JP2007172963A - Negative electrode for lithium-ion secondary battery, and its manufacturing method - Google Patents

Negative electrode for lithium-ion secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2007172963A
JP2007172963A JP2005367740A JP2005367740A JP2007172963A JP 2007172963 A JP2007172963 A JP 2007172963A JP 2005367740 A JP2005367740 A JP 2005367740A JP 2005367740 A JP2005367740 A JP 2005367740A JP 2007172963 A JP2007172963 A JP 2007172963A
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
secondary battery
lithium ion
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367740A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
元 佐々木
Muneo Kodaira
宗男 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005367740A priority Critical patent/JP2007172963A/en
Publication of JP2007172963A publication Critical patent/JP2007172963A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Sn based negative electrode material for a lithium-ion secondary battery which is superior in cycle characteristics, and provide its manufacturing method. <P>SOLUTION: This Sn based negative electrode material for the lithium-ion secondary battery has a negative electrode structure that at the surface of a negative electrode current collector 2 consisting of Cu foil, that a layer 3 composed of an intermetallic compound of Cu and Sn is formed, and furthermore that a layer consisting of porous Sn oxide film 4 is formed on it. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用の負電極及びその製造方法に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery and a manufacturing method thereof.

リチウムイオン電池は現在モバイル機器をはじめとして広く普及している。このリチウムイオン電池の負極としては、Cu箔からなる負極集電体の上にカーボン系の材料をバインダーと溶剤で溶いたものをCu箔上に塗布、乾燥し、熱ロールでプレスした負極材として供される。カーボン系の材料はリチウムイオンをインターカレーションにより吸蔵、さらに離脱させることも可能であり、活物質として作用する。このとき、カーボンとリチウムの化合物であるLiC6 の単位重さ当たりの放電容量は372mAh/gである。この値を超えて容量の増大を図ることはできないため、最近ではさらに放電容量の大きいSn系の活物質(Li4,4Snで約1000mAh/g)、Si系の活物質(Li4,4Siで約4000mAh/g)の実用化検討が盛んに行われている。 Lithium ion batteries are now widely used, especially for mobile devices. As a negative electrode of this lithium ion battery, as a negative electrode material obtained by applying a carbon-based material dissolved in a binder and a solvent on a negative electrode current collector made of Cu foil onto a Cu foil, drying, and pressing with a hot roll Provided. The carbon-based material can also occlude and desorb lithium ions by intercalation, and acts as an active material. At this time, the discharge capacity per unit weight of LiC 6 which is a compound of carbon and lithium is 372 mAh / g. Since it is not possible to increase the capacity beyond this value, recently, an Sn-based active material having a larger discharge capacity (approximately 1000 mAh / g for Li 4,4 Sn), an Si-based active material (Li 4,4 A practical application of Si (about 4000 mAh / g) has been actively studied.

Sn系の材料の検討状況は例えば、非特許文献1に報告がある。ここではCu箔表面に電解めっきでSnを形成し、そのままの状態および200℃で24時間熱処理を行ったものを負極材料として特性評価しており、熱処理を行った場合にめっき層がSn−Cu6 Sn5 −Cu3 Snの多層構造に変化し、充放電時の活物質の膨張収縮による応力を緩和して剥離を抑制するため、サイクル特性が向上するとしている。 For example, Non-Patent Document 1 reports the status of investigation of Sn-based materials. Here, Sn was formed by electrolytic plating on the surface of the Cu foil, and the characteristics were evaluated as the negative electrode material as it was and heat-treated at 200 ° C. for 24 hours. When the heat-treatment was performed, the plating layer was Sn—Cu It changes to a multilayer structure of 6 Sn 5 —Cu 3 Sn, and the cycle characteristics are improved because the stress due to expansion and contraction of the active material during charge and discharge is relieved to suppress peeling.

田村宣之、外4名,「リチウム二次電池用高容量スズ負極材量の電気化学特性」,三洋電機技報,Vol.34,No1,pp.87−93(2002)Nobuyuki Tamura and 4 others, “Electrochemical characteristics of high capacity tin negative electrode material for lithium secondary battery”, Sanyo Electric Technical Report, Vol. 34, No1, pp. 87-93 (2002) 特開2004−111202号公報JP 2004-111202 A 特許第2887632号公報Japanese Patent No. 2887632 特開2004−139768号公報JP 2004-139768 A

カーボン系の材料はほぼ理論容量に近いところまで電池の開発が進んでおり、さらなる放電容量の向上は困難である。このため、Sn系やSi系の材料の開発が行われている。しかし、これらの材料はリチウムイオンを吸蔵したときの体積膨張が極めて大きいという特徴がある。カーボン系材料はせいぜい1.5倍の体積膨張であるのに対しSn系は約3.5倍、Si系は約4倍もの体積膨張となる。このため、充放電サイクルにともない集電体であるCu箔から活物質が微粉化したり剥離、脱落し特性が急激に低下してしまうという問題を生じてしまい、これが実用化にあたっての最大の障害となっている。上述したSnめっきCu箔を熱処理する例がこれのひとつの対応策と考えられるが、これにしても十分な対策とはいえず、Snめっき膜をそのまま供した場合の剥離を軽減するに過ぎない。   The development of batteries is progressing to a point where the carbon-based material is almost close to the theoretical capacity, and it is difficult to further improve the discharge capacity. For this reason, Sn-based and Si-based materials have been developed. However, these materials are characterized by extremely large volume expansion when occluded lithium ions. The carbon-based material has a volume expansion of 1.5 times at most, whereas the Sn-based material has a volume expansion of about 3.5 times and the Si-based material has a volume expansion of about 4 times. For this reason, the active material is pulverized from the Cu foil which is a current collector along with the charging / discharging cycle, and the problem that the characteristics are rapidly deteriorated is caused. This is the biggest obstacle to practical use. It has become. The above-described example of heat-treating the Sn-plated Cu foil is considered as one countermeasure for this, but even this is not a sufficient countermeasure, and only reduces the peeling when the Sn-plated film is used as it is. .

またSn系やSi系の材料をあらかじめ微粉化しておき、これらを導電性のバインダーに混合したものを集電体に塗布することにより、リチウムとの反応による体積膨張を軽減してサイクル特性を向上しようと言う試みもなされている。例えば、特許文献1にはSn含有物の粒子を負極活物質とする例が開示されている。しかし、この方法では粒子を形成するためにメカニカルアロイングやガスアトマイズなどの工程を必要とし、製造コストが大幅にアップしてしまうという問題があった。また、性能的にもバインダーなどと混合するためリチウムと反応する活物質の充填量が制限され、電池容量の低下を余儀なくされてしまう。   In addition, Sn-based and Si-based materials are pulverized in advance, and these are mixed with a conductive binder and applied to the current collector to reduce volume expansion due to reaction with lithium and improve cycle characteristics. Attempts have also been made to try. For example, Patent Document 1 discloses an example in which Sn-containing particles are used as a negative electrode active material. However, this method requires a process such as mechanical alloying and gas atomization in order to form particles, resulting in a significant increase in manufacturing cost. Moreover, since it mixes with a binder etc. also from performance, the filling amount of the active material which reacts with lithium is restrict | limited, and the fall of a battery capacity will be forced.

そこで、本発明の目的は、かかる問題点を解消し、サイクル特性に優れたリチウムイオン二次電池用のSn系の負極材及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an Sn-based negative electrode material for a lithium ion secondary battery that is free from such problems and has excellent cycle characteristics, and a method for manufacturing the same.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、Cu箔からなる負極集電体の表面に、CuとSnの金属間化合物からなる層を形成し、さらにその上にポーラスなSnの酸化膜からなる層を形成した負極構造であるリチウムイオン二次電池用負極である。   The present invention has been devised to achieve the above object, and the invention of claim 1 forms a layer made of an intermetallic compound of Cu and Sn on the surface of a negative electrode current collector made of Cu foil, Furthermore, it is a negative electrode for a lithium ion secondary battery having a negative electrode structure in which a layer made of a porous Sn oxide film is formed thereon.

請求項2の発明は、上記ポーラスなSnの酸化膜からなる層の孔の径は、数百nm以下である請求項1記載のリチウムイオン二次電池用負極である。   According to a second aspect of the present invention, in the negative electrode for a lithium ion secondary battery according to the first aspect of the present invention, the pore diameter of the layer made of the porous Sn oxide film is several hundred nm or less.

請求項3の発明は、上記Cu箔に、予めSnと反応して金属間化合物を形成するためのCuめっきを施しておく請求項1または2記載のリチウムイオン二次電池用負極である。   A third aspect of the present invention is the negative electrode for a lithium ion secondary battery according to the first or second aspect, wherein the Cu foil is preliminarily plated with Cu for reacting with Sn to form an intermetallic compound.

請求項4の発明は、上記Cu箔に、予めCuめっきあるいはエッチングなどにより粗化処理を施しておく請求項1〜3いずれかに記載のリチウムイオン二次電池用負極である。   A fourth aspect of the present invention is the negative electrode for a lithium ion secondary battery according to any one of the first to third aspects, wherein the Cu foil is subjected to a roughening treatment in advance by Cu plating or etching.

請求項5の発明は、上記粗化処理を施して形成した粗化面上に、予めその粗化面が熱拡散により金属間化合物に変化するのを防止するためのNiやCoなどからなる拡散バリア層を1μm以下の厚さで形成しておく請求項1〜4いずれかに記載のリチウムイオン二次電池用負極である。   The invention according to claim 5 is a diffusion made of Ni, Co, or the like for preventing the roughened surface from being changed into an intermetallic compound by thermal diffusion in advance on the roughened surface formed by performing the roughening treatment. The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the barrier layer is formed with a thickness of 1 µm or less.

請求項6の発明は、Cu箔にSnめっきを施した後、Snめっき膜を陽極酸化する陽極酸化工程と、それに続く熱拡散工程とを有し、Cu箔からなる負極集電体の表面に、CuとSnの金属間加工物からなる層を形成し、さらにその上にポーラスなSnの酸化膜からなる層を形成して負極構造とするリチウムイオン二次電池用負極の製造方法である。   The invention of claim 6 has an anodic oxidation step of anodizing the Sn plating film after the Sn plating is applied to the Cu foil, and a subsequent thermal diffusion step, on the surface of the negative electrode current collector made of the Cu foil. , Forming a negative electrode structure for a negative electrode for a lithium ion secondary battery by forming a layer made of an intermetallic workpiece of Cu and Sn and further forming a layer made of a porous Sn oxide film thereon.

請求項7の発明は、上記陽極酸化工程は、上記Snめっき膜の表面側を陽極酸化する工程である請求項6記載のリチウムイオン二次電池用負極の製造方法である。   The invention of claim 7 is the method for producing a negative electrode for a lithium ion secondary battery according to claim 6, wherein the anodic oxidation step is a step of anodizing the surface side of the Sn plating film.

請求項8の発明は、上記Snめっき膜の厚さは5μm以上である請求項6または7記載のリチウムイオン二次電池用負極の製造方法である。   The invention of claim 8 is the method for producing a negative electrode for a lithium ion secondary battery according to claim 6 or 7, wherein the thickness of the Sn plating film is 5 μm or more.

請求項9の発明は、上記ポーラスなSnの酸化膜からなる層の厚さは、上記Snめっき膜の厚さの1/3以下である請求項6〜8いずれかに記載のリチウムイオン二次電池用負極の製造方法である。   The invention according to claim 9 is the lithium ion secondary according to any one of claims 6 to 8, wherein the thickness of the layer made of the porous Sn oxide film is 1/3 or less of the thickness of the Sn plating film. It is a manufacturing method of the negative electrode for batteries.

本発明によれば、従来のカーボン系の活物質の代わりに本発明に係る負極を用いることにより、従来に比べエネルギー密度が高く、小型化可能なリチウムイオン二次電池が供給可能となる。   According to the present invention, by using the negative electrode according to the present invention instead of the conventional carbon-based active material, it is possible to supply a lithium ion secondary battery that has a higher energy density and can be downsized.

以下、本発明の好適な実施形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の要点は、負極集電体上に形成されたCuとSnの金属間化合物層がポーラスなSnの酸化物で覆われていることにある。   The main point of the present invention is that the intermetallic compound layer of Cu and Sn formed on the negative electrode current collector is covered with a porous Sn oxide.

負極集電体であるCu箔にめっきなどによりSn膜を形成したり、これを熱拡散し、CuとSnの金属間化合物としただけでは、上述したとおりに充放電のサイクルを繰り返すうちに急激にこれらの膜が微粉化して脱落してしまう。この問題を解決するため、本発明者らが各種検討を重ねた結果、CuとSnの金属間化合物層がポーラスなSnの酸化物で覆われている構造とすることにより飛躍的に充放電のサイクル特性が向上するという新しい知見を得ることができた。   If a Sn film is formed on the Cu foil as the negative electrode current collector by plating or the like, or if this is thermally diffused to form an intermetallic compound of Cu and Sn, the charge / discharge cycle is repeated rapidly as described above. In addition, these films are pulverized and fall off. In order to solve this problem, the present inventors have made various studies, and as a result, a structure in which the intermetallic compound layer of Cu and Sn is covered with a porous Sn oxide is used to dramatically charge and discharge. New knowledge that cycle characteristics are improved was obtained.

このとき酸化膜としては、SnOでもSnO2 でもまた結晶質でも非結晶質でもかまわない。SnOやSnO2 がリチウムイオン電池において負極活物質として作用することは公知である。例えば特許文献2にはLiXSnO(0≦X)を負極活物質とする例が開示されている。この特許文献2では、Snとリチウム各々の単体または化合物を出発原料とし、これらを雰囲気制御のもとで加熱処理することなどによる複雑な工程をへてLiXSnOを生成している。これらは粉体であるため実際に電池を形成するためには、グラファイトなどの導電剤や樹脂の結着剤と混合し加圧成形したのちに集電体に接着する必要がある。 At this time, the oxide film may be SnO, SnO 2 , crystalline, or amorphous. It is known that SnO or SnO 2 acts as a negative electrode active material in a lithium ion battery. For example, Patent Document 2 discloses an example in which LiXSnO (0 ≦ X) is used as the negative electrode active material. In Patent Document 2, LiXSnO is generated through complicated processes such as using Sn or lithium alone or a compound as a starting material, and heat-treating them under the atmosphere control. Since these are powders, in order to actually form a battery, it is necessary to mix them with a conductive agent such as graphite or a binder of resin and press-mold them, and then adhere them to the current collector.

これに対し本発明では、従来のような粉末を用いた複雑な工程をとるのではなく、後述するように、負極集電体であるCu箔にSnめっき膜を形成した状態から陽極酸化工程、これに続く熱拡散工程という単純かつ簡単な工程でSnの酸化膜を形成する。   On the other hand, in the present invention, rather than taking a complicated process using a conventional powder, as will be described later, from the state in which the Sn plating film is formed on the Cu foil as the negative electrode current collector, The Sn oxide film is formed by a simple and simple process called a thermal diffusion process.

図1(a)〜図1(c)は、本発明の好適な実施形態であるリチウムイオン二次電池用負極の製造方法を示す図である。   Fig.1 (a)-FIG.1 (c) are figures which show the manufacturing method of the negative electrode for lithium ion secondary batteries which is suitable embodiment of this invention.

図1(c)に示すように、本実施形態に係るリチウムイオン二次電池用負極1は、Cu箔からなる負極集電体2の表面に、CuとSnの金属間化合物からなる金属間化合物層3を形成し、さらにその上にポーラスな(多孔質)Snの酸化膜からなるSn酸化膜層4を形成した負極構造である。   As shown in FIG.1 (c), the negative electrode 1 for lithium ion secondary batteries which concerns on this embodiment is an intermetallic compound which consists of an intermetallic compound of Cu and Sn on the surface of the negative electrode collector 2 which consists of Cu foil. This is a negative electrode structure in which the layer 3 is formed and the Sn oxide film layer 4 made of a porous (porous) Sn oxide film is further formed thereon.

また、Sn酸化膜層4には、膜厚方向に垂直に極めて微細な孔を無数に形成しておくことが本発明の大きな特徴である。   In addition, the Sn oxide film layer 4 is characterized in that an infinite number of extremely fine holes are formed perpendicular to the film thickness direction.

この微細な孔は、電解質を介したリチウムイオンとSn酸化膜層4の反応の際に、反応サイトの著しい増大に寄与し、スムーズなリチウムイオンのドープ・脱ドープ(インターカレーション・デインターカレーション)を可能とし、充放電特性の向上につながる。また、リチウムイオンとSn酸化膜層4が反応することにより、最終的にLiXSnの化合物を生成するものと考えられる。従来はこのときの著しい体積膨張により活物質が微粉化してサイクル特性が劣化していたが、多孔質の構造としたことで体積の膨張が緩和されこの点の特性も大幅に改善された。   These fine holes contribute to a significant increase in reaction sites during the reaction between lithium ions and the Sn oxide film layer 4 via the electrolyte, and smooth lithium ion doping / de-doping (intercalation / deintercalation). To improve charge / discharge characteristics. In addition, it is considered that a LiXSn compound is finally generated by the reaction between the lithium ions and the Sn oxide film layer 4. In the past, the active material was pulverized due to the significant volume expansion at this time and the cycle characteristics deteriorated. However, the porous structure eased the volume expansion and the characteristics in this respect were also greatly improved.

孔の大きさは極めて微細である必要があり、その径が数百nm以下、好ましくは100nm以下とする必要がある。   The size of the holes needs to be extremely fine, and the diameter needs to be several hundred nm or less, preferably 100 nm or less.

このような微細なかつ膜厚方向に垂直な孔を形成するには、Sn酸化膜層4を陽極酸化する方法をとることができる。たとえばSnめっき膜をシュウ酸溶液中で定電位電解することにより形成することができる。このときの電位、時間などにより孔の大きさ、酸化膜形成厚さを制御する。   In order to form such fine holes perpendicular to the film thickness direction, a method of anodizing the Sn oxide film layer 4 can be employed. For example, the Sn plating film can be formed by performing constant potential electrolysis in an oxalic acid solution. The size of the hole and the oxide film formation thickness are controlled by the potential and time at this time.

Cu箔からなる負極集電体2の表面には、予めSnと反応して金属間化合物を形成するためのCuめっきを施しておくとよい。   The surface of the negative electrode current collector 2 made of Cu foil may be preliminarily plated with Cu for reacting with Sn to form an intermetallic compound.

後述する熱拡散工程では、めっきしたSnとCu箔が反応して金属間化合物を形成する例を説明するが、この場合にはCu箔が薄くなってしまい、強度的に問題が生じるため、Cu箔にあらかじめ反応するだけのCuをめっきで形成しておいた後にSnをめっきする方が好ましい。   In the thermal diffusion process described later, an example in which the plated Sn and Cu foil react to form an intermetallic compound will be described. However, in this case, the Cu foil becomes thin, causing a problem in strength. It is preferable to plate Sn after forming Cu that reacts in advance on the foil by plating.

このとき、Cuめっき膜とCu箔からなる負極集電体2の密着性を保つため、あらかじめCu箔からなる負極集電体2の表面に、Cuめっきあるいはエッチングなどにより粗化処理を施しておくのが好ましい。表面粗さはRa=0.1μm以上であればその効果が発揮される。   At this time, in order to maintain the adhesion between the negative electrode current collector 2 made of the Cu plating film and the Cu foil, the surface of the negative electrode current collector 2 made of the Cu foil is previously roughened by Cu plating or etching. Is preferred. The effect is demonstrated if the surface roughness is Ra = 0.1 μm or more.

この粗化処理した表面は、金属間化合物層3の充放電サイクル時の密着性確保にも有効である。したがって粗化した凹凸が拡散により金属間化合物層3に変化するのを防止するため、粗化処理を施して形成した粗化面上に、NiやCoなどからなる拡散バリア層を1μm以下の厚さで粗化面上に形成しておいてもよい。   This roughened surface is also effective for ensuring adhesion during the charge / discharge cycle of the intermetallic compound layer 3. Therefore, in order to prevent the roughened unevenness from changing to the intermetallic compound layer 3 due to diffusion, a diffusion barrier layer made of Ni, Co or the like is formed to a thickness of 1 μm or less on the roughened surface formed by the roughening treatment. It may be formed on the roughened surface.

ここで、金属間化合物層3をより詳細に説明すると、負極集電体2側から順に図2に示すように、Cu3 Sn層31、Cu6 Sn5 層32、Sn層33からなる多層膜層となっている。すなわち本実施の形態では、Sn酸化膜層4の下に熱拡散による多層膜層を形成している。このような熱拡散による多層膜層は、めっき単一膜である場合に比べてCu箔との密着性がよい。 Here, the intermetallic compound layer 3 will be described in more detail. As shown in FIG. 2 in order from the negative electrode current collector 2 side, a multilayer film composed of a Cu 3 Sn layer 31, a Cu 6 Sn 5 layer 32, and a Sn layer 33 It is a layer. That is, in the present embodiment, a multilayer film layer is formed under the Sn oxide film layer 4 by thermal diffusion. The multilayer film layer formed by such thermal diffusion has better adhesion to the Cu foil than the case of a single plating film.

次に、リチウムイオン二次電池用負極1の製造方法を説明する。   Next, the manufacturing method of the negative electrode 1 for lithium ion secondary batteries is demonstrated.

まず、図1(a)に示すように、Cu箔からなる負極集電体2の表面にSnめっきを施し、Snめっき膜21を形成する。Snめっき膜21の厚さは5μm以上にするとよい。また、Cu箔にSnめっきを行うに際しては、電気めっきでも無電解めっきでもかまわない。通常はSnSO4 を溶解した硫酸浴により電解めっきを行う。 First, as shown in FIG. 1A, Sn plating is performed on the surface of the negative electrode current collector 2 made of Cu foil to form a Sn plating film 21. The thickness of the Sn plating film 21 is preferably 5 μm or more. Moreover, when performing Sn plating to Cu foil, electroplating or electroless plating may be used. Usually, electroplating is performed in a sulfuric acid bath in which SnSO 4 is dissolved.

図1(b)に示すように、Snめっき膜21の表面側を陽極酸化し、SnOx 膜(Sn酸化膜層)22を形成する。このとき、Snめっき膜21のすべてを酸化膜とするのではなく、Cu箔側に一部Snを残しておくことが必要である。 As shown in FIG. 1B, the surface side of the Sn plating film 21 is anodized to form a SnO x film (Sn oxide film layer) 22. At this time, it is necessary to leave a part of Sn on the Cu foil side instead of using the entire Sn plating film 21 as an oxide film.

引き続いて熱拡散工程をとることにより、図1(c)に示すように、この残存したSnとCu箔側のCuとを反応させこれらの金属間化合物層3を形成させると共に、Sn酸化膜層4を形成させて負極構造とすると、リチウムイオン二次電池用負極1が得られる。   Subsequently, as shown in FIG. 1 (c), the remaining Sn and Cu on the Cu foil side are reacted to form these intermetallic compound layers 3 and the Sn oxide film layer. 4 is formed into a negative electrode structure, a negative electrode 1 for a lithium ion secondary battery is obtained.

こうすることにより、金属間化合物層3だけの場合に比べサイクル特性が大幅に向上する。このときの熱拡散工程の温度はSnの融点以下であればよく、また時間は金属間化合物であるCu6 Sn5 をなるべく多く生成させ、Cu3 Snや残存するSnをなるべく少なくなるように配慮する。 By doing so, the cycle characteristics are greatly improved as compared with the case of only the intermetallic compound layer 3. The temperature of the thermal diffusion process at this time may be equal to or lower than the melting point of Sn, and the time is taken so that Cu 6 Sn 5 as an intermetallic compound is generated as much as possible and Cu 3 Sn and remaining Sn are reduced as much as possible. To do.

上述したように、Snめっき膜21の膜厚は、通常充放電容量を確保するためにはCu箔上に5μmの厚さでSnを形成しておく必要があるが、このうち酸化膜に改質する厚さは、Snめっき膜21全体の1/3以下とすることが望ましい。Sn酸化物はLiと反応することによりLi酸化物とSnを生成するが、Li酸化物は再び還元されないために充放電サイクルに寄与しない。したがってSn酸化膜層22を厚くし過ぎると不可逆容量が増大することとなり好ましくない。   As described above, it is necessary to form Sn with a thickness of 5 μm on the Cu foil in order to ensure the normal charge / discharge capacity. The thickness to be polished is preferably 1/3 or less of the entire Sn plating film 21. Sn oxide reacts with Li to produce Li oxide and Sn, but Li oxide does not contribute to the charge / discharge cycle because it is not reduced again. Therefore, if the Sn oxide film layer 22 is too thick, the irreversible capacity increases, which is not preferable.

このように、本実施の形態に係るリチウムイオン二次電池用負極1は、Cu箔からなる負極集電体2上に形成されたCuとSnの金属間化合物層3がポーラスなSn酸化膜層4で覆われている。このため、従来のカーボン系の活物質を負極としたものに比べ、エネルギー密度が高く、サイクル特性に優れ、小型化可能なリチウムイオン二次電池が供給可能となる。   Thus, the negative electrode 1 for a lithium ion secondary battery according to the present embodiment is a Sn oxide film layer in which the intermetallic compound layer 3 of Cu and Sn formed on the negative electrode current collector 2 made of Cu foil is porous. 4 is covered. For this reason, a lithium ion secondary battery having a high energy density, excellent cycle characteristics, and capable of being miniaturized can be supplied as compared with a conventional negative electrode made of a carbon-based active material.

また、従来のめっき単一膜に比べて、Cu箔からなる負極集電体2と熱拡散による多層膜からなる金属間化合物層3との密着性がよいので、充放電サイクルを繰り返しても負極集電体2から金属間化合物層3が脱落せず、高寿命である。   In addition, since the adhesion between the negative electrode current collector 2 made of Cu foil and the intermetallic compound layer 3 made of a multilayer film by thermal diffusion is better than that of a conventional single plating film, the negative electrode can be obtained even after repeated charge / discharge cycles. The intermetallic compound layer 3 does not fall off from the current collector 2 and has a long life.

厚さ0.018mmの圧延Cu箔を準備し、まずCuの電析により粗化処理を行った。条件は硫酸銅150g/L、硫酸150g/Lの電解液で、液温30℃、電流密度20A/dm2 で電解を行った後、硫酸銅250g/L、硫酸100g/Lの電解液で、液温30℃、電流密度10A/dm2 でかぶせめっきを行い、表面粗さRa=0.12μmとした。 A rolled Cu foil having a thickness of 0.018 mm was prepared, and first, roughening treatment was performed by electrodeposition of Cu. The conditions were an electrolytic solution of copper sulfate 150 g / L and sulfuric acid 150 g / L. After electrolysis at a liquid temperature of 30 ° C. and a current density of 20 A / dm 2 , copper sulfate 250 g / L and sulfuric acid 100 g / L of electrolytic solution Cover plating was performed at a liquid temperature of 30 ° C. and a current density of 10 A / dm 2 , and the surface roughness Ra was set to 0.12 μm.

この後、まず通常のワット浴で厚さ0.3μmのNiめっきを施して拡散バリア層とした。上記のかぶせCuめっきを行っためっき液で厚さ2.7μmのCuめっきを行い、さらに硫酸第一スズ50g/L、硫酸100g/L、添加剤適量のめっき液中で電流密度3A/dm2 の条件でSnめっきを行った。この時の膜厚は7μmとなるようにした。 Thereafter, Ni plating with a thickness of 0.3 μm was first applied in a normal watt bath to form a diffusion barrier layer. A 2.7 μm-thick Cu plating was performed with the plating solution subjected to the above-described covering Cu plating, and further a current density of 3 A / dm 2 in a plating solution containing 50 g / L of stannous sulfate and 100 g / L of sulfuric acid and an appropriate amount of additive. Sn plating was performed under the following conditions. The film thickness at this time was set to 7 μm.

このようにして作製したSnめっきCu箔を、さらに0.5Mシュウ酸溶液中で所定条件で陽極酸化したものとしないもの、また引き続く熱拡散処理を行ったものと行わないものにつき負極サンプルとし、金属リチウムを対極とする試験セルを製作、充放電特性の評価を行った。すなわち、陽極酸化、拡散加熱ともに行った試料を実施例、陽極酸化のみの試料を比較例1、拡散加熱のみの試料を比較例2、陽極酸化も拡散加熱も行わなかった試料を比較例3とした。   The Sn-plated Cu foil prepared in this way is further used as a negative electrode sample for those not anodized under predetermined conditions in a 0.5 M oxalic acid solution, and those subjected to subsequent thermal diffusion treatment and those not. A test cell with metallic lithium as the counter electrode was fabricated and the charge / discharge characteristics were evaluated. That is, a sample subjected to both anodization and diffusion heating was used as an example, a sample subjected only to anodization was compared to Comparative Example 1, a sample subjected only to diffusion heating was compared to Comparative Example 2, and a sample subjected to neither anodization nor diffusion heating was compared to Comparative Example 3. did.

なお、セパレータにはポリプロピレン薄膜を使用し、電解液には1MのLiPF6 を溶解したエチレンカーボネートとジエチルカーボネートの混合溶液(1:1)を用いた。充放電は0.01〜1Vの範囲で0.25mA/cm2 の定電流密度で行った。 A polypropylene thin film was used as the separator, and a mixed solution (1: 1) of ethylene carbonate and diethyl carbonate in which 1M LiPF 6 was dissolved was used as the electrolyte. Charging / discharging was performed at a constant current density of 0.25 mA / cm 2 in the range of 0.01 to 1V.

表1に供試材内訳および充放電試験5、20サイクル後の初期サイクルに対する放電容量維持率を示す。   Table 1 shows the breakdown of the test material and the discharge capacity maintenance ratio with respect to the initial cycle after 5 and 20 charge / discharge tests.

Figure 2007172963
Figure 2007172963

また、図3にCu箔にSnめっきを行った後に陽極酸化処理をした実施例の試料表面のSEM写真の一例を示す。図3に示すように、表面には微細な100nm以下の孔が無数に観察される。   FIG. 3 shows an example of an SEM photograph of the sample surface of the example in which the Cu foil was subjected to Sn plating and then anodized. As shown in FIG. 3, countless fine pores of 100 nm or less are observed on the surface.

さらに、実施例の陽極酸化後、拡散加熱前のサンプルにつき表面からX線回折を行ったところ、Snピークの残存が確認されたほか、はっきりとしたSn酸化物のピークは認められなかった。サンプルは外観上黒色を呈しており、おそらく非晶質のSnOが形成されたものと推定された。また、断面の顕微鏡観察を行ったところ、Snめっき膜の表面から15〜20%の部分が酸化処理されていた。   Further, when X-ray diffraction was performed from the surface of the sample after the anodic oxidation of the example and before diffusion heating, the remaining Sn peak was confirmed, and no clear Sn oxide peak was observed. The sample was black in appearance, and it was presumed that amorphous SnO was probably formed. Moreover, when the cross section was observed with a microscope, 15 to 20% of the surface of the Sn plating film was oxidized.

表1に明らかな通り、実施例では充放電試験20サイクル後においても90%以上の容量を維持しておりサイクル特性に優れていることがわかる。一方、拡散熱処理を行っていない比較例1、陽極酸化を行っていない比較例2、およびどちらの処理も行っていない比較例3では、いずれもサイクル特性が劣っており本発明の有効性が立証された。   As is apparent from Table 1, it can be seen that in the examples, the capacity of 90% or more was maintained even after 20 cycles of the charge / discharge test, and the cycle characteristics were excellent. On the other hand, Comparative Example 1 in which diffusion heat treatment was not performed, Comparative Example 2 in which anodization was not performed, and Comparative Example 3 in which neither treatment was performed were inferior in cycle characteristics, and the effectiveness of the present invention was proved. It was done.

本発明で用いられるCu箔は圧延Cu箔でも電解Cu箔でもよいが、充放電サイクルにともない活物質が膨張するとCu箔にも大きな引張応力が加わることになるため、なるべく高強度のCu箔が推奨される。この意味で高強度のCu合金が応用可能な圧延Cu箔が好ましい。例えば通常の圧延Cu箔や電解Cu箔は引っ張り強さが300〜400N/mm2 程度であるがCu−Ni−Si系のいわゆるコルソン系のCu合金を用いれば700N/mm2 以上の高強度の圧延Cu箔を得ることができる。したがって、負極集電体2としてはこのようなCu箔を用いることが好ましい。 The Cu foil used in the present invention may be a rolled Cu foil or an electrolytic Cu foil. However, when the active material expands with the charge / discharge cycle, a large tensile stress is applied to the Cu foil. Recommended. In this sense, a rolled Cu foil to which a high-strength Cu alloy can be applied is preferable. For example, a normal rolled Cu foil or electrolytic Cu foil has a tensile strength of about 300 to 400 N / mm 2 , but if a Cu—Ni—Si based so-called Corson Cu alloy is used, a high strength of 700 N / mm 2 or more is obtained. A rolled Cu foil can be obtained. Therefore, it is preferable to use such a Cu foil as the negative electrode current collector 2.

図1(a)〜図1(b)は、本発明の好適実施の形態を示すリチウムイオン二次電池用負極の製造方法を示す模式図である。Fig.1 (a)-FIG.1 (b) are schematic diagrams which show the manufacturing method of the negative electrode for lithium ion secondary batteries which shows suitable embodiment of this invention. 図1に示した金属間化合物層の模式図である。It is a schematic diagram of the intermetallic compound layer shown in FIG. 実施例の表面SEM写真である。It is the surface SEM photograph of an Example.

符号の説明Explanation of symbols

1 リチウムイオン二次電池用負極
2 負極集電体
3 金属間化合物層
4 Sn酸化膜層
DESCRIPTION OF SYMBOLS 1 Negative electrode for lithium ion secondary batteries 2 Negative electrode collector 3 Intermetallic compound layer 4 Sn oxide film layer

Claims (9)

Cu箔からなる負極集電体の表面に、CuとSnの金属間化合物からなる層を形成し、さらにその上にポーラスなSnの酸化膜からなる層を形成した負極構造であることを特徴とするリチウムイオン二次電池用負極。   A negative electrode structure in which a layer made of an intermetallic compound of Cu and Sn is formed on the surface of a negative electrode current collector made of Cu foil, and a layer made of a porous Sn oxide film is further formed thereon. A negative electrode for a lithium ion secondary battery. 上記ポーラスなSnの酸化膜からなる層の孔の径は、数百nm以下である請求項1記載のリチウムイオン二次電池用負極。   2. The negative electrode for a lithium ion secondary battery according to claim 1, wherein a diameter of a hole of the layer made of the porous Sn oxide film is several hundred nm or less. 上記Cu箔に、予めSnと反応して金属間化合物を形成するためのCuめっきを施しておく請求項1または2記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the Cu foil is previously subjected to Cu plating for reacting with Sn to form an intermetallic compound. 上記Cu箔に、予めCuめっきあるいはエッチングなどにより粗化処理を施しておく請求項1〜3いずれかに記載のリチウムイオン二次電池用負極。   The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the Cu foil is subjected to a roughening treatment by Cu plating or etching in advance. 上記粗化処理を施して形成した粗化面上に、予めその粗化面が熱拡散により金属間化合物に変化するのを防止するためのNiやCoなどからなる拡散バリア層を1μm以下の厚さで形成しておく請求項1〜4いずれかに記載のリチウムイオン二次電池用負極。   On the roughened surface formed by the above roughening treatment, a diffusion barrier layer made of Ni, Co or the like for preventing the roughened surface from being changed into an intermetallic compound by thermal diffusion in advance is 1 μm or less in thickness. The negative electrode for a lithium ion secondary battery according to any one of claims 1 to 4, which is formed in advance. Cu箔にSnめっきを施した後、Snめっき膜を陽極酸化する陽極酸化工程と、それに続く熱拡散工程とを有し、Cu箔からなる負極集電体の表面に、CuとSnの金属間加工物からなる層を形成し、さらにその上にポーラスなSnの酸化膜からなる層を形成して負極構造とすることを特徴とするリチウムイオン二次電池用負極の製造方法。   After Sn plating is applied to the Cu foil, an anodizing step for anodizing the Sn plating film and a subsequent thermal diffusion step are performed. A method for producing a negative electrode for a lithium ion secondary battery, comprising forming a layer made of a workpiece and further forming a layer made of a porous Sn oxide film thereon to form a negative electrode structure. 上記陽極酸化工程は、上記Snめっき膜の表面側を陽極酸化する工程である請求項6記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to claim 6, wherein the anodizing step is a step of anodizing the surface side of the Sn plating film. 上記Snめっき膜の厚さは5μm以上である請求項6または7記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to claim 6 or 7, wherein the Sn plating film has a thickness of 5 µm or more. 上記ポーラスなSnの酸化膜からなる層の厚さは、上記Snめっき膜の厚さの1/3以下である請求項6〜8いずれかに記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to any one of claims 6 to 8, wherein the thickness of the layer made of the porous Sn oxide film is 1/3 or less of the thickness of the Sn plating film.
JP2005367740A 2005-12-21 2005-12-21 Negative electrode for lithium-ion secondary battery, and its manufacturing method Pending JP2007172963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367740A JP2007172963A (en) 2005-12-21 2005-12-21 Negative electrode for lithium-ion secondary battery, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005367740A JP2007172963A (en) 2005-12-21 2005-12-21 Negative electrode for lithium-ion secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007172963A true JP2007172963A (en) 2007-07-05

Family

ID=38299250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367740A Pending JP2007172963A (en) 2005-12-21 2005-12-21 Negative electrode for lithium-ion secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007172963A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541183A (en) * 2007-10-05 2010-12-24 パワージェニックス システムズ, インコーポレーテッド Tin and tin-zinc plated underlayer for improved performance of nickel-zinc cells
US8563178B2 (en) 2010-03-24 2013-10-22 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery including a multilayer film on a tin based current collector and manufacturing method thereof
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
US8852804B2 (en) 2009-12-21 2014-10-07 Samsung Sdi Co., Ltd. Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN110504454A (en) * 2019-08-30 2019-11-26 山东大学 A kind of three-dimensional porous collector and its preparation method and application based on diffusion couple preparation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010541183A (en) * 2007-10-05 2010-12-24 パワージェニックス システムズ, インコーポレーテッド Tin and tin-zinc plated underlayer for improved performance of nickel-zinc cells
US8372542B2 (en) 2007-10-05 2013-02-12 Powergenix Systems, Inc. Tin and tin-zinc plated substrates including Cu3Sn and Cu6Sn5 to improve Ni-Zn cell performance
US8852804B2 (en) 2009-12-21 2014-10-07 Samsung Sdi Co., Ltd. Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US8563178B2 (en) 2010-03-24 2013-10-22 Samsung Sdi Co., Ltd. Negative electrode for lithium secondary battery including a multilayer film on a tin based current collector and manufacturing method thereof
WO2014156638A1 (en) * 2013-03-26 2014-10-02 古河電気工業株式会社 All-solid-state secondary battery
CN105027346A (en) * 2013-03-26 2015-11-04 古河电气工业株式会社 All-solid-state secondary battery
US11264617B2 (en) 2013-03-26 2022-03-01 Furukawa Electric Co., Ltd. All-solid-state secondary battery
CN110504454A (en) * 2019-08-30 2019-11-26 山东大学 A kind of three-dimensional porous collector and its preparation method and application based on diffusion couple preparation

Similar Documents

Publication Publication Date Title
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
KR20140041804A (en) Electrolytic copper foil, method for producing electrolytic copper foil, and lithium ion secondary cell using electrolytic copper foil as collector
KR101108185B1 (en) Anode for an lithium secondary battery and lithium secondary battery containing same
US20060063071A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP4229567B2 (en) Secondary battery
US20060121345A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP2006269362A (en) Negative electrode for lithium ion secondary battery
KR101097269B1 (en) Negative electrode for lithium secondary battery and manufacturing method thereof
JPWO2013080988A1 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
EP3404755A1 (en) Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005108523A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP3877170B2 (en) Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery using the negative electrode
JP2009199744A (en) Negative electrode for lithium secondary battery and its manufacturing method
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
JP4747514B2 (en) Method for producing negative electrode for lithium ion secondary battery
JPH1021928A (en) Electrode material for secondary battery
EP1693910A1 (en) Secondary battery-use electrode and production method therefor and secondary battery
US20060147801A1 (en) Electrode for secondary battery, process of producing the electrode, and secondary battery
JP2006172777A (en) Lithium secondary battery
WO2011024414A1 (en) Lithium secondary battery and method for manufacturing same
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same