JP2006269361A - Negative electrode for lithium ion secondary battery and its manufacturing method - Google Patents

Negative electrode for lithium ion secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2006269361A
JP2006269361A JP2005089207A JP2005089207A JP2006269361A JP 2006269361 A JP2006269361 A JP 2006269361A JP 2005089207 A JP2005089207 A JP 2005089207A JP 2005089207 A JP2005089207 A JP 2005089207A JP 2006269361 A JP2006269361 A JP 2006269361A
Authority
JP
Japan
Prior art keywords
phase
negative electrode
plating
active material
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005089207A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
元 佐々木
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005089207A priority Critical patent/JP2006269361A/en
Publication of JP2006269361A publication Critical patent/JP2006269361A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a lithium ion secondary battery enhancing cycle characteristics by preventing separation or coming off of a negative active material from copper foil which is a current collector even when charge discharge is repeated, and increasing energy density than in use of a carbon base active material. <P>SOLUTION: A Cu<SB>6</SB>Sn<SB>5</SB>phase (η phase) active material is directly formed on a negative current collector made of copper foil by Cu-Sn alloy plating using sulfosuccinic acid solution. The negative active material has composition in which the content of Sn is 35-60 mass%, and has almost a single phase of Cu<SB>6</SB>Sn<SB>5</SB>phase (η phase). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規なリチウムイオン二次電池用負極及びその製造方法に係り、特に、充放電を繰り返しても集電体である銅箔から活物質が剥離、脱落することなくサイクル特性に優れたリチウムイオン二次電池用負極及びその製造方法に関するものである。   The present invention relates to a novel negative electrode for a lithium ion secondary battery and a method for producing the same, and in particular, the active material is excellent in cycle characteristics without peeling and dropping from a copper foil as a current collector even after repeated charge and discharge. The present invention relates to a negative electrode for a lithium ion secondary battery and a method for producing the same.

リチウムイオン二次電池は現在モバイル機器用をはじめとして広く普及している。これらの負極としては、銅箔または銅合金箔(以下、本件明細書で「銅箔」と表記した場合は「銅合金箔」を含むものとする)からなる負極集電体の上にカーボン系の材料を活物質として形成したものである。   Lithium ion secondary batteries are now widely used for mobile devices. These negative electrodes include a carbon-based material on a negative electrode current collector made of copper foil or copper alloy foil (hereinafter referred to as “copper alloy foil” when referred to as “copper foil” in the present specification). Is formed as an active material.

このリチウムイオン二次電池用負極材は、一般的に、圧延銅箔または電解銅箔上にカーボン系の材料をバインダーと溶剤で溶いたものを塗布、乾燥し、熱ロールプレスを施して供される。カーボン系の材料ではカーボンとリチウムの化合物であるLiCが活物質として作用し、リチウムイオンを吸蔵・脱離することができる。このとき、LiCの単位重さ当たりの理論放電容量(最大容量)は372mAh/gと言われている。カーボン系の活物質ではこの値を超えて容量の増大を図ることができないため、最近ではさらに放電容量の大きいSn系の活物質(Li4.4Snで約1000mAh/g)、Si系の活物質(Li4.4Siで約4000mAh/g)などの実用化検討が盛んに行われている。 This negative electrode material for lithium ion secondary batteries is generally provided by applying a carbon-based material dissolved in a binder and a solvent on a rolled copper foil or an electrolytic copper foil, drying, and applying a hot roll press. The In a carbon-based material, LiC 6 which is a compound of carbon and lithium acts as an active material, and can absorb and desorb lithium ions. At this time, the theoretical discharge capacity (maximum capacity) per unit weight of LiC 6 is said to be 372 mAh / g. Since the capacity of the carbon-based active material cannot be increased beyond this value, recently, a Sn-based active material having a higher discharge capacity (approximately 1000 mAh / g for Li 4.4 Sn), a Si-based active material ( Li 4.4 Si (about 4000 mAh / g) has been actively studied.

Sn系の材料では、銅箔表面に電解めっきでSnを形成して200℃で24時間熱処理を行った場合に、めっき層がSn−CuSn−CuSnの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上するという報告がある(非特許文献1参照)。 In the Sn-based material, when Sn is formed on the copper foil surface by electrolytic plating and heat treatment is performed at 200 ° C. for 24 hours, the plating layer changes to a multilayer structure of Sn—Cu 6 Sn 5 —Cu 3 Sn, There is a report that cycle characteristics are improved in order to relieve stress due to expansion and contraction of an active material during charge and discharge and suppress separation (see Non-Patent Document 1).

また、CuSnを活物質として利用するリチウムイオン二次電池用負極では、銅箔基材にSnめっきを施してこれに熱処理を行ったり、シアン系のめっき液によるCu−Sn合金めっきでCuSnを形成している(特許文献1参照)。
三洋電機技報,Vol.34,No.1,pp.87-93(2002) 特開2004−087232号公報
In addition, in a negative electrode for a lithium ion secondary battery using Cu 6 Sn 5 as an active material, a copper foil base material is subjected to Sn plating and subjected to heat treatment, or Cu—Sn alloy plating with a cyan plating solution. Cu 6 Sn 5 is formed (see Patent Document 1).
Sanyo Electric Technical Report, Vol.34, No.1, pp.87-93 (2002) JP 2004-087232 A

カーボン系の材料はほぼ理論容量に近いところまで電池の開発が進んでおり、今後、放電容量の大幅な向上は困難である。このため上述したようにSn系やSi系の材料の開発が行われている。しかしながら、これらの材料はリチウムイオンを吸蔵したときの体積膨張が極めて大きいという欠点がある。具体的には、カーボン系材料の場合が1.5倍程度の体積膨張であるのに対し、Sn系は約3.5倍、Si系では約4倍もの体積膨張となる。この大きな体積変化のため、充放電サイクルに伴い集電体である銅箔から活物質が剥離、脱落し、電池特性が急激に低下してしまうという問題が生じ、これが実用化にあたっての最大の障害となっていた。   The development of batteries is progressing to a point where the carbon-based material is almost close to the theoretical capacity, and it is difficult to greatly improve the discharge capacity in the future. For this reason, as described above, Sn-based and Si-based materials have been developed. However, these materials have a drawback that volume expansion is extremely large when lithium ions are occluded. Specifically, the volume expansion of carbon material is about 1.5 times, whereas the volume expansion of Sn system is about 3.5 times and that of Si system is about 4 times. Due to this large volume change, the active material is peeled off from the copper foil, which is a current collector, and drops due to the charge / discharge cycle, resulting in a problem that the battery characteristics deteriorate sharply. This is the biggest obstacle to practical use. It was.

従ってSn系材料の場合、純Snの薄膜としてではなくSn合金またはSn化合物(以下、本件明細書で「合金」と表記した場合は「化合物」を包含するものとする)薄膜として利用しようと試みられている。例えば、Sn化合物であるCuSnは負極活物質としての使用が検討されている。CuSnを形成する方法は特許文献1記載の通り、銅箔基材にSnめっきを行った後に加熱処理を施す方法や、シアン系のめっき液により直接Cu−Sn合金をめっきする方法が知られている。しかしながら、これらの方法によりCuSnを活物質層として形成することで、充放電に伴う膨張収縮による活物質の崩壊は軽減されるものの、未だ充分とはいえなかった。 Therefore, in the case of Sn-based materials, an attempt is made to use it not as a pure Sn thin film but as a thin film of Sn alloy or Sn compound (hereinafter referred to as “alloy” in this specification includes “compound”). It has been. For example, Cu 6 Sn 5 which is a Sn compound has been studied for use as a negative electrode active material. The method of forming Cu 6 Sn 5 includes a method of performing a heat treatment after Sn plating is applied to a copper foil base as described in Patent Document 1, and a method of directly plating a Cu—Sn alloy with a cyan plating solution. Are known. However, although Cu 6 Sn 5 is formed as an active material layer by these methods, the collapse of the active material due to expansion / contraction due to charge / discharge is reduced, but it is still not sufficient.

さらに、前者の方法ではめっき後に加熱処理を行うので、製造工程が複雑でコスト高となったり、熱処理時の拡散により銅箔基材の一部が合金化し、基材としての板厚が薄くなって機械的強度が低下する(活物質の膨張・収縮による基材の塑性変形が大きくなる)などの問題点があった。一方、後者の方法ではシアン系のめっき液を使用するため安全・環境の面で問題があると共に、廃液処理などの製造設備が大掛かりとなりコスト増加要因となってしまうという課題があった。   Furthermore, since the former method performs heat treatment after plating, the manufacturing process is complicated and expensive, and a part of the copper foil base material is alloyed by diffusion during heat treatment, resulting in a reduction in the thickness of the base material. As a result, the mechanical strength is reduced (the plastic deformation of the base material due to the expansion / contraction of the active material is increased). On the other hand, in the latter method, since a cyan plating solution is used, there is a problem in terms of safety and environment, and there is a problem that a manufacturing facility such as waste liquid treatment becomes large and causes a cost increase.

このため、充放電を繰り返しても集電体である銅箔から負極活物質が剥離、脱落することなく、より一層サイクル特性に優れたリチウムイオン二次電池用負極であり、かつ低コストで環境安全性に優れた製造方法が要望されていた。   Therefore, the negative electrode active material does not peel off from the copper foil, which is a current collector even after repeated charge and discharge, and is a negative electrode for a lithium ion secondary battery that is further excellent in cycle characteristics, and at low cost and environmentally friendly. A manufacturing method excellent in safety has been demanded.

従って、本発明の目的は、かかる問題点を解消し、高い放電容量を有しながら充放電を繰り返しても集電体である銅箔から活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極を提供することにある。   Accordingly, the object of the present invention is to eliminate such problems and to have excellent cycle characteristics without causing the active material to peel off and fall off from the copper foil as a current collector even if charging and discharging are repeated while having a high discharge capacity. Another object is to provide a negative electrode for a lithium ion secondary battery.

また、本発明の他の目的は、製造工程が簡易かつ安全で、環境面での問題が生じないリチウムイオン二次電池用負極の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing a negative electrode for a lithium ion secondary battery that is simple and safe in production process and does not cause environmental problems.

本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、スルホコハク酸によるCu−Sn合金めっきで銅箔基材上にCuSn相(η相)層を形成すると、銅箔基材にSnめっきを施して加熱処理による拡散でCuSnを形成した場合に比べ、リチウムイオン二次電池として優れたサイクル特性を示すという新しい知見を得て、この知見に基づき本発明を完成させた。 As a result of intensive studies to achieve the above object, the inventors of the present invention formed a Cu 6 Sn 5 phase (η phase) layer on a copper foil substrate by Cu—Sn alloy plating with sulfosuccinic acid. The present invention was completed based on this knowledge, which was obtained as a result of exhibiting excellent cycle characteristics as a lithium ion secondary battery compared with the case where Cu 6 Sn 5 was formed by diffusion by heat treatment after applying Sn plating to the material. I let you.

即ち、本発明のリチウムイオン二次電池用負極は、銅箔からなる負極集電体上にCu−Sn合金系活物質を形成したリチウムイオン二次電池用負極において、前記活物質はSn含有率が35mass%以上、60mass%以下の組成でほぼ単相のCuSn相(η相)からなることを特徴とする。ここでいう「ほぼ単相」とは、CuKα線を利用したXRD(エックス線回折)の2θ/θスキャン測定における通常実施するスキャン範囲(例えば、20°≦2θ≦100°)において、当該相以外の相に起因する回折ピークの累積強度が、当該相に起因する回折ピーク累積強度の10%未満の状態をいう。ただし、下地の基材等に起因する回折ピークは、上記当該相以外の相に含めないものとする。 That is, the negative electrode for a lithium ion secondary battery according to the present invention is a negative electrode for a lithium ion secondary battery in which a Cu—Sn alloy-based active material is formed on a negative electrode current collector made of copper foil. Is composed of a substantially single-phase Cu 6 Sn 5 phase (η phase) with a composition of 35 mass% or more and 60 mass% or less. The term “substantially single phase” as used herein means that other than the phase in the scan range (for example, 20 ° ≦ 2θ ≦ 100 °) that is normally performed in the Xθ (X-ray diffraction) 2θ / θ scan measurement using CuKα rays. A state in which the cumulative intensity of diffraction peaks attributed to a phase is less than 10% of the cumulative intensity of diffraction peaks attributed to the phase. However, the diffraction peak due to the base material of the base is not included in a phase other than the phase.

前記活物質の表面は凹凸構造に形成することが好ましく、前記活物質の表面粗さRaを0.5μm以上、2μm未満とすることが望ましい。   The surface of the active material is preferably formed in a concavo-convex structure, and the surface roughness Ra of the active material is preferably 0.5 μm or more and less than 2 μm.

また、本発明のリチウムイオン二次電池用負極の製造方法は、銅箔からなる負極集電体上に電気めっきによりCu−Sn合金系活物質を形成したリチウムイオン二次電池用負極の製造方法において、スルホコハク酸溶液によるCu−Sn合金めっきにより前記活物質を直接形成(析出)することを特徴とする。   Moreover, the manufacturing method of the negative electrode for lithium ion secondary batteries of this invention is the manufacturing method of the negative electrode for lithium ion secondary batteries which formed the Cu-Sn alloy type active material by electroplating on the negative electrode collector which consists of copper foils. The active material is directly formed (precipitated) by Cu-Sn alloy plating with a sulfosuccinic acid solution.

また、前記CuSn相(η相)をやけめっきにより形成することが好ましい。 The Cu 6 Sn 5 phase (η phase) is preferably formed by brush plating.

また、前記やけめっきにより凹凸状に形成したCuSn相の表面上に、更に、スルホコハク酸溶液によるCu−Sn合金めっきにより前記CuSn相(η相)皮膜を一様な厚さで形成することが好ましい。 Further, the Cu 6 Sn 5 phase (η phase) film is uniformly formed on the surface of the Cu 6 Sn 5 phase formed in an uneven shape by the burn plating, and further by Cu—Sn alloy plating with a sulfosuccinic acid solution. It is preferable to form by.

本発明によれば、カーボン系の活物質を利用した場合に比べてエネルギー密度が高く、充放電を繰り返しても集電体である銅箔から負極活物質が剥離、脱落することなく、サイクル特性に優れたリチウムイオン二次電池用負極を提供できる。   According to the present invention, the energy density is higher than when a carbon-based active material is used, and the negative electrode active material is not peeled off from the copper foil as a current collector even after repeated charge and discharge, and cycle characteristics are eliminated. The negative electrode for lithium ion secondary batteries excellent in can be provided.

また、本発明によれば、製造工程が簡易かつ安全で環境面での問題が生じないリチウムイオン二次電池用負極の製造方法を提供することができる。   In addition, according to the present invention, it is possible to provide a method for producing a negative electrode for a lithium ion secondary battery that has a simple and safe production process and does not cause environmental problems.

本発明は、スルホコハク酸によるCu−Sn合金めっきで直接CuSn相皮膜を形成すると、銅箔基材にSnめっきを施し加熱処理による拡散でCuSnを形成した場合と比べて、リチウムイオン二次電池として優れたサイクル特性を示すという新しい知見に基づくものである。以下、図を参照して、本発明の実施形態について説明する。 In the present invention, when a Cu 6 Sn 5 phase coating is directly formed by Cu-Sn alloy plating with sulfosuccinic acid, compared to the case where the copper foil base material is Sn plated and Cu 6 Sn 5 is formed by diffusion by heat treatment, This is based on a new finding that it shows excellent cycle characteristics as a lithium ion secondary battery. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、本実施形態に係るリチウムイオン二次電池用負極の模式図を示す。このリチウムイオン二次電池用負極10は、負極集電体となる銅箔1(例えば、厚さ18μm)上に、やけめっきにより凹凸構造を有するCuSn相(η相)からなる負極活物質2を設け、更にその上に負極活物質2の凹凸形状に沿って一様な厚みでCuSn相(η相)からなる活物質平滑めっき層3を形成したものである。
以下、それぞれの構成について詳しく説明する。
In FIG. 1, the schematic diagram of the negative electrode for lithium ion secondary batteries which concerns on this embodiment is shown. This negative electrode 10 for a lithium ion secondary battery has a negative electrode active composed of a Cu 6 Sn 5 phase (η phase) having a concavo-convex structure by burnt plating on a copper foil 1 (for example, thickness 18 μm) serving as a negative electrode current collector. The material 2 is provided, and the active material smooth plating layer 3 made of Cu 6 Sn 5 phase (η phase) is formed on the material 2 along the uneven shape of the negative electrode active material 2 with a uniform thickness.
Hereinafter, each configuration will be described in detail.

(スルホコハク酸によるCuSn相(η相)皮膜の形成)
スルホコハク酸によるCu−Sn合金めっきでCuSn相皮膜を直接形成したときに、リチウムイオン二次電池として優れたサイクル特性を示す理由は完全に明らかとなってはいないが、本発明におけるスルホコハク酸によるCu−Sn合金めっきでは、Sn含有率が35mass%〜60mass%の組成、より好ましくは38mass%以上、60mass%以下、さらに好ましくはSn含有率が40mass%以上、60mass%以下で、ほぼ単相のCuSn相(η相)が生成(析出)する。このような広い組成領域でほぼ単相のη相が生成する現象は、Cu−Sn系の相平衡状態図から推測することが困難であり、非平衡反応により化学量論組成から大きくずれたもの(Snの欠損したη相構造)と考えられる。この化学量論組成からのずれが、電池電極でのリチウムとの反応(リチウムイオンの吸蔵・離脱)に伴う結晶構造の変化(体積変化)に際し、有利に働くものと考えられる。
(Formation of Cu 6 Sn 5 phase (η phase) film with sulfosuccinic acid)
The reason for the excellent cycle characteristics as a lithium ion secondary battery when a Cu 6 Sn five- phase film is directly formed by Cu—Sn alloy plating with sulfosuccinic acid is not completely clarified. In Cu—Sn alloy plating with an acid, the composition of Sn content is 35 mass% to 60 mass%, more preferably 38 mass% or more and 60 mass% or less, and still more preferably Sn content is 40 mass% or more and 60 mass% or less. A phase Cu 6 Sn 5 phase (η phase) is generated (precipitated). Such a phenomenon in which a substantially single-phase η phase is generated in such a wide composition region is difficult to estimate from the phase equilibrium diagram of the Cu—Sn system, and is largely deviated from the stoichiometric composition by non-equilibrium reaction. (Sn-deficient η phase structure). It is considered that this deviation from the stoichiometric composition works favorably when the crystal structure changes (volume change) accompanying the reaction with lithium (occlusion / release of lithium ions) at the battery electrode.

一方、拡散(熱処理)によりCuSn相を形成した場合には、ほぼ化学量論組成となる。また、シアン浴を用いてCu−Sn合金をめっきした場合、例えばSn含有率が約40mass%となるようなめっき皮膜はCuSn(η相)とCu41Sn11(δ相)の混相になると報告されている。そのような混相のCu−Sn系材料をリチウムイオン二次電池の負極活物質として使用する場合は、δ相が電池容量(放電効率)を低下させるものと推測される。 On the other hand, when the Cu 6 Sn 5 phase is formed by diffusion (heat treatment), the composition is almost stoichiometric. Further, when a Cu—Sn alloy is plated using a cyan bath, for example, a plating film having a Sn content of about 40 mass% is a mixed phase of Cu 6 Sn 5 (η phase) and Cu 41 Sn 11 (δ phase). It has been reported that When such a mixed phase Cu—Sn-based material is used as the negative electrode active material of a lithium ion secondary battery, it is presumed that the δ phase reduces the battery capacity (discharge efficiency).

スルホコハク酸によるCu−Sn(40mass%)合金めっき(スペキュラム合金めっき)は、ニッケルアレルギー(生体アレルギー反応)を防止するための、銀白色を呈する代替ニッケルめっきプロセスの一候補として表面技術55(2004)p.484に開示されている(ニッケルめっきの代替プロセスを目的とすることから、銀白色を呈することが最重要項目である)。この「表面技術」によるとスペキュラム組成を有するCu−Sn合金皮膜は、スルホコハク酸浴を用いた電気めっきにより、相平衡状態図の高温域にのみ存在する合金相とη相(CuSn)の混相として析出すると報告されている。一方、本発明においては、ほぼ単相のη相が得られている。現時点でその理由は定かではないが、めっき膜の性質はめっき液中のイオンの安定性に大きく影響されることから、イオンの安定性に関与する各種添加剤、酸性度、温度、電流密度などの因子が複合的に作用したためと考えられる。また、スルホコハク酸によるめっき液の廃液処理は、この「表面技術」にも記載されている通り、シアン系溶液などに比べ、安全かつ実施が容易である。 Cu-Sn (40 mass%) alloy plating (speculum alloy plating) with sulfosuccinic acid is a surface technology 55 (2004) as a candidate for an alternative nickel plating process that exhibits a silvery white color to prevent nickel allergy (biological allergic reaction). p. 484 (it is the most important item to have a silver white color because it aims at an alternative process of nickel plating). According to this “surface technology”, a Cu—Sn alloy film having a speculum composition is obtained by electroplating using a sulfosuccinic acid bath, and an alloy phase and a η phase (Cu 6 Sn 5 ) existing only in a high temperature region of a phase equilibrium diagram. It is reported that it precipitates as a mixed phase. On the other hand, in the present invention, a substantially single-phase η phase is obtained. The reason for this is not clear at this time, but the properties of the plating film are greatly influenced by the stability of ions in the plating solution, so various additives, acidity, temperature, current density, etc. involved in ion stability This is thought to be due to the complex action of these factors. In addition, as described in this “Surface Technology”, the waste solution treatment of the plating solution with sulfosuccinic acid is safer and easier to implement than the cyan solution.

(CuSn相(η相)やけめっき被膜の形成)
図2を参照して、負極活物質としてCuSn相(η相)のやけめっき被膜を形成した場合の作用について説明する。
図2(a)に示すように、銅箔1の表面上に、負極活物質2としてCuSn相(η相)めっき膜を粗化めっきにより凹凸状に形成することで、図2(b)に示すように、充電時に凸部2aが膨張(体積が増大)しても、凹部2bの存在がバッファーとなってめっき膜面内方向の膨張を緩和し(内部応力の増大を抑制し)、CuSn相めっき層全体としての変形を防止できる。そのためには、図2(a)に示すように、凹部2bはCuSn相めっき層の表層部分のみでなく、下地集電銅箔1まで達するようななるべく深い凹凸が望ましい。
(Formation of Cu 6 Sn 5 phase (η phase) burnt plating film)
With reference to FIG. 2, the operation in the case where a burnt plating film of Cu 6 Sn 5 phase (η phase) is formed as the negative electrode active material will be described.
As shown in FIG. 2A, by forming a Cu 6 Sn 5 phase (η phase) plating film as the negative electrode active material 2 on the surface of the copper foil 1 by rough plating, As shown in b), even if the convex part 2a expands (the volume increases) during charging, the presence of the concave part 2b acts as a buffer to relieve the expansion in the in-plane direction of the plating film (suppress the increase in internal stress). ), Deformation of the Cu 6 Sn five- phase plating layer as a whole can be prevented. For this purpose, as shown in FIG. 2A, the recess 2b is preferably as deep as possible so as to reach not only the surface layer portion of the Cu 6 Sn five- phase plating layer but also the underlying current collector copper foil 1.

具体的には、表面粗さRaが0.5μm未満ではほぼ一様なCuSn相めっき層の表面にのみ凹凸がある形状となり、膨張収縮に起因する応力の緩和効果が不足する。一方、表面粗さRaが2.0μm以上になると、凸部にデンドライト状結晶が形成(析出)し易く、さらに、そのデンドライトが脱落しやすいために、充放電特性の改善が望めないばかりか、脱落した物質(デンドライト状結晶)による電気的短絡が発生する恐れがある。このような理由から、CuSn相やけめっきの表面粗さはRa0.5μm以上、2.0μm未満が望ましい。なお、表面粗さRaは日本工業規格(JIS B 0601−1994)に定められており、表面粗さ計や走査型プローブ顕微鏡(SPM)などにより測定できる。 Specifically, when the surface roughness Ra is less than 0.5 μm, the surface of the substantially uniform Cu 6 Sn five- phase plating layer has irregularities only, and the stress relaxation effect due to expansion and contraction is insufficient. On the other hand, when the surface roughness Ra is 2.0 μm or more, dendrite-like crystals are likely to be formed (deposited) on the convex portions, and the dendrites are likely to fall off, so that improvement in charge / discharge characteristics cannot be expected, There is a risk that an electrical short circuit may occur due to the dropped substance (dendritic crystals). For these reasons, the surface roughness of the Cu 6 Sn 5 phase burnt plating is preferably Ra 0.5 μm or more and less than 2.0 μm. The surface roughness Ra is defined in Japanese Industrial Standard (JIS B 0601-1994), and can be measured with a surface roughness meter, a scanning probe microscope (SPM), or the like.

(CuSn相(η相)平滑めっき層の形成)
やけめっきにより凹凸状に形成したCuSn相の表面上に、一様な厚みを有するめっき(以下、「平滑めっき」と称す)を施すことは以下の理由により好ましい。即ち、デンドライト形成がない状態でも凸部が脱落する事例(例えば、高電流密度で起こりやすい)に対して、粗化めっきの凹凸形状に沿って平滑めっき皮膜を形成することで、その脱落を防止できるからである。
(Formation of Cu 6 Sn 5 phase (η phase) smooth plating layer)
It is preferable to apply plating having a uniform thickness (hereinafter referred to as “smooth plating”) on the surface of the Cu 6 Sn 5 phase formed in an uneven shape by burnt plating for the following reason. In other words, for cases where the convex part falls off even in the absence of dendrite formation (for example, it is likely to occur at a high current density), the smooth plating film is formed along the rough shape of the rough plating to prevent the dropout. Because it can.

従来のカーボン系の活物質の代わりに、上記のようにスルホコハク酸によりCuSn相めっき膜を形成したリチウムイオン二次電池用負極を用いることにより、従来に比べてエネルギー密度が高く、小型化可能なリチウムイオン二次電池が供給可能となる。 By using a negative electrode for a lithium ion secondary battery in which a Cu 6 Sn five- phase plating film is formed with sulfosuccinic acid as described above, instead of the conventional carbon-based active material, the energy density is higher and the size is smaller than the conventional one. Can be supplied.

厚さ0.018mmの銅箔を準備し、表1に示すめっき液でSnめっき厚換算5μmの厚さとなるようにCu−Sn合金めっき(やけめっき)を行った(試料1−1)。めっき後、めっき膜表面のEDX(エネルギー分散型エックス線装置)による組成分析ではSnが41mass%であった。つぎに、Sn含有率の異なったCu−Sn合金めっき膜を作製するために、厚さ0.018mmの銅箔を別途準備し、表1におけるCu成分とSn成分の比率を変化させて、Snめっき厚換算5μmの厚さとなるようにCu−Sn合金めっきを行った。めっき後、めっき膜表面をEDXにより組成分析したところ、各々、50mass%Sn(試料1−2)、60mass%Sn(試料1−3)、34mass%Sn(試料1−4)、65mass%Sn(試料1−5)であった。また、触針式粗さ計により各試料の表面粗さを評価したところ、各試料ともRa=0.9μmであった。さらに、各々の試料について、CuKα線を利用したX線回折(XRD)装置を用いて、2θ/θスキャン測定によりめっき膜の構造解析を行った。
図3に、試料1−1から試料1−4のXRD測定結果を示す。
A copper foil having a thickness of 0.018 mm was prepared, and Cu—Sn alloy plating (bake plating) was performed with the plating solution shown in Table 1 so as to have a thickness of 5 μm in terms of Sn plating thickness (Sample 1-1). After plating, Sn was 41 mass% in composition analysis by EDX (energy dispersive X-ray apparatus) on the surface of the plating film. Next, in order to produce Cu—Sn alloy plating films having different Sn contents, a 0.018 mm thick copper foil was separately prepared, and the ratio of the Cu component and the Sn component in Table 1 was changed. Cu—Sn alloy plating was performed so as to obtain a thickness of 5 μm in terms of plating thickness. After plating, when the composition of the plated film surface was analyzed by EDX, 50 mass% Sn (sample 1-2), 60 mass% Sn (sample 1-3), 34 mass% Sn (sample 1-4), 65 mass% Sn ( Sample 1-5). Moreover, when the surface roughness of each sample was evaluated with a stylus roughness meter, Ra = 0.9 μm for each sample. Further, for each sample, the structural analysis of the plating film was performed by 2θ / θ scan measurement using an X-ray diffraction (XRD) apparatus using CuKα rays.
FIG. 3 shows the XRD measurement results of Sample 1-1 to Sample 1-4.

Figure 2006269361
Figure 2006269361

図3の結果から判るように、試料1−1から試料1−3において、CuSn相(η相)以外の相に起因する有意な回折ピークは認められず、ほぼ単相のCuSn相(η相)となっていることが確認できる。一方、試料1−4においては、CuSn相(η相)以外の未確認相に起因する回折ピークが認められた。言い換えると、試料1−4はCuSn相(η相)と他相の混相状態と考えられる。また、図3には示していないが、試料1−5においては、CuSn相(η相)の他に、過剰のSn成分に起因すると考えられる回折ピークが認められた。 As can be seen from the results in FIG. 3, in Sample 1-1 to Sample 1-3, no significant diffraction peak due to a phase other than the Cu 6 Sn 5 phase (η phase) was observed, and almost single-phase Cu 6. It can be confirmed that it is Sn 5 phase (η phase). On the other hand, in Sample 1-4, diffraction peaks caused by unidentified phases other than the Cu 6 Sn 5 phase (η phase) were observed. In other words, Sample 1-4 is considered to be a mixed phase of Cu 6 Sn 5 phase (η phase) and another phase. Moreover, although not shown in FIG. 3, in Sample 1-5, in addition to the Cu 6 Sn 5 phase (η phase), a diffraction peak considered to be caused by an excessive Sn component was observed.

このようにして得た電極材を2cmの円形に打ち抜き金属リチウムを対極とする試験セルを製作、充放電特性の評価を行った。なお、セパレータにはポリプロピレン薄膜を使用し、電解液には1mol/LのLiPFを溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.25mA/cmの定電流密度で行った。 The electrode material thus obtained was punched into a 2 cm 2 circle and a test cell using lithium metal as a counter electrode was manufactured, and the charge / discharge characteristics were evaluated. A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1 mol / L LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1V.

表2に、初期サイクル(1サイクル目)の放電容量に対する80サイクル後の放電容量維持率の評価結果を示す。表2には、Cu−Sn合金めっき膜のSn含有率も併記した。   Table 2 shows the evaluation results of the discharge capacity retention rate after 80 cycles with respect to the discharge capacity of the initial cycle (first cycle). Table 2 also shows the Sn content of the Cu—Sn alloy plating film.

Figure 2006269361
Figure 2006269361

表2の結果から判るように、本実施例による試料1−1から試料1−3は、比較例である試料1−4や試料1−5と比べて80サイクル後の放電容量維持率が高く、優れたサイクル特性を示すことがわかる。   As can be seen from the results in Table 2, Sample 1-1 to Sample 1-3 according to the present example have a higher discharge capacity retention rate after 80 cycles than Sample 1-4 and Sample 1-5, which are comparative examples. It can be seen that excellent cycle characteristics are exhibited.

つぎに、スルホコハク酸によるCu−Sn合金めっきに対する比較例として、厚さ0.018mmの銅箔を別途準備し、表3に示すめっき液で厚さ5μmのSnめっきを行った(試料1−6)。めっき後、CuSn相を生成させるために真空中で200℃、18時間の加熱処理を行った。X線回折測定によりCuSn相の生成を確認した。また、EDXによる表面の組成分析ではSn含有率が61mass%であった。 Next, as a comparative example for Cu-Sn alloy plating with sulfosuccinic acid, a copper foil having a thickness of 0.018 mm was separately prepared, and Sn plating having a thickness of 5 μm was performed with a plating solution shown in Table 3 (Sample 1-6). ). After plating, heat treatment was performed at 200 ° C. for 18 hours in a vacuum in order to generate a Cu 6 Sn 5 phase. Formation of Cu 6 Sn 5 phase was confirmed by X-ray diffraction measurement. Moreover, Sn content rate was 61 mass% in the surface composition analysis by EDX.

Figure 2006269361
Figure 2006269361

このようにして得た電極材を試料1−1から試料1−5と同様の方法で充放電試験を行った。この試験において初期サイクルの放電容量に対する80サイクル後の放電容量維持率は39%であった。   Thus, the charging / discharging test was done for the obtained electrode material by the method similar to the sample 1-1 to the sample 1-5. In this test, the discharge capacity retention rate after 80 cycles with respect to the discharge capacity of the initial cycle was 39%.

また、図4に示すように、充放電試験後のセルを分解して電極(負極)表面を観察すると、試料1−6の試験片では剥離、脱落が起こっているのに対し(図4(b))、試料1−1の試験片ではそのような現象は見られず、活物質の密着性が保たれていた(図4(a))。   Moreover, as shown in FIG. 4, when the cell after the charge / discharge test was disassembled and the surface of the electrode (negative electrode) was observed, peeling and dropping occurred in the specimen 1-6 (see FIG. 4 ( b)), such a phenomenon was not observed in the test piece of Sample 1-1, and the adhesion of the active material was maintained (FIG. 4A).

上記の結果から、スルホコハク酸によるCu−Sn合金めっき膜を利用したリチウムイオン二次電池用負極材(例えば、試料1−1)は、Snめっき後の加熱拡散反応によりCuSn相を生成させた試料1−6よりも、充放電試験における放電容量維持率が高く、優れたサイクル特性を示すことがわかる。 From the above results, Cu-Sn alloy plating film lithium ion secondary utilizing batteries for a negative electrode material according sulfosuccinate (e.g., sample 1-1), generating a Cu 6 Sn 5 phase by heating the diffusion reaction after Sn plating It can be seen that the discharge capacity retention rate in the charge / discharge test is higher than that of the sample 1-6, and excellent cycle characteristics are exhibited.

厚さ0.018mmの銅箔を準備し、表4に示すめっき液でSnめっき厚換算5μmの厚さとなるようにCu−Sn合金めっきを行った。このとき、やけめっきにおける電流密度を変化させることで、銅箔上に表面粗さの異なるCu−Sn合金めっき膜を作製した(試料2−1から試料2−5)。その後、一部の試料(試料2−4および試料2−5)に対して、表5に示すめっき液でSnめっき厚換算0.5μmの厚さとなるようなCu−Sn合金の平滑めっきを行った。各々の試料に対し、触針式粗さ計により表面粗さ(Ra)を評価したところ、Ra=0.2〜2.0μmであった。   A copper foil having a thickness of 0.018 mm was prepared, and Cu—Sn alloy plating was performed with the plating solution shown in Table 4 so as to have a thickness of 5 μm in terms of Sn plating thickness. At this time, a Cu—Sn alloy plating film having a different surface roughness was produced on the copper foil by changing the current density in burnt plating (sample 2-1 to sample 2-5). Thereafter, smooth plating of a Cu—Sn alloy was performed on a part of the samples (Sample 2-4 and Sample 2-5) with a plating solution shown in Table 5 so that the Sn plating thickness was 0.5 μm. It was. When each surface was evaluated for surface roughness (Ra) with a stylus type roughness meter, Ra = 0.2 to 2.0 μm.

Figure 2006269361
Figure 2006269361

Figure 2006269361
Figure 2006269361

図5に、試料2−3の表面SEM写真を示し、図6に、試料2−1の表面SEM写真を示す。試料2−3(図5)は、試料2−1(図6)と比べて、表面に深い凹凸構造を有するめっき膜であることが判る。また、めっき後、X線回折測定によりめっき膜の構造を解析し、全ての試料(試料2−1から試料2−5)において、ほぼ単相のCuSn相(η相)からなっていることを確認した。さらに、EDXによりめっき膜表面の組成分析を行ったところ、何れの試料もSn含有率は約41mass%であった。 FIG. 5 shows a surface SEM photograph of Sample 2-3, and FIG. 6 shows a surface SEM photograph of Sample 2-1. It can be seen that Sample 2-3 (FIG. 5) is a plating film having a deep concavo-convex structure on the surface as compared with Sample 2-1 (FIG. 6). In addition, after plating, the structure of the plating film was analyzed by X-ray diffraction measurement, and all samples (Sample 2-1 to Sample 2-5) consisted of almost single-phase Cu 6 Sn 5 phase (η phase). I confirmed. Furthermore, when the composition analysis of the plating film surface was performed by EDX, Sn content rate was about 41 mass% in any sample.

このようにして得た電極材を2cmの円形に打ち抜き金属リチウムを対極とする試験セルを製作、充放電特性の評価を行った。なお、セパレータにはポリプロピレン薄膜を使用し、電解液には1mol/LのLiPFを溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.25mA/cmの定電流密度で行った。 The electrode material thus obtained was punched into a 2 cm 2 circle and a test cell using lithium metal as a counter electrode was manufactured, and the charge / discharge characteristics were evaluated. A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1 mol / L LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1V.

初期サイクル(1サイクル目)の放電容量に対する80サイクル後の放電容量維持率の評価結果を表6に示す。表6には、やけめっきにおける電流密度、平滑めっきの有無と電流密度、Cu−Sn合金めっき膜(負極活物質)の表面粗さ(Ra)も併記した。   Table 6 shows the evaluation results of the discharge capacity retention rate after 80 cycles with respect to the discharge capacity of the initial cycle (first cycle). Table 6 also shows the current density in burnt plating, the presence / absence of smooth plating and the current density, and the surface roughness (Ra) of the Cu—Sn alloy plating film (negative electrode active material).

Figure 2006269361
Figure 2006269361

表6の結果から判るように、本実施例による試料2−2から試料2−4は、比較例である試料2−1や試料2−5と比べて80サイクル後の放電容量維持率が高く、優れたサイクル特性を示すことがわかる。また、表6の結果より、負極活物質の表面粗さRaは0.5μm以上、2.0μm未満が望ましいことが明らかとなった。   As can be seen from the results in Table 6, Samples 2-2 to 2-4 according to this example have a higher discharge capacity maintenance rate after 80 cycles than Samples 2-1 and 2-5, which are comparative examples. It can be seen that excellent cycle characteristics are exhibited. Further, from the results of Table 6, it was found that the surface roughness Ra of the negative electrode active material is preferably 0.5 μm or more and less than 2.0 μm.

また、充放電試験後のセルを分解し電極(負極)表面を観察すると、試料2−1および試料2−5の試験片は負極活物質の脱落が起こっていたのに対し、試料2−2から試料2−4の試験片ではそのような現象は見られず、活物質の健全性(負極集電体との固着性)が保たれていた。   Further, when the cell after the charge / discharge test was disassembled and the surface of the electrode (negative electrode) was observed, the specimens of Sample 2-1 and Sample 2-5 had the negative electrode active material falling off, whereas Sample 2-2 Thus, such a phenomenon was not observed in the specimen 2-4, and the soundness of the active material (adhesion with the negative electrode current collector) was maintained.

なお、本実施例で記載したスルホコハク酸浴によるCuSn相析出のめっき液および電流密度などはその一例であり、スルホコハク酸溶液により直接CuSn相(η相)をめっきする条件であれば他のめっき液組成及び電流密度を用いることもできる。 In addition, the plating solution and current density of Cu 6 Sn 5 phase precipitation by the sulfosuccinic acid bath described in this example are an example thereof, and the Cu 6 Sn 5 phase (η phase) is directly plated with the sulfosuccinic acid solution. Other plating solution compositions and current densities can be used if present.

また、本実施例で記載したやけめっき形状のCuSn相めっきのめっき液組成、添加剤および電流密度などはその一例であり、凹凸形状(粗化めっき形状)が得られる条件であれば他の条件を用いても構わない。 Moreover, the plating solution composition, additive, current density, and the like of the burnt-plated Cu 6 Sn five- phase plating described in this example are just one example, and any conditions can be used as long as the uneven shape (roughened plating shape) is obtained. Other conditions may be used.

また、本実施例では銅箔に直接Cu−Sn合金めっきを行っているが、めっきの密着性を高めるための下地処理、例えば下地Cuめっきなどを行ってもよい。   Further, in this embodiment, Cu—Sn alloy plating is directly performed on the copper foil, but a base treatment for improving the adhesion of the plating, for example, base Cu plating may be performed.

本発明に係るリチウムイオン二次電池用負極の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the negative electrode for lithium ion secondary batteries which concerns on this invention. 負極活物質としてCuSn相(η相)のやけめっき被膜を形成した場合の作用を説明する模式図であり、(a)は放電時、(b)は充電時の状態を示すものである。Is a schematic diagram for explaining the operation in the case of forming the burnt plating film of Cu 6 Sn 5 phase (eta phase) as an anode active material, (a) shows the discharge time, (b) it is shows the state during charging is there. Cu−Sn合金めっき(やけめっき)を行っためっき膜(試料1−1から試料1−4)のXRD測定結果である。It is a XRD measurement result of the plating film (sample 1-1 to sample 1-4) which performed Cu-Sn alloy plating (bake plating). 充放電試験後の試料1−1と試料1−6の負極表面のSEM写真である。It is a SEM photograph of the negative electrode surface of Sample 1-1 and Sample 1-6 after the charge / discharge test. 充放電試験前の試料2−3(Ra=0.9μm)の表面SEM写真である。It is the surface SEM photograph of the sample 2-3 (Ra = 0.9 micrometer) before a charging / discharging test. 充放電試験前の試料2−1(Ra=0.2μm)の表面SEM写真である。It is the surface SEM photograph of the sample 2-1 (Ra = 0.2 micrometer) before a charging / discharging test.

Claims (6)

銅箔からなる負極集電体上にCu−Sn合金系活物質を形成したリチウムイオン二次電池用負極において、前記活物質はSnが35mass%以上、60mass%以下の組成でほぼ単相のCuSn相(η相)からなることを特徴とするリチウムイオン二次電池用負極。 In a negative electrode for a lithium ion secondary battery in which a Cu-Sn alloy-based active material is formed on a negative electrode current collector made of copper foil, the active material has an Sn content of 35 mass% or more and 60 mass% or less and a substantially single-phase Cu. A negative electrode for a lithium ion secondary battery, characterized by comprising 6 Sn 5 phase (η phase). 前記活物質の表面が凹凸構造に形成されていることを特徴とする請求項1記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1, wherein the surface of the active material is formed in an uneven structure. 前記活物質の表面粗さRaが0.5μm以上、2μm未満であることを特徴とする請求項1又は2記載のリチウムイオン二次電池用負極。   3. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the surface roughness Ra of the active material is 0.5 μm or more and less than 2 μm. 銅箔からなる負極集電体上に電気めっきによりCu−Sn合金系活物質を形成したリチウムイオン二次電池用負極の製造方法において、スルホコハク酸溶液によるCu−Sn合金めっきにより前記活物質を直接形成することを特徴とするリチウムイオン二次電池用負極の製造方法。   In a method for manufacturing a negative electrode for a lithium ion secondary battery in which a Cu—Sn alloy active material is formed by electroplating on a negative electrode current collector made of copper foil, the active material is directly applied by Cu—Sn alloy plating with a sulfosuccinic acid solution. A method for producing a negative electrode for a lithium ion secondary battery, comprising: forming a negative electrode for a lithium ion secondary battery. 前記CuSn相(η相)をやけめっきにより形成したことを特徴とする請求項4記載のリチウムイオン二次電池用負極の製造方法。 The method for producing a negative electrode for a lithium ion secondary battery according to claim 4, wherein the Cu 6 Sn 5 phase (η phase) is formed by brush plating. 前記やけめっきにより凹凸状に形成したCuSn相の表面上に、更に、スルホコハク酸溶液によるCu−Sn合金めっきにより前記CuSn相(η相)皮膜を一様な厚さで形成したことを特徴とする請求項5記載のリチウムイオン二次電池用負極の製造方法。 The Cu 6 Sn 5 phase (η phase) film is formed with a uniform thickness on the surface of the Cu 6 Sn 5 phase formed in the uneven shape by the burn plating, and further by Cu-Sn alloy plating with a sulfosuccinic acid solution. The method for producing a negative electrode for a lithium ion secondary battery according to claim 5.
JP2005089207A 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery and its manufacturing method Pending JP2006269361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089207A JP2006269361A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089207A JP2006269361A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006269361A true JP2006269361A (en) 2006-10-05

Family

ID=37205077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089207A Pending JP2006269361A (en) 2005-03-25 2005-03-25 Negative electrode for lithium ion secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006269361A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788257B1 (en) 2007-02-27 2007-12-27 한국전기연구원 Lithium secondary battery comprising electrode composition for high voltage
CN102034960A (en) * 2009-09-25 2011-04-27 比亚迪股份有限公司 Tin-based anode material and preparation method thereof as well as battery
WO2012001845A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and production method for same
WO2012001844A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery
CN102549815A (en) * 2010-06-29 2012-07-04 松下电器产业株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
WO2019017349A1 (en) * 2017-07-18 2019-01-24 新日鐵住金株式会社 Negative electrode active material, negative electrode, and cell
WO2020149404A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Negative electrode active material, negative electrode, and battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788257B1 (en) 2007-02-27 2007-12-27 한국전기연구원 Lithium secondary battery comprising electrode composition for high voltage
US8221918B2 (en) 2008-05-27 2012-07-17 Kobe Steel, Ltd. Anode for lithium ion secondary battery, production method thereof, and lithium ion secondary battery using the same
CN102034960A (en) * 2009-09-25 2011-04-27 比亚迪股份有限公司 Tin-based anode material and preparation method thereof as well as battery
CN102549815A (en) * 2010-06-29 2012-07-04 松下电器产业株式会社 Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012001845A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and production method for same
WO2012001844A1 (en) * 2010-06-30 2012-01-05 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery
WO2019017349A1 (en) * 2017-07-18 2019-01-24 新日鐵住金株式会社 Negative electrode active material, negative electrode, and cell
JP6515363B1 (en) * 2017-07-18 2019-05-22 日本製鉄株式会社 Negative electrode active material, negative electrode and battery
CN110915038A (en) * 2017-07-18 2020-03-24 日本制铁株式会社 Negative electrode active material, negative electrode, and battery
CN110915038B (en) * 2017-07-18 2022-09-16 日本制铁株式会社 Negative electrode active material, negative electrode, and battery
WO2020149404A1 (en) * 2019-01-17 2020-07-23 日本製鉄株式会社 Negative electrode active material, negative electrode, and battery
JPWO2020149404A1 (en) * 2019-01-17 2021-02-18 日本製鉄株式会社 Negative electrode active material, negative electrode and battery
CN113316559A (en) * 2019-01-17 2021-08-27 日本制铁株式会社 Negative electrode active material, negative electrode, and battery
CN113316559B (en) * 2019-01-17 2023-06-06 日本制铁株式会社 Negative electrode active material, negative electrode, and battery

Similar Documents

Publication Publication Date Title
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2019178429A (en) Copper foil with uniform thickness
JP6187725B1 (en) Manufacturing method of silicon plating metal plate
JP4330290B2 (en) Method for producing electrode for lithium secondary battery
Sengupta et al. Investigation on lithium conversion behavior and degradation mechanisms in Tin based ternary component alloy anodes for lithium ion batteries
JP2006216518A (en) Negative electrode material for lithium secondary battery
Kure-Chu et al. Nanoporous Sn-SnO2-TiO2 composite films electrodeposited on Cu sheets as anode materials for lithium-ion batteries
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP2014107019A (en) Negative electrode for lithium ion secondary battery and manufacturing method therefor
JP7153148B1 (en) Electrolytic copper foil, electrode, and lithium ion battery comprising the same
JP2012142214A (en) Lithium ion secondary battery anode manufacturing method and lithium ion secondary battery anode
JP7376396B2 (en) All-solid-state battery manufacturing method
JP2004259483A (en) Lithium secondary battery negative electrode member and manufacturing method of the same
Shimizu et al. Li-insertion/extraction properties of three-dimensional Sn electrode prepared by facile electrodeposition method
JP2007184205A (en) Method of manufacturing electrode for lithium secondary battery
Wu et al. Novel insight toward engineering of arrayed Cu@ Sn nanoelectrodes: rational microstructure refinement and its remarkable “harvesting effect” on lithium storage capability
JPWO2013058079A1 (en) Molten salt battery and operation method thereof
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
KR101453602B1 (en) Alloy for electrode and method for preparing electrode comprising same
CN115548342B (en) 3D TiC composite material and preparation method and application thereof
KR101387797B1 (en) Ternary alloy for battery
JP2009037775A (en) Grid for lead-acid storage battery, and lead-acid storage battery using the same
KR101509304B1 (en) Sn-Cu alloy by pulse electro-deposition