JP2006216518A - Negative electrode material for lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery Download PDF

Info

Publication number
JP2006216518A
JP2006216518A JP2005031242A JP2005031242A JP2006216518A JP 2006216518 A JP2006216518 A JP 2006216518A JP 2005031242 A JP2005031242 A JP 2005031242A JP 2005031242 A JP2005031242 A JP 2005031242A JP 2006216518 A JP2006216518 A JP 2006216518A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
lithium secondary
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005031242A
Other languages
Japanese (ja)
Other versions
JP4653510B2 (en
Inventor
Yoshitaka Shibuya
義孝 澁谷
Junji Honda
潤二 本田
Yasushi Nakai
靖司 中井
Yoshihiro Chiba
喜寛 千葉
Maruo Jinno
丸男 神野
Nobuyuki Tamura
宜之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Nikko Kinzoku KK
Original Assignee
Sanyo Electric Co Ltd
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Nikko Kinzoku KK filed Critical Sanyo Electric Co Ltd
Priority to JP2005031242A priority Critical patent/JP4653510B2/en
Publication of JP2006216518A publication Critical patent/JP2006216518A/en
Application granted granted Critical
Publication of JP4653510B2 publication Critical patent/JP4653510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for lithium secondary battery which can prevent separation of the coating containing Sn-Cu or Sn-Cu alloy intermetallic compound from the current collector by absorbing and relaxing stress generated at expansion and shrinking of the negative electrode at charge and discharge and which is improved in charge and discharge cycle characteristics. <P>SOLUTION: This is a negative electrode material for lithium secondary battery having a coating layer at the current collector, and the coating layer is a granular rough plated film of Cu formed on the current collector and an Sn alloy plated film having a minute convex shape part including at least a curved face portion formed on top of it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池用負極材料に関する。   The present invention relates to a negative electrode material for a lithium secondary battery.

非水電解液を使用するリチウム二次電池用負極としては、従来から金属リチウム、リチウム合金、あるいはリチウムを吸蔵・放出可能な炭素材料などが知られている。リチウム負極は、充放電容量が大きいという特徴を有する一方でデンドライトの成長による短絡の問題点があり、一般的には炭素材料が使用されている。しかし、炭素材料を使用した負極では、リチウム負極のようにデンドライトの成長による短絡の問題がなく安全性には優れているものの、使用可能な電流密度が低く、また充放電容量も十分なものではなく、1回の充電で長時間使用を可能にする負極材料の出現が望まれている。   As a negative electrode for a lithium secondary battery using a non-aqueous electrolyte, metal lithium, a lithium alloy, or a carbon material capable of inserting and extracting lithium has been conventionally known. A lithium negative electrode has a feature of a large charge / discharge capacity, but has a problem of short circuit due to the growth of dendrite, and a carbon material is generally used. However, a negative electrode using a carbon material does not have a short-circuit problem due to the growth of dendrites and is excellent in safety like a lithium negative electrode, but the usable current density is low and the charge / discharge capacity is not sufficient. In addition, the advent of negative electrode materials that can be used for a long time with a single charge is desired.

こうした要請に沿う負極材料の提案もされている。例えば、集電体の表面に電気めっき法により積層したスズ皮膜を形成したリチウム二次電池用負極を使用することにより、電流密度、およびエネルギー密度が高く、充放電サイクル特性を向上したリチウム二次電池が提案されている(特許文献1(特開2001−68094))。また、Sn合金等を電気めっき、あるいは無電解めっきした銅箔あるいはめっき後熱処理し金属間化合物とした銅箔を非水電解質二次電池用負極材料に使用して、高容量で、ハイレートでの充放電を可能にすることが提案されている(特許文献2、3(特開2001−256967、特開2001−256968))。   Proposals of negative electrode materials that meet these requirements have also been made. For example, by using a negative electrode for a lithium secondary battery in which a tin film laminated on the surface of the current collector by electroplating is used, the lithium secondary battery having high current density and energy density and improved charge / discharge cycle characteristics A battery has been proposed (Patent Document 1 (Japanese Patent Laid-Open No. 2001-68094)). In addition, a copper foil that has been electroplated or electrolessly plated with an Sn alloy or the like, or a copper foil that has been heat-treated after plating and made into an intermetallic compound, is used as a negative electrode material for a non-aqueous electrolyte secondary battery. It has been proposed to enable charging / discharging (Patent Documents 2 and 3 (JP 2001-256967 A, JP 2001-256968 A)).

上記の提案において、特に集電体に形成するスズ皮膜の結晶を、1μm以下とすることにより、リチウムを吸蔵し、充放電時におけるリチウムデンドライトの発生を抑制する作用を促進させることができるとされている。また、特許文献4(特開2002−198091)には、集電体のSn被覆を合金化することにより、合金成分がSn皮膜中に分散し、充放電反応に伴う体積変化によるSn粒子の脱落を防止するとされている。
また、特許文献5(特開2003−7305)には集電体表面を粗面化し、この上に活物質薄膜を形成した負極材料が記載されている。この前処理により密着性を向上できると共に、充放電時の活物質薄膜の膨張、収縮により粗面の凹凸の谷部で厚み方向に亀裂を生じさせて活物質薄膜を柱状に分離することにより空隙を形成してこの空隙の応力緩和作用を利用することが記載されている。
そして、特許文献6(特開2002−313319)には、Cuの粗化めっき後にSiをCVDなどにより、集電体表面の凹凸の谷部に向かうにつれて幅が広くなる空隙が形成されていることを特徴とする負極が記載されている。
In the above proposal, it is said that the action of suppressing the generation of lithium dendrite at the time of charging / discharging can be promoted by setting the tin film crystal formed on the current collector to 1 μm or less. ing. In Patent Document 4 (Japanese Patent Laid-Open No. 2002-198091), the Sn coating of the current collector is alloyed to disperse the alloy components in the Sn film, and the Sn particles fall off due to the volume change accompanying the charge / discharge reaction. It is supposed to prevent.
Patent Document 5 (Japanese Patent Laid-Open No. 2003-7305) describes a negative electrode material in which a current collector surface is roughened and an active material thin film is formed thereon. Adhesion can be improved by this pretreatment, and the active material thin film is separated into columns by separating the active material thin film into columns by causing cracks in the thickness direction at the valleys of the rough surface unevenness due to expansion and contraction of the active material thin film during charging and discharging. It is described that the stress relaxation action of this void is utilized.
And in patent document 6 (Unexamined-Japanese-Patent No. 2002-313319), after roughening plating of Cu, the gap | interval which becomes wide as it goes to the trough part of the unevenness | corrugation of the collector surface is formed by CVD of Si. A negative electrode characterized by is described.

特開2001−68094JP 2001-68094 A 特開2001−256967JP 2001-256967 A 特開2001−256968JP 2001-256968 A 特開2002−198091JP2002-198091 特開2003−7305JP2003-7305 特開2002−313319JP 2002-313319 A

しかしながら、これらの負極材料も、充放電サイクルを繰り返すうち、その際のリチウム吸蔵・放出に伴う膨張、収縮により、Sn、またはSn合金層が微粉化し、集電体から脱落する。また、めっき粒子を単に微細化してもこうした現象は十分に抑制できず、また、集電体の粗面化とその谷部での亀裂化による空隙の形成によっても、充放電サイクル特性は、十分満足できるものではない。また、前記特開2002−313319の提案では、集電体表面の凹凸の谷部に向かうにつれて幅が広くなる空隙が形成されているため、その部分では充放電の際の活物質の体積膨張、収縮による集電体の応力を吸収することができるが、活物質表面では、空隙がほとんど形成されていないため、充電時活物質が膨張した際、活物質表面では応力を吸収できず、活物質が微粉化し、脱落してしまい充放電サイクル寿命はやはり十分満足できるものではない。   However, as these negative electrode materials also repeat the charge / discharge cycle, the Sn or Sn alloy layer is pulverized due to expansion and contraction accompanying lithium occlusion / release at that time, and falls off the current collector. In addition, this phenomenon cannot be sufficiently suppressed even if the plating particles are simply miniaturized, and the charge / discharge cycle characteristics are sufficiently high due to the roughening of the current collector and the formation of voids due to cracks in the valleys. It is not satisfactory. Further, in the proposal of the above-mentioned JP-A-2002-313319, since a gap is formed which becomes wider as it goes to the concave and convex valleys on the current collector surface, the volume expansion of the active material at the time of charging / discharging in that part, The stress of the current collector due to shrinkage can be absorbed, but since there are almost no voids on the active material surface, when the active material expands during charging, the active material surface cannot absorb the stress, and the active material However, the charge / discharge cycle life is still not fully satisfactory.

本発明は、前記充放電時負極の膨張・収縮の際に発生する応力を吸収緩和する能力を一層高めることにより、集電体からSn−Cu合金あるいはSn−金属間化合物を含む被覆の脱離を防止し得て、充放電サイクル特性を向上したリチウム二次電池用負極材料を提供することを目的とするものである。   The present invention further enhances the ability to absorb and relax the stress generated during the expansion / contraction of the negative electrode during charge / discharge, thereby removing the coating containing the Sn—Cu alloy or Sn—intermetallic compound from the current collector. It is an object of the present invention to provide a negative electrode material for a lithium secondary battery that can prevent the above and improve the charge / discharge cycle characteristics.

本発明者らは、鋭意検討した結果、負極集電体の表面をCu粒状めっきで粗面化し、その上に密着させた曲面を含む微小凸状部を有するSn合金めっき被膜を設けることによって各凸状部間に空隙構造を形成することが、充放電サイクルの際の膨張・収縮による応力の吸収緩和に非常に有効に作用することを見出し、本発明に至った。   As a result of intensive studies, the present inventors have roughened the surface of the negative electrode current collector with Cu granular plating, and provided each of the Sn alloy plating films having a minute convex portion including a curved surface closely adhered thereon. It has been found that the formation of a void structure between the convex portions acts very effectively on the absorption and relaxation of stress due to expansion / contraction during the charge / discharge cycle, and the present invention has been achieved.

すなわち、本発明は、
(1)集電体に被覆層を有するリチウム二次電池用負極材料であって、該被覆層が集電体上に形成されたCuの粒状粗化めっき被膜および更にその上に形成された少なくとも曲面部分を含む微小凸状部を有し、該微小凸状粒子が相互に空隙を有するSn合金めっき膜であることを特徴とするリチウム2次電池用負極材料。
(2)集電体に被覆層を有するリチウム二次電池用負極材料であって、該被覆層が集電体上に形成されたCuの粒状粗化めっき被膜および更にその上に形成された曲面部分からなる微小凸状部を有し、該微小凸状粒子が相互に空隙を有するSn合金めっき膜であることを特徴とするリチウム2次電池用負極材料。
(3)Sn合金めっきの微小凸状粒子径が1〜20μmである前記(1)または(2)記載のリチウム二次電池用負極材料。
(4)Sn合金がSn−Cu合金であることを特徴とする前記(1)〜(3)のいずれか1項に記載のリチウム二次電池用負極材料。
(5)Sn合金がSnと30〜45質量%のCuとの合金である前記(4)記載のリチウム二次電池用負極材料。
(6)Sn合金がCu6Sn5相を有する合金である前記(4)記載のリチウム二次電池用負極材料。
(7)更に熱処理された前記(1)〜(6)のいずれか1項に記載のリチウム二次電池用負極材料。
(8)Sn、Sn合金めっき被膜面の表面粗さがRa0.5〜5.0μm、Ry3.0〜30μmであることを特徴とする前記(1)〜(7)のいずれか1項に記載のリチウム二次電池用負極材料。
(9)集電体がCu−Cr−Zr系、Cu−Ni−Si系銅合金箔である前記(1)〜(8)のいずれか1項に記載のリチウム二次電池用負極材料。
(10)前記(1)〜(9)のいずれか1項に記載のリチウム二次電池用負極材料を使用した電池に関する。
That is, the present invention
(1) A negative electrode material for a lithium secondary battery having a coating layer on a current collector, wherein the coating layer is a granular rough plating film of Cu formed on the current collector, and further formed on at least A negative electrode material for a lithium secondary battery, which has a fine convex portion including a curved surface portion, and the fine convex particles are Sn alloy plating films having voids therebetween.
(2) A negative electrode material for a lithium secondary battery having a coating layer on a current collector, wherein the coating layer is a granular rough plating film of Cu formed on the current collector, and further a curved surface formed thereon A negative electrode material for a lithium secondary battery, characterized in that the negative convex material is a Sn alloy plating film having a minute convex portion composed of a portion, and wherein the minute convex particles have voids therebetween.
(3) The negative electrode material for a lithium secondary battery according to (1) or (2), wherein the fine convex particle diameter of the Sn alloy plating is 1 to 20 μm.
(4) The negative electrode material for a lithium secondary battery according to any one of (1) to (3), wherein the Sn alloy is a Sn—Cu alloy.
(5) The negative electrode material for a lithium secondary battery according to (4), wherein the Sn alloy is an alloy of Sn and 30 to 45% by mass of Cu.
(6) The negative electrode material for a lithium secondary battery according to (4), wherein the Sn alloy is an alloy having a Cu6Sn5 phase.
(7) The negative electrode material for a lithium secondary battery according to any one of (1) to (6), which is further heat-treated.
(8) The surface roughness of the Sn or Sn alloy plating film surface is Ra 0.5 to 5.0 μm, Ry 3.0 to 30 μm, according to any one of (1) to (7) above Negative electrode material for lithium secondary battery.
(9) The negative electrode material for a lithium secondary battery according to any one of (1) to (8), wherein the current collector is a Cu-Cr-Zr-based or Cu-Ni-Si-based copper alloy foil.
(10) The present invention relates to a battery using the negative electrode material for a lithium secondary battery according to any one of (1) to (9).

本発明負極材料の集電体表面の被覆層に形成された空隙構造は、特開2002−313319に記載の活物質形態とは異なり、活物質と粗化めっきとの界面近傍だけでなく、活物質表面にも空隙が形成されるので、充放電の際に活物質と集電体に発生する応力を緩和するだけでなく、充電の際に活物質が膨張し、活物質同士に発生する応力をも緩和し、充放電サイクル寿命が長くすることができる。こうして充放電時の膨張・収縮による応力の吸収緩和に非常に有効に作用することができるので、被覆層が微粉化して剥離することを防止でき、リチウム二次電池の充放電特性を向上することができる。   Unlike the active material form described in JP-A-2002-313319, the void structure formed in the covering layer on the current collector surface of the negative electrode material of the present invention is not only in the vicinity of the interface between the active material and the rough plating, but also in the active material form. Since voids are also formed on the surface of the material, not only the stress generated in the active material and current collector during charging / discharging is relieved, but the active material expands during charging and the stress generated between the active materials. The charge / discharge cycle life can be extended. In this way, it can act very effectively to absorb stress due to expansion / contraction during charging / discharging, thus preventing the coating layer from being pulverized and peeling off, and improving the charge / discharge characteristics of the lithium secondary battery. Can do.

本発明に使用する集電体としては、電極反応に不活性で電気伝導度が高い、Cu、Cu合金、Ni、Ti等から選択することが好ましい。中でも熱処理により母材中のCuとめっき層中のSnが拡散して金属間化合物を形成するCuまたはCu合金が好ましい。 CuまたはCu合金の中では強度・耐熱性に優れた析出硬化型Cu合金であり、中でもNi2.0〜4.0質量%、Si0.5〜1.0質量%含有し、更にMg、Zn、Sn、P、Fe、Agから選択された一種以上を0.005〜1.0質量%を必要に応じて含有し、残部Cuおよび不可避不純物であるCu合金、あるいはCr0.1〜1.0質量%、Zr0.05〜0.4質量%、更にFe、Ti、Ni、P、Sn、Znから選択された一種以上を0.005〜1.0質量%を必要に応じて含有し、残部Cuおよび不可避不純物であるCu合金がより好ましい。   The current collector used in the present invention is preferably selected from Cu, Cu alloy, Ni, Ti, etc., which are inert to electrode reactions and have high electrical conductivity. Among these, Cu or Cu alloy in which Cu in the base material and Sn in the plating layer are diffused by heat treatment to form an intermetallic compound is preferable. Among Cu or Cu alloys, it is a precipitation hardening type Cu alloy that is excellent in strength and heat resistance, among which Ni 2.0-4.0 mass%, Si 0.5-1.0 mass%, and further Mg, Zn, One or more selected from Sn, P, Fe, and Ag is optionally contained in an amount of 0.005 to 1.0% by mass, the remainder being Cu and an inevitable impurity Cu alloy, or Cr of 0.1 to 1.0% by mass. %, Zr 0.05-0.4% by mass, and further containing one or more selected from Fe, Ti, Ni, P, Sn, Zn as needed, 0.005-1.0% by mass, and the balance Cu And Cu alloy which is an inevitable impurity is more preferable.

本発明の集電体表面上の粗化めっき被膜は、集電体表面上に粒状の銅をめっきすることにより形成される。
この粒状Cuめっき被膜の形成は、更にこの上に曲面を有する微小凸状部を形成するために必須の被膜である。集電体表面から直接この曲面凸状部を接着力よく安定して形成することはできない。
The rough plating film on the current collector surface of the present invention is formed by plating granular copper on the current collector surface.
The formation of the granular Cu plating film is an indispensable film in order to form a minute convex portion having a curved surface thereon. It is impossible to form the curved convex portion directly from the current collector surface with a good adhesive force.

本発明の粗面化粒状Cuめっきは、その粒径が0.5〜5.0μm、好ましくは1.5〜2.5μmであり、また、表面粗さでは、Raで0.05〜0.30μm、好ましくは0.10〜0.25μm、Ryで0.5〜3.0μm、好ましくは1.0〜2.5μmの被膜が形成されるようにめっきする。
Cuの粒径が0.5μmよりも小さい場合、また表面粗さでRaが0.05よりも小さい場合、Ryが0.5μmよりも小さい場合には、曲面を有する微細凸状部を有する形状ができない。Cuの粒径が5.0μmよりも大きい場合、また表面粗さでRaが0.30μmよりも大きい場合、Ryが3.0μmよりも大きい場合には、素材との密着性が悪くなる。
The grained granular Cu plating of the present invention has a particle size of 0.5 to 5.0 μm, preferably 1.5 to 2.5 μm. Plating is performed so that a film of 30 μm, preferably 0.10 to 0.25 μm, and Ry of 0.5 to 3.0 μm, preferably 1.0 to 2.5 μm, is formed.
When the particle size of Cu is smaller than 0.5 μm, when the surface roughness Ra is smaller than 0.05, or when Ry is smaller than 0.5 μm, the shape having a fine convex portion having a curved surface I can't. When the particle size of Cu is larger than 5.0 μm, when the surface roughness Ra is larger than 0.30 μm, or when Ry is larger than 3.0 μm, the adhesion with the material is deteriorated.

本発明において、集電体上に粒状のCuめっきを形成するには、めっき浴として硫酸銅を用い、その濃度、めっき温度、攪拌、電流密度等の条件を設定してめっきを行うことにより形成することができる。
また、本発明のSn合金めっきは、前記粒状のCuめっき上にその少なくとも一部が曲面を有する微小凸状に形成することが重要である。この微小凸状部はその全体が実質的に曲面で形成されていることがより好ましい。
この微小凸状部同士は、相互に間隙を保持していることもまた重要である。特にこの間隙を後述する空隙率で表した場合、5〜70%が好ましく、さらに10〜60%であることがより好ましい。
集電体最表面のSn合金被覆層の構造中に、こうした空隙を設けることにより、リチウム二次電池放電時の負極へリチウムが吸蔵される際の膨張応力を吸収緩和することができ、Sn合金被覆層における凸状部の脱離、およびSn合金被覆層と粗面化Cuめっき層間の剥離を防止することができる。
In the present invention, in order to form granular Cu plating on the current collector, copper sulfate is used as a plating bath, and plating is performed by setting conditions such as concentration, plating temperature, stirring, and current density. can do.
In addition, it is important that the Sn alloy plating of the present invention is formed on the granular Cu plating in a minute convex shape having at least a curved surface. It is more preferable that the entire minute convex portion is substantially curved.
It is also important that the minute convex portions maintain a gap between each other. In particular, when this gap is expressed by a porosity described later, it is preferably 5 to 70%, and more preferably 10 to 60%.
By providing such voids in the structure of the Sn alloy coating layer on the outermost surface of the current collector, it is possible to absorb and relax the expansion stress when lithium is occluded in the negative electrode during discharge of the lithium secondary battery. Detachment of the convex portion in the coating layer and peeling between the Sn alloy coating layer and the roughened Cu plating layer can be prevented.

Sn合金としては、合金成分としてCu,Ni,Co,Feが使用できるが、特にCuとの合金が好ましく、更にSnが30〜45質量%のCuを含有する合金が特に好ましい。また、Cu6Sn5相を有することが特に好ましい。
すでに提案されている、集電体にSn−M共析めっきを施した後、熱処理により金属間化合物層を形成する場合にも、めっき層に亀裂が入り、その空隙による膨張応力の緩和作用によってもSn−M被覆層が微粉化して剥離することを抑制できるが、まだ不十分であり、サイクル寿命を満足できる程度に伸ばすことはできない。
As the Sn alloy, Cu, Ni, Co, and Fe can be used as an alloy component, but an alloy with Cu is particularly preferable, and an alloy containing Cu with 30 to 45 mass% of Sn is particularly preferable. Moreover, it is especially preferable to have a Cu6Sn5 phase.
Even when an intermetallic compound layer is formed by heat treatment after Sn-M eutectoid plating is applied to the current collector, the plating layer is cracked, and the expansion stress is mitigated by the voids. Although it can suppress that Sn-M coating layer pulverizes and peels, it is still inadequate and cannot extend to the extent which can satisfy cycle life.

また、Cu粗化処理後、Snめっきを施し、表面に亀裂を形成し、更に熱処理したものが知られている。しかし、こうした単なる亀裂により生じた面には、相互に間隙をもった曲面を有する凸状部がなく、その充放電の際の応力緩和作用は、まだ不十分であり、こうした空隙では、充放電サイクル寿命を十分に向上させることはできない。   Further, it is known that after Cu roughening treatment, Sn plating is performed, cracks are formed on the surface, and heat treatment is further performed. However, the surface caused by such simple cracks does not have a convex part having curved surfaces with a gap between them, and the stress relaxation action at the time of charging / discharging is still insufficient. The cycle life cannot be improved sufficiently.

本発明において、少なくとも曲面を含む微小凸状部を有するSn合金めっき被膜は、その微小凸状部の粒径が1〜20μmであることが好ましい。
その粒径が1μmよりも小さいと粒子間隔が微細で空隙率が小さくなり、充放電時の膨張を緩和できず、Sn合金が微粉化、脱落して、充放電サイクル後の維持率が低下し、また、20μmよりも大きいと充放電時の膨張・収縮により、Sn合金めっき被膜は、亀裂が発生し、微粉化して脱落して充放電サイクル後の維持率が低下する。また、微小凸状部同士の間隙は、前記の空隙率で表すと10〜60%を有することが好ましい。
こうした曲面を含む微小凸状部を有するめっき被膜は、めっき条件を制御することにより、形成することができる。例えば、前記Cuによる粗化めっき後、市販の有機酸系Sn−1〜3質量%Cuめっき浴を用い、Sn20〜50g/l、Cu20〜30g/lに金属濃度を調整し、目標析出組成がSn40〜80質量%で、電着後の形状が曲面を有する微細凸状部になるよう、電流密度5〜20A/dm、浴温度20〜30℃等にめっき条件を調整することにより形成することができる。
In this invention, it is preferable that the Sn alloy plating film which has a micro convex part including a curved surface at least has the particle size of the micro convex part of 1-20 micrometers.
If the particle size is smaller than 1 μm, the particle spacing is fine and the porosity is small, the expansion during charge / discharge cannot be relaxed, the Sn alloy is pulverized and dropped, and the maintenance rate after the charge / discharge cycle is reduced. On the other hand, if it is larger than 20 μm, the Sn alloy plating film is cracked, pulverized and dropped due to expansion / contraction during charge / discharge, and the maintenance rate after the charge / discharge cycle is lowered. Moreover, it is preferable that the space | interval of minute convex-shaped parts has 10 to 60% when expressed with the said porosity.
A plating film having a minute convex portion including such a curved surface can be formed by controlling the plating conditions. For example, after roughening plating with Cu, using a commercially available organic acid Sn-1 to 3% by mass Cu plating bath, the metal concentration is adjusted to Sn20 to 50 g / l, Cu20 to 30 g / l, and the target precipitation composition is It is formed by adjusting the plating conditions to a current density of 5 to 20 A / dm 2 , a bath temperature of 20 to 30 ° C., etc. so that the shape after electrodeposition is a fine convex part having a curved surface at Sn 40 to 80% by mass. be able to.

本発明において、前記曲面を有する微小凸状部を有するめっき被膜は、更に熱処理することが好ましい。熱処理の条件は、Sn合金の融点を超えない、温度100℃〜400℃、好ましくは、150〜300℃の範囲で、20秒〜10時間、好ましくは1分〜1時間である。
この熱処理により、曲面を含む微小凸状部を有するめっき被膜中にSn−Cuの金属間化合物が形成される。この金属間化合物の形成により、本発明のリチウム二次電池用負極材料は、充放電特性を一層向上することができる。
In the present invention, it is preferable that the plating film having the minute convex portion having the curved surface is further heat-treated. The conditions for the heat treatment are a temperature of 100 ° C. to 400 ° C., preferably 150 to 300 ° C., not exceeding the melting point of the Sn alloy, and 20 seconds to 10 hours, preferably 1 minute to 1 hour.
By this heat treatment, an Sn—Cu intermetallic compound is formed in the plating film having a minute convex portion including a curved surface. By forming this intermetallic compound, the negative electrode material for a lithium secondary battery of the present invention can further improve the charge / discharge characteristics.

以下に本発明を実施例により、更に詳細に説明する。
Cu−2.51質量%Ni−0.45質量%Si−0.15質量%Mgの組成を有する厚さ18μmの銅合金箔にアルカリ電解脱脂、硫酸酸洗後、硫酸銅浴を用いて厚さ3μm前後のCuの粗化めっきをすることで集電体とし、この集電体に、Sn−Cu合金めっきを施した。Sn−Cu合金めっきは、めっき浴として有機酸系Sn−1〜3質量%Cu市販浴を用い、電着組成がSn−20〜60質量%Cuになるように、浴中の金属濃度をSn20〜50g/L、Cu20〜30g/Lの範囲で調整した。また電着量は、電池性能を考慮し、被膜中のSn量が同一となるように調整した。すなわち、純Sn換算で4μm相当のSnが電着するように、Sn−Cuの組成に応じて、めっき厚さを調整した。
Hereinafter, the present invention will be described in more detail with reference to examples.
Cu-2.51 mass% Ni-0.45 mass% Si-0.15 mass% Mg alloy having a composition of 18 μm in thickness is subjected to alkaline electrolytic degreasing and sulfuric acid pickling, and then thickened using a copper sulfate bath. A current collector was obtained by roughing plating of Cu with a thickness of about 3 μm, and this current collector was subjected to Sn—Cu alloy plating. Sn-Cu alloy plating uses an organic acid Sn-1 to 3 mass% Cu commercial bath as a plating bath, and the metal concentration in the bath is Sn20 so that the electrodeposition composition is Sn-20 to 60 mass% Cu. It adjusted in the range of -50 g / L and Cu20-30 g / L. The amount of electrodeposition was adjusted so that the amount of Sn in the film was the same in consideration of battery performance. That is, the plating thickness was adjusted according to the Sn—Cu composition so that Sn equivalent to 4 μm was electrodeposited in terms of pure Sn.

また、Sn合金のめっき被膜の曲面形状については、電流密度を5〜20A/dm、浴温28℃、めっき浴の撹拌1m/s以下にてめっき条件を調整することにより制御した。
図1〜図6は、粗化Cuめっき、Sn合金めっきの表面、断面の写真である。粒子状の粗化めっき上に、Sn合金が曲面部分を含む微小凸状部を有する形状に電着していることが分かる。
こうして、作成した負極について、皮膜のSn−Cu組成、Sn付着量、形成した化合物の同定、皮膜形状、空隙率、充放電サイクル特性の評価を行った。
Sn−Cu被膜組成はICP(誘導結合プラズマ法)により分析を行った。
空隙率は、付着したSn合金めっき膜中のSnとCuそれぞれの含有量を各純金属の比重で除して得られた理論体積から算出した厚さの合計(t0)を、断面観察から測定した実際のめっき層厚さ(t)により下式により算出した。
空隙率=(1−(t0/t))×100(%)
The curved shape of the Sn alloy plating film was controlled by adjusting the plating conditions at a current density of 5 to 20 A / dm 2 , a bath temperature of 28 ° C., and a stirring of the plating bath of 1 m / s or less.
1 to 6 are photographs of the surface and cross section of roughened Cu plating and Sn alloy plating. It can be seen that the Sn alloy is electrodeposited into a shape having a minute convex portion including a curved surface portion on the granular rough plating.
Thus, about the created negative electrode, Sn-Cu composition of a film | membrane, Sn adhesion amount, identification of the formed compound, film | membrane shape, porosity, and charging / discharging cycling characteristics were evaluated.
The Sn—Cu coating composition was analyzed by ICP (inductively coupled plasma method).
The porosity is measured from the cross-sectional observation of the total thickness (t0) calculated from the theoretical volume obtained by dividing the contents of Sn and Cu in the deposited Sn alloy plating film by the specific gravity of each pure metal. The actual plating layer thickness (t) was calculated by the following formula.
Porosity = (1− (t0 / t)) × 100 (%)

X線回折によるめっき皮膜の同定は、熱処理後の負極表面からCo管球を用いて測定した。
充放電サイクル特性は、次の条件で評価した。グローブボックス内で2極式ビーカーセルを使用し、対極として厚さ0.3mmの金属リチウムを使用した。電解液はLiPFをエチレンカーボネート/ジメチルカーボネート(1:1(vol))溶液の溶媒に溶かして1モル/Lにした。充電は0.25mA/cm(0V vs Li/Li+まで)、放電は1.0mA/cm(2.0V vs Li/Li+まで)で、20サイクルの充放電サイクル試験を実施した。
Identification of the plating film by X-ray diffraction was measured using a Co tube from the negative electrode surface after the heat treatment.
The charge / discharge cycle characteristics were evaluated under the following conditions. A bipolar beaker cell was used in the glove box, and metallic lithium having a thickness of 0.3 mm was used as a counter electrode. The electrolyte was made 1 mol / L by dissolving LiPF 6 in a solvent of ethylene carbonate / dimethyl carbonate (1: 1 (vol)) solution. The charge was 0.25 mA / cm 2 (up to 0 V vs Li / Li +), the discharge was 1.0 mA / cm 2 (up to 2.0 V vs Li / Li +), and a 20-cycle charge / discharge cycle test was performed.

No.1は粗化処理、及び熱処理を行わなかった例である。粗化処理を行わなかったため、曲面部を含む微小凸部が形成されなかった。
No.2〜8は粗化処理を行ったため、曲面部を含む微小凸部が形成された。
No.2、3は、いずれもNo.1より良好な放電容量、サイクル維持率を有している。No.2に比べて粒子径が大きく、表面粗さの粗いNo.3はNo.2より良好な放電容量、サイクル維持率を有することが分かる。
No.4はSn合金組成においてSn含有量が低い例であり、熱処理によりCu3Sn相が生成したが、皮膜が剥離しサイクル維持率が劣った。
No.5はSn合金組成においてSn含有量が高く、空隙率が低い例である。Sn合金被膜が微粉化し、サイクル維持率が劣った。
No. 1 is an example in which roughening treatment and heat treatment were not performed. Since the roughening treatment was not performed, the minute convex portion including the curved surface portion was not formed.
No. Since 2-8 performed the roughening process, the micro convex part containing a curved-surface part was formed.
No. Nos. 2 and 3 are No. It has a discharge capacity and cycle maintenance rate better than 1. No. No. 2 with a larger particle size and a rougher surface roughness than No. 2. 3 is No.3. It can be seen that it has a discharge capacity and cycle maintenance ratio better than 2.
No. No. 4 is an example in which the Sn content is low in the Sn alloy composition, and the Cu3Sn phase was generated by the heat treatment, but the film peeled off and the cycle retention rate was inferior.
No. No. 5 is an example in which the Sn content is high and the porosity is low in the Sn alloy composition. The Sn alloy coating was pulverized and the cycle retention rate was inferior.

No.6は熱処理温度を高温にした例であり、No.2、3と比較し、純Sn相がなく、Cu3Sn相が生成していたが、放電容量、サイクル維持率はNo.3と同等であった。
No.7は熱処理を行わなかった例であるが、熱処理を行わなかったにもかかわらず、Cu6Sn5相が生成しており、電池性能もNo.3に劣るものの良好であった。
No.8はNo.3において、熱処理時間を長くした例であるが、放電容量、サイクル維持率ともNo3と同等であった。
No. No. 6 is an example in which the heat treatment temperature is increased. Compared with FIGS. 2 and 3, there was no pure Sn phase and a Cu3Sn phase was produced. It was equivalent to 3.
No. No. 7 is an example in which no heat treatment was performed, but despite the fact that no heat treatment was performed, a Cu6Sn5 phase was generated and the battery performance was No. 7. Although it was inferior to 3, it was favorable.
No. No. 8 is No.8. No. 3 is an example in which the heat treatment time is increased, but the discharge capacity and the cycle retention rate were both equal to No. 3.

前記No.2のCu粗化めっき表面の顕微鏡写真(倍率×3500)。No. 2 is a micrograph of the surface of Cu roughening plating (magnification × 3500). 前記No.2のSn−Cuめっき表面の顕微鏡写真(倍率×3500)。No. 2 is a micrograph of the Sn—Cu plating surface (magnification × 3500). 前記No.3のCu粗化めっき表面の顕微鏡写真(倍率×3500)。No. 3 is a micrograph (magnification × 3500) of the surface of the roughened Cu plating. 前記No.3のSn−Cuめっき表面の顕微鏡写真(倍率×3500)。No. 3 is a micrograph of the Sn-Cu plating surface (magnification × 3500). 前記No.2のSn−Cuめっき断面形状を示す顕微鏡写真(倍率×1000)。No. 2 is a micrograph (magnification × 1000) showing the cross-sectional shape of Sn—Cu plating. 前記No.3のSn−Cuめっき断面形状を示す顕微鏡写真(倍率×1000)。No. 3 is a photomicrograph (magnification × 1000) showing the cross-sectional shape of Sn-Cu plating 3.

Claims (10)

集電体に被覆層を有するリチウム二次電池用負極材料であって、該被覆層が集電体上に形成されたCuの粒状粗化めっき被膜および更にその上に形成された少なくとも曲面部分を含む微小凸状部を有し、該微小凸状粒子が相互に空隙を有するSn合金めっき膜であることを特徴とするリチウム2次電池用負極材料。   A negative electrode material for a lithium secondary battery having a coating layer on a current collector, wherein the coating layer has a granular rough plating film of Cu formed on the current collector, and at least a curved surface portion formed thereon A negative electrode material for a lithium secondary battery, characterized in that the negative electrode material is a Sn alloy plating film having a minute convex portion including the fine convex particles and having voids therebetween. 集電体に被覆層を有するリチウム二次電池用負極材料であって、該被覆層が集電体上に形成されたCuの粒状粗化めっき被膜および更にその上に形成された曲面部分からなる微小凸状部を有し、該微小凸状粒子が相互に空隙を有するSn合金めっき膜であることを特徴とするリチウム2次電池用負極材料。   A negative electrode material for a lithium secondary battery having a coating layer on a current collector, the coating layer comprising a granular rough plating film of Cu formed on the current collector and a curved surface portion formed thereon A negative electrode material for a lithium secondary battery, characterized in that it has a fine convex portion, and the fine convex particles are Sn alloy plating films having voids therebetween. Sn合金めっきの微小凸状粒子径が1〜20μmである請求項1または2記載のリチウム二次電池用負極材料。   3. The negative electrode material for a lithium secondary battery according to claim 1, wherein the fine particle diameter of the Sn alloy plating is 1 to 20 μm. Sn合金がSn−Cu合金であることを特徴とする請求項1〜3のいずれか1項に記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 3, wherein the Sn alloy is a Sn-Cu alloy. Sn合金がSnと30〜45質量%のCuとの合金である請求項4記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 4, wherein the Sn alloy is an alloy of Sn and 30 to 45% by mass of Cu. Sn合金がCu6Sn5相を有する合金である請求項4記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to claim 4, wherein the Sn alloy is an alloy having a Cu6Sn5 phase. 更に熱処理された請求項1〜6のいずれか1項に記載のリチウム二次電池用負極材料。   Furthermore, the negative electrode material for lithium secondary batteries of any one of Claims 1-6 heat-processed. Sn合金めっき被膜面の表面粗さがRa0.5〜5.0μm、Ry3.0〜30μmであることを特徴とする請求項1〜7のいずれか1項に記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 7, wherein the surface roughness of the Sn alloy plating film surface is Ra 0.5 to 5.0 µm, Ry 3.0 to 30 µm. . 集電体がCu−Cr−Zr系、Cu−Ni−Si系銅合金箔である請求項1〜8のいずれか1項に記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 8, wherein the current collector is a Cu-Cr-Zr-based or Cu-Ni-Si-based copper alloy foil. 請求項1〜9のいずれか1項に記載のリチウム二次電池用負極材料を使用した電池。   The battery which uses the negative electrode material for lithium secondary batteries of any one of Claims 1-9.
JP2005031242A 2005-01-04 2005-02-08 Anode material for lithium secondary battery Expired - Fee Related JP4653510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031242A JP4653510B2 (en) 2005-01-04 2005-02-08 Anode material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005000138 2005-01-04
JP2005031242A JP4653510B2 (en) 2005-01-04 2005-02-08 Anode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2006216518A true JP2006216518A (en) 2006-08-17
JP4653510B2 JP4653510B2 (en) 2011-03-16

Family

ID=36979538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031242A Expired - Fee Related JP4653510B2 (en) 2005-01-04 2005-02-08 Anode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4653510B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250441A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2008098157A (en) * 2006-09-14 2008-04-24 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008135376A (en) * 2006-10-26 2008-06-12 Matsushita Electric Ind Co Ltd Electrode plate for battery and lithium secondary battery including the same
JP2011003383A (en) * 2009-06-18 2011-01-06 Furukawa Battery Co Ltd:The Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
KR101097244B1 (en) 2009-09-02 2011-12-21 삼성에스디아이 주식회사 Negative electrode for lithium battery and lithium battery comprising the same
WO2015102323A1 (en) * 2013-12-30 2015-07-09 일진머티리얼즈 주식회사 Copper foil, and electrical component and battery including same
JP2019164907A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Lithium metal secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279972A (en) * 2001-03-21 2002-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and the lithium secondary battery
JP2002313319A (en) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2003157833A (en) * 2001-11-19 2003-05-30 Daiwa Kasei Kenkyusho:Kk Negative electrode for lithium secondary battery and its manufacturing method
JP2004111329A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Lithium secondary battery and negative electrode therefor
JP2004178970A (en) * 2002-11-27 2004-06-24 Nikko Metal Manufacturing Co Ltd Negative electrode material for lithium secondary cell
JP2004220871A (en) * 2003-01-10 2004-08-05 Kobe Steel Ltd Material of lithium cell anode and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279972A (en) * 2001-03-21 2002-09-27 Sanyo Electric Co Ltd Electrode for lithium secondary battery, and the lithium secondary battery
JP2002313319A (en) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2003007305A (en) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd Electrode for secondary lithium battery and secondary lithium battery
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2003157833A (en) * 2001-11-19 2003-05-30 Daiwa Kasei Kenkyusho:Kk Negative electrode for lithium secondary battery and its manufacturing method
JP2004111329A (en) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd Lithium secondary battery and negative electrode therefor
JP2004178970A (en) * 2002-11-27 2004-06-24 Nikko Metal Manufacturing Co Ltd Negative electrode material for lithium secondary cell
JP2004220871A (en) * 2003-01-10 2004-08-05 Kobe Steel Ltd Material of lithium cell anode and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250441A (en) * 2006-03-17 2007-09-27 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2008098157A (en) * 2006-09-14 2008-04-24 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008135376A (en) * 2006-10-26 2008-06-12 Matsushita Electric Ind Co Ltd Electrode plate for battery and lithium secondary battery including the same
JP2011003383A (en) * 2009-06-18 2011-01-06 Furukawa Battery Co Ltd:The Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
KR101097244B1 (en) 2009-09-02 2011-12-21 삼성에스디아이 주식회사 Negative electrode for lithium battery and lithium battery comprising the same
JP2011108362A (en) * 2009-11-12 2011-06-02 Kobe Steel Ltd Negative electrode for lithium ion secondary battery, method for manufacturing the same, and the lithium ion secondary battery
WO2015102323A1 (en) * 2013-12-30 2015-07-09 일진머티리얼즈 주식회사 Copper foil, and electrical component and battery including same
JP2019164907A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Lithium metal secondary battery

Also Published As

Publication number Publication date
JP4653510B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4653510B2 (en) Anode material for lithium secondary battery
CA2421498A1 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
JP3644542B1 (en) Anode current collector for non-aqueous electrolyte secondary battery
RU2336603C2 (en) Secondary storage battery electrode, method of its production and secondary storage battery
JP4136674B2 (en) Lithium battery negative electrode material and method for producing the same
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2001073872A1 (en) Rechargeable battery
JP2006269362A (en) Negative electrode for lithium ion secondary battery
CN103857818A (en) Steel foil and method for producing same
JP4493267B2 (en) Anode material for lithium secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2004022306A (en) Negative electrode for lithium battery, and manufacturing method of same
JP4800626B2 (en) A current collector for a negative electrode of a lithium secondary battery for Si-based and Sn-based active materials, a manufacturing method thereof, and a lithium secondary battery using the current collector.
JP2006269361A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
JP2009215604A (en) Copper foil and manufacturing method thereof
KR100953804B1 (en) Secondary battery-use electrode and production method therefor and secondary battery
WO2004049476A1 (en) Negative electrode collector for nonaqueous electrolyte secondary battery and method for manufacturing same
JP2010103061A (en) Negative electrode copper alloy foil of secondary battery and manufacturing method for the same
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JP2936217B2 (en) Method for producing lithium battery and negative electrode carrier thereof
JP2003257417A (en) Negative electrode for lithium ion secondary battery
JP2003257418A (en) Negative electrode for lithium ion secondary battery
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
JP2009205888A (en) Negative electrode for lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees