JP2008041347A - Negative electrode for lithium ion secondary battery, and method for manufacturing the same - Google Patents

Negative electrode for lithium ion secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2008041347A
JP2008041347A JP2006211883A JP2006211883A JP2008041347A JP 2008041347 A JP2008041347 A JP 2008041347A JP 2006211883 A JP2006211883 A JP 2006211883A JP 2006211883 A JP2006211883 A JP 2006211883A JP 2008041347 A JP2008041347 A JP 2008041347A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
foil
ion secondary
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211883A
Other languages
Japanese (ja)
Inventor
Shigeru Okamoto
茂 岡本
Hajime Sasaki
元 佐々木
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006211883A priority Critical patent/JP2008041347A/en
Publication of JP2008041347A publication Critical patent/JP2008041347A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a negative electrode for a lithium ion secondary battery that is excellent in cycle characteristics, by preventing an active material from being peeled off or falling off from a Cu foil or a Cu alloy foil being a current collector, even when charge/discharge are repeated although having a high discharge capacity. <P>SOLUTION: After applying Sn plating onto the surface of a negative-electrode current collector 2 composed of a Cu foil or a Cu alloy foil, the Sn plating is Cu-Sn-alloyed by executing prescribed heat treatment so as to manufacture the negative electrode 1 for a lithium ion secondary battery by forming a Cu-Sn alloy layer 3. Plasma treatment is applied onto the surface of the negative-electrode current collector 2 before applying the Sn plating onto the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用負極の製造方法及びリチウムイオン二次電池用負極に関する。   The present invention relates to a method for producing a negative electrode for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery.

リチウムイオン二次電池は、現在モバイル機器をはじめとして広く普及している。リチウムイオン二次電池の負極としては、Cu箔またはCu合金箔からなる負極集電体の上にカーボン系の材料を活物質として形成したものである。   Lithium ion secondary batteries are now widely used in mobile devices. As a negative electrode of a lithium ion secondary battery, a carbon-based material is formed as an active material on a negative electrode current collector made of Cu foil or Cu alloy foil.

このリチウムイオン二次電池用負極は、一般的に、圧延Cu箔または圧延Cu合金箔、あるいは電解Cu箔または電解Cu合金箔上に、カーボン系の材料をバインダーと溶剤で溶いたものを塗布、乾燥し、熱ロールプレスを施して得られる。   This negative electrode for a lithium ion secondary battery is generally a rolled Cu foil or rolled Cu alloy foil, or an electrolytic Cu foil or electrolytic Cu alloy foil coated with a carbon-based material dissolved in a binder and a solvent, Obtained by drying and hot roll pressing.

カーボン系の材料ではカーボンとリチウムの化合物であるLiC6 が活物質として作用し、リチウムイオンをインターカレーションにより吸蔵、あるいはデインターカレーションにより離脱することができる。 In the carbon-based material, LiC 6 that is a compound of carbon and lithium acts as an active material, and lithium ions can be occluded by intercalation or released by deintercalation.

このとき、LiC6 の単位重さ当たりの理論放電容量(最大容量)は372mAh/gと言われている。カーボン系活物質ではこの値を超えて容量の増大を図ることができないため、最近ではさらに放電容量の大きいSn系の活物質(Li4,4Snで約1000mAh/g)、Si系の活物質(Li4,4Siで約4000mAh/g)などの実用化検討が盛んに行われている。 At this time, the theoretical discharge capacity (maximum capacity) per unit weight of LiC 6 is said to be 372 mAh / g. Since the capacity of the carbon-based active material cannot be increased beyond this value, recently, a Sn-based active material having a higher discharge capacity (approximately 1000 mAh / g for Li 4,4 Sn), a Si-based active material. Studies on practical use such as (approximately 4000 mAh / g for Li 4,4 Si) are being actively conducted.

Sn系の材料では、Cu箔表面に電解めっきでSnを形成して200℃で24時間熱処理を行った場合に、めっき層がSn/Cu6 Sn5 /Cu3 Snの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上するという報告がある(非特許文献1参照)。 In the Sn-based material, when Sn is formed on the Cu foil surface by electrolytic plating and heat treatment is performed at 200 ° C. for 24 hours, the plating layer changes to a multilayer structure of Sn / Cu 6 Sn 5 / Cu 3 Sn, There is a report that cycle characteristics are improved in order to relieve stress due to expansion and contraction of an active material during charge and discharge and suppress separation (see Non-Patent Document 1).

このような従来のリチウムイオン二次電池用負極の製造方法には、図4に示すようなリチウムイオン二次電池用負極の製造装置41を用いる。この製造装置41では、送出機42からCu箔2からなるコイルcを送り出し、前処理装置43でCu箔2の脱脂、酸洗などの前処理を施し、めっき処理装置45でCu箔2にSnめっきを施し、これを熱処理装置46で熱処理し、巻取機47で得られたリチウムイオン二次電池用負極を巻き取る。   In such a conventional method for producing a negative electrode for a lithium ion secondary battery, an apparatus 41 for producing a negative electrode for a lithium ion secondary battery as shown in FIG. 4 is used. In this manufacturing apparatus 41, the coil c made of the Cu foil 2 is sent out from the sending machine 42, the pretreatment such as degreasing and pickling of the Cu foil 2 is performed in the pretreatment apparatus 43, and the Sn foil is applied to the Cu foil 2 in the plating treatment apparatus 45. Plating is performed, this is heat-treated with a heat treatment device 46, and the negative electrode for a lithium ion secondary battery obtained with a winder 47 is taken up.

また、Cu6 Sn5 を活物質として利用するリチウムイオン二次電池用負極では、Cu箔基材にSnめっきを施してこれに熱処理を行ったり、シアン系のめっき液によるCu−Sn合金めっきでCu6 Sn5 を形成している(特許文献1参照)。 In addition, in a negative electrode for a lithium ion secondary battery using Cu 6 Sn 5 as an active material, the Cu foil base material is subjected to Sn plating and subjected to heat treatment, or Cu—Sn alloy plating with a cyan plating solution. Cu 6 Sn 5 is formed (see Patent Document 1).

田村宣之、外4名,「リチウム二次電池用高容量スズ負極材料の電気化学特性」,三洋電機技報,Vol.34,No1,pp.87−93(2002)Nobuyuki Tamura and 4 others, “Electrochemical characteristics of high-capacity tin negative electrode materials for lithium secondary batteries”, Sanyo Electric Technical Report, Vol. 34, No1, pp. 87-93 (2002) 特開2004−87232号公報JP 2004-87232 A 特開平7−252657号公報Japanese Patent Laid-Open No. 7-252657

カーボン系の材料はほぼ理論容量に近いところまで電池の開発が進んでおり、今後、放電容量の大幅な向上は困難である。このため、上述したようにSn系やSi系の材料の開発が行われている。   The development of batteries is progressing to a point where the carbon-based material is almost close to the theoretical capacity, and it is difficult to greatly improve the discharge capacity in the future. For this reason, as described above, Sn-based and Si-based materials have been developed.

しかしながら、これらの材料はリチウムイオンを吸蔵したときの体積膨張が極めて大きいという欠点がある。具体的には、カーボン系材料の場合が1.5倍の体積膨張であるのに対し、Sn系は約3.5倍、Si系は約4倍もの体積膨張となる。   However, these materials have a drawback that volume expansion is extremely large when lithium ions are occluded. Specifically, the volume expansion of the carbon-based material is 1.5 times, whereas the volume expansion of the Sn-based material is about 3.5 times and that of the Si-based material is about 4 times.

この大きな体積変化のため、充放電サイクルに伴い集電体であるCu箔から活物質が微粉化して剥離、脱落し、電池特性が急激に低下してしまうという問題が生じ、これが実用化にあたっての最大の障害となっていた。   Due to this large volume change, the active material is pulverized from the Cu foil as a current collector along with the charge / discharge cycle, causing a problem that the battery characteristics are drastically deteriorated. It was the biggest obstacle.

したがって、Sn系材料の場合、純Snの薄膜としてではなくSn合金またはSn化合物(以下、「合金」には「化合物」を含むものとする)薄膜として利用しようと試みられている。   Therefore, in the case of Sn-based materials, attempts have been made to use it as a thin film of Sn alloy or Sn compound (hereinafter referred to as “alloy” includes “compound”) rather than as a thin film of pure Sn.

例えば、Sn化合物であるCu6 Sn5 は負極活物質としての使用が検討されている。Cu6 Sn5 を形成する方法は特許文献1記載の通り、Cu箔基材にSnめっきを行った後に加熱処理を施す方法や、シアン系のめっき液により直接Cu−Sn合金めっきを施す方法が知られている。 For example, Cu 6 Sn 5 which is a Sn compound has been studied for use as a negative electrode active material. The method for forming Cu 6 Sn 5 includes, as described in Patent Document 1, a method of performing a heat treatment after performing Sn plating on a Cu foil substrate, and a method of directly performing Cu—Sn alloy plating with a cyan plating solution. Are known.

しかし、これらの方法によりCu6 Sn5 を活物質として形成することで、充放電に伴う膨張・収縮による活物質の崩壊は軽減されるものの、未だ充分とはいえなかった。 However, although Cu 6 Sn 5 is formed as an active material by these methods, the collapse of the active material due to expansion / contraction associated with charge / discharge is reduced, but it has not been sufficient.

また、シアン系のめっき液を使用する方法では安全・環境の面で問題があると共に、廃液処理などの製造設備が大掛かりとなり、コスト増加要因となってしまうという問題があった。   In addition, the method using a cyan plating solution has a problem in terms of safety and environment, and there is a problem that a manufacturing facility such as a waste liquid treatment becomes large and causes a cost increase.

このため、充放電を繰り返しても集電体であるCu箔またはCu合金箔から負極活物質が剥離、脱落することなく、より一層サイクル特性に優れたリチウムイオン二次電池用負極と、低コストで環境安全性に優れた製造方法とが要望されていた。   For this reason, a negative electrode for a lithium ion secondary battery having further excellent cycle characteristics without lowering the negative electrode active material from the Cu foil or Cu alloy foil, which is a current collector, even after repeated charging and discharging, and a low cost Therefore, a manufacturing method excellent in environmental safety has been demanded.

そこで、本発明の目的は、かかる問題点を解消し、高い放電容量を有しながら、充放電を繰り返しても集電体であるCu箔またはCu合金箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極の製造方法及びリチウムイオン二次電池用負極を提供することにある。   Accordingly, the object of the present invention is to eliminate such problems and prevent the active material from being peeled off or dropped from the Cu foil or Cu alloy foil as a current collector even when charging and discharging are repeated while having a high discharge capacity. An object of the present invention is to provide a method for producing a negative electrode for a lithium ion secondary battery excellent in cycle characteristics and a negative electrode for a lithium ion secondary battery.

本発明は前記目的を達成するために創案されたものであり、請求項1の発明は、Cu箔またはCu合金箔からなる負極集電体の表面にSnめっきを施した後、所定の熱処理を施して前記SnめっきをCu−Sn合金化することにより、Cu−Sn合金層を形成してリチウムイオン二次電池用負極を製造する方法において、前記負極集電体の表面にSnめっきを施す前に、その表面にプラズマ処理を施すリチウムイオン二次電池用負極の製造方法である。   The present invention was devised in order to achieve the above object, and the invention of claim 1 is characterized in that a predetermined heat treatment is performed after Sn plating is applied to the surface of a negative electrode current collector made of Cu foil or Cu alloy foil. In the method for producing a negative electrode for a lithium ion secondary battery by forming a Cu—Sn alloy layer by applying the Sn plating to a Cu—Sn alloy, before applying Sn plating to the surface of the negative electrode current collector And a method for producing a negative electrode for a lithium ion secondary battery, wherein the surface is subjected to plasma treatment.

請求項2の発明は、前記熱処理は、150〜231℃で5〜200時間行う請求項1記載のリチウムイオン二次電池用負極の製造方法である。   Invention of Claim 2 is a manufacturing method of the negative electrode for lithium ion secondary batteries of Claim 1 which performs the said heat processing for 5-200 hours at 150-231 degreeC.

請求項3の発明は、前記Cu−Sn合金層は、Cu6 Sn5 化合物である請求項1または2記載のリチウムイオン二次電池用負極の製造方法である。 The invention of claim 3, wherein the Cu-Sn alloy layer is a Cu 6 Sn 5 compound in which claim 1 or 2 for a lithium ion secondary battery negative electrode manufacturing method according.

請求項4の発明は、前記負極集電体の表面に、予めCuめっきあるいはエッチングなどにより粗化処理を施しておく請求項1〜3いずれかに記載のリチウムイオン二次電池用負極の製造方法である。   A fourth aspect of the present invention is the method for producing a negative electrode for a lithium ion secondary battery according to any one of the first to third aspects, wherein the surface of the negative electrode current collector is preliminarily roughened by Cu plating or etching. It is.

請求項5の発明は、請求項1〜4いずれかに記載した製造方法を用いて、製造されたことを特徴とするリチウムイオン二次電池用負極である。   A fifth aspect of the present invention is a negative electrode for a lithium ion secondary battery manufactured using the manufacturing method according to any one of the first to fourth aspects.

本発明によれば、Snめっきの密着性が著しく増し、熱処理後においてもその効果が維持されるので、高い放電容量を有しながら、充放電を繰り返しても集電体であるCu箔またはCu合金箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極を製造できる。   According to the present invention, the Sn plating adhesion is remarkably increased, and the effect is maintained even after the heat treatment. Therefore, the Cu foil or Cu which is a current collector even when charging and discharging are repeated while having a high discharge capacity. A negative electrode for a lithium ion secondary battery having excellent cycle characteristics can be produced without causing the active material to peel off or fall off from the alloy foil.

本発明者らは上記目的を達成するべく鋭意研究を重ねた結果、Cu箔またはCu合金箔からなる負極集電体の表面にSnめっきを施す前に、その表面にプラズマ処理を施すと、プラズマ処理による表面浄化効果、表面活性化処理が奏功することを見出した。このプラズマ処理により、プラズマ処理を施さない場合と比較して、Cu箔またはCu合金箔表面に施されたSnめっきのCu箔またはCu合金箔との密着性が著しく増加する。   As a result of intensive studies to achieve the above object, the inventors of the present invention performed plasma treatment on the surface of the negative electrode current collector made of Cu foil or Cu alloy foil before Sn plating. It was found that the surface purification effect and the surface activation treatment by the treatment were successful. By this plasma treatment, the adhesion with the Sn-plated Cu foil or Cu alloy foil applied to the surface of the Cu foil or Cu alloy foil is remarkably increased as compared with the case where the plasma treatment is not performed.

これにより、本発明者らは、高い放電容量を有しながら、充放電を繰り返しても集電体であるCu箔またはCu合金箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極を得ることができるという知見を得たものであり、この知見に基づいて本発明を完成させた。   As a result, the present inventors have excellent cycle characteristics while having a high discharge capacity without causing the active material to peel off or drop off from the Cu foil or Cu alloy foil as the current collector even when charging and discharging are repeated. The knowledge that a negative electrode for a lithium ion secondary battery can be obtained has been obtained, and the present invention has been completed based on this knowledge.

以下、本発明の好適な実施形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図1(a)〜図1(c)は、本発明の好適な第1の実施形態であるリチウムイオン二次電池用負極の製造方法を示す図である。   Fig.1 (a)-FIG.1 (c) are figures which show the manufacturing method of the negative electrode for lithium ion secondary batteries which is the suitable 1st Embodiment of this invention.

図1(c)に示すように、第1の実施形態に係るリチウムイオン二次電池用負極1は、Cu箔またはCu合金箔からなる負極集電体2の表面に、CuとSnの化合物からなるCu6 Sn5 化合物などの金属間化合物を含むCu−Sn合金層3を形成したものである。 As shown in FIG.1 (c), the negative electrode 1 for lithium ion secondary batteries which concerns on 1st Embodiment is from the compound of Cu and Sn on the surface of the negative electrode collector 2 which consists of Cu foil or Cu alloy foil. A Cu—Sn alloy layer 3 containing an intermetallic compound such as a Cu 6 Sn 5 compound is formed.

Cu−Sn合金層3は、Cu箔またはCu合金箔からなる負極集電体2と、その表面に形成したSnめっき膜とに、所定の熱処理を施してSnめっき膜をCu−Sn合金化することで得られる。   The Cu—Sn alloy layer 3 is formed into a Cu—Sn alloy by subjecting the negative electrode current collector 2 made of Cu foil or Cu alloy foil and a Sn plating film formed on the surface thereof to a predetermined heat treatment. Can be obtained.

本発明で用いるCu箔は圧延Cu箔でも電解Cu箔でもよいが、充放電サイクルにともない活物質が膨張するとCu箔にも大きな引張応力が加わることになるため、なるべく高強度のCu箔が推奨される。この意味で高強度のCu合金が応用可能な圧延Cu箔が好ましい。例えば通常の圧延Cu箔や電解Cu箔は引っ張り強さが300〜400N/mm2 程度であるがCu−Ni−Si系のいわゆるコルソン系のCu合金を用いれば700N/mm2 以上の高強度の圧延Cu箔を得ることができる。したがって、負極集電体2としてはこのようなCu箔を用いることが好ましい。 The Cu foil used in the present invention may be a rolled Cu foil or an electrolytic Cu foil, but if the active material expands with the charge / discharge cycle, a large tensile stress is applied to the Cu foil, so a Cu foil with as high a strength as possible is recommended. Is done. In this sense, a rolled Cu foil to which a high-strength Cu alloy can be applied is preferable. For example, a normal rolled Cu foil or electrolytic Cu foil has a tensile strength of about 300 to 400 N / mm 2 , but if a Cu—Ni—Si-based so-called Corson Cu alloy is used, a high strength of 700 N / mm 2 or more is obtained. A rolled Cu foil can be obtained. Therefore, it is preferable to use such a Cu foil as the negative electrode current collector 2.

負極集電体2の表面には、予めSnと反応して金属間化合物を形成するためのCuめっきを施してCuめっき膜を形成しておくとよい。   A Cu plating film may be formed on the surface of the negative electrode current collector 2 in advance by performing Cu plating for forming an intermetallic compound by reacting with Sn.

このとき、Cuめっき膜と負極集電体2の密着性を保つため、予め負極集電体2の表面に、Cuめっきあるいはエッチングなどにより粗化処理を施しておくのが好ましい。表面粗さはRa=0.1μm以上であればその効果が発揮される。   At this time, in order to maintain the adhesion between the Cu plating film and the negative electrode current collector 2, it is preferable that the surface of the negative electrode current collector 2 is subjected to a roughening treatment in advance by Cu plating or etching. The effect is demonstrated if the surface roughness is Ra = 0.1 μm or more.

この粗化処理した表面は、Cu−Sn合金層3の充放電サイクル時の密着性確保にも有効である。したがって粗化した凹凸が拡散によりCu−Sn合金層3に変化するのを防止するため、粗化処理を施して形成した粗化面上に、NiやCoなどからなる拡散バリア層を1μm以下の厚さで粗化面上に形成しておいてもよい。   This roughened surface is also effective in securing adhesion during the charge / discharge cycle of the Cu—Sn alloy layer 3. Therefore, in order to prevent the roughened unevenness from changing to the Cu—Sn alloy layer 3 due to diffusion, a diffusion barrier layer made of Ni, Co, or the like is formed on the roughened surface formed by the roughening treatment to 1 μm or less. You may form on the roughening surface by thickness.

ここで、第1の実施形態に係るリチウムイオン二次電池用負極1の製造方法に使用するリチウムイオン二次電池用負極の製造装置を図2で説明する。   Here, the manufacturing apparatus of the negative electrode for lithium ion secondary batteries used for the manufacturing method of the negative electrode 1 for lithium ion secondary batteries which concerns on 1st Embodiment is demonstrated.

図2に示すように、リチウムイオン二次電池用負極の製造装置21は、プラズマ処理装置24を除き、基本的には図4で説明した製造装置41とほぼ同じ構成である。   As shown in FIG. 2, the negative electrode manufacturing apparatus 21 for a lithium ion secondary battery has basically the same configuration as the manufacturing apparatus 41 described in FIG. 4 except for the plasma processing apparatus 24.

すなわち、製造装置21は、負極集電体2の連続処理装置であり、Cu箔またはCu合金箔からなる帯状の負極集電体2が巻かれたコイルcを送り出す送出機22と、負極集電体2表面の前処理を行う前処理装置23と、前処理後の負極集電体2表面をプラズマ処理する高周波プラズマ発生装置などのプラズマ処理装置24と、プラズマ処理後の負極集電体2表面にSnめっきを施すめっき処理装置25と、めっき処理後の負極集電体2を熱処理する熱処理装置26と、これらにより得られたリチウムイオン二次電池用負極1を巻き取る巻取機27とを備える。   That is, the manufacturing apparatus 21 is a continuous processing apparatus for the negative electrode current collector 2, and includes a feeder 22 that sends out a coil c around which a strip-shaped negative electrode current collector 2 made of Cu foil or Cu alloy foil is wound, and a negative electrode current collector. A pretreatment device 23 for pretreatment of the surface of the body 2, a plasma treatment device 24 such as a high-frequency plasma generator for plasma-treating the surface of the negative electrode current collector 2 after the pretreatment, and a surface of the negative electrode current collector 2 after the plasma treatment A plating treatment device 25 for performing Sn plating on the substrate, a heat treatment device 26 for heat-treating the negative electrode current collector 2 after the plating treatment, and a winder 27 for winding up the negative electrode 1 for lithium ion secondary batteries obtained thereby. Prepare.

次に、リチウムイオン二次電池用負極1の製造方法を説明する。   Next, the manufacturing method of the negative electrode 1 for lithium ion secondary batteries is demonstrated.

まず、図2に示すように、送出機22で負極集電体2からなるコイルcを送り出し、前処理装置23で負極集電体2表面の前処理(脱脂、酸洗等)を行う。負極集電体2表面の粗化処理は、前処理前に行ってもよいし、前処理直後に行ってもよい。   First, as shown in FIG. 2, the coil c formed of the negative electrode current collector 2 is sent out by the feeder 22, and the pretreatment (degreasing, pickling, etc.) of the surface of the negative electrode current collector 2 is performed by the pretreatment device 23. The roughening treatment of the surface of the negative electrode current collector 2 may be performed before the pretreatment or may be performed immediately after the pretreatment.

そして、負極集電体2にSnめっきを施す前に、プラズマ処理装置24で負極集電体2表面にプラズマ処理を施す。   Then, before the Sn plating is applied to the negative electrode current collector 2, the plasma processing is performed on the surface of the negative electrode current collector 2 by the plasma processing apparatus 24.

プラズマ処理は、N2 ガスや、Ar、He、Ne、Kr、Xeなどの不活性ガス、またはこれらの混合ガス中で、直接放電、高周波放電あるいはマイクロ波放電によりプラズマPを発生させて行う(図1(a))。各ガス中には、数%程度のO2 を含んでいてもよい。ガス流量は30〜60sccmにするとよい。プラズマ処理時間は、5〜30分にするとよい。 The plasma treatment is performed by generating plasma P by direct discharge, high frequency discharge or microwave discharge in N 2 gas, inert gas such as Ar, He, Ne, Kr, Xe, or a mixed gas thereof ( FIG. 1 (a)). Each gas may contain about several percent O 2 . The gas flow rate is preferably 30-60 sccm. The plasma treatment time is preferably 5 to 30 minutes.

その後、めっき処理装置25でプラズマ処理後の負極集電体2表面にSnめっきを施し、Snめっき膜11を形成する(図1(b))。Snめっき膜11の厚さは5μm以上にするとよい。また、Snめっきは電気めっきでも無電解めっきでもかまわない。通常はSnSO4 を溶解した硫酸浴により電解めっきを行う。 Thereafter, Sn plating is performed on the surface of the negative electrode current collector 2 after the plasma treatment by the plating treatment apparatus 25 to form the Sn plating film 11 (FIG. 1B). The thickness of the Sn plating film 11 is preferably 5 μm or more. Sn plating may be electroplating or electroless plating. Usually, electroplating is performed in a sulfuric acid bath in which SnSO 4 is dissolved.

さらに、熱処理装置26でめっき処理後の負極集電体2に、引き続いて熱処理(熱拡散)工程を行う。熱処理は150〜231℃で15〜200時間行うことが好ましい。   Further, a heat treatment (thermal diffusion) step is subsequently performed on the negative electrode current collector 2 after the plating treatment by the heat treatment apparatus 26. The heat treatment is preferably performed at 150 to 231 ° C. for 15 to 200 hours.

その理由は、熱処理温度が150度未満と低いか、熱処理時間が15時間未満と時間が短いと合金化せず、Cu6 Sn5 の形成が不十分になり、熱処理時間が200時間を超えて長いと製造時間がかかり過ぎ、製造コストが高くなるからである。また、熱処理温度が232℃以上では、Snの融点以上となってSnが溶けるからである。 The reason is that if the heat treatment temperature is as low as less than 150 degrees or the heat treatment time is less than 15 hours, the alloy is not alloyed and the formation of Cu 6 Sn 5 becomes insufficient, and the heat treatment time exceeds 200 hours. This is because if it is long, it takes too much production time and the production cost becomes high. Further, when the heat treatment temperature is 232 ° C. or higher, Sn becomes higher than the melting point of Sn and Sn is melted.

この熱処理工程により、CuまたはCu合金とSnを反応させてSnめっき膜11をCu−Sn合金化させ、これらの金属間化合物を含むCu−Sn合金層3を形成させると(図1(c))、リチウムイオン二次電池用負極1が得られる。   In this heat treatment step, Cu or Cu alloy and Sn are reacted to form Sn-plated film 11 as a Cu—Sn alloy, and Cu—Sn alloy layer 3 containing these intermetallic compounds is formed (FIG. 1C). ), The negative electrode 1 for a lithium ion secondary battery is obtained.

Cu−Sn合金層3に含まれる金属間化合物は、Cu6 Sn5 化合物であることが好ましい。Cu6 Sn5 は充放電容量、サイクル特性に優れる。Cu−Sn合金層3中に含まれる金属間化合物として、Cu3 Sn化合物が生成しても構わないが、Cu3 Sn化合物は充放電容量が少ないので、望ましくはCu6 Sn5 化合物がよい。 The intermetallic compound contained in the Cu—Sn alloy layer 3 is preferably a Cu 6 Sn 5 compound. Cu 6 Sn 5 is excellent in charge / discharge capacity and cycle characteristics. As an intermetallic compound contained in the Cu—Sn alloy layer 3, a Cu 3 Sn compound may be generated. However, since the Cu 3 Sn compound has a small charge / discharge capacity, a Cu 6 Sn 5 compound is desirable.

第1の実施形態の作用を説明する。   The operation of the first embodiment will be described.

本実施の形態に係るリチウムイオン二次電池用負極1の製造方法は、Cu箔またはCu合金箔からなる負極集電体2の表面にSnめっきを施す前に、その表面にプラズマ処理を施している。   The manufacturing method of the negative electrode 1 for a lithium ion secondary battery according to the present embodiment is such that the surface of the negative electrode current collector 2 made of Cu foil or Cu alloy foil is subjected to plasma treatment before Sn plating is performed. Yes.

プラズマP中では、N2 ガスや不活性ガスのイオンやラジカルな原子が生成されており、これらイオンやラジカルな原子が負極集電体2表面に作用することで、負極集電体2表面のO、C、炭化水素系などの不純物が除去され、負極集電体2表面が洗浄される(プラズマ処理による表面洗浄効果)。 In the plasma P, ions and radical atoms of N 2 gas and inert gas are generated, and these ions and radical atoms act on the surface of the negative electrode current collector 2, so that the surface of the negative electrode current collector 2 is surfaced. Impurities such as O, C, and hydrocarbon are removed, and the surface of the negative electrode current collector 2 is cleaned (surface cleaning effect by plasma treatment).

さらに、プラズマPによるイオンやラジカルな原子が負極集電体2表面に作用することで、負極集電体2表面部に、N2 ガスや不活性ガスのイオンやラジカルな原子と同程度の径を有する微細な孔が多数個形成されるため、負極集電体2表面が活性化される(プラズマ処理による表面活性化効果)。 Further, ions and radical atoms generated by the plasma P act on the surface of the negative electrode current collector 2, so that the surface of the negative electrode current collector 2 has the same diameter as that of N 2 gas or inert gas ions or radical atoms. As a result, a large number of fine pores are formed, so that the surface of the negative electrode current collector 2 is activated (surface activation effect by plasma treatment).

本実施形態に係る製造方法によれば、負極集電体2表面をプラズマ処理することで、その表面洗浄効果と表面活性化効果が得られ、Cu箔またはCu合金箔からなる負極集電体に前処理(脱脂、酸洗い等)をしてから直ちにSnめっきを施す通常のSnめっきの場合と比較して、Snめっき膜11と負極集電体2の密着性を著しく増すことができる。この密着性は、熱処理後においてもその効果が維持される。   According to the manufacturing method according to the present embodiment, the surface of the negative electrode current collector 2 is subjected to plasma treatment, so that the surface cleaning effect and the surface activation effect are obtained, and the negative electrode current collector made of Cu foil or Cu alloy foil is obtained. The adhesion between the Sn plating film 11 and the negative electrode current collector 2 can be significantly increased as compared with the case of normal Sn plating in which Sn plating is performed immediately after pretreatment (degreasing, pickling, etc.). The effect of this adhesion is maintained even after heat treatment.

したがって、本実施形態に係る製造方法によれば、高い放電容量を有しながら、充放電を繰り返しても負極集電体であるCu箔またはCu合金箔から活物質としてのCu−Sn合金層3に含まれるCu6 Sn5 化合物が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極1を製造できる。 Therefore, according to the manufacturing method according to the present embodiment, the Cu—Sn alloy layer 3 as an active material from the Cu foil or Cu alloy foil that is the negative electrode current collector even when charging and discharging are repeated while having a high discharge capacity. Thus, the negative electrode 1 for a lithium ion secondary battery having excellent cycle characteristics can be produced without causing the Cu 6 Sn 5 compound contained in the material to peel off or fall off.

また、本実施形態に係る製造方法で製造したリチウムイオン二次電池用負極1は、従来のめっき単一膜に比べて、Cu箔またはCu合金箔からなる負極集電体2とCu−Sn合金層3との密着性がよいので、充放電サイクルを繰り返しても負極集電体2からCu−Sn合金層3が脱落せず、高寿命である。   Moreover, the negative electrode 1 for lithium ion secondary batteries manufactured with the manufacturing method which concerns on this embodiment is the negative electrode collector 2 which consists of Cu foil or Cu alloy foil, and Cu-Sn alloy compared with the conventional plating single film | membrane. Since the adhesiveness with the layer 3 is good, the Cu—Sn alloy layer 3 does not fall off from the negative electrode current collector 2 even if the charge / discharge cycle is repeated, and the life is long.

特に、最近は負極集電体の変形による内部応力を吸収するため、単なる平らなCu箔やCu合金箔ではなく、菱形状、楕円状、船形状などの平面異方性を有する形状の孔部を多数設け、表裏面を凹凸状やメッシュ状などの複雑な形状にしたCu箔やCu合金箔を負極集電体として使用することがある(例えば、特開2005−32524号公報参照)。   In particular, in order to absorb internal stress due to deformation of the negative electrode current collector, a hole having a plane anisotropy such as a rhombus shape, an ellipse shape, a ship shape, etc., rather than a simple flat Cu foil or Cu alloy foil. In many cases, a Cu foil or a Cu alloy foil having a complex shape such as a concavo-convex shape or a mesh shape is used as a negative electrode current collector (see, for example, JP-A-2005-32524).

このような凹凸状やメッシュ状の複雑な形状の負極集電体であっても、本実施形態に係る製造方法を用いれば、負極集電体の表面全体を均一に洗浄、活性化でき、前述した作用効果がより顕著に発揮される。   Even if the negative electrode current collector of such a concave and convex shape or mesh shape is complicated, if the manufacturing method according to the present embodiment is used, the entire surface of the negative electrode current collector can be uniformly cleaned and activated. The effect which it did is exhibited more notably.

第2の実施形態を説明する。   A second embodiment will be described.

図3(b)に示すように、リチウムイオン二次電池用負極31は、負極集電体2の表面にCu−Sn合金層3を形成し、さらにその上にポーラス(多孔質)なSnの酸化膜からなるSn酸化膜層4を形成した負極構造である。Sn酸化膜層4には、膜厚方向に沿って極めて微細な孔を無数に形成しておくとよい。   As shown in FIG. 3B, the negative electrode 31 for a lithium ion secondary battery has a Cu—Sn alloy layer 3 formed on the surface of the negative electrode current collector 2, and further porous (porous) Sn. This is a negative electrode structure in which a Sn oxide film layer 4 made of an oxide film is formed. An infinite number of extremely fine holes may be formed in the Sn oxide film layer 4 along the film thickness direction.

この微細な孔は、電解質を介したリチウムイオンとSn酸化膜層4の反応の際に、反応サイトの著しい増大に寄与し、スムーズなリチウムイオンのドープ・脱ドープ(インターカレーション・デインターカレーション)を可能とし、充放電特性の向上につながる。また、リチウムイオンとSn酸化膜層4が反応することにより、最終的にLiX Snの化合物を生成するものと考えられる。 These fine holes contribute to a significant increase in reaction sites during the reaction between lithium ions and the Sn oxide film layer 4 via the electrolyte, and smooth lithium ion doping / de-doping (intercalation / deintercalation). To improve charge / discharge characteristics. In addition, it is considered that the Li x Sn compound is finally generated by the reaction between the lithium ions and the Sn oxide film layer 4.

従来はこのときの著しい体積膨張により活物質が微粉化してサイクル特性が劣化していたが、リチウムイオン二次電池用負極31では、Sn酸化膜層4を多孔質の構造としたことで体積の膨張が緩和され、サイクル特性も大幅に改善された。   Conventionally, the active material was pulverized due to the significant volume expansion at this time, and the cycle characteristics deteriorated. However, in the negative electrode 31 for a lithium ion secondary battery, the Sn oxide film layer 4 has a porous structure, thereby reducing the volume. Expansion was relieved and cycle characteristics were greatly improved.

孔の大きさは極めて微細である必要があり、その径が数百nm以下、好ましくは100nm以下とする必要がある。   The size of the holes needs to be extremely fine, and the diameter needs to be several hundred nm or less, preferably 100 nm or less.

このような微細なかつ膜厚方向に沿った孔を形成するには、Sn酸化膜層4を陽極酸化する方法をとることができる。たとえばSnめっき膜をシュウ酸溶液中で定電位電解することにより形成することができる。このときの電位、時間などにより孔の大きさ、酸化膜形成厚さを制御する。   In order to form such fine holes along the film thickness direction, a method of anodizing the Sn oxide film layer 4 can be employed. For example, the Sn plating film can be formed by performing constant potential electrolysis in an oxalic acid solution. The size of the hole and the oxide film formation thickness are controlled by the potential and time at this time.

より詳細には、図1(b)の工程の後、図3(a)に示すように、Snめっき膜11の表面側を陽極酸化し、SnOx 膜(Sn酸化膜層)32を形成する。このとき、Snめっき膜11のすべてを酸化膜とするのではなく、負極集電体2側に一部Snを残しておくことが必要である。 More specifically, after the step of FIG. 1B, as shown in FIG. 3A, the surface side of the Sn plating film 11 is anodized to form a SnO x film (Sn oxide film layer) 32. . At this time, it is necessary not to use the entire Sn plating film 11 as an oxide film, but to partially leave Sn on the negative electrode current collector 2 side.

引き続いて熱処理(熱拡散)工程をとることにより、図3(b)に示すように、この残存したSnとCu箔側のCuとを反応させこれらのCu−Sn合金層3を形成させると共に、Sn酸化膜層4を形成させて負極構造とすると、リチウムイオン二次電池用負極31が得られる。   Subsequently, by performing a heat treatment (thermal diffusion) step, as shown in FIG. 3B, the remaining Sn reacts with Cu on the Cu foil side to form these Cu-Sn alloy layers 3, When the Sn oxide film layer 4 is formed to form a negative electrode structure, a negative electrode 31 for a lithium ion secondary battery is obtained.

このリチウムイオン二次電池用負極31により、Cu−Sn合金層3だけの場合に比べサイクル特性が大幅に向上する。このときの熱拡散工程の温度はSnの融点以下であればよく、また時間は金属間化合物であるCu6 Sn5 をなるべく多く生成させ、Cu3 Snや残存するSnをなるべく少なくなるように配慮する。 This negative electrode 31 for a lithium ion secondary battery greatly improves the cycle characteristics as compared with the case of using only the Cu—Sn alloy layer 3. The temperature of the thermal diffusion process at this time may be equal to or lower than the melting point of Sn, and the time is taken so that Cu 6 Sn 5 that is an intermetallic compound is generated as much as possible and Cu 3 Sn and remaining Sn are reduced as much as possible. To do.

上述したように、Snめっき膜11の膜厚は、通常充放電容量を確保するためにはCu箔上に5μmの厚さでSnを形成しておく必要があるが、このうち酸化膜に改質する厚さは、Snめっき膜11全体の1/3以下とすることが望ましい。Sn酸化物はLiと反応することによりLi酸化物とSnを生成するが、Li酸化物は再び還元されないために充放電サイクルに寄与しない。したがってSn酸化膜層4を厚くし過ぎると不可逆容量が増大することとなり好ましくない。   As described above, it is necessary to form Sn with a thickness of 5 μm on the Cu foil in order to ensure the normal charge / discharge capacity. The thickness to be polished is preferably 1/3 or less of the entire Sn plating film 11. Sn oxide reacts with Li to produce Li oxide and Sn, but Li oxide does not contribute to the charge / discharge cycle because it is not reduced again. Therefore, if the Sn oxide film layer 4 is made too thick, the irreversible capacity increases, which is not preferable.

このように、第2の実施形態に係る製造方法で製造したリチウムイオン二次電池用負極31は、負極集電体2上に形成されたCuとSnのCu−Sn合金層3がポーラスなSn酸化膜層4で覆われている。このため、従来のカーボン系の活物質を負極としたものに比べ、エネルギー密度が高く、サイクル特性に優れ、小型化可能なリチウムイオン二次電池が供給可能となる。   As described above, the negative electrode 31 for a lithium ion secondary battery manufactured by the manufacturing method according to the second embodiment has a Cu—Sn Cu—Sn alloy layer 3 formed on the negative electrode current collector 2 and a porous Sn. It is covered with an oxide film layer 4. For this reason, a lithium ion secondary battery having a high energy density, excellent cycle characteristics, and capable of being reduced in size can be supplied as compared with a conventional carbon-based active material as a negative electrode.

(実施例)
厚さ18μmの圧延Cu箔を準備し、まず、Cuの電析により粗化処理を行った。条件は硫酸銅150g/L、硫酸150g/Lの電解液で、液温30℃、電流密度20A/dm2 で電解を行った後、硫酸銅250g/L、硫酸100g/Lの電解液で、液温30℃、電流密度10A/dm2 でかぶせCuめっきを行い、表面粗さRa=0.12μmとした。
(Example)
A rolled Cu foil having a thickness of 18 μm was prepared, and first, roughening treatment was performed by electrodeposition of Cu. The conditions were an electrolytic solution of copper sulfate 150 g / L and sulfuric acid 150 g / L. After electrolysis at a liquid temperature of 30 ° C. and a current density of 20 A / dm 2 , copper sulfate 250 g / L and sulfuric acid 100 g / L of electrolytic solution A Cu plating was performed at a liquid temperature of 30 ° C. and a current density of 10 A / dm 2 to obtain a surface roughness Ra = 0.12 μm.

粗化処理後、図2の方法にて、コイルcから繰り出したCu箔からなる負極集電体2の表面に脱脂、酸洗からなる前処理を施した後、プラズマ処理を施し、次いで電気めっきによりSnめっきを5μm施し、リチウムイオン二次電池用負極1を製造した。   After the roughening treatment, the surface of the negative electrode current collector 2 made of Cu foil fed out from the coil c is subjected to a pretreatment consisting of degreasing and pickling, followed by plasma treatment, and then electroplating by the method of FIG. Was applied with Sn plating at 5 μm to produce a negative electrode 1 for a lithium ion secondary battery.

より詳細には、プラズマ処理装置24として高周波プラズマ発生装置を使用し、チャンバ内を6.7×10-3Pa(5×10-5Torr)減圧後、Arガスを66.7Pa(0.5Torr)導入し、20分間高周波プラズマ発生させた(30W/cm3 )。 More specifically, a high-frequency plasma generator is used as the plasma processing apparatus 24. After reducing the pressure in the chamber by 6.7 × 10 −3 Pa (5 × 10 −5 Torr), Ar gas is reduced to 66.7 Pa (0.5 Torr). ) And high-frequency plasma was generated for 20 minutes (30 W / cm 3 ).

この後、まず通常のワット浴で厚さ0.3μmのNiめっきを施して拡散バリア層とした。かぶせCuめっきを行っためっき液で厚さ2.7μmのCuめっきを行い、さらに硫酸第一スズ50g/L、硫酸100g/L、添加剤適量のめっき液中で電流密度3A/dm2 の条件でSnめっきを行った。この時の膜厚は7μmとなるようにした。 Thereafter, Ni plating with a thickness of 0.3 μm was first applied in a normal watt bath to form a diffusion barrier layer. 2.7 μm-thick Cu plating is performed with the plating solution that has been subjected to the covering Cu plating, and further, the conditions of a stannous sulfate 50 g / L, sulfuric acid 100 g / L, and a current density of 3 A / dm 2 in an appropriate amount of the plating solution Then, Sn plating was performed. The film thickness at this time was set to 7 μm.

このようにして製造したSnめっきCu箔を、さらに0.5Mシュウ酸溶液中で所定条件で陽極酸化し、引き続き熱拡散処理を行って負極サンプルとし、金属リチウムを対極とする試験セルを製作、充放電特性の評価を行った。   The Sn-plated Cu foil thus produced was further anodized under a predetermined condition in a 0.5 M oxalic acid solution, subsequently subjected to thermal diffusion treatment to prepare a negative electrode sample, and a test cell having metallic lithium as a counter electrode was manufactured. The charge / discharge characteristics were evaluated.

セパレータにはポリプロピレン薄膜を使用し、電解液には1MのLiPF6 を溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.25mA/cm2 の定電流密度で行った。 A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1M LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1V.

(従来例)
実施例との比較のため、同じ厚さ18μmの圧延Cu箔を準備し、図4の方法にて、コイルcから繰り出したCu箔の表面に脱脂、酸洗からなる前処理を施した後、電気めっきによりSnめっきを5μm施し、従来例のリチウムイオン二次電池用負極を製造した。
(Conventional example)
For comparison with the examples, a rolled Cu foil having the same thickness of 18 μm was prepared, and the surface of the Cu foil fed out from the coil c was subjected to a pretreatment consisting of degreasing and pickling by the method of FIG. 5 μm of Sn plating was applied by electroplating to produce a conventional negative electrode for a lithium ion secondary battery.

ここで、図2および図4により製造したリチウムイオン二次電池用負極において、充放電試験10サイクル後の初期サイクルに対する放電容量維持率を調べた結果を表1に示す。   Here, in the negative electrode for lithium ion secondary batteries manufactured according to FIG. 2 and FIG. 4, the results of examining the discharge capacity maintenance rate with respect to the initial cycle after 10 cycles of the charge / discharge test are shown in Table 1.

Figure 2008041347
Figure 2008041347

表1に明らかな通り、プラズマ処理を行った実施例では、充放電試験10サイクル後においても80%の放電容量を維持しておりサイクル特性に優れていることがわかる。一方、プラズマ処理を行わない従来例では、放電容量はわずか11%に過ぎず、サイクル特性が実施例よりも大幅に劣っており、本発明の有効性が立証された。   As can be seen from Table 1, in the examples in which the plasma treatment was performed, the discharge capacity of 80% was maintained even after 10 cycles of the charge / discharge test, and the cycle characteristics were excellent. On the other hand, in the conventional example in which the plasma treatment is not performed, the discharge capacity is only 11%, and the cycle characteristics are significantly inferior to those in the examples, and the effectiveness of the present invention has been proved.

また、充放電試験10サイクル後の負極集電体とCu−Sn合金層の密着性を調べた結果を表2に示す。評価方法は、試験セル解体後の目視確認で行った。   Table 2 shows the results of examining the adhesion between the negative electrode current collector and the Cu—Sn alloy layer after 10 cycles of the charge / discharge test. The evaluation method was performed by visual confirmation after dismantling the test cell.

Figure 2008041347
Figure 2008041347

表2に示すように、プラズマ処理を行った実施例では、充放電前、10サイクル後共に負極集電体2とCu−Sn合金層3が密着していた。一方、プラズマ処理を行わない従来例では、充放電前に密着していた負極集電体とCu−Sn合金層が、10サイクル後に剥離した。   As shown in Table 2, in the example in which the plasma treatment was performed, the negative electrode current collector 2 and the Cu—Sn alloy layer 3 were in close contact with each other before charge / discharge and after 10 cycles. On the other hand, in the conventional example in which the plasma treatment is not performed, the negative electrode current collector and the Cu—Sn alloy layer that were in close contact before charging and discharging were peeled off after 10 cycles.

図1(a)〜図1(c)は、本発明の好適な第1の実施形態であるリチウムイオン二次電池用負極の製造方法を示す模式図である。Fig.1 (a)-FIG.1 (c) are schematic diagrams which show the manufacturing method of the negative electrode for lithium ion secondary batteries which is the suitable 1st Embodiment of this invention. 本発明の好適な第1実施形態であるリチウムイオン二次電池用負極の製造方法で使用するリチウムイオン二次電池用負極の製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of the negative electrode for lithium ion secondary batteries used with the manufacturing method of the negative electrode for lithium ion secondary batteries which is suitable 1st Embodiment of this invention. 図3(a)および図3(b)は、本発明の好適実施の形態であるリチウムイオン二次電池用負極の製造方法を示す模式図である。FIG. 3A and FIG. 3B are schematic views showing a method for producing a negative electrode for a lithium ion secondary battery which is a preferred embodiment of the present invention. 従来のリチウムイオン二次電池用負極の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the conventional negative electrode for lithium ion secondary batteries.

符号の説明Explanation of symbols

1 リチウムイオン二次電池用負極
2 負極集電体
3 Cu−Sn合金層
DESCRIPTION OF SYMBOLS 1 Negative electrode for lithium ion secondary batteries 2 Negative electrode collector 3 Cu-Sn alloy layer

Claims (5)

Cu箔またはCu合金箔からなる負極集電体の表面にSnめっきを施した後、所定の熱処理を施して前記SnめっきをCu−Sn合金化することにより、Cu−Sn合金層を形成してリチウムイオン二次電池用負極を製造する方法において、前記負極集電体の表面にSnめっきを施す前に、その表面にプラズマ処理を施すことを特徴とするリチウムイオン二次電池用負極の製造方法。   After Sn plating is applied to the surface of the negative electrode current collector made of Cu foil or Cu alloy foil, a predetermined heat treatment is performed to form the Cu—Sn alloy layer by forming the Sn plating into a Cu—Sn alloy. In the method for producing a negative electrode for a lithium ion secondary battery, the surface of the negative electrode current collector is subjected to a plasma treatment before Sn plating, and the method for producing a negative electrode for a lithium ion secondary battery is characterized in that . 前記熱処理は、150〜231℃で5〜200時間行う請求項1記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to claim 1, wherein the heat treatment is performed at 150 to 231 ° C. for 5 to 200 hours. 前記Cu−Sn合金層は、Cu6 Sn5 化合物である請求項1または2記載のリチウムイオン二次電池用負極の製造方法。 The method for producing a negative electrode for a lithium ion secondary battery according to claim 1, wherein the Cu—Sn alloy layer is a Cu 6 Sn 5 compound. 前記負極集電体の表面に、予めCuめっきあるいはエッチングなどにより粗化処理を施しておく請求項1〜3いずれかに記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the surface of the negative electrode current collector is previously subjected to a roughening treatment by Cu plating or etching. 請求項1〜4いずれかに記載した製造方法を用いて、製造されたことを特徴とするリチウムイオン二次電池用負極。
A negative electrode for a lithium ion secondary battery manufactured using the manufacturing method according to claim 1.
JP2006211883A 2006-08-03 2006-08-03 Negative electrode for lithium ion secondary battery, and method for manufacturing the same Pending JP2008041347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211883A JP2008041347A (en) 2006-08-03 2006-08-03 Negative electrode for lithium ion secondary battery, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211883A JP2008041347A (en) 2006-08-03 2006-08-03 Negative electrode for lithium ion secondary battery, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008041347A true JP2008041347A (en) 2008-02-21

Family

ID=39176143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211883A Pending JP2008041347A (en) 2006-08-03 2006-08-03 Negative electrode for lithium ion secondary battery, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008041347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060721A (en) * 2009-09-14 2011-03-24 Ns Techno:Kk Negative electrode structure for lithium ion secondary battery
US8563178B2 (en) 2010-03-24 2013-10-22 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery including a multilayer film on a tin based current collector and manufacturing method thereof
US10170747B2 (en) 2013-06-14 2019-01-01 Ford Global Technologies, Llc Treated current collector foil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011060721A (en) * 2009-09-14 2011-03-24 Ns Techno:Kk Negative electrode structure for lithium ion secondary battery
US8563178B2 (en) 2010-03-24 2013-10-22 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery including a multilayer film on a tin based current collector and manufacturing method thereof
US10170747B2 (en) 2013-06-14 2019-01-01 Ford Global Technologies, Llc Treated current collector foil

Similar Documents

Publication Publication Date Title
JP4642835B2 (en) Current collector for electrode
TWI526578B (en) An electrolytic copper foil and a lithium ion secondary battery using the electrolytic copper foil as a current collector
JP6250538B2 (en) Electrode and electrode manufacturing method
US20060063071A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
CN108886150B (en) Negative electrode for secondary battery comprising lithium metal layer having fine pattern and protective layer thereof, and method for manufacturing same
US20060121345A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP2006269362A (en) Negative electrode for lithium ion secondary battery
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP4831946B2 (en) Non-aqueous electrolyte battery
TW201338238A (en) Lithium ion secondary battery, collector constituting negative electrode of lithium ion secondary battery, and electrolytic copper foil constituting negative electrode collector
EP3404755A1 (en) Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008171788A (en) Collector for lithium ion cells and method for manufacturing it
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2006202635A (en) Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
US20060147801A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
EP1693910A1 (en) Secondary battery-use electrode and production method therefor and secondary battery
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JP4413552B2 (en) Electrolytic copper foil and electrolytic copper foil for secondary battery current collector
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP4326162B2 (en) Method for manufacturing lithium secondary battery
JPH1021928A (en) Electrode material for secondary battery