JP2014032929A - Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same - Google Patents

Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same Download PDF

Info

Publication number
JP2014032929A
JP2014032929A JP2012174195A JP2012174195A JP2014032929A JP 2014032929 A JP2014032929 A JP 2014032929A JP 2012174195 A JP2012174195 A JP 2012174195A JP 2012174195 A JP2012174195 A JP 2012174195A JP 2014032929 A JP2014032929 A JP 2014032929A
Authority
JP
Japan
Prior art keywords
copper foil
current collector
copper
less
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012174195A
Other languages
Japanese (ja)
Inventor
Chizuru Goto
千鶴 後藤
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2012174195A priority Critical patent/JP2014032929A/en
Publication of JP2014032929A publication Critical patent/JP2014032929A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil for a current collector, capable of satisfying both improvement in adhesion with an active material layer and improvement in bondability with an Ni tab lead, and a negative electrode collector for a lithium ion secondary battery using the copper foil for a current collector.SOLUTION: In a negative electrode collector for a lithium ion secondary battery, an active material layer 17 is formed on a surface of a rolled copper foil 11. The rolled copper foil 11 has a surface on which roughened particles 15 each comprising a copper roughened plating layer and a chromium based coating are formed. The roughened particles have an average particle size of 0.5 μm or more and less than 1.0 μm, and roughened particles 15 having a particle size of 0.2 μm or more and less than 1.5 μm exist 100 particles or more and less than 1,000 particles per 100 μm.

Description

本発明は、圧延銅箔を用いた集電体用銅箔、及びこれを用いたリチウムイオン二次電池用負極集電体に関するものである。   The present invention relates to a copper foil for a current collector using a rolled copper foil, and a negative electrode current collector for a lithium ion secondary battery using the same.

携帯電話あるいはノートパソコンのようなポータブル機器の普及に伴い、小型で高容量で繰り返し充電可能な二次電池の需要が増えている。なかでも、リチウムイオン二次電池は軽量で単位重量あたりのエネルギー密度が高いことからポータブル機器の電源として最適であり、需要の伸びが見込まれている。   With the widespread use of portable devices such as mobile phones and laptop computers, the demand for secondary batteries that are small, have high capacity, and can be repeatedly charged is increasing. In particular, lithium ion secondary batteries are light and have a high energy density per unit weight, making them ideal as power sources for portable devices, and demand growth is expected.

リチウムイオン二次電池は、特許文献1〜4に示されるように、正極、負極、正極と負極との間に介在し両者を絶縁するセパレータ、及び正極と負極との間でリチウム(Li+)イオンの移動を可能にする電解液から主に構成される。 As shown in Patent Documents 1 to 4, the lithium ion secondary battery includes a positive electrode, a negative electrode, a separator that is interposed between the positive electrode and the negative electrode, and insulates both, and lithium (Li + ) between the positive electrode and the negative electrode. It is mainly composed of an electrolyte solution that allows ions to move.

負極は、例えば、圧延銅箔を基材とした集電体用銅箔上に、カーボン系、Si系(特許文献2)、Sn系(特許文献3)などの負極活物質を含んだ負極活物質層を形成した負極集電体から構成される。また、正極は、アルミニウム箔などの上に、コバルト酸リチウム等の正極活物質層を形成した正極集電体から構成される。   The negative electrode includes, for example, a negative electrode active material containing a negative electrode active material such as carbon-based, Si-based (Patent Document 2), Sn-based (Patent Document 3) on a copper foil for a collector using a rolled copper foil as a base material. It is comprised from the negative electrode collector which formed the material layer. The positive electrode is composed of a positive electrode current collector in which a positive electrode active material layer such as lithium cobalt oxide is formed on an aluminum foil or the like.

これら負極集電体とセパレータと正極集電体とを順に重ねて、所定数巻き回すと共に、負極集電体と正集電体に電力を入出力するための接続端子(タブリード)を溶接した後、電池容器に収容し、電池容器内に電解液を注入して封口してリチウムイオン二次電池が形成される。   After these negative electrode current collectors, separators, and positive electrode current collectors are stacked in order, and a predetermined number of turns are wound, connection terminals (tab leads) for inputting and outputting power to the negative electrode current collector and the positive current collector are welded. The lithium ion secondary battery is formed by being housed in a battery container, injecting an electrolyte solution into the battery container and sealing it.

銅箔を基材とするリチウムイオン二次電池用負極集電体に必要とされる特性として(1)負極活物質層と銅箔との密着性、(2)銅箔とNiタブリードとの接合性がある。   Properties required for a negative electrode current collector for lithium ion secondary batteries based on copper foil are (1) adhesion between the negative electrode active material layer and the copper foil, and (2) bonding between the copper foil and the Ni tab lead. There is sex.

(1)については、銅箔に粗化粒子を析出させることにより凹凸を形成する表面処理を施し、アンカー効果を持たせる方法がある(特許文献2)。(2)については、銅箔表面にクロム系皮膜を形成することで効果を持たせる方法がある(特許文献4)。   As for (1), there is a method in which roughening particles are deposited on a copper foil to perform surface treatment for forming irregularities to give an anchor effect (Patent Document 2). Regarding (2), there is a method of providing an effect by forming a chromium-based film on the surface of the copper foil (Patent Document 4).

特開2004−63344号公報JP 2004-63344 A 特開2002−83594号公報JP 2002-83594 A 特開2000−243396号公報JP 2000-243396 A 特開2001−273904号公報JP 2001-273904 A

このように、リチウムイオン二次電池負極集電体を構成する上で、銅箔と負極活物質層の密着強度の重要性は高い。従来の知見では、基材として圧延銅箔を用いた場合に、負極活物質層(以下、活物質層と呼ぶ)と圧延銅箔との密着性を改善するためには、圧延銅箔の表面に設けられる粗化粒子の粒径が大きいものが好ましいとされてきた。   Thus, in constituting the lithium ion secondary battery negative electrode current collector, the adhesion strength between the copper foil and the negative electrode active material layer is highly important. According to conventional knowledge, when using rolled copper foil as a base material, the surface of the rolled copper foil is used to improve the adhesion between the negative electrode active material layer (hereinafter referred to as the active material layer) and the rolled copper foil. It has been considered preferable that the roughened particles provided on the surface have a large particle size.

しかしながら、凹凸を形成している粗化粒子の粒径が略同じであっても、粗化粒子の数が少なすぎる場合や、粗化粒子の数が多すぎる場合は、密着性が低下してしまう。このことは、活物質の粒子の大きさが銅箔に設けられる粗化粒子の大きさと大きく異なるためと考えられるが、これらの関係は複雑であり、いまだ最適な関係が見出されていない。   However, even if the particle diameters of the roughened particles forming the unevenness are substantially the same, if the number of roughened particles is too small, or if the number of roughened particles is too large, the adhesion is reduced. End up. This is thought to be because the size of the particles of the active material is significantly different from the size of the roughened particles provided on the copper foil, but these relationships are complex and an optimal relationship has not yet been found.

また、銅箔とNiタブリードとのより強い接合性を持たせる要求が近年増加しており、銅箔の上にクロム系皮膜を形成させることである程度強度を得ることは可能であるが、まだ改善の余地はある。   In addition, the demand for stronger bondability between copper foil and Ni tab lead is increasing in recent years, and it is possible to obtain some strength by forming a chromium-based film on the copper foil, but it is still improved There is room for.

そこで、本発明の目的は、上記課題を解決し、活物質層と集電体用銅箔との密着性の向上、負極集電体用銅箔とNiタブリードとの接合性向上の双方を満たすことができる集電体用銅箔及びこれを用いたリチウムイオン二次電池用負極集電体を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and satisfy both the improvement of the adhesion between the active material layer and the current collector copper foil and the improvement of the bondability between the negative electrode current collector copper foil and the Ni tab lead. An object of the present invention is to provide a copper foil for a current collector and a negative electrode current collector for a lithium ion secondary battery using the same.

上記目的を達成するために本発明の第1の態様によれば、
活物質層が設けられることによってリチウムイオン二次電池用負極集電体となる集電体用銅箔において、
圧延銅箔と、
前記圧延銅箔上に設けられるとともに、少なくとも銅粗化めっき層とクロム系皮膜とからなる、粗化粒子とを有し、
前記粗化粒子は平均粒径が0.5μm以上1.0μm未満であり、かつ、0.2μm以上1.5μm未満の粗化粒子が100μm2あたり100個以上1000個未満存在することを特徴とする
集電体用銅箔が提供される。
In order to achieve the above object, according to the first aspect of the present invention,
In the copper foil for current collector that becomes the negative electrode current collector for the lithium ion secondary battery by providing the active material layer,
Rolled copper foil,
Provided on the rolled copper foil, and comprising at least a roughened copper plating layer and a chromium-based film, and roughened particles,
The roughened particles have an average particle size of 0.5 μm or more and less than 1.0 μm, and there are 100 or more and less than 1000 roughened particles of 0.2 μm or more and less than 1.5 μm per 100 μm 2. A copper foil for a current collector is provided.

本発明の第2の態様によれば、
前記圧延銅箔が、Zrを0.015mass%以上0.030mass%以下含有する無酸素銅からなる第1の態様に記載の集電体用銅箔が提供される。
According to a second aspect of the invention,
A copper foil for a current collector according to a first aspect is provided, wherein the rolled copper foil is made of oxygen-free copper containing 0.015 mass% or more and 0.030 mass% or less of Zr.

本発明の第3の態様によれば、前記銅粗化めっき層と前記クロム系皮膜の間に、
5μg/cm2以上80μg/cm2未満のニッケル−コバルト合金めっき薄膜、及び
亜鉛めっき薄膜が順に設けられてなる第1又は2の態様に記載の集電体用銅箔が提供される。
According to the third aspect of the present invention, between the copper roughening plating layer and the chromium-based film,
A copper foil for a current collector according to the first or second aspect is provided, in which a nickel-cobalt alloy plating thin film of 5 μg / cm 2 or more and less than 80 μg / cm 2 and a zinc plating thin film are sequentially provided.

本発明の第4の態様によれば、前記圧延銅箔と前記銅粗化めっき層の間に、下地銅めっき層が設けられる第1から3のいずれかの態様に記載の集電体用銅箔が提供される。   According to a fourth aspect of the present invention, the current collector copper according to any one of the first to third aspects, wherein a base copper plating layer is provided between the rolled copper foil and the copper roughening plating layer. A foil is provided.

本発明の第5の態様によれば、前記クロム系皮膜は、クロメート処理層である第1〜3のいずれかの態様に記載の集電体用銅箔が提供される。   According to a fifth aspect of the present invention, there is provided the current collector copper foil according to any one of the first to third aspects, wherein the chromium-based film is a chromate-treated layer.

本発明の第6の態様によれば、前記集電体用銅箔に活物質層を設けてなるリチウムイオン二次電池用負極集電体が提供される。   According to the 6th aspect of this invention, the negative electrode electrical power collector for lithium ion secondary batteries which provides an active material layer in the said copper foil for electrical power collectors is provided.

本発明の第7の態様によれば、第1〜4の態様に記載の集電体用銅箔の製造方法であって、
前記銅粗化めっき層を形成するめっき時の電流密度を35A/dm2以上、45A/dm2以下とし、めっき時間1sec以上50sec以下、めっき湯温を15℃以上50℃以下にしたことを特徴とする集電体用銅箔の製造方法である。
According to a seventh aspect of the present invention, there is provided a method for producing a current collector copper foil according to the first to fourth aspects,
The current density during plating for forming the copper roughening plating layer is 35 A / dm 2 or more and 45 A / dm 2 or less, the plating time is 1 sec or more and 50 sec or less, and the plating water temperature is 15 ° C. or more and 50 ° C. or less. It is a manufacturing method of the copper foil for electrical power collectors used.

本発明は、圧延銅箔に形成する粗化粒子の平均粒径が0.5μm以上1.0μm未満であり、かつ0.2μm以上1.5μm未満の粒径の粗化粒子が100μm2あたり100個以上1000個未満とすることで、活物質層と銅箔との密着性を向上でき、また表面にクロメート処理を施すことでNiタブリードとの接合性を向上できるという優れた効果を発揮する。 In the present invention, the average particle diameter of the roughened particles formed on the rolled copper foil is 0.5 μm or more and less than 1.0 μm, and the roughened particles having a particle diameter of 0.2 μm or more and less than 1.5 μm are 100 per 100 μm 2. By setting the number to at least 1,000, it is possible to improve the adhesion between the active material layer and the copper foil, and it is possible to improve the bondability with the Ni tab lead by applying chromate treatment to the surface.

本発明のリチウムイオン二次電池用負極集電体に用いる集電体用銅箔の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the copper foil for collectors used for the negative electrode collector for lithium ion secondary batteries of this invention. 図1の集電体用銅箔を用いて形成した本発明のリチウムイオン二次電池用負極集電体の一実施の形態を示す要部断面図である。It is principal part sectional drawing which shows one Embodiment of the negative electrode collector for lithium ion secondary batteries of this invention formed using the copper foil for collectors of FIG. 比較例1−1〜比較例1−3、実施例1−1〜実施例1−12、及び比較例2−1〜2−3の集電体用銅箔に対して、Niタブリードとの溶接強度の関係を示す図である。Welding with Ni tab leads to copper foils for current collectors of Comparative Examples 1-1 to 1-3, Examples 1-1 to 1-12, and Comparative Examples 2-1 to 2-3 It is a figure which shows the relationship of intensity | strength. 比較例I(下地銅めっき層及び銅粗化めっき層なし)、比較例II(下地銅めっき層及び銅粗化めっき層あり、かつ平均粒径が2.0μm)、及び実施例I(下地銅めっき層及び銅粗化めっき層あり、かつ平均粒径が0.6μm)の集電体用銅箔の表面組織を示す顕微鏡写真を示す図である。Comparative Example I (without the base copper plating layer and copper roughening plating layer), Comparative Example II (with the base copper plating layer and copper roughening plating layer and having an average particle size of 2.0 μm), and Example I (base copper) It is a figure which shows the microscope picture which shows the surface structure of the copper foil for collectors with a plating layer and a copper roughening plating layer, and an average particle diameter of 0.6 micrometer. 集電体用銅箔と活物質層との密着性を評価する剥離試験の概略図である。It is the schematic of the peeling test which evaluates the adhesiveness of the copper foil for collectors, and an active material layer.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

本発明は、活物質層が設けられることによってリチウムイオン二次電池用負極集電体となる集電体用銅箔において、圧延銅箔と、圧延銅箔上に順に設けられた、銅粗化めっき層とクロム系皮膜とからなる粗化粒子とを有し、粗化粒子は平均粒径が0.5μm以上1.0μm未満であり、かつ、0.2μm以上1.5μm未満の粗化粒子が100μm2あたり100個以上1000個未満存在するようにした集電体用銅箔である。 The present invention provides a copper foil for a current collector, which becomes a negative electrode current collector for a lithium ion secondary battery by providing an active material layer, a rolled copper foil, and a copper roughening provided in order on the rolled copper foil Roughened particles comprising a plated layer and a chromium-based film, and the roughened particles have an average particle size of 0.5 μm or more and less than 1.0 μm and 0.2 μm or more and less than 1.5 μm Is a copper foil for a current collector in which 100 or more and less than 1000 are present per 100 μm 2 .

図1は、本発明の一実施の形態に係る集電体用銅箔10の断面を示したものである。集電体用銅箔10は、OFC(無酸素銅)、OFCをベースとした希薄合金、またはTPC(タフピッチ銅)からなる圧延銅箔11の表面に、下地銅めっき層12、その下地銅めっき層12上に銅粗化めっき層13、さらにその銅粗化めっき層13上に、処理層14を有する。処理層14は、ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14bおよびクロメート処理層14cからなる。   FIG. 1 shows a cross section of a current collector copper foil 10 according to an embodiment of the present invention. The copper foil 10 for current collectors is a base copper plating layer 12 on the surface of a rolled copper foil 11 made of OFC (oxygen-free copper), a dilute alloy based on OFC, or TPC (tough pitch copper). A copper roughening plating layer 13 is provided on the layer 12, and a treatment layer 14 is provided on the copper roughening plating layer 13. The treatment layer 14 includes a nickel-cobalt alloy plating thin film 14a, a galvanization thin film 14b, and a chromate treatment layer 14c.

銅粗化めっき層13及び処理層14(すなわち、ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、およびクロメート処理層14c)は、粗化粒子15を形成する。銅粗化めっき層13を形成する個々の粒子が、数十nmのオーダーの薄い処理層14に覆われるように設けられている。このため、粗化粒子15の形状及び寸法を決定しているのは、主に銅粗化めっき層13である。なお、下地銅めっき層12、ニッケル−コバルト合金めっき薄膜14a、及び亜鉛めっき薄膜14bは、設けなくてもよい。   The copper roughening plating layer 13 and the treatment layer 14 (that is, the nickel-cobalt alloy plating thin film 14a, the zinc plating thin film 14b, and the chromate treatment layer 14c) form the roughening particles 15. Individual particles forming the copper roughening plating layer 13 are provided so as to be covered with a thin treatment layer 14 of the order of several tens of nanometers. For this reason, it is mainly the copper roughening plating layer 13 that determines the shape and dimensions of the roughening particles 15. The base copper plating layer 12, the nickel-cobalt alloy plating thin film 14a, and the zinc plating thin film 14b may not be provided.

粗化銅めっき層を形成する粒子の間隔は、均等である必要はない。また、一部の粒子同士が、重なりあっていてもよい。処理層14を構成する各層は、その下に形成されている少なくとも3つの粒子によって形成される凹空間の底部を完全に被覆しなくてもかまわない。すなわち、少なくとも該粒子の凸部の頂部付近を被覆していればよい。   The interval between the particles forming the roughened copper plating layer need not be uniform. Further, some of the particles may overlap each other. Each layer constituting the treatment layer 14 may not completely cover the bottom of the concave space formed by the at least three particles formed thereunder. That is, it is only necessary to cover at least the vicinity of the top of the convex portion of the particle.

図2に本発明の負極集電体に係る一実施の形態の概略図を示す。上述した集電体用銅箔10上に、活物質層17が密着形成されてリチウムイオン二次電池用負極集電体20(以下、単に負極集電体20)となる。なお、各構成のサイズは、後述する通りであり、特に、負極活物質16の縮尺は、他の縮尺と大きく異なることに注意が必要である。   FIG. 2 shows a schematic view of one embodiment of the negative electrode current collector of the present invention. An active material layer 17 is formed in close contact with the above-described current collector copper foil 10 to form a negative electrode current collector 20 for a lithium ion secondary battery (hereinafter simply referred to as a negative electrode current collector 20). Note that the size of each component is as described later, and in particular, it should be noted that the scale of the negative electrode active material 16 is significantly different from other scales.

活物質層17は、負極活物質16を含んで形成されている。負極活物質16と、この負極活物質16を粗化粒子15上に保持させるバインダ物質18(以下、単に「バインダ」ともいう)とを溶剤に溶解、分散させて混合することでスラリーが形成される。そして、このスラリーが粗化粒子15上に塗工され、例えば赤外線加熱炉等を用いて高温かつ長時間の熱処理が行われて乾燥されることで溶剤が蒸発等されて活物質層17が形成される。   The active material layer 17 is formed including the negative electrode active material 16. A slurry is formed by dissolving, dispersing, and mixing the negative electrode active material 16 and a binder material 18 (hereinafter also simply referred to as “binder”) that holds the negative electrode active material 16 on the roughened particles 15. The Then, this slurry is coated on the roughened particles 15, and the active material layer 17 is formed by evaporating the solvent by drying at a high temperature for a long time using, for example, an infrared heating furnace. Is done.

負極活物質16としては、例えば、グラファイトやハードカーボン等の炭素(C)系物質、Sn含有物質、Si含有物質、金属複合酸化物、リチウムニトリド金属化合物等の粒子を用いることができる。このような物質を用いて活物質層17を形成することにより、リチウムイオン二次電池の容量をより大きくすることができる。なお、負極活物質16として用いられる粒子の直径は、例えば数μm〜数十μmである。   As the negative electrode active material 16, for example, particles of carbon (C) -based materials such as graphite and hard carbon, Sn-containing materials, Si-containing materials, metal composite oxides, lithium nitride metal compounds, and the like can be used. By forming the active material layer 17 using such a material, the capacity of the lithium ion secondary battery can be further increased. The diameter of the particles used as the negative electrode active material 16 is, for example, several μm to several tens of μm.

バインダ物質18としては、リチウムイオン二次電池用のバインダ物質として用いられるものであれば、種々のものを用いることができる。具体的には、例えば、ポリビニリデンフロライド(PVDF)、スチレン・ブタジエンゴム(SBR)、ポリイミド(PI)等のイミド系樹脂等を用いることができる。バインダ物質18の粒子の径は、数十nm〜数百nmであり、本負極集電体に用いた場合の見た目上の集合体の径は、数百nm〜数十μmとなる。   As the binder material 18, various materials can be used as long as they are used as a binder material for a lithium ion secondary battery. Specifically, for example, imide resins such as polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), polyimide (PI), and the like can be used. The particle diameter of the binder material 18 is several tens nm to several hundreds nm, and the apparent aggregate diameter when used in the negative electrode current collector is several hundred nm to several tens μm.

溶剤としては、例えば、常温(20℃)常圧で液体であり、かつ沸点が50〜400℃の物質を用いることができる。具体的には、バインダ物質の種類等に応じて、例えば水やN−メチルピロリドン等を用いることができる。   As the solvent, for example, a substance that is liquid at normal temperature (20 ° C.) and normal pressure and has a boiling point of 50 to 400 ° C. can be used. Specifically, for example, water, N-methylpyrrolidone, or the like can be used depending on the type of the binder substance.

スラリーには負極活物質16をできるだけ多く添加し、スラリー中のバインダ物質18の割合を低くするとよい。これにより、リチウムイオン二次電池の容量をより大きくすることができる。なお、スラリーには、上述の負極活物質16、バインダ物質18、溶剤の他、例えば、導電助剤、増粘材、結着補助剤、粘度調整剤等が添加されていてもよい。   It is advisable to add as much negative electrode active material 16 as possible to the slurry and to reduce the proportion of the binder material 18 in the slurry. Thereby, the capacity | capacitance of a lithium ion secondary battery can be enlarged more. In addition to the above-described negative electrode active material 16, binder material 18, and solvent, for example, a conductive aid, a thickener, a binding aid, a viscosity modifier, and the like may be added to the slurry.

本発明においては、粗化粒子15は、平均粒径が0.5μm以上1.0μm未満であり、かつ0.2μm以上1.5μm未満の粒径の粗化粒子15が100μm2あたり100個以上1000個未満存在するようにすることで、負極活物質16との密着性を向上できるようにしたものである。なお、上述した通り、粗化粒子15は、銅粗化めっき層13及び処理層14(ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、およびクロメート処理層14c)から構成される。ただし、銅粗化めっき層13と、クロメート処理層14cの間の層は、設けなくてもよいし、適宜、他の金属を採用してもよい。処理層14は、銅粗化めっき層13が形成する粒子を被覆するため、粗化粒子の平均粒径や、各寸法を満たす粒径の個数は、銅粗化めっき層を形成する粒子のそれらと略同一の数値となる。 In the present invention, the roughened particles 15 have an average particle diameter of 0.5 μm or more and less than 1.0 μm, and 100 or more roughened particles 15 having a particle diameter of 0.2 μm or more and less than 1.5 μm per 100 μm 2. Adhesion with the negative electrode active material 16 can be improved by having less than 1,000. As described above, the roughened particles 15 are composed of the copper roughened plated layer 13 and the treated layer 14 (nickel-cobalt alloy plated thin film 14a, galvanized thin film 14b, and chromate treated layer 14c). However, the layer between the copper roughening plating layer 13 and the chromate treatment layer 14c may not be provided, and other metals may be appropriately employed. Since the treatment layer 14 covers the particles formed by the copper roughening plating layer 13, the average particle diameter of the roughening particles and the number of particles satisfying each dimension are those of the particles forming the copper roughening plating layer. It becomes almost the same numerical value.

またニッケル−コバルト合金めっき薄膜に係るニッケル−コバルト合金の量は、5μg/cm2以上80μg/cm2未満とすることで、集電体用銅箔10とNiタブリードとの溶接強度を向上できるようにしたものである。 The amount of nickel-cobalt alloy related to the nickel-cobalt alloy plating thin film is 5 μg / cm 2 or more and less than 80 μg / cm 2 so that the welding strength between the current collector copper foil 10 and the Ni tab lead can be improved. It is a thing.

以下、この本発明の活物質層17と集電体用銅箔10との密着性の向上と、Niタブリードとの接合性が向上する理由について説明する。   Hereinafter, the reason why the adhesiveness between the active material layer 17 of the present invention and the copper foil 10 for current collector and the bondability with the Ni tab lead are improved will be described.

上述の通り、寸法に関しては、粗化粒子15の平均粒径は0.5μm以上1.0μm未満、負極活物質16の粒子の直径は数μm〜数十μm、バインダ物質18の粒子の集合体の径は、数百nm〜数十μmである。バインダ物質18は、その一部が、隣接する3つ又はそれ以上の粗化粒子15間が形成する凹空間に入り込むとともに、粗化粒子15を覆う。   As described above, regarding the dimensions, the average particle diameter of the roughened particles 15 is 0.5 μm or more and less than 1.0 μm, the diameter of the particles of the negative electrode active material 16 is several μm to several tens of μm, and the aggregate of particles of the binder material 18 The diameter is from several hundred nm to several tens of μm. A part of the binder material 18 enters a concave space formed between three or more adjacent roughened particles 15 and covers the roughened particles 15.

バインダ物質18は、凹空間の底まで入り込むことが望ましいが、全ての凹空間において奥まで入っていなくともよく、例えば、粗化粒子15の高さの半分程度まで、入っていてもよい。負極活物質16は、その粒径が粗化粒子15より大きく、粗化粒子15間に形成される凹空間に直接入り込むことはできないが、バインダ物質18を介して、粗化粒子15しいては、集電体用銅箔10に結着させることができる。バインダ物質18を粗化粒子15が形成する凹空間に、より入り込みやすくするために、バインダ物質18の集合体の径に応じて、平均粒径が0.5μm以上1.0μm未満であり、かつ、0.2μm以上1.5μm未満の粗化粒子が100μm2あたり100個以上1000個未満の範囲内で、粗化粒子15の大きさを調整することができる。 Although it is desirable that the binder material 18 penetrates to the bottom of the concave space, the binder material 18 does not have to be penetrated in all the concave spaces, and may be, for example, about half the height of the roughened particles 15. The negative electrode active material 16 has a particle size larger than that of the roughened particles 15 and cannot directly enter the concave space formed between the roughened particles 15, but the roughened particles 15 may be introduced via the binder material 18. The copper foil 10 for current collector can be bound. In order to make it easier for the binder material 18 to enter the concave space formed by the roughened particles 15, the average particle size is 0.5 μm or more and less than 1.0 μm according to the diameter of the aggregate of the binder material 18, and can 1.5μm less roughening particles over 0.2μm is within the range of 100 or more than 1000 per 2 100 [mu] m, to adjust the size of the roughening particles 15.

なお、図2の活物質層17は、バインダ物質18及び負極活物質16が1層ずつ描かれているが、バインダ、必要であれば、結着剤、導電剤、増粘剤等をランダムに介しつつ、積層されてもよい。   The active material layer 17 in FIG. 2 includes a binder material 18 and a negative electrode active material 16 one by one. However, a binder, a binder, a conductive agent, a thickener, and the like are randomly added as necessary. It may be laminated while being interposed.

このように、粗化粒子15の構造を、0.2μm以上1.5μm未満の粒径の粗化粒子15が100μm2あたり100個以上1000個未満存在することで、負極活物質16との密着性を向上できる。 Thus, the structure of the roughening particles 15, by roughening particles 15 of particle size of less than than 0.2 [mu] m 1.5 [mu] m are present fewer than 1000 2 per 100 or more 100 [mu] m, adhesion between the anode active material 16 Can be improved.

まず、圧延銅箔11に脱脂処理および酸洗処理を施した後、硫酸銅及び硫酸を主成分とする酸性の銅めっき浴内で、下地銅めっきを施すことで下地銅めっき層12が形成され、次いで、銅めっき浴の電流密度を35A/dm2以上、45A/dm2以下とし、めっき時間1sec以上10sec以下、めっき湯温を15℃以上50℃以下)のヤケめっきを施すことで銅粗化めっき層13が形成される。これにより粗化粒子15の平均粒径が、0.5μm以上1.0μm未満であると共に0.2μm以上1.5μm未満の粒径の粗化粒子15を100μm2あたり100個以上1000個未満有する粗化面が形成される。 First, after degreasing and pickling treatment are performed on the rolled copper foil 11, the base copper plating layer 12 is formed by applying the base copper plating in an acidic copper plating bath mainly composed of copper sulfate and sulfuric acid. Then, the copper plating bath has a current density of 35 A / dm 2 or more and 45 A / dm 2 or less, a plating time of 1 sec or more and 10 sec or less, and a plating bath temperature of 15 ° C. or more and 50 ° C. or less). An electroplating layer 13 is formed. Thereby, the average particle diameter of the roughened particles 15 is 0.5 μm or more and less than 1.0 μm and has 100 or more and less than 1000 roughened particles 15 having a particle diameter of 0.2 μm or more and less than 1.5 μm per 100 μm 2. A roughened surface is formed.

ここで、粗化粒子15の個数の調整は、銅めっきの際の電流密度、時間等のめっき条件を適宜、調整することで、100μm2あたりの0.2μm以上1.5μm未満の粒径である粗化粒子15とすることができる。 Here, the number of the roughening particles 15 is adjusted by appropriately adjusting the plating conditions such as current density and time during copper plating so that the particle diameter is 0.2 μm or more and less than 1.5 μm per 100 μm 2. Some roughened particles 15 can be obtained.

以下の実施例及び比較例については、全て10.5μm厚の02ZrOFC銅箔(Zr0.02mass%含有の無酸素銅箔)を圧延度箔11として用いている。   In the following examples and comparative examples, 02ZrOFC copper foil (oxygen-free copper foil containing Zr 0.02 mass%) having a thickness of 10.5 μm is used as the rolling degree foil 11.

図4は、集電体用銅箔の表面の顕微鏡写真を示したものである。   FIG. 4 shows a photomicrograph of the surface of the current collector copper foil.

図4(a)の銅めっきなしの比較例Iの作製方法について説明する。電解脱脂および酸洗浄により表面を清浄化した後に、続いてNi−Co合金めっき、亜鉛めっき、及びクロメート処理を行い、ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、及びクロメート処理層14cが順に形成された集電体用銅箔10を作製した。クロム系皮膜の厚さはクロメート処理(膜厚100nm)である。   A method for producing Comparative Example I without copper plating in FIG. After the surface is cleaned by electrolytic degreasing and acid cleaning, Ni—Co alloy plating, zinc plating, and chromate treatment are subsequently performed. The formed copper foil 10 for current collectors was produced. The thickness of the chromium-based film is chromate treatment (film thickness 100 nm).

図4の銅めっきありの(b)比較例II及び(c)実施例Iの集電体用銅箔の作製方法について説明する。まず、電解脱脂および酸洗浄により表面を清浄化した後に銅めっきにより、下地銅めっき層及び銅粗化めっき層を形成した。続いてNi−Co合金めっき、亜鉛めっき、及びクロメート処理を行い、ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、及びクロメート処理層14cが形成された集電体用銅箔を作製した。ここで、(b)比較例II及び(c)実施例Iの集電体用銅箔は、銅粗化めっき層形成時のめっき処理における電流密度、時間等を調整することにより粗化粒子の平均粒径をそれぞれ2.0μm、0.6μmとした。なお、クロム系皮膜は、クロメート処理で形成され、その厚さは100nmである。   A method for producing the copper foil for current collector of (b) Comparative Example II and (c) Example I with copper plating in FIG. 4 will be described. First, after the surface was cleaned by electrolytic degreasing and acid cleaning, a base copper plating layer and a copper roughening plating layer were formed by copper plating. Subsequently, Ni-Co alloy plating, zinc plating, and chromate treatment were performed to produce a collector copper foil on which the nickel-cobalt alloy plating thin film 14a, the zinc plating thin film 14b, and the chromate treatment layer 14c were formed. Here, the copper foil for current collectors of (b) Comparative Example II and (c) Example I was prepared by adjusting the current density, time, etc. in the plating treatment during the formation of the copper roughening plating layer. The average particle size was 2.0 μm and 0.6 μm, respectively. The chromium-based film is formed by chromate treatment and has a thickness of 100 nm.

この図4の集電体用銅箔の評価は以下の通り行った。   Evaluation of the copper foil for collectors of this FIG. 4 was performed as follows.

粗化粒子15の最も長い径(長径)と最も短い径(短径)の平均を粗化粒子15の粒径と定義する。10μm×10μmの領域を1μm×1μmの碁盤目状に区切り(10マス×10マス)、碁盤目交点の位置に存在する粗化粒子15の平均粒径を集電体用銅箔10の平均粒径とした。   The average of the longest diameter (major axis) and the shortest diameter (minor axis) of the roughened particles 15 is defined as the particle size of the roughened particles 15. An area of 10 μm × 10 μm is divided into a grid pattern of 1 μm × 1 μm (10 squares × 10 squares), and the average particle diameter of the roughened particles 15 present at the crossing points of the grids is determined as the average grain of the copper foil 10 for current collector The diameter.

10μm×10μmの領域に存在する0.2μm以上1.5μm未満の粒径の粗化粒子15の数を数え、これを100μm2あたりの粗化粒子数(以下、粒子数N)とした。 The number of roughened particles 15 having a particle size of 0.2 μm or more and less than 1.5 μm present in a 10 μm × 10 μm region was counted, and this was defined as the number of roughened particles per 100 μm 2 (hereinafter, the number of particles N).

この結果を表1に示す。   The results are shown in Table 1.

次に表1に示した集電体用銅箔10をそれぞれ用いて、表2に示す集電体用銅箔10に負極活物質16を塗工、乾燥し、集電体用銅箔10と活物質層17の密着性を評価した。   Next, the negative electrode active material 16 was applied to the copper foil for current collector 10 shown in Table 2 and dried using the copper foil 10 for current collector shown in Table 1, and the copper foil 10 for current collector and The adhesion of the active material layer 17 was evaluated.

比較例1−A〜比較例4−A、実施例1−A〜実施例4−Aに用いたSi系活物質:
ポリイミドの前駆体であるポリアミド酸を10mass%含有するNMP(N−メチル−ピロリドン)溶液に非晶質Si粉末およびグラファイト粒子を均一に分散させてSi系活性物質スラリーを作製した。NMP溶液、非晶質Si粉末およびグラファイト粉末の質量比は10:85:5とした。このスラリーを各集電体用銅箔10の片面に200μmの厚さに塗工し、大気中100℃で30分間乾燥し、更にAr雰囲気下、400℃にて10時間の加熱を行い、Si系活物質を有する負極集電体20を作製した。
Si-based active materials used in Comparative Example 1-A to Comparative Example 4-A and Example 1-A to Example 4-A:
An amorphous Si powder and graphite particles were uniformly dispersed in an NMP (N-methyl-pyrrolidone) solution containing 10 mass% of polyamic acid, which is a polyimide precursor, to prepare a Si-based active material slurry. The mass ratio of the NMP solution, amorphous Si powder, and graphite powder was 10: 85: 5. This slurry was applied to one side of each current collector copper foil 10 to a thickness of 200 μm, dried in air at 100 ° C. for 30 minutes, and further heated at 400 ° C. for 10 hours in an Ar atmosphere. A negative electrode current collector 20 having a system active material was produced.

比較例1−B〜比較例4−B、実施例1−B〜実施例4−Bに用いたSn系活物質:
上記Si系活物質を有する負極集電体20において、負極活物質16として、上述した非晶質Si粉末の代わりにSnO粉末を用い、Sn系活物質を有する負極集電体20を作製した。
Sn-based active materials used in Comparative Example 1-B to Comparative Example 4-B and Example 1-B to Example 4-B:
In the negative electrode current collector 20 having the Si-based active material, the negative electrode current collector 20 having the Sn-based active material was produced by using SnO powder instead of the amorphous Si powder described above as the negative electrode active material 16.

すなわち、ポリイミドの前駆体であるポリアミド酸を10mass%含有するNMP溶液にSnO粉末およびグラファイト粒子を均一に分散させてSnO系活性物質スラリーを作製した。NMP溶液、SnO粉末およびグラファイト粉末の質量比は10:85:5とした。このスラリーを各集電体用銅箔10の片面に200μmの厚さに塗工し、大気中100℃で30分間乾燥し、更にAr雰囲気下、400℃にて10時間の加熱を行い、Sn系活物質層を有する負極集電体20を作製した。   That is, SnO powder and graphite particles were uniformly dispersed in an NMP solution containing 10 mass% of polyamic acid, which is a polyimide precursor, to prepare a SnO-based active material slurry. The mass ratio of the NMP solution, SnO powder and graphite powder was 10: 85: 5. This slurry was applied to one side of each current collector copper foil 10 to a thickness of 200 μm, dried in air at 100 ° C. for 30 minutes, and further heated at 400 ° C. for 10 hours in an Ar atmosphere. A negative electrode current collector 20 having a system active material layer was produced.

図5は集電体用銅箔10と活物質層17の密着性を評価する剥離試験の概略図である。   FIG. 5 is a schematic view of a peel test for evaluating the adhesion between the current collector copper foil 10 and the active material layer 17.

幅15mmに切り出した負極集電体20を、塗工面を外側にして径が3〜15mmのSUS棒21に巻き付け、負極集電体20の一方の端に50gfの荷重22を掛け、他方を矢印で示したように一定の速度で負極集電体20を引き下ろし、その際の活物質層17の状態を評価する。ここで、上述の通り、活物質層17は、負極活物質16、バインダ物質18を含む。   The negative electrode current collector 20 cut out to a width of 15 mm is wound around a SUS rod 21 having a diameter of 3 to 15 mm with the coated surface outside, a load 22 of 50 gf is applied to one end of the negative electrode current collector 20, and the other is indicated by an arrow. As shown in Fig. 5, the negative electrode current collector 20 is pulled down at a constant speed, and the state of the active material layer 17 at that time is evaluated. Here, as described above, the active material layer 17 includes the negative electrode active material 16 and the binder material 18.

この際SUS棒21への巻き付け径が小さくなるに従って、活物質層17に以下の現象が生じる。
(1)活物質層に微細な割れが生じる。
(2)活物質層の割れが大ききなり、その数も増加する。
(3)活物質層が剥離・脱落する。
At this time, the following phenomenon occurs in the active material layer 17 as the winding diameter of the SUS rod 21 decreases.
(1) Fine cracks occur in the active material layer.
(2) Cracks in the active material layer become large and the number thereof increases.
(3) The active material layer peels off.

集電体用銅箔10/活物質層17の密着性が良い程これらの現象は生じにくくなる。すなわち、集電体用銅箔10と活物質層17との密着性を定量的に評価した。   The better the adhesion of the current collector copper foil 10 / active material layer 17, the less likely these phenomena occur. That is, the adhesion between the current collector copper foil 10 and the active material layer 17 was quantitatively evaluated.

試験結果:
Si系およびSn系活物質を塗工した銅箔の剥離試験の結果を表2に示す。
Test results:
Table 2 shows the results of the peel test of the copper foil coated with the Si-based and Sn-based active materials.

鋭意検討の結果、6mm以上の系のSUS棒に巻き付ける際、活物質層17に亀裂が認められる試料は、実際のリチウムイオン電池の製造においても集電体用銅箔10から活物質層17の一部が剥離するという相関が判明した。そこで本試験では、肉眼で活物質層17に亀裂が認められないSUS棒の最小径が6mm以上を不可とした。   As a result of intensive studies, a sample in which cracks are observed in the active material layer 17 when it is wound around a SUS rod having a length of 6 mm or more is obtained from the current collector copper foil 10 to the active material layer 17 even in the manufacture of an actual lithium ion battery. A correlation was found that part of the film peeled off. Therefore, in this test, the minimum diameter of the SUS rod in which no crack was observed in the active material layer 17 with the naked eye was set to be 6 mm or more.

表2より、比較例1−A、1−Bでは、粗化処理を施していないため、SUS棒が8mm未満で亀裂が入り、密着性の評価は「不可」であった。また比較例2−A、2−Bは、0.2μm以上1.5μm未満の粒径の100μm2あたりの粗化粒子15の数(粒子数N)が294であるものの、粗化粒子15の平均粒径が2.0μmと大きく、亀裂が入らないSUS棒の最小径が7mmであり、密着性の評価結果は「不可」であった。さらに、比較例3−A、3−В、比較例4−A、4−Bは、粒子数Nが、884、669であるが、平均粒径が0.5μm未満であるため、亀裂が入らないSUS棒の最小径が其々7mm、6mmであり、密着性の評価は「不可」であった。 From Table 2, in Comparative Examples 1-A and 1-B, since the roughening treatment was not performed, the SUS bar was cracked at less than 8 mm, and the evaluation of adhesion was “impossible”. In Comparative Examples 2-A and 2-B, the number of roughened particles 15 (number N of particles) per 100 μm 2 having a particle size of 0.2 μm or more and less than 1.5 μm is 294. The average particle size was as large as 2.0 μm, and the minimum diameter of the SUS rod without cracks was 7 mm, and the evaluation result of adhesion was “impossible”. Furthermore, Comparative Examples 3-A and 3-В and Comparative Examples 4-A and 4-B have a particle number N of 884 and 669, but since the average particle diameter is less than 0.5 μm, cracks occurred. The minimum diameters of the SUS rods that were not present were 7 mm and 6 mm, respectively, and the evaluation of adhesion was “impossible”.

これに対して、実施例1−A、1−Bは、粗化粒子15の平均粒径が0.6mmで、粒子数Nが336で、SUS棒が3mmでも亀裂が入らない。よって、SUS棒の最小径が6mm未満であり、密着性が良いことが確認できた。また、実施例2−A〜実施例4−A、実施例2−B〜実施例4−Bは、粗化粒子15の平均粒径が規定値以内となる、0.8μm、0.9μm、0.5μmであり、かつ、粒子数Nが規定値以内であり、SUS棒を用いた評価における亀裂が起こらない最小径は5mm以下となり、密着性が良いことが確認できた。   On the other hand, in Examples 1-A and 1-B, the average particle diameter of the roughened particles 15 is 0.6 mm, the number of particles N is 336, and even if the SUS bar is 3 mm, cracks do not occur. Therefore, it was confirmed that the minimum diameter of the SUS rod was less than 6 mm and the adhesion was good. In addition, in Examples 2-A to 4-A and Examples 2-B to 4-B, the average particle diameter of the roughened particles 15 is within a specified value, 0.8 μm, 0.9 μm, It was 0.5 μm, the number N of particles was within the specified value, and the minimum diameter at which cracking did not occur in the evaluation using a SUS rod was 5 mm or less, and it was confirmed that the adhesion was good.

Niタブリード接合性:
表3に、各集電体用銅箔10と、これらの集電体用銅箔10とNiタブリードとの接合性評価の試験結果を示した。
Ni tab lead bondability:
Table 3 shows the test results of the evaluation of the bondability between the current collector copper foils 10 and the current collector copper foils 10 and the Ni tab leads.

比較例1−1〜比較例1−3は、銅めっき(下地銅めっき層12及び銅粗化めっき層13)を施していない圧延銅箔11の上に、処理層14(ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、クロメート処理層14c)を形成したものであり、ニッケル−コバルト合金めっき薄膜14aの製膜量をそれぞれ異にした集電体用銅箔10である。   Comparative Example 1-1 to Comparative Example 1-3 are the treatment layer 14 (nickel-cobalt alloy plating) on the rolled copper foil 11 that has not been subjected to copper plating (the base copper plating layer 12 and the copper roughening plating layer 13). The thin film 14a, the galvanized thin film 14b, and the chromate treatment layer 14c) are formed, and the copper foil 10 for current collectors has a different amount of nickel-cobalt alloy plated thin film 14a.

実施例1−1〜実施例1−12は、厚さが10.5μmの圧延銅箔11上に、下地銅めっき層12を0.5μm、銅粗化めっき層13を1.0μmを施した後、処理層14(ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、クロメート処理層14c)を、平均粒径が0.6μmで、かつ、粒子数Nが336個となるように設けた集電体用銅箔10である。ただし、ニッケル−コバルト合金めっき薄膜14a、銅粗化めっき層13、及びクロメート処理層14cの量を調整することで、粗化粒子15の平均粒径が其々表3に示す値となるように調整している。   In Example 1-1 to Example 1-12, 0.5 μm of the base copper plating layer 12 and 1.0 μm of the copper roughening plating layer 13 were applied on the rolled copper foil 11 having a thickness of 10.5 μm. Thereafter, the treatment layer 14 (nickel-cobalt alloy plating thin film 14a, galvanization thin film 14b, chromate treatment layer 14c) was provided so that the average particle diameter was 0.6 μm and the number N of particles was 336. This is a copper foil 10 for electric bodies. However, by adjusting the amounts of the nickel-cobalt alloy plating thin film 14a, the copper roughening plating layer 13, and the chromate treatment layer 14c, the average particle diameter of the roughening particles 15 becomes a value shown in Table 3 respectively. It is adjusting.

比較例2−1〜比較例2−3は、層構成は、実施例1−1などと同じだが、ニッケル−コバルト合金めっき薄膜の製膜量を80(μg/cm2)とし、平均粒径が2.0μm、粒子数Nが294個となるように粗化粒子15が形成された集電体用銅箔10である。 Comparative Example 2-1 to Comparative Example 2-3 have the same layer structure as Example 1-1, but the amount of nickel-cobalt alloy plating thin film is 80 (μg / cm 2 ), and the average particle size Is the copper foil 10 for current collectors in which the roughened particles 15 are formed so that the particle number N is 294.

Niタブリード接合性の評価については、これらの集電体用銅箔10をW10mm×L60mmに切り出し、赤外イメージ炉を使用して、N2雰囲気で400℃10hr熱処理を施し、Niリボン(t0.1mm×w4mm×50mm)と超音波溶接し、引張試験(ロードセル:500kgf、速度:50mm/min)で強度を測定した。 For evaluation of the Ni tab lead bondability, these current collector copper foils 10 were cut into W10 mm × L60 mm, and subjected to heat treatment at 400 ° C. for 10 hours in an N 2 atmosphere using an infrared image furnace, and Ni ribbons (t0. 1 mm × w 4 mm × 50 mm) and ultrasonic welding, and the strength was measured by a tensile test (load cell: 500 kgf, speed: 50 mm / min).

超音波溶接条件は、
装置:DUKANE4070
振動数:40kHz
振幅:20μm
加圧力:0.2MPa
エネルギー:20J
である。
Ultrasonic welding conditions are
Equipment: DUKANE 4070
Frequency: 40kHz
Amplitude: 20 μm
Applied pressure: 0.2 MPa
Energy: 20J
It is.

図3は、圧延銅箔11に銅めっきを施した場合(実施例1−1〜1−12(粗化粒子の平均粒径は0.6μm)及び比較例2−1〜2−3(粗化粒子の平均粒径は2.0μm))と、そうでない場合(比較例1−1〜1−3)のときの、ニッケル−コバルト合金めっき薄膜の製膜量とNiタブリード溶接強度の関係を示したグラフである。なお、上述の通り、これらの集電体用銅箔10は、下地銅めっき層12、銅粗化めっき層13、ニッケル−コバルト合金めっき薄膜14a、亜鉛めっき薄膜14b、及びクロメート処理層14cを順に有している。   FIG. 3 shows the case where the rolled copper foil 11 was plated with copper (Examples 1-1 to 1-12 (average particle diameter of the roughened particles was 0.6 μm)) and Comparative Examples 2-1 to 2-3 (coarse The average particle size of the particles is 2.0 μm)), and in other cases (Comparative Examples 1-1 to 1-3), the relationship between the amount of nickel-cobalt alloy plating thin film formed and the Ni tab lead weld strength It is the shown graph. In addition, as above-mentioned, these copper foils 10 for collectors have the base copper plating layer 12, the copper roughening plating layer 13, the nickel-cobalt alloy plating thin film 14a, the zinc plating thin film 14b, and the chromate treatment layer 14c in order. Have.

この図3より、ニッケル−コバルト合金めっき薄膜が厚いほど溶接強度は高くなるが、比較例2−1〜比較例2−3のニッケル−コバルト合金箔膜の製膜量を80μg/cm2とした集電体用銅箔10を、90°に折り曲げると処理層14にクラックが入った(耐クラック性の評価が「×」となった)。処理層14にクラックが入ると電池組み込み時にクラック部から銅が溶出する虞れがあるため好ましくない。従って、ニッケル−コバルト合金めっき薄膜は80μg/cm2未満であることが好ましい。 From FIG. 3, the thicker the nickel-cobalt alloy plating thin film, the higher the welding strength, but the amount of nickel-cobalt alloy foil film of Comparative Example 2-1 to Comparative Example 2-3 was set to 80 μg / cm 2 . When the copper foil 10 for current collectors was bent at 90 °, the treatment layer 14 was cracked (evaluation of crack resistance was “x”). If the treatment layer 14 is cracked, it is not preferable because copper may be eluted from the crack portion when the battery is assembled. Therefore, the nickel-cobalt alloy plating thin film is preferably less than 80 μg / cm 2 .

また、同じニッケル−コバルト合金めっき薄膜を施した場合であっても、圧延銅箔に銅めっきを施すことにより、下地銅めっき層及び銅粗化めっき層を形成した方が、銅めっきを施さない場合よりも強度は高いことがわかる。   In addition, even when the same nickel-cobalt alloy plating thin film is applied, the copper plating is performed on the rolled copper foil, so that the copper plating is not performed if the base copper plating layer and the copper roughening plating layer are formed. It can be seen that the strength is higher than the case.

ニッケル−コバルト合金めっき薄膜の厚さの最適値:
表3と図3により、ニッケル−コバルト合金めっき薄膜はクラックが生じない80μg/cm2未満が良いが、溶接強度も考慮すると5μg/cm2以上80μg/cm2未満が望ましい。
Optimum thickness of nickel-cobalt alloy plating thin film:
The Table 3 and Figure 3, a nickel - cobalt alloy plating film is good than 80 [mu] g / cm 2 does not occur cracks, weld strength to the 5 [mu] g / cm 2 or more 80 [mu] g / cm less than 2 is desired account.

圧延銅箔の素材は02ZrOFC材でもTPC材(タフピッチ銅材)でも他のOFC材でも構わない。   The material of the rolled copper foil may be a 02ZrOFC material, a TPC material (tough pitch copper material), or another OFC material.

しかし、一般的に溶接強度は電解箔<TPC箔<高強度(02ZrOFC)箔であり、本発明においては、02ZrOFC箔を用いるのがより好ましい。   However, in general, the welding strength is electrolytic foil <TPC foil <high strength (02ZrOFC) foil. In the present invention, it is more preferable to use 02ZrOFC foil.

さらに、Zr入りのOFCを用いる場合、実施例では、0.02mass%としたが、十分な強度は0.015mass%程度でも得られる。また、0.03mass%を超えると強度向上の程度が頭打ちになるため、その点についてそれ以上のZrを含ませなくてもよい。ただし、製造方法や組成を改良し、強度を向上させることが可能である。   Furthermore, in the case where an OFC containing Zr is used, it is set to 0.02 mass% in the embodiment, but sufficient strength can be obtained even at about 0.015 mass%. Further, if it exceeds 0.03 mass%, the degree of strength improvement reaches its peak, so that it is not necessary to include any more Zr. However, it is possible to improve a manufacturing method and a composition and to improve an intensity | strength.

本実施例では、圧延銅箔表面に銅粗化めっき処理の前に、平滑化、又は/及び粗化粒子15のバラツキ低減を目的として下地銅めっきを施しているが、下地銅めっきは省略しても良い。   In this embodiment, the surface of the rolled copper foil is subjected to base copper plating for the purpose of smoothing and / or reducing variation of the roughened particles 15 before the copper roughening plating treatment, but the base copper plating is omitted. May be.

クロム系皮膜は純クロム、合金、クロム化合物でもよい。方法としてめっき処理、電解クロメート処理、塗布型クロメート処理、反応型クロメート処理がある。   The chromium-based film may be pure chromium, an alloy, or a chromium compound. Methods include plating, electrolytic chromate treatment, coating chromate treatment, and reactive chromate treatment.

反応型クロメート処理は亜鉛との置換反応が主流であるため、この場合のみ直前に亜鉛めっきが必要となる。   In the reactive chromate treatment, substitution reaction with zinc is the mainstream, so only in this case galvanization is necessary immediately before.

10 集電体用銅箔
11 圧延銅箔
12 下地銅めっき層
13 銅粗化めっき層
14 処理層
14a ニッケル−コバルト合金めっき薄膜
14b 亜鉛めっき薄膜
14c クロメート処理層
15 粗化粒子
16 負極活物質
17 活物質層
18 バインダ物質
20 リチウムイオン二次電池用負極集電体
DESCRIPTION OF SYMBOLS 10 Current collector copper foil 11 Rolled copper foil 12 Base copper plating layer 13 Copper roughening plating layer 14 Treatment layer 14a Nickel-cobalt alloy plating thin film 14b Zinc plating thin film 14c Chromate treatment layer 15 Roughening particle 16 Negative electrode active material 17 Active Material layer 18 Binder material 20 Negative electrode current collector for lithium ion secondary battery

Claims (7)

活物質層が設けられることによってリチウムイオン二次電池用負極集電体となる集電体用銅箔において、
圧延銅箔と、
前記圧延銅箔上に順に設けられた、銅粗化めっき層とクロム系皮膜とからなる粗化粒子とを有し、
前記粗化粒子は平均粒径が0.5μm以上1.0μm未満であり、かつ、0.2μm以上1.5μm未満の粗化粒子が100μm2あたり100個以上1000個未満存在することを特徴とする
集電体用銅箔。
In the copper foil for current collector that becomes the negative electrode current collector for the lithium ion secondary battery by providing the active material layer,
Rolled copper foil,
Provided in order on the rolled copper foil, and having roughened particles composed of a copper roughened plating layer and a chromium-based film,
The roughened particles have an average particle size of 0.5 μm or more and less than 1.0 μm, and there are 100 or more and less than 1000 roughened particles of 0.2 μm or more and less than 1.5 μm per 100 μm 2. Yes Copper foil for current collector.
前記圧延銅箔が、Zrを0.015mass%以上0.030mass%以下含有する無酸素銅からなる請求項1記載の集電体用銅箔。   The copper foil for current collectors according to claim 1, wherein the rolled copper foil is made of oxygen-free copper containing 0.015 mass% or more and 0.030 mass% or less of Zr. 前記銅粗化めっき層と前記クロム系皮膜の間に、
5μg/cm2以上80μg/cm2未満のニッケル−コバルト合金めっき薄膜、及び亜鉛めっき薄膜が順に設けられてなる請求項1又は2に記載の集電体用銅箔。
Between the copper roughening plating layer and the chromium-based film,
The copper foil for current collectors according to claim 1, wherein a nickel-cobalt alloy plating thin film and a zinc plating thin film of 5 μg / cm 2 or more and less than 80 μg / cm 2 are sequentially provided.
前記圧延銅箔と前記銅粗化めっき層の間に、下地銅めっき層が設けられる請求項1から3のいずれかに記載の集電体用銅箔。   The copper foil for collectors in any one of Claim 1 to 3 with which a base copper plating layer is provided between the said rolled copper foil and the said copper roughening plating layer. 前記クロム系皮膜は、クロメート処理層である請求項1〜3のいずれか一項に記載の集電体用銅箔。   The copper foil for a current collector according to any one of claims 1 to 3, wherein the chromium-based film is a chromate-treated layer. 請求項1〜5のいずれかに記載の集電体用銅箔に活物質層を設けてなるリチウムイオン二次電池用負極集電体。   A negative electrode current collector for a lithium ion secondary battery, comprising an active material layer provided on the current collector copper foil according to claim 1. 請求項1〜4のいずれかに記載の集電体用銅箔の製造方法であって、
前記銅粗化めっき層を形成するめっき時の電流密度を35A/dm2以上、45A/dm2以下とし、めっき時間1sec以上50sec以下、めっき湯温を15℃以上50℃以下にしたことを特徴とする集電体用銅箔の製造方法。
It is a manufacturing method of the copper foil for current collectors in any one of Claims 1-4,
The current density during plating for forming the copper roughening plating layer is 35 A / dm 2 or more and 45 A / dm 2 or less, the plating time is 1 sec or more and 50 sec or less, and the plating water temperature is 15 ° C. or more and 50 ° C. or less. A method for producing a copper foil for a current collector.
JP2012174195A 2012-08-06 2012-08-06 Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same Pending JP2014032929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174195A JP2014032929A (en) 2012-08-06 2012-08-06 Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174195A JP2014032929A (en) 2012-08-06 2012-08-06 Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2014032929A true JP2014032929A (en) 2014-02-20

Family

ID=50282577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174195A Pending JP2014032929A (en) 2012-08-06 2012-08-06 Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2014032929A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049625A1 (en) * 2014-08-18 2016-02-18 Showa Denko Packaging Co., Ltd. Thin power storage device and production method thereof
JP2018133201A (en) * 2017-02-15 2018-08-23 株式会社豊田自動織機 Power storage module
CN113555560A (en) * 2020-04-23 2021-10-26 河北零点新能源科技有限公司 Method for improving commercial graphite capacity and rate capability and lithium ion battery
CN114221055A (en) * 2021-12-17 2022-03-22 横店集团东磁股份有限公司 Flexible stress sensing functional current collector and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160049625A1 (en) * 2014-08-18 2016-02-18 Showa Denko Packaging Co., Ltd. Thin power storage device and production method thereof
CN105374959A (en) * 2014-08-18 2016-03-02 昭和电工包装株式会社 Thin power storage device and production method thereof
US10079374B2 (en) * 2014-08-18 2018-09-18 Showa Denko Packaging Co., Ltd. Thin power storage device and production method thereof
US10756313B2 (en) 2014-08-18 2020-08-25 Showa Denko Packaging Co., Ltd. Thin power storage device and production method thereof
TWI753849B (en) * 2014-08-18 2022-02-01 日商昭和電工包裝股份有限公司 Thin power storage device and method of manufacturing the same
JP2018133201A (en) * 2017-02-15 2018-08-23 株式会社豊田自動織機 Power storage module
WO2018150723A1 (en) * 2017-02-15 2018-08-23 株式会社豊田自動織機 Power storage module
CN113555560A (en) * 2020-04-23 2021-10-26 河北零点新能源科技有限公司 Method for improving commercial graphite capacity and rate capability and lithium ion battery
CN114221055A (en) * 2021-12-17 2022-03-22 横店集团东磁股份有限公司 Flexible stress sensing functional current collector and preparation method and application thereof
CN114221055B (en) * 2021-12-17 2023-08-01 横店集团东磁股份有限公司 Flexible stress sensing functional current collector and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN111801444B (en) Electrolytic copper foil, electrode and lithium ion secondary battery comprising same
JP5666839B2 (en) Negative electrode for secondary battery, negative electrode current collector, secondary battery, and production method thereof
CN105637106B (en) Copper alloy foil
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
TW201230461A (en) Copper covered steel foil, negative electrode power collection body and manufacturing method thereof as well as battery
KR20160138321A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
KR101346956B1 (en) Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
KR20140053079A (en) Rolled copper foil for lithium ion secondary battery current collector
JP2012038700A (en) Copper foil for current collector of lithium secondary battery
JP2014032929A (en) Copper foil for current collector and negative electrode collector for lithium ion secondary battery using the same
JP2020532653A (en) Electrolytic copper foil, its manufacturing method and cathode for high-capacity Li secondary batteries including it
JP5306549B2 (en) Method for producing electrode for negative electrode of lithium ion secondary battery
JP5643732B2 (en) Negative electrode current collector copper foil for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode current collector copper foil for lithium ion secondary battery
KR102299094B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2014065933A (en) Rolled copper foil for lithium ion secondary battery collector
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP5918623B2 (en) Method for producing negative electrode current collector copper foil for lithium ion secondary battery, method for producing negative electrode for lithium ion secondary battery, and method for producing lithium ion secondary battery
JP5356308B2 (en) Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
WO2022210654A1 (en) Current collector steel foil, electrode, and battery
JP2017066527A (en) Cover aluminum material and producing method thereof
JP5117213B2 (en) Copper foil for negative electrode of lithium ion secondary battery and negative electrode for lithium ion secondary battery
JP2019175705A (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2010205659A (en) Negative electrode material for lithium-ion secondary battery and method of manufacturing the same
TW202305187A (en) Electrolytic copper foil, and electrode and copper-clad laminate comprising the same