお、熱間圧延工程S20に先んじて、鋳造組織中に生じている偏析を均質化する加熱処理を行っておくことが望ましい。
(Hot rolling process S20)
Next, hot rolling is performed on the above-described ingot to form a plate material. Prior to the hot rolling step S20, it is desirable to perform a heat treatment for homogenizing segregation occurring in the cast structure.

(繰り返し工程S30)
続いて、熱間圧延加工を施した板材に対し、冷間圧延工程S31と焼鈍工程S32とを複数回繰り返す繰返し工程S30を行う。
(Repetition step S30)
Then, the repetition process S30 which repeats cold rolling process S31 and annealing process S32 in multiple times with respect to the board | plate material which gave the hot rolling process is performed.

冷間圧延工程S31は、例えば50%以上の加工度で行う。ここで、加工度は、冷間圧延工程S31前の加工対象物(銅の板材)の厚さをTとし、冷間圧延工程S31後の加工対象物の厚さをTとすると、加工度(%)=[(T−T)/T]×100で表わされる。 The cold rolling step S31 is performed with a working degree of, for example, 50% or more. Here, the processing degree of the cold rolling step S31 before the workpiece thickness of the (sheet of copper) and T B, and the thickness of the cold working object after the rolling step S31 to T A, processed Degree (%) = [(T B −T A ) / T B ] × 100.

焼鈍工程S32では、冷間圧延を施して加工硬化させた上述の板材に、焼鈍処理を施して板材を焼き鈍すことにより加工硬化を緩和する。これを所定回数繰り返すことで、「生地」と称される銅条が得られる。銅材に耐熱性を調整する添加材等が加えられている場合は、銅材の耐熱性に応じて焼鈍処理の温度条件を適宜変更する。   In the annealing step S32, the above-described plate material that has been cold-rolled and work hardened is subjected to an annealing treatment to anneal the plate material, thereby relaxing the work hardening. By repeating this a predetermined number of times, a copper strip called “dough” is obtained. When an additive for adjusting heat resistance is added to the copper material, the temperature condition of the annealing treatment is appropriately changed according to the heat resistance of the copper material.

なお、繰り返し工程S30中、繰り返し途中の焼鈍工程S32を「中間焼鈍工程」と呼ぶ。また、繰り返しの最後、つまり、後述の最終冷間圧延工程S40の直前に行われる焼鈍工程S32を「最終焼鈍工程」又は「生地焼鈍工程」と呼ぶ。   In addition, in the repetition process S30, the annealing process S32 in the middle of the repetition is referred to as an “intermediate annealing process”. Further, the annealing step S32 performed at the end of the repetition, that is, immediately before the final cold rolling step S40 described later is referred to as a “final annealing step” or a “dough annealing step”.

(最終冷間圧延工程S40)
次に、繰り返し工程S30を施された生地に、最終冷間圧延工程S40を施して、所定の厚さ、例えば20μm以下の圧延銅箔とする。このとき、加工度を例えば82%以上90%以下として、生地中の結晶粒を微細化させ、また、加工歪みを充分に蓄積させて、高耐力の圧延組織を充分に発達させる。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed on the dough subjected to the repeating step S30 to obtain a rolled copper foil having a predetermined thickness, for example, 20 μm or less. At this time, the degree of work is set to, for example, 82% or more and 90% or less, the crystal grains in the dough are refined, and the work distortion is sufficiently accumulated to sufficiently develop the rolling structure with high yield strength.

これにより、結晶組織中の微細な結晶粒による高強度化(結晶粒微細化強化)が起こり、圧延組織層10pの塑性変形の抑制効果が生じる。また、圧延により圧延組織層10pに蓄積された加工歪み(加工強化)によっても圧延組織層10pが高強度化し、塑性変形の抑制効果が一層高まる。   Thereby, high strength (crystal grain refinement strengthening) occurs due to fine crystal grains in the crystal structure, and an effect of suppressing plastic deformation of the rolled structure layer 10p occurs. In addition, the rolled structure layer 10p is also strengthened by processing strain (work strengthening) accumulated in the rolled structure layer 10p by rolling, and the effect of suppressing plastic deformation is further enhanced.

以上の工程を経た生地には、例えば粗化処理および防錆処理等の所定の表面処理を施してもよい。   The fabric subjected to the above steps may be subjected to predetermined surface treatment such as roughening treatment and rust prevention treatment.

以上により、主な結晶組織として圧延組織から構成されるリチウムイオン二次電池用負極集電銅箔10が製造される。   As described above, the negative electrode current collector copper foil 10 for a lithium ion secondary battery composed of a rolled structure as a main crystal structure is manufactured.

なお、後述する負極活物質層11の形成時の熱処理で生成される再結晶組織の状態は、上述の負極集電銅箔10の製造工程における種々の条件に影響を受ける。具体的には、例えば最終冷間圧延工程S40における加工度、圧延加工油の温度、歪み速度や歪み分布のほか、銅合金材中の添加元素や不純物元素の濃度分布、これら元素の固溶状態、析出状態等が挙げられる。よって、所望の再結晶組織が得られるよう、上述の製造工程においては、これらの条件を適宜調整する。   In addition, the state of the recrystallized structure produced | generated by the heat processing at the time of formation of the negative electrode active material layer 11 mentioned later is influenced by various conditions in the manufacturing process of the above-mentioned negative electrode current collector copper foil 10. Specifically, for example, the degree of processing in the final cold rolling step S40, the temperature of the rolling processing oil, the strain rate and strain distribution, the concentration distribution of additive elements and impurity elements in the copper alloy material, and the solid solution state of these elements , Precipitation state and the like. Therefore, in the above-described manufacturing process, these conditions are adjusted as appropriate so that a desired recrystallized structure can be obtained.

特に、添加材としてZrが含有されていると、再結晶組織が負極集電銅箔10の主に表
面付近にのみ生成される現象が発現し易く、圧延組織層と再結晶組織層とを備える上述の構成が得られ易い。
In particular, when Zr is contained as an additive, a phenomenon in which a recrystallized structure is generated mainly only in the vicinity of the surface of the negative electrode current collector copper foil 10 is easily exhibited, and includes a rolled structure layer and a recrystallized structure layer. The above configuration is easily obtained.

(4)リチウムイオン二次電池用負極の製造方法
次に、図3に示す構成を備えるリチウムイオン二次電池用負極1の製造方法について説明する。係る製造方法を行うことで、負極集電銅箔10は、負極1に組み込まれて所定の層構造を備えることとなる。
(4) Manufacturing method of negative electrode for lithium ion secondary battery Next, the manufacturing method of the negative electrode 1 for lithium ion secondary batteries provided with the structure shown in FIG. 3 is demonstrated. By performing this manufacturing method, the negative electrode current collector copper foil 10 is incorporated in the negative electrode 1 and has a predetermined layer structure.

(スラリー塗布工程)
まずは、負極集電銅箔10にスラリーを塗布して圧着する方法について説明する。係る工程は、例えばコイル・ツー・コイル方式の連続ラインにより、負極集電銅箔10にスラリーを塗布するアプリケータ等の装置を用いて行う。
(Slurry application process)
First, a method of applying a slurry to the negative electrode current collector copper foil 10 and performing pressure bonding will be described. Such a process is performed using an apparatus such as an applicator that applies slurry to the negative electrode current collector copper foil 10 by, for example, a continuous line of a coil-to-coil system.

具体的には、例えば負極活物質、結着剤溶液、及び必要に応じて導電助剤を混練したスラリーを、負極集電銅箔10の片面または両面に塗布し、略均一の厚みに均して圧着し、例えば70℃〜130℃で数分間〜数十分間、乾燥する。   Specifically, for example, a negative electrode active material, a binder solution, and a slurry obtained by kneading a conductive aid as necessary are applied to one or both surfaces of the negative electrode current collector copper foil 10 and are uniformed to a substantially uniform thickness. For example, it is dried at 70 ° C. to 130 ° C. for several minutes to several tens of minutes.

スラリーに含まれる負極活物質としては、例えばSiやSn等の合金、或いは化合物等の粉末を用いることができる。個々の粉末の直径は、例えば数μm〜数十μmである。また、結着剤溶液としては、ポリイミド(PI)等のイミド系樹脂やその他の樹脂の前駆体等の溶液を用いることができる。   As the negative electrode active material contained in the slurry, for example, an alloy such as Si or Sn, or a powder such as a compound can be used. The diameter of each powder is, for example, several μm to several tens of μm. As the binder solution, a solution of an imide resin such as polyimide (PI) or a precursor of another resin can be used.

(熱処理工程)
次に、例えば赤外線加熱炉等を用い、スラリーが圧着された負極集電銅箔10に対し、結着剤成分の熱可塑性領域の温度以上となる高温で、かつ長時間の熱処理を施す。具体的には、350℃以上450℃以下での熱処理を1時間以上16時間以下施す。また、このとき、例えば真空中(減圧下)、窒素(N)ガスあるいはアルゴン(Ar)ガス等の非酸化雰囲気中で熱処理を行う。これにより、例えばイミド系樹脂等の前駆体からなる結着剤成分は、負極活物質粒子の凹凸内へと入り込みつつイミド化反応が進行して固化する。これにより、負極集電銅箔10の片面または両面に、負極活物質、及びイミド化されたポリイミド樹脂等の結着剤を含む負極活物質層11が形成される。
(Heat treatment process)
Next, for example, using an infrared heating furnace or the like, the negative electrode current collector copper foil 10 to which the slurry is pressure-bonded is subjected to a heat treatment for a long time at a temperature higher than the temperature of the thermoplastic region of the binder component. Specifically, heat treatment at 350 ° C. to 450 ° C. is performed for 1 hour to 16 hours. At this time, heat treatment is performed in a non-oxidizing atmosphere such as nitrogen (N 2 ) gas or argon (Ar) gas, for example, in vacuum (under reduced pressure). As a result, for example, the binder component made of a precursor such as an imide-based resin solidifies as the imidization reaction proceeds while entering the irregularities of the negative electrode active material particles. Thereby, the negative electrode active material layer 11 containing a binder such as a negative electrode active material and an imidized polyimide resin is formed on one surface or both surfaces of the negative electrode current collector copper foil 10.

また、このような熱処理によって、負極集電銅箔10中の結晶組織の一部が再結晶し、再結晶組織が生成される。このような再結晶が起こることにより、圧延中に生じた加工歪みが略解消された状態となって、再結晶組織による応力緩和の効果が生じる。また、再結晶組織中の比較的大きな結晶粒が負極活物質層11の体積膨張による伸びを許容することからも応力緩和の効果が生じる。   In addition, by such heat treatment, a part of the crystal structure in the negative electrode current collector copper foil 10 is recrystallized to generate a recrystallized structure. When such recrystallization occurs, the processing strain generated during rolling is substantially eliminated, and the effect of stress relaxation due to the recrystallized structure occurs. In addition, since the relatively large crystal grains in the recrystallized structure allow elongation due to volume expansion of the negative electrode active material layer 11, an effect of stress relaxation occurs.

以上により、負極活物質層11が少なくとも片面側に形成され、負極活物質層11の体積変化による塑性変形を抑制する塑性変形抑制層としての圧延組織層と、圧延組織層および負極活物質層11の間に配置され、負極活物質層11の体積変化による応力を緩和する応力緩和層としての再結晶組織層と、を備えた負極集電銅箔10となる。   As described above, the negative electrode active material layer 11 is formed on at least one side, and the rolled structure layer as the plastic deformation suppressing layer that suppresses plastic deformation due to the volume change of the negative electrode active material layer 11, the rolled structure layer, and the negative electrode active material layer 11. And a recrystallized structure layer as a stress relieving layer that relieves stress due to volume change of the negative electrode active material layer 11.

つまり、例えば負極活物質層11が負極集電銅箔10の片面にのみ形成された場合においては、圧延組織層の少なくとも負極活物質層11が形成された面側に、再結晶組織層が生成されることとなる。但し、このとき、負極活物質層11が形成されていない面側を含む、圧延組織層の両面側に再結晶組織層が生成されていてもよい。   That is, for example, when the negative electrode active material layer 11 is formed only on one surface of the negative electrode current collector copper foil 10, a recrystallized structure layer is generated on at least the surface of the rolled structure layer on which the negative electrode active material layer 11 is formed. Will be. However, at this time, a recrystallized structure layer may be generated on both sides of the rolled structure layer, including the side where the negative electrode active material layer 11 is not formed.

また、例えば負極活物質層11が負極集電銅箔10の両面に形成された場合においては、圧延組織層の両面側に再結晶組織層が生成されていることが好ましい。但し、このとき
、圧延組織層の片面側にのみ再結晶組織層が生成されていても、負極活物質層11の体積変化による応力を緩和する所定の効果は得られる。
For example, when the negative electrode active material layer 11 is formed on both surfaces of the negative electrode current collector copper foil 10, it is preferable that a recrystallized structure layer is formed on both surfaces of the rolled structure layer. However, at this time, even if the recrystallized structure layer is generated only on one side of the rolled structure layer, the predetermined effect of relieving the stress due to the volume change of the negative electrode active material layer 11 can be obtained.

また、例えば負極活物質層11を片面にのみ形成する場合等において、負極集電銅箔10の負極活物質層11が形成される側にのみ再結晶組織層を生成させるには、例えば温度を充分に下げた状態で熱処理を施す方法を採ることができる。係る低温化で、負極活物質層11を形成する側から負極集電銅箔10を加熱し、あるいは、負極活物質層11を形成しない側の温度をもう一方の側より更に低くして、熱処理を施す。   For example, when the negative electrode active material layer 11 is formed only on one side, a recrystallized structure layer is generated only on the side of the negative electrode current collector copper foil 10 where the negative electrode active material layer 11 is formed. A method of performing heat treatment in a sufficiently lowered state can be employed. At such a low temperature, the negative electrode current collector copper foil 10 is heated from the side where the negative electrode active material layer 11 is formed, or the temperature on the side where the negative electrode active material layer 11 is not formed is further lowered than the other side to perform heat treatment. Apply.

(タブリード接続工程)
次に、図3を参照しながら、負極集電銅箔10にタブリード12を接続する方法について説明する。
(Tab lead connection process)
Next, a method for connecting the tab lead 12 to the negative electrode current collector copper foil 10 will be described with reference to FIG.

図3に示すように、片面または両面に負極活物質層11が形成され、例えば圧延方向に沿って短冊状に切り離された負極集電銅箔10は、少なくとも片面或いは両面の一端に、負極活物質層11が形成されていない露出領域10sを有する。リチウムイオン二次電池50が備える電池外挿缶5と電気的接続を取るため、この負極集電銅箔10の露出領域10sに例えば溶接によりタブリード12を接続する。   As shown in FIG. 3, the negative electrode active material layer 11 is formed on one side or both sides, and the negative electrode current collector copper foil 10 separated into strips along the rolling direction, for example, has at least one end on one side or both sides. It has an exposed region 10s where the material layer 11 is not formed. The tab lead 12 is connected to the exposed region 10 s of the negative electrode current collector copper foil 10 by welding, for example, in order to make an electrical connection with the battery outer can 5 provided in the lithium ion secondary battery 50.

すなわち、負極集電銅箔10の露出領域10sと、例えばNi又はNiめっき銅等からなるタブリード12とを重ね合わせ、例えば超音波溶接機にて、所定の加圧力、負荷エネルギーを加えつつ、所定の負荷時間で溶接処理を行う。これにより、負極集電銅箔10とタブリード12とが接続される。   That is, the exposed region 10 s of the negative electrode current collector copper foil 10 and the tab lead 12 made of, for example, Ni or Ni-plated copper are overlaid, for example, with an ultrasonic welding machine while applying a predetermined pressure and load energy, The welding process is performed with a load time of. Thereby, the negative electrode current collection copper foil 10 and the tab lead 12 are connected.

以上により、圧延組織層及び再結晶組織層を備えたリチウムイオン二次電池用負極集電銅箔10と、負極集電銅箔10の少なくとも片面または両面に形成された負極活物質層11と、負極集電銅箔10に接続されたタブリード12と、を備えるリチウムイオン二次電池用負極1が製造される。   As described above, the negative electrode current collector copper foil 10 for a lithium ion secondary battery provided with a rolled structure layer and a recrystallized structure layer, the negative electrode active material layer 11 formed on at least one surface or both surfaces of the negative electrode current collector copper foil 10, The negative electrode 1 for lithium ion secondary batteries provided with the tab lead 12 connected to the negative electrode current collection copper foil 10 is manufactured.

(5)リチウムイオン二次電池の製造方法
次に、図4を参照しながら、リチウムイオン二次電池50の製造方法について説明する。
(5) Manufacturing Method of Lithium Ion Secondary Battery Next, a manufacturing method of the lithium ion secondary battery 50 will be described with reference to FIG.

まず、リチウムイオン二次電池用負極1とリチウムイオン二次電池用正極2とをセパレータ3を介して重ね合わせ、図示しない巻芯に巻き取った捲回体4を製作する。正極2は、リチウムイオン二次電池用正極集電金属箔と、正極集電金属箔の例えば両面に形成された正極活物質層と(いずれも図示せず)、正極集電金属箔に接続されたタブリード22と、を備える。正極集電金属箔を構成する金属は、例えばリチウム(Li)やアルミニウム(Al)やその他の金属等である。正極活物質層は、例えばLiを含む金属複合酸化物等からなる。セパレータ3は、例えば多孔質の樹脂等からなる。   First, the negative electrode 1 for lithium ion secondary batteries and the positive electrode 2 for lithium ion secondary batteries are overlapped via the separator 3, and the winding body 4 wound around the core which is not shown in figure is manufactured. The positive electrode 2 is connected to a positive electrode current collector metal foil for a lithium ion secondary battery, a positive electrode active material layer formed on, for example, both surfaces of the positive electrode current collector metal foil (both not shown), and the positive electrode current collector metal foil Tab lead 22. The metal which comprises positive electrode current collection metal foil is lithium (Li), aluminum (Al), another metal etc., for example. The positive electrode active material layer is made of, for example, a metal composite oxide containing Li. The separator 3 is made of, for example, a porous resin.

次に、容器としての電池外挿缶5に、図示しない下部絶縁板と、捲回体4とをこの順に収容する。続いて、図示しないマンドレル(芯金)を捲回体4の中心に挿入し、上部絶縁板を電池外挿缶5に収容した後に、電池外挿缶5に溝6を形成(溝入れ)する。この後、乾燥を行って電池外挿缶5内の水分を飛ばす。電池外挿缶5内が充分に乾燥したら、図示しない電解液を注入する。次に、電池外挿缶5の溝6近傍にガスケット7を装着し、負極1のタブリード12を電池外挿缶5に、正極2のタブリード22をキャップ8の備える端子8tにそれぞれ溶接し、キャップ8を電池外挿缶5にクリンプ(圧着)して電解液を封入する。   Next, a lower insulating plate (not shown) and the wound body 4 are accommodated in this order in a battery extrapolation can 5 as a container. Subsequently, after inserting a mandrel (core metal) (not shown) into the center of the wound body 4 and housing the upper insulating plate in the battery outer can 5, the groove 6 is formed (grooved) in the battery outer can 5. . Thereafter, drying is performed to remove moisture in the battery extrapolation can 5. When the inside of the battery extra can 5 is sufficiently dried, an electrolyte solution (not shown) is injected. Next, a gasket 7 is mounted in the vicinity of the groove 6 of the battery insertion can 5, the tab lead 12 of the negative electrode 1 is welded to the battery external insertion can 5, and the tab lead 22 of the positive electrode 2 is welded to the terminal 8 t provided on the cap 8. 8 is crimped (crimped) on the battery extrapolation can 5 to enclose the electrolyte.

以上により、セパレータ3が間に挿入されたリチウムイオン二次電池用負極1及びリチウムイオン二次電池用正極2が収容され、電解液が封入された電池外挿缶5を備えるリチウムイオン二次電池50が製造される。   As described above, the lithium ion secondary battery including the battery insertion can 5 in which the negative electrode 1 for the lithium ion secondary battery and the positive electrode 2 for the lithium ion secondary battery with the separator 3 interposed therebetween are accommodated and the electrolyte is enclosed. 50 is manufactured.

ここでは、図4に示す円筒型のリチウムイオン二次電池50を例にとって説明したが、リチウムイオン二次電池は、角型、ラミネート型等、他の形態を有していてもよい。また、これに伴い、負極1や正極2も、上述のような捲回タイプや、あるいは、積層タイプ等、様々な形態を採り得る。   Here, the cylindrical lithium ion secondary battery 50 shown in FIG. 4 has been described as an example, but the lithium ion secondary battery may have other forms such as a square type and a laminate type. Along with this, the negative electrode 1 and the positive electrode 2 can also take various forms such as a wound type as described above or a laminated type.

リチウムイオン二次電池用負極に組み込まれるときに、リチウムイオン二次電池用負極集電銅箔が取り得る形状としては、圧延方向に沿って平行に切り離された矩形状が主として挙げられる。矩形状とは、正方形状も含む長方形状のことであり、上述のロール状に捲回された長尺状の形状等も含む。   A shape that can be taken by the negative electrode current collector copper foil for a lithium ion secondary battery when incorporated in a negative electrode for a lithium ion secondary battery mainly includes a rectangular shape cut in parallel along the rolling direction. The rectangular shape is a rectangular shape including a square shape, and includes a long shape wound in the above-described roll shape.

このような矩形状に切り出された後の負極集電銅箔10について、再結晶組織の存否や、存在比率(断面での面積比率)を確認するにあたっては、圧延方向を特定できない場合もある。上述のように、圧延方向には類似の結晶組織が並ぶ。したがって、例えば再結晶組織が圧延組織層中に島状に点在している場合等に、たまたま抜き出した断面が圧延方向と平行であれば、再結晶組織を逸れてしまうこともある。この場合、充分な再結晶組織が生成されているにもかかわらず、再結晶組織が全く観察されないこととなってしまう。   In confirming the presence or absence of the recrystallized structure and the existence ratio (area ratio in the cross section) of the negative electrode current collector copper foil 10 after being cut into such a rectangular shape, the rolling direction may not be specified. As described above, similar crystal structures are arranged in the rolling direction. Therefore, for example, when the recrystallized structure is scattered in the form of islands in the rolled structure layer, the recrystallized structure may be deviated if the extracted cross section happens to be parallel to the rolling direction. In this case, although a sufficient recrystallized structure is generated, no recrystallized structure is observed at all.

しかし、圧延方向を特定できない場合であっても、矩形状に切り出された負極集電銅箔10の一辺に平行な断面と、その断面に直交する断面と、の2つの断面について観測を行えば、いずれか一方において、圧延方向と垂直な断面の情報が得られる。圧延組織と再結晶組織とは、各結晶組織中の結晶粒の平均粒径や、形状、繊維状組織であるかモザイク状組織であるか等により判別することができる。   However, even if the rolling direction cannot be specified, if two cross sections, a cross section parallel to one side of the negative electrode current collector copper foil 10 cut into a rectangular shape and a cross section orthogonal to the cross section, are observed. In either case, information on a cross section perpendicular to the rolling direction can be obtained. The rolled structure and the recrystallized structure can be discriminated by the average particle diameter of the crystal grains in each crystal structure, the shape, whether it is a fibrous structure or a mosaic structure, and the like.

但し、上述のように、再結晶組織層は、例えば圧延組織中に島状に点在するなど、場所によりバラツキがある場合も考えられる。よって、再結晶組織の存否の判別をするには、少なくとも断面の幅方向に50μm以上に亘って断面を連続観察することが必要である。   However, as described above, there are cases where the recrystallized structure layer varies depending on the location, for example, is scattered in an island shape in the rolled structure. Therefore, in order to determine the presence or absence of the recrystallized structure, it is necessary to continuously observe the cross section at least over 50 μm in the width direction of the cross section.

本実施形態の負極集電銅箔10では、2つの断面の少なくともいずれかにおいて再結晶組織が認められ、また、その所定の断面全体に対して再結晶組織が占める領域の面積比率が例えば5%超90%未満、或いは10%以上80%以下であればよい。再結晶組織が片面にのみ生成された場合には、これらの範囲内の更に下限寄りであってもよい。   In the negative electrode current collector copper foil 10 of this embodiment, a recrystallized structure is observed in at least one of the two cross sections, and the area ratio of the region occupied by the recrystallized structure with respect to the entire predetermined cross section is, for example, 5%. It may be less than 90% or 10% to 80%. When the recrystallized structure is generated only on one side, it may be closer to the lower limit within these ranges.

以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

(6)本実施形態に係る効果
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
(6) Effects according to the present embodiment According to the present embodiment, the following one or more effects are achieved.

(a)すなわち、本実施形態では、負極集電銅箔10が負極1に組み込まれるときには、負極活物質層11が少なくとも片面側に形成される塑性変形抑制層としての圧延組織層10pと、圧延組織層10pおよび負極活物質層11の間に配置される応力緩和層としての再結晶組織層10rと、を備えることとなる。 (A) That is, in this embodiment, when the negative electrode current collector copper foil 10 is incorporated in the negative electrode 1, a rolled structure layer 10p as a plastic deformation suppression layer in which the negative electrode active material layer 11 is formed on at least one side, And a recrystallized structure layer 10r as a stress relaxation layer disposed between the structure layer 10p and the negative electrode active material layer 11.

結晶粒微細化強化や加工強化により高強度となった圧延組織層10pが、負極活物質層11の体積変化による応力に耐えて弾性変形を繰返し、負極集電銅箔10の塑性変形を抑制することができる。よって、負極集電銅箔10からの負極活物質層11の剥離や脱落を
抑制することができる。また、負極集電銅箔10が延伸したり波打ったりして、リチウムイオン二次電池50内で内部短絡が発生してしまうことを抑制できる。
The rolled structure layer 10p, which has been strengthened by grain refinement strengthening or work strengthening, withstands the stress caused by the volume change of the negative electrode active material layer 11 and repeats elastic deformation, thereby suppressing plastic deformation of the negative electrode current collector copper foil 10. be able to. Therefore, peeling and dropping of the negative electrode active material layer 11 from the negative electrode current collector copper foil 10 can be suppressed. Moreover, it can suppress that the negative electrode current collection copper foil 10 extends | stretches or wavy, and an internal short circuit generate | occur | produces in the lithium ion secondary battery 50.

また、加工歪みが略解消され、また、伸びを許容する大きな結晶粒を有する再結晶組織層10rが、負極活物質層11の体積変化に追従して応力を緩和し、負極活物質層11と圧延組織層10pとの間で緩衝作用が生まれる。よって、負極集電銅箔10にクラックが生じたり、負極集電銅箔10が破断したりしてしまうことを抑制できる。   Further, the recrystallized structure layer 10r having large crystal grains that are substantially free from processing distortion and that allow elongation is relieved by following the volume change of the negative electrode active material layer 11, and the negative electrode active material layer 11 and A buffering action is produced between the rolled structure layer 10p. Therefore, it can suppress that a crack arises in the negative electrode current collection copper foil 10, or the negative electrode current collection copper foil 10 breaks.

(b)また、本実施形態では、塑性変形の抑制と応力緩和との異なる機能を持つ各層を負極集電銅箔10内に形成している。これにより、このような異なる機能を付与するために、例えば負極集電銅箔10に余計な構造を付加したりする必要が無く、負極集電銅箔10や負極1の構造を簡素化できる。 (B) Moreover, in this embodiment, each layer which has a different function of suppression of plastic deformation and stress relaxation is formed in the negative electrode current collector copper foil 10. Thereby, in order to give such a different function, it is not necessary to add an extra structure to the negative electrode current collector copper foil 10, for example, and the structure of the negative electrode current collector copper foil 10 and the negative electrode 1 can be simplified.

(c)また、本実施形態では、圧延組織層10pは圧延加工により生成した圧延組織を含む層であり、再結晶組織層10rは負極活物質層11を形成するときの熱処理により生成される再結晶組織を含む層である。これにより、既存の工程の大幅な変更や工程数の大幅な増加を伴うことなく、比較的容易にこれらの層を形成することができる。 (C) In this embodiment, the rolled structure layer 10p is a layer including a rolled structure generated by rolling, and the recrystallized structure layer 10r is a regenerated structure generated by heat treatment when the negative electrode active material layer 11 is formed. It is a layer containing a crystal structure. This makes it possible to form these layers relatively easily without significantly changing existing processes or increasing the number of processes.

(d)また、本実施形態では、負極活物質層11を形成するときの熱処理により再結晶組織を生成している。これにより、再結晶組織を生成する工程を、負極活物質層11を形成する工程と兼用することができ、いっそうの効率化を図ることができる。 (D) In this embodiment, the recrystallized structure is generated by heat treatment when forming the negative electrode active material layer 11. Thereby, the process of generating a recrystallized structure can be combined with the process of forming the negative electrode active material layer 11, and further efficiency can be achieved.

(e)また、本実施形態では、圧延方向と垂直な断面において、断面全体に対して再結晶組織が占める領域の面積比率が5%超90%未満などとなるよう構成される。再結晶組織が占める領域の面積比率を例えば5%超としているので、再結晶組織層10rにより充分に応力を緩和することができる。また、面積比率を例えば90%未満としているので、負極集電銅箔10に充放電サイクルに伴う延伸が起こって、負極活物質層11の剥離や内部短絡が生じてしまうことを抑制できる。 (E) Moreover, in this embodiment, it is comprised so that the area ratio of the area | region where a recrystallized structure occupies with respect to the whole cross section may become more than 5% and less than 90% in the cross section perpendicular | vertical to a rolling direction. Since the area ratio of the region occupied by the recrystallized structure is, for example, more than 5%, the recrystallized structure layer 10r can sufficiently relax the stress. Moreover, since the area ratio is, for example, less than 90%, it is possible to prevent the negative electrode current collector copper foil 10 from being stretched due to the charge / discharge cycle, and peeling of the negative electrode active material layer 11 or internal short circuit.

(f)また、本実施形態では、矩形状に切り出された負極集電銅箔10の一辺に平行な断面と、その断面に直交する断面と、の2つの断面について観測を行う。これにより、切り出された後の負極集電銅箔10において、圧延方向の特定が困難な状況においても、所望の再結晶組織が生成されたか否かを判別することができる。 (F) Moreover, in this embodiment, it observes about two cross sections, the cross section parallel to one side of the negative electrode current collection copper foil 10 cut out to the rectangular shape, and the cross section orthogonal to the cross section. Thereby, in the negative electrode current collector copper foil 10 after being cut out, it is possible to determine whether or not a desired recrystallized structure has been generated even in a situation where it is difficult to specify the rolling direction.

(g)また、本実施形態では、無酸素銅を主成分とする圧延銅箔から負極集電銅箔10を構成している。このように、例えばタフピッチ銅や電解銅よりも、高耐熱性、高耐力が得られ易い材料を用いることで、負極集電銅箔10の塑性変形をより一層抑制し、負極活物質層11の脱落等を抑制することができる。 (G) Moreover, in this embodiment, the negative electrode current collection copper foil 10 is comprised from the rolled copper foil which has an oxygen free copper as a main component. Thus, for example, by using a material that can easily obtain high heat resistance and high yield strength compared to tough pitch copper and electrolytic copper, plastic deformation of the negative electrode current collector copper foil 10 is further suppressed, and the negative electrode active material layer 11 Dropout and the like can be suppressed.

(h)また、本実施形態では、負極集電銅箔10は、0.01質量%以上0.20質量%以下のZrを含有している。これにより、再結晶組織が負極集電銅箔10の主に表面付近にのみ生成される現象が発現し易く、圧延組織層10pと再結晶組織層10rとを備える本実施形態の構成が得られ易い。また、母材であるCu中にZrが固溶することによる固溶強化が起こり、負極集電銅箔10全体の強度を向上させることができる。 (H) Moreover, in this embodiment, the negative electrode current collection copper foil 10 contains 0.01 mass% or more and 0.20 mass% or less of Zr. As a result, a phenomenon in which a recrystallized structure is generated mainly only in the vicinity of the surface of the negative electrode current collector copper foil 10 is easily expressed, and the configuration of the present embodiment including the rolled structure layer 10p and the recrystallized structure layer 10r is obtained. easy. Further, solid solution strengthening occurs due to the solid solution of Zr in the base material Cu, and the strength of the negative electrode current collector copper foil 10 as a whole can be improved.

(i)また、本実施形態では、最終冷間圧延工程S40での加工度を82%以上90%以下としている。これにより、生地中の結晶粒を微細化させ、また、加工歪みを充分に蓄積させて、高耐力の圧延組織を充分に発達させることができる。また、加工度を90%以下に抑えているので、熱処理の際に、再結晶組織が占める面積比率を例えば90%未満に抑えることができる。 (I) In the present embodiment, the degree of processing in the final cold rolling step S40 is set to 82% or more and 90% or less. As a result, the crystal grains in the dough can be made fine, and the processing strain can be sufficiently accumulated to sufficiently develop a rolled structure with high yield strength. Further, since the degree of work is suppressed to 90% or less, the area ratio occupied by the recrystallized structure can be suppressed to, for example, less than 90% during the heat treatment.

本発明の実施例に係るリチウムイオン二次電池用負極集電銅箔に対して行った種々の評価結果について以下に説明する。   Various evaluation results performed on the negative electrode current collector copper foil for lithium ion secondary batteries according to examples of the present invention will be described below.

(1)負極集電銅箔の製作
まずは、以下に述べる手順に従い、実施例1〜3及び比較例1〜3に係る負極集電銅箔を製作した。
(1) Manufacture of negative electrode current collector copper foil First, negative electrode current collector copper foils according to Examples 1 to 3 and Comparative Examples 1 to 3 were manufactured according to the procedure described below.

具体的には、無酸素銅を母材とする圧延銅箔である日立電線株式会社製のHCL銅箔(HCLは登録商標)のうち、12μm厚のHCL02Z(Cu−Zr)箔(Zrを0.02質量%含有、残部はCuと不可避的不純物)の構成に上述の実施形態の構成を適用し、係る構成と同様の構成が得られる範囲内で圧延条件等を種々に変えて実施例1〜3に係る負極集電銅箔とした。また、係る構成から外れる範囲を含むよう圧延条件等を種々に変えて比較例1に係る負極集電銅箔とした。また、日立電線株式会社製の12μm厚のタフピッチ銅(TPC)箔(Cuの純度が99.9質量%)を比較例2とし、10μm厚の電解箔を比較例3とした。   Specifically, among HCL copper foils (HCL is a registered trademark) manufactured by Hitachi Cable, Ltd., which is a rolled copper foil using oxygen-free copper as a base material, 12 μm thick HCL02Z (Cu—Zr) foil (Zr is 0) Example 1 by applying the configuration of the above-described embodiment to the configuration of 0.02% by mass, the balance being Cu and inevitable impurities), and variously changing the rolling conditions and the like within a range in which the same configuration as this configuration is obtained It was set as the negative electrode current collection copper foil which concerns on ~ 3. Moreover, it was set as the negative electrode current collection copper foil which concerns on the comparative example 1 by changing rolling conditions etc. variously so that the range which remove | deviates from the structure concerned may be included. Further, 12 μm-thick tough pitch copper (TPC) foil (Cu purity 99.9% by mass) manufactured by Hitachi Cable, Ltd. was used as Comparative Example 2, and 10 μm-thick electrolytic foil was used as Comparative Example 3.

なお、最終冷間圧延工程における加工度の一例を挙げると、実施例2においては加工度が88%である。   In addition, when an example of the working degree in the final cold rolling process is given, in Example 2, the working degree is 88%.

(2)負極集電銅箔の測定
次に、これらの負極集電銅箔に対して種々の測定を行った。
(2) Measurement of negative electrode current collector copper foil Next, various measurements were performed on these negative electrode current collector copper foils.

まずは、これらの負極集電銅箔に対し、400℃で10時間の熱処理を行った後、圧延方向と垂直な断面を走査型電子顕微鏡で観察して反射電子像を得た。この熱処理条件は、負極活物質層を形成する際の熱処理条件を模したものである。   First, these negative electrode current collector copper foils were heat-treated at 400 ° C. for 10 hours, and then a cross section perpendicular to the rolling direction was observed with a scanning electron microscope to obtain reflected electron images. This heat treatment condition simulates the heat treatment condition when forming the negative electrode active material layer.

また、熱処理前の負極集電銅箔の片面に実際に負極活物質層を形成し、種々の測定を行った。   Moreover, the negative electrode active material layer was actually formed on one surface of the negative electrode current collector copper foil before the heat treatment, and various measurements were performed.

まずは、負極活物質として大阪チタニウムテクノロジー株式会社製の一酸化珪素(SiO)粉末を用い、導電助剤としてアセチレンブラックを用い、結着剤として市販のポリイミド(PI)ワニス(PI前駆体のN−メチルピロリドン(NMP)溶液)を用いた。これらを、溶剤分を除く質量混合比でSiO:アセチレンブラック:ポリイミド=80:5:15として、株式会社シンキー製の混練機で1時間混練し、スラリーを調合した。これを、アプリケータを用いて負極集電銅箔の片面に塗布し、乾燥させた。その後、最高温度を400℃として10時間、窒素(N)雰囲気下で加熱した。 First, silicon monoxide (SiO) powder manufactured by Osaka Titanium Technology Co., Ltd. is used as the negative electrode active material, acetylene black is used as the conductive auxiliary agent, and a commercially available polyimide (PI) varnish (PI precursor N-) is used as the binder. Methylpyrrolidone (NMP) solution) was used. These were kneaded for 1 hour with a kneader manufactured by Sinky Co., Ltd. at a mass mixing ratio excluding the solvent content of SiO: acetylene black: polyimide = 80: 5: 15 to prepare a slurry. This was applied to one side of the negative electrode current collector copper foil using an applicator and dried. Thereafter, the maximum temperature was set to 400 ° C. and heated for 10 hours in a nitrogen (N 2 ) atmosphere.

以上により、厚さが15μmの負極活物質層が負極集電銅箔の片面に形成された。   Thus, a negative electrode active material layer having a thickness of 15 μm was formed on one surface of the negative electrode current collector copper foil.

次に、アルゴン(Ar)ガス雰囲気のグローブボックス中にて、富山薬品工業株式会社製の電解液LIPASTE−EDMC/PF1をガラスビーカーに入れた。更に、負極活物質層が形成された負極集電銅箔と、金属リチウム(Li)板とを電解液中に浸漬させた。この状態で、北斗電工株式会社製の電池充放電装置HJ−1001 SM8Aを用い、充放電試験を行った。具体的には、0V〜1V(対Li/Li)で1C放電し、20分間休止(レスト)、同様に1C放電し、20分間休止(レスト)、を繰り返した。50サイクル後に、負極活物質層の密着状態と、負極集電銅箔の変形の有無と、を観察した。 Next, an electrolytic solution LIPASTE-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. was placed in a glass beaker in a glove box under an argon (Ar) gas atmosphere. Furthermore, the negative electrode current collection copper foil in which the negative electrode active material layer was formed, and the metal lithium (Li) board were immersed in electrolyte solution. In this state, a charge / discharge test was performed using a battery charge / discharge device HJ-1001 SM8A manufactured by Hokuto Denko Corporation. Specifically, 1 C discharge was performed at 0 V to 1 V (vs. Li / Li + ), and resting for 20 minutes, similarly 1 C discharging and resting for 20 minutes were repeated. After 50 cycles, the adhesion state of the negative electrode active material layer and the presence or absence of deformation of the negative electrode current collector copper foil were observed.

また、これとは別に、上述の負極活物質層が片面に形成された負極集電銅箔を2cm
の円形に打ち抜いた。この円形の負極集電銅箔を負極とし、金属Li板を正極として、セルガード株式会社製のセパレータを介して単極セルを組み立てた。セルは、宝泉株式会社製のHSセルを用いた。電解液は、富山薬品工業株式会社製の電解液LIPASTE−EDMC/PF1を用いた。組立作業は、Arガス雰囲気のグローブボックス中で行った。上述と同様の充放電条件で、100サイクルのサイクル試験を実施し、放電容量維持率を測定した。また、試験後のセルを解体し、電極形状を目視観察した。
Separately, a negative electrode current collector copper foil having the negative electrode active material layer formed on one side is 2 cm 2.
Punched into a circle. This circular negative electrode current collector copper foil was used as a negative electrode, a metal Li plate was used as a positive electrode, and a single electrode cell was assembled through a separator manufactured by Celguard Co., Ltd. As the cell, an HS cell manufactured by Hosen Co., Ltd. was used. As the electrolytic solution, an electrolytic solution LIPASTE-EDMC / PF1 manufactured by Toyama Pharmaceutical Co., Ltd. was used. The assembly work was performed in a glove box with an Ar gas atmosphere. Under the same charge / discharge conditions as described above, a cycle test of 100 cycles was performed, and the discharge capacity retention rate was measured. Moreover, the cell after a test was disassembled and the electrode shape was visually observed.

(3)負極集電銅箔の評価結果
熱処理後の実施例1〜3及び比較例1に係る負極集電銅箔の圧延方向と垂直な断面の反射電子像を、図5(a)〜(d)にそれぞれ示す。また、熱処理後の比較例2,3に係る負極集電銅箔の圧延方向と垂直な断面の反射電子像を、図6(a),(b)にそれぞれ示す。
(3) Evaluation Results of Negative Electrode Current Collecting Copper Foil Reflected electron images of cross sections perpendicular to the rolling direction of the negative electrode current collecting copper foils according to Examples 1 to 3 and Comparative Example 1 after the heat treatment are shown in FIGS. d) respectively. Moreover, the reflected electron image of a cross section perpendicular | vertical to the rolling direction of the negative electrode current collection copper foil which concerns on the comparative examples 2 and 3 after heat processing is shown to Fig.6 (a), (b), respectively.

図5に示すように、無酸素銅を母材に用いた圧延銅箔から構成される実施例1〜3および比較例1においては、集電銅箔の表面の結晶組織が大きく成長した再結晶組織が認められる。また、厚さ方向の中央付近にはやや扁平な細かい圧延組織が認められる。   As shown in FIG. 5, in Examples 1 to 3 and Comparative Example 1 composed of rolled copper foil using oxygen-free copper as a base material, recrystallization in which the crystal structure of the surface of the current collector copper foil was greatly grown Organization is recognized. Moreover, a slightly flat and fine rolling structure is recognized near the center in the thickness direction.

この図5,6の反射電子像から、圧延方向と垂直な断面において、断面全体に対して再結晶組織が占める領域の面積比率を求めたところ、以下の結果となった。すなわち、実施例1〜3及び比較例1における面積比率は、それぞれ75%,53%,10%,5%であった。また、比較例2,3における面積比率は、いずれも100%であった。   From the reflected electron images of FIGS. 5 and 6, the area ratio of the region occupied by the recrystallized structure with respect to the entire cross section in the cross section perpendicular to the rolling direction was obtained, and the following results were obtained. That is, the area ratios in Examples 1 to 3 and Comparative Example 1 were 75%, 53%, 10%, and 5%, respectively. Moreover, the area ratios in Comparative Examples 2 and 3 were all 100%.

次に、実施例1〜3及び比較例1〜3の負極活物質層の密着状態と、負極集電銅箔の変形の有無と、の観察結果を以下の表1に示す。表中、「活物質層の密着状態」では、○を良好、△を若干の剥離あり、×をほとんどが剥離した状態、とした。また、負極活物質層の密着状態および負極集電銅箔の変形の有無に基づく「判定」結果では、○を良好、×を不良とした。   Next, the observation results of the adhesion state of the negative electrode active material layers of Examples 1 to 3 and Comparative Examples 1 to 3 and the presence or absence of deformation of the negative electrode current collector copper foil are shown in Table 1 below. In the table, “adhesion state of the active material layer” was defined as “good”, “△” slightly peeled, and “×” almost peeled. In addition, in the “determination” result based on the adhesion state of the negative electrode active material layer and the presence or absence of deformation of the negative electrode current collector copper foil, ◯ was good and x was bad.

表1に示すように、再結晶組織が占める領域の面積比率が100%であった比較例2,3においては、負極活物質層の剥離が若干みられた。比較例2,3では負極集電銅箔の変形もみられるため、負極集電銅箔が塑性変形したことにより負極活物質層が剥離したものと考えられる。また、再結晶組織が占める領域の面積比率が5%しかなかった比較例1においては、負極集電銅箔の変形はみられなかったものの、負極活物質層の剥離が確認された。   As shown in Table 1, in Comparative Examples 2 and 3 in which the area ratio of the region occupied by the recrystallized structure was 100%, the negative electrode active material layer was slightly peeled. In Comparative Examples 2 and 3, since deformation of the negative electrode current collector copper foil was also observed, it is considered that the negative electrode active material layer was peeled off due to plastic deformation of the negative electrode current collector copper foil. In Comparative Example 1 in which the area ratio of the region occupied by the recrystallized structure was only 5%, the negative electrode current collector copper foil was not deformed, but peeling of the negative electrode active material layer was confirmed.

このように、負極集電銅箔中に圧延組織が充分に残っていないと、負極集電銅箔の塑性変形が起こり、負極活物質層の剥離が起こるほか、リチウムイオン二次電池内の内部短絡の原因ともなる。   Thus, if there is not enough rolling structure left in the negative electrode current collector copper foil, plastic deformation of the negative electrode current collector copper foil occurs, peeling of the negative electrode active material layer occurs, and the inside of the lithium ion secondary battery It can also cause a short circuit.

これらに対し、再結晶組織が占める領域の面積比率が75%,53%,10%の実施例1〜3においては、負極活物質層の密着性は良好であった。また、負極集電銅箔の変形もみられなかった。再結晶組織が負極活物質層の体積変化による応力を緩和し、かつ、圧延組織が負極集電銅箔の変形を抑制したためと考えられる。以上により、再結晶組織が占める領域の面積比率が所定範囲内であれば、良好な結果が得られることがわかった。   On the other hand, in Examples 1 to 3 where the area ratio of the region occupied by the recrystallized structure was 75%, 53%, and 10%, the adhesion of the negative electrode active material layer was good. Moreover, deformation of the negative electrode current collector copper foil was not observed. This is probably because the recrystallized structure relaxed the stress due to the volume change of the negative electrode active material layer, and the rolled structure suppressed the deformation of the negative electrode current collector copper foil. From the above, it was found that good results can be obtained if the area ratio of the region occupied by the recrystallized structure is within a predetermined range.

次に、実施例2及び比較例2の放電容量維持率の測定値と、電極形状の目視観察結果と、を以下の表2に示す。表中、放電容量維持率および電極形状に基づく「判定」結果では、○を良好、×を不良とした。   Next, Table 2 below shows the measured values of the discharge capacity retention ratio of Example 2 and Comparative Example 2 and the results of visual observation of the electrode shape. In the table, in the “determination” result based on the discharge capacity retention ratio and the electrode shape, “good” means “good” and “poor” means “bad”.

表2に示すように、再結晶組織が占める領域の面積比率が所定範囲内であれば、高い放電容量維持率を有することがわかった。また、電極の変形も起きていないことがわかった。   As shown in Table 2, it was found that when the area ratio of the region occupied by the recrystallized structure is within a predetermined range, a high discharge capacity retention rate is obtained. It was also found that no electrode deformation occurred.

1 リチウムイオン二次電池用負極
2 リチウムイオン二次電池用正極
3 セパレータ
4 捲回体
5 電池外挿缶(容器)
6 溝
7 ガスケット
8 キャップ
8t 端子
10 リチウムイオン二次電池用負極集電銅箔
11 負極活物質層
12,22 タブリード
50 リチウムイオン二次電池
DESCRIPTION OF SYMBOLS 1 Negative electrode for lithium ion secondary batteries 2 Positive electrode for lithium ion secondary batteries 3 Separator 4 Winding body 5 Battery extrapolation can (container)
6 groove 7 gasket 8 cap 8t terminal 10 negative electrode current collector copper foil for lithium ion secondary battery 11 negative electrode active material layer 12, 22 tab lead 50 lithium ion secondary battery

Claims (5)

Si又はSnの少なくともいずれかを含むスラリーを、圧延銅箔からなる負極集電銅箔の少なくとも片面に塗布して圧着する工程と、
前記スラリーが圧着された負極集電銅箔に熱処理を施して負極活物質層を形成する工程と、を有し、
リチウムイオン二次電池用負極に組み込まれるリチウムイオン二次電池用負極集電銅箔の製造方法であって、
前記リチウムイオン二次電池用負極集電銅箔は
前記負極活物質層が少なくとも片面側に形成され、前記負極活物質層の体積変化による塑性変形を抑制する塑性変形抑制層と、
前記塑性変形抑制層および前記負極活物質層の間に配置され、前記負極活物質層の体積変化による応力を緩和する応力緩和層と、を備え、
前記塑性変形抑制層および前記応力緩和層にはそれぞれ異なる結晶組織が含まれ、前記塑性変形抑制層の結晶組織中に含有される結晶粒の平均粒径より、前記塑性変形抑制層の結晶組織とは異なる前記応力緩和層の結晶組織中に含有される結晶粒の平均粒径が大きく、
前記塑性変形抑制層に含まれる結晶組織は、圧延加工により生成した圧延組織であり、前記応力緩和層に含まれ、前記圧延組織とは異なる結晶組織は、前記負極活物質層を形成するときの前記熱処理により生成されることとなる再結晶組織であり、
圧延方向と垂直な断面において、所定の断面全体に対して前記再結晶組織が占める領域の面積比率が5%超90%未満であることを特徴とするリチウムイオン二次電池用負極集電銅箔の製造方法
Applying and pressure-bonding a slurry containing at least one of Si or Sn to at least one surface of a negative electrode current collector copper foil made of a rolled copper foil;
Forming a negative electrode active material layer by performing a heat treatment on the negative electrode current collector copper foil to which the slurry is pressure-bonded,
A method for producing a negative electrode current collector copper foil for a lithium ion secondary battery incorporated in a negative electrode for a lithium ion secondary battery,
The negative electrode current collector copper foil for the lithium ion secondary battery is :
The negative electrode active material layer is formed on at least one side, and a plastic deformation suppressing layer for suppressing plastic deformation due to a volume change of the negative electrode active material layer;
A stress relaxation layer disposed between the plastic deformation suppression layer and the negative electrode active material layer and relieving stress due to a volume change of the negative electrode active material layer,
The plastic deformation suppression layer and the stress relaxation layer include different crystal structures, respectively, and an average grain size of crystal grains contained in the crystal structure of the plastic deformation suppression layer is different from that of the plastic deformation suppression layer. Is a large average grain size of the crystal grains contained in the different crystal structure of the stress relaxation layer,
The crystal structure included in the plastic deformation suppression layer is a rolled structure generated by rolling, and the crystal structure included in the stress relaxation layer is different from the rolled structure when the negative electrode active material layer is formed. A recrystallized structure to be generated by the heat treatment,
A negative electrode current collector copper foil for a lithium ion secondary battery, wherein an area ratio of a region occupied by the recrystallized structure with respect to the entire predetermined cross section in a cross section perpendicular to the rolling direction is more than 5% and less than 90% Manufacturing method .
前記圧延銅箔は無酸素銅を主成分とする
ことを特徴とする請求項1に記載のリチウムイオン二次電池用負極集電銅箔の製造方法
The method for producing a negative electrode current collector copper foil for a lithium ion secondary battery according to claim 1, wherein the rolled copper foil contains oxygen-free copper as a main component.
前記圧延銅箔は0.01質量%以上0.20質量%以下のZrを含有する
ことを特徴とする請求項1または2に記載のリチウムイオン二次電池用負極集電銅箔の製造方法
The said rolled copper foil contains 0.01 mass% or more and 0.20 mass% or less of Zr, The manufacturing method of the negative electrode current collection copper foil for lithium ion secondary batteries of Claim 1 or 2 characterized by the above-mentioned.
請求項1〜3のいずれかに記載の方法によって作製したリチウムイオン二次電池用負極集電銅箔が組み込まれ、
前記リチウムイオン二次電池用負極集電銅箔の少なくとも片面に形成され、Si又はSnの少なくともいずれかを含む前記負極活物質層と、
前記リチウムイオン二次電池用負極集電銅箔に接続されたタブリードと、を備える
ことを特徴とするリチウムイオン二次電池用負極の製造方法
A negative electrode current collector copper foil for a lithium ion secondary battery produced by the method according to claim 1 is incorporated,
The negative electrode active material layer formed on at least one surface of the negative electrode current collector copper foil for the lithium ion secondary battery and containing at least one of Si and Sn;
And a tab lead connected to the negative electrode current collector copper foil for a lithium ion secondary battery. A method for producing a negative electrode for a lithium ion secondary battery.
請求項4に記載の方法によって作製したリチウムイオン二次電池用負極と、
リチウムイオン二次電池用正極と、
前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極の間に挿入されたセパレータと、
前記セパレータが間に挿入された前記リチウムイオン二次電池用負極及び前記リチウムイオン二次電池用正極が収容され、電解液が封入された容器と、を備える
ことを特徴とするリチウムイオン二次電池の製造方法
A negative electrode for a lithium ion secondary battery produced by the method according to claim 4;
A positive electrode for a lithium ion secondary battery;
A separator inserted between the negative electrode for lithium ion secondary battery and the positive electrode for lithium ion secondary battery;
A lithium ion secondary battery comprising: a negative electrode for a lithium ion secondary battery in which the separator is inserted; and a container in which the positive electrode for a lithium ion secondary battery is accommodated and an electrolyte is enclosed. Manufacturing method .
JP2012113838A 2012-05-17 2012-05-17 Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery Active JP5918623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012113838A JP5918623B2 (en) 2012-05-17 2012-05-17 Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
KR1020130020880A KR102003342B1 (en) 2012-05-17 2013-02-27 Copper foil for negative electrode current collector of lithium secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113838A JP5918623B2 (en) 2012-05-17 2012-05-17 Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013242973A JP2013242973A (en) 2013-12-05
JP5918623B2 true JP5918623B2 (en) 2016-05-18

Family

ID=49843683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113838A Active JP5918623B2 (en) 2012-05-17 2012-05-17 Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP5918623B2 (en)
KR (1) KR102003342B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622636B2 (en) 2017-09-29 2020-04-14 International Business Machines Corporation High-capacity rechargeable battery stacks containing a spalled cathode material
US10601033B2 (en) * 2017-09-29 2020-03-24 International Business Machines Corporation High-performance rechargeable batteries having a spalled and textured cathode layer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438541B2 (en) 2004-04-19 2010-03-24 三井金属鉱業株式会社 Composite foil for negative electrode current collector of non-aqueous electrolyte secondary battery and manufacturing method thereof, and negative electrode current collector, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the composite foil
JP2005317309A (en) 2004-04-28 2005-11-10 Sanyo Electric Co Ltd Lithium secondary battery
JP4630072B2 (en) * 2005-01-21 2011-02-09 古河電気工業株式会社 Copper foil for lithium secondary battery electrode, method for producing the copper foil, electrode for lithium secondary battery using the copper foil, and lithium secondary battery
JP2007149604A (en) 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2010135154A (en) * 2008-12-03 2010-06-17 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP5329372B2 (en) * 2009-11-16 2013-10-30 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5985137B2 (en) * 2010-03-16 2016-09-06 日立マクセル株式会社 Manufacturing method of non-aqueous secondary battery
JP5345974B2 (en) * 2010-06-01 2013-11-20 Jx日鉱日石金属株式会社 Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Also Published As

Publication number Publication date
KR20130129077A (en) 2013-11-27
KR102003342B1 (en) 2019-07-24
JP2013242973A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
CN105637106B (en) Copper alloy foil
TWI683013B (en) Rolled copper foil for secondary battery negative electrode current collector, secondary battery negative electrode and secondary battery using the copper foil, and method for producing rolled copper foil for secondary battery negative electrode current collector
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
JP5329290B2 (en) Clad material for negative electrode current collector of lithium ion battery and method for producing the same
JP2014136821A (en) Copper alloy film, anode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of copper alloy film
WO2012090601A1 (en) Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
US9871254B2 (en) Electrode material and manufacturing method thereof
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5918623B2 (en) Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
KR102299094B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2014032929A (en) Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same
JP2013181206A (en) Current collector copper foil of negative electrode for lithium ion secondary battery, method of manufacturing the current collector copper foil of negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, method of manufacturing the negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2013114825A (en) Electrode laminate and lithium ion secondary battery using the same
JP2014060092A (en) Method for manufacturing negative electrode collector copper foil, negative electrode collector copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014060024A (en) Copper alloy foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper alloy foil
JP2019175705A (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2015034340A (en) Aluminum alloy foil for lithium ion secondary battery positive electrode collector
JP2012082497A (en) Copper-alloy foil, electrode for lithium-ion secondary battery using the same, and method for manufacturing copper-alloy foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250