JP5571616B2 - Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same - Google Patents

Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Download PDF

Info

Publication number
JP5571616B2
JP5571616B2 JP2011110335A JP2011110335A JP5571616B2 JP 5571616 B2 JP5571616 B2 JP 5571616B2 JP 2011110335 A JP2011110335 A JP 2011110335A JP 2011110335 A JP2011110335 A JP 2011110335A JP 5571616 B2 JP5571616 B2 JP 5571616B2
Authority
JP
Japan
Prior art keywords
negative electrode
copper
copper foil
area ratio
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011110335A
Other languages
Japanese (ja)
Other versions
JP2012243454A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011110335A priority Critical patent/JP5571616B2/en
Publication of JP2012243454A publication Critical patent/JP2012243454A/en
Application granted granted Critical
Publication of JP5571616B2 publication Critical patent/JP5571616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な圧延銅箔、並びにそれを用いた負極集電体、負極板及び電池に関する。   The present invention relates to a rolled copper foil suitable as a negative electrode current collector material for a secondary battery such as a lithium ion secondary battery, and a negative electrode current collector, a negative electrode plate and a battery using the rolled copper foil.

携帯電話、ノート型パソコン等のポータブル機器の普及に伴い、小型で高容量の二次電池の需要が伸びている。また、電気自動車やハイブリッド車等に用いられる中・大型の二次電池の需要も急増している。二次電池のなかでも、リチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用されている。
リチウムイオン二次電池としては、アルミニウム箔にLiCoO2、LiNiO2、LiMn24等の化合物をコーティングしたものを正極として用い、銅箔に炭素質材料等を活物質としてコーティングしたものを負極に用いるものが知られている(図1)。
With the widespread use of portable devices such as mobile phones and notebook computers, the demand for small, high-capacity secondary batteries is growing. In addition, demand for medium- and large-sized secondary batteries used in electric vehicles, hybrid vehicles, and the like is also increasing rapidly. Among secondary batteries, lithium ion secondary batteries are used in many fields because of their light weight and high energy density.
As a lithium ion secondary battery, an aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 is used as a positive electrode, and a copper foil coated with a carbonaceous material or the like as an active material is used as a negative electrode. What is used is known (FIG. 1).

銅箔には圧延銅箔と電解銅箔がある。圧延銅箔は、強度、疲労特性等の点で二次電池負極板の材料として優れている。二次電池負極板材料として市販されている圧延銅箔の多くは、タフピッチ銅(JIS−C1100)または無酸素銅(JIS−C1020)を素材とするものである。タフピッチ銅とは0.01〜0.05質量%の酸素を含有する純銅であり、銅分は99.90質量%以上に規格化されている(以下、質量%を%と表記する)。無酸素銅とは、酸素濃度を0.001%以下に調整した純銅であり、銅分は99.96%以上に規格化されている。
圧延銅箔の製造プロセスでは、タフピッチ銅のインゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で、例えば35〜5μmの範囲の所定の厚みに仕上げる。
Copper foil includes rolled copper foil and electrolytic copper foil. The rolled copper foil is excellent as a material for the secondary battery negative electrode plate in terms of strength, fatigue characteristics, and the like. Many of the rolled copper foils commercially available as secondary battery negative electrode plate materials are made of tough pitch copper (JIS-C1100) or oxygen-free copper (JIS-C1020). Tough pitch copper is pure copper containing 0.01 to 0.05 mass% oxygen, and the copper content is standardized to 99.90 mass% or more (hereinafter, mass% is expressed as%). Oxygen-free copper is pure copper whose oxygen concentration is adjusted to 0.001% or less, and the copper content is standardized to 99.96% or more.
In the manufacturing process of the rolled copper foil, a tough pitch copper ingot is hot-rolled, and then cold-rolling and annealing are repeated, and finally it is finished to a predetermined thickness in the range of, for example, 35 to 5 μm by final cold-rolling.

一般的に、銅箔負極板は、電解銅箔や圧延銅箔を用いて次のプロセスで製造される。
(1)活物質と結着剤とを溶剤に混練分散したペーストを、集電体となる銅箔の片面もしくは両面に塗布して負極板材とする。
(2)150〜300℃の温度で数時間から数十時間加熱し乾燥する。
(3)必要に応じ、負極板材に加圧する。
(4)せん断加工を施し、所定形状の負極板へ成型する。
Generally, a copper foil negative electrode plate is manufactured by the following process using electrolytic copper foil or rolled copper foil.
(1) A paste obtained by kneading and dispersing an active material and a binder in a solvent is applied to one side or both sides of a copper foil serving as a current collector to form a negative electrode plate material.
(2) Heat and dry at 150 to 300 ° C. for several hours to several tens of hours.
(3) Pressurize the negative electrode plate material as necessary.
(4) A shearing process is performed to form a negative electrode plate having a predetermined shape.

タフピッチ銅又は無酸素銅を素材とする従来の圧延銅箔は、上記(2)乾燥工程において再結晶を起こして軟化し、引張強さが250MPa以下まで低下する。
一方、リチウムイオン二次電池では、充電時にリチウムイオンが正極から負極に移動し、放電時にリチウムイオンが負極から正極に移動する。リチウムイオンの移動に伴って負極活物質が膨張収縮するため、銅箔は充放電によって機械的な繰り返しストレスを受ける。軟化した銅箔は繰り返しストレスを受けた際に変形しやすい。この変形により、銅箔が疲労を起こしたり、銅箔表面に塗布された活物質が剥離したりすることで、電池の充放電サイクル寿命が短くなる。
The conventional rolled copper foil made of tough pitch copper or oxygen-free copper is softened by recrystallization in the (2) drying step, and the tensile strength is reduced to 250 MPa or less.
On the other hand, in a lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions move from the negative electrode to the positive electrode during discharging. Since the negative electrode active material expands and contracts as the lithium ions move, the copper foil is subjected to mechanical repeated stress due to charge and discharge. Softened copper foil is easily deformed when subjected to repeated stress. Due to this deformation, the copper foil is fatigued or the active material applied to the surface of the copper foil is peeled off, thereby shortening the charge / discharge cycle life of the battery.

上記乾燥工程等における銅箔の軟化を抑制するために、タフピッチ銅又は無酸素銅に合金元素を添加し、耐熱性を高めた圧延銅合金箔が提案されている。例えば、特開2000−303128(特許文献1)では、無酸素銅にCr、Zr、Ag、Cd、Sn、Sb又はBiを0.005又は0.01%添加した銅合金箔が開示されている。しかし、純銅に合金元素を添加すると導電率が低下し、通電した際に発熱や電圧損失が生じる。また、製造プロセスが煩雑になり製造コストが増加する。   In order to suppress the softening of the copper foil in the drying step or the like, a rolled copper alloy foil has been proposed in which an alloy element is added to tough pitch copper or oxygen-free copper to improve heat resistance. For example, Japanese Patent Laid-Open No. 2000-303128 (Patent Document 1) discloses a copper alloy foil obtained by adding 0.005 or 0.01% of Cr, Zr, Ag, Cd, Sn, Sb, or Bi to oxygen-free copper. . However, when an alloying element is added to pure copper, the electrical conductivity decreases, and heat generation and voltage loss occur when energized. In addition, the manufacturing process becomes complicated and the manufacturing cost increases.

また、特開平11−86872(特許文献2)および特開2002−198054(特許文献3)では、圧延銅箔の素材として、酸素濃度をそれぞれ0.002%以下および0.0005〜0.002%に調整した純銅を提案しているが、銅箔の経時的な引張強さの低下を目的とするものである。   Moreover, in Unexamined-Japanese-Patent No. 11-88672 (patent document 2) and Unexamined-Japanese-Patent No. 2002-198054 (patent document 3), as a raw material of a rolled copper foil, oxygen concentration is 0.002% or less and 0.0005 to 0.002%, respectively. Although the pure copper adjusted to 1 is proposed, it aims at the fall of the tensile strength with time of copper foil.

一方、フレキシブルプリント基板(FPC:flexible printed circuit)用圧延銅箔の分野において、屈曲性に優れる銅箔として、例えば、特開2000−212661(特許文献4)、特開2000-212660(特許文献5)および特開2000-355720(特許文献6)では、200℃で30分の焼鈍で再結晶し立方体集合組織が発達する銅箔が開示され、この銅箔はリチウムイオン電池の電極等のフレキシブルプリント回路以外の用途にも好適であるとされている。   On the other hand, in the field of rolled copper foil for flexible printed circuit boards (FPC), examples of copper foils with excellent flexibility include, for example, JP 2000-212661 (Patent Document 4) and JP 2000-212660 (Patent Document 5). ) And JP-A 2000-355720 (Patent Document 6) disclose a copper foil in which a cubic texture is developed by recrystallization by annealing at 200 ° C. for 30 minutes, and this copper foil is a flexible print such as an electrode of a lithium ion battery. It is also suitable for uses other than circuits.

特開2000−303128号公報JP 2000-303128 A 特開平11−86872号公報JP-A-11-88672 特開2002−198054号公報JP 2002-198054 A 特開2000−212661号公報JP 2000-212661 A 特開2000-212660公報JP 2000-212660 A 特開2000-355720公報JP 2000-355720 A

ところで、特許文献1〜6のいずれも、軟化した銅箔の充放電サイクル寿命に着目し、これを改善する方策を示唆するものはなく、それぞれ異なる課題を解決するものであった。   By the way, all of patent documents 1-6 paid attention to the charge-and-discharge cycle life of the softened copper foil, there is no suggestion of the measure to improve this, and each solved a different subject.

本発明の課題は、タフピッチ銅または無酸素銅を素材とする圧延銅箔を改良することにより、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な、充放電サイクル寿命に優れる圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池を提供することである。   An object of the present invention is to improve a rolled copper foil made of tough pitch copper or oxygen-free copper, thereby being suitable as a negative electrode current collector material for secondary batteries including lithium ion secondary batteries, and a charge / discharge cycle It is to provide a rolled copper foil having a long life, and a negative electrode current collector, a negative electrode plate and a secondary battery using the same.

純銅には再結晶するとCube方位{001}<100>(立方体集合組織と同義)が発達するという特徴がある。本発明者らはCube方位が発達した銅箔を負極集電体に用いることで、電池のサイクル寿命が向上することを知見した。また、Brass方位{110}<112>およびCopper方位{112}<111>はサイクル寿命に対し有害な方位であること、およびBrass方位およびCopper方位の発達を抑制することで、Cube方位が発達した銅箔のサイクル寿命がさらに向上することを見出した。   Pure copper is characterized by the development of the Cube orientation {001} <100> (synonymous with cubic texture) when recrystallized. The present inventors have found that the cycle life of a battery is improved by using a copper foil with an expanded Cube orientation as a negative electrode current collector. Also, the Brass orientation {110} <112> and the Copper orientation {112} <111> are harmful to the cycle life, and the Cube orientation has been developed by suppressing the development of the Brass orientation and the Copper orientation. It has been found that the cycle life of the copper foil is further improved.

ここで、Brass方位およびCopper方位の再結晶粒は、銅箔表層部のせん断帯に沿って分布していた。このせん断帯は圧延の際に導入されたものであり、銅箔表面のオイルピットを起点に形成されていた。オイルピットが多いほど、Brass方位およびCopper方位が増加するという知見が得られた。   Here, the recrystallized grains in the Brass orientation and the Copper orientation were distributed along the shear band of the copper foil surface layer portion. This shear band was introduced at the time of rolling, and was formed starting from an oil pit on the surface of the copper foil. It was found that the greater the number of oil pits, the greater the Brass orientation and Copper orientation.

次に、オイルピットを指標にBrass方位およびCopper方位を低減する方策を検討し、最終圧延において表面粗さが小さいロールを用いるとオイルピットが減少することを発見した。しかし、一方で、粗さが小さいロールを用いて圧延を行うことで、得られる銅箔の表面粗さが低下し、その弊害として銅箔と活物質との密着性が不足し、期待したほどサイクル寿命が向上しないという知見も得られた。これは、活物質の銅箔表面への密着性が低下したものと考えられた。   Next, a measure for reducing the Brass orientation and Copper orientation using the oil pit as an index was studied, and it was found that the oil pit was reduced when a roll having a small surface roughness was used in the final rolling. However, on the other hand, by rolling using a roll having a small roughness, the surface roughness of the obtained copper foil is lowered, and the adverse effect is insufficient adhesion between the copper foil and the active material, as expected. The knowledge that cycle life is not improved was also obtained. This was considered that the adhesiveness of the active material to the copper foil surface was lowered.

そして、この解決策を鋭意研究し、最終パスより前の各パスでは表面粗さが小さいロールを用いてオイルピットの生成を抑制し、最終パスで表面粗さが大きいロールを用いて銅箔の表面粗さを適度に大きくすることで、Brass方位およびCopper方位が抑制され、活物物質との密着性も良好で、優れたサイクル寿命を有する銅箔を開発することに成功し、本発明を完成させた。   And we studied this solution diligently, and in each pass before the final pass, we used a roll with a small surface roughness to suppress the formation of oil pits, and a roll with a large surface roughness in the final pass used a copper foil By appropriately increasing the surface roughness, the Brass orientation and Copper orientation were suppressed, the adhesiveness to the active material was good, and a copper foil having an excellent cycle life was successfully developed. Completed.

本発明は以上の技術的知見を基に完成されたものであり、
(1)200℃で30分間焼鈍することにより、引張強さが250MPa以下に低下し、200℃で30分間加熱した後に測定したときに、Cube方位{001}<100>面積率が30%以上、Brass方位{110}<112>面積率が20%以下、Copper方位{112}<111>面積率が20%以下なる結晶方位を有し、オイルピットの面積率が3〜20%であり、圧延方向と直交する方向の算術平均粗さRaが0.05〜0.12μmであることを特徴とする、二次電池の負極集電体用銅箔。
(2)タフピッチ銅または無酸素銅を素材とすることを特徴とする、(1)に記載の二次電池の負極集電体用銅箔。
(3)Ag、Sn、Cr、Fe、Zn及びZrよりなる群から選択される合金元素の1種又は2種以上を合計で0〜0.1質量%含有し残部が銅及び不可避的不純物からなるタフピッチ銅または無酸素銅を素材とすることを特徴とする、(1)に記載の二次電池の負極集電体用銅箔。
(4)引張強さが250MPa以下であり、Cube方位{001}<100>面積率が30%以上、Brass方位{110}<112>面積率が20%以下、Copper方位{112}<111>面積率が20%以下なる結晶方位を有し、オイルピットの面積率が3〜20%であり、圧延方向と直交する方向の算術平均粗さRaが0.05〜0.12μmであることを特徴とする、二次電池の負極集電体用銅箔。
(5)タフピッチ銅または無酸素銅を素材とすることを特徴とする、(4)に記載の二次電池の負極集電体用銅箔。
(6)Ag、Sn、Cr、Fe、Zn及びZrよりなる群から選択される合金元素の1種又は2種以上を合計で0〜0.1質量%含有し残部が銅及び不可避的不純物からなるタフピッチ銅または無酸素銅を素材とすることを特徴とする、(4)に記載の二次電池の負極集電体用銅箔。
(7)(4)〜(6)のいずれか一項に記載の圧延銅箔より構成される負極集電体。
(8)(7)に記載の負極集電体の少なくとも片面に、炭素質材料又は黒鉛質材料を主成分とする負極活物質層を有する負極板。
(9)(7)に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、けい素単体、及びけい素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。
(10)(8)又は(9)に記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに該極板群及び該非水電解液を収容する電池ケースとを有する二次電池。
(11)インゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返して、最終冷間圧延で所定厚みに仕上げる工程を含み、該最終冷間圧延において圧延加工度を90%以上とし、最終パスより前の各パスにおいて算術平均粗さRaが0.02〜0.04μmの圧延ロールを用い、最終のパスにおいて圧延材表面の算術平均粗さRaが0.07〜0.14μmの圧延ロールを用いることを特徴とする(1)〜(3)のいずれか一項に記載の銅箔の製造方法。
(12)インゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返して、最終冷間圧延で所定厚みに仕上げ、その後熱処理により銅箔を再結晶させる工程を含み、該最終冷間圧延において圧延加工度を90%以上とし、最終パスより前の各パスにおいて算術平均粗さRaが0.02〜0.04μmの圧延ロールを用い、最終のパスにおいて圧延材表面の算術平均粗さRaが0.07〜0.14μmの圧延ロールを用いることを特徴とする(4)〜(6)のいずれか一項に記載の銅箔の製造方法。
The present invention has been completed based on the above technical knowledge,
(1) By annealing at 200 ° C. for 30 minutes, the tensile strength decreases to 250 MPa or less, and when measured after heating at 200 ° C. for 30 minutes, the Cube orientation {001} <100> area ratio is 30% or more. The crystal orientation of the Brass orientation {110} <112> area ratio is 20% or less, the Copper orientation {112} <111> area ratio is 20% or less , and the oil pit area ratio is 3 to 20%. wherein the arithmetic flat Hitoshiara Ra of the direction perpendicular to the rolling direction is 0.05~0.12Myuemu, the negative electrode current collector foil of the secondary battery.
(2) The copper foil for a negative electrode current collector of the secondary battery according to (1), characterized by using tough pitch copper or oxygen-free copper as a material.
(3) One or more alloy elements selected from the group consisting of Ag, Sn, Cr, Fe, Zn and Zr are contained in a total amount of 0 to 0.1% by mass, and the balance is made of copper and inevitable impurities. The copper foil for a negative electrode current collector of a secondary battery according to (1), characterized in that the material is made of tough pitch copper or oxygen-free copper.
(4) Tensile strength is 250 MPa or less, Cube orientation {001} <100> area ratio is 30% or more, Brass orientation {110} <112> area ratio is 20% or less, Copper orientation {112} <111> It has a crystal orientation area ratio is 20% or less, 3 to 20 percent the area ratio of the oil pits, an arithmetic flat Hitoshiara Ra of the direction perpendicular to the rolling direction is 0.05~0.12μm A copper foil for a negative electrode current collector of a secondary battery.
(5) The copper foil for a negative electrode current collector of a secondary battery according to (4), characterized in that the material is made of tough pitch copper or oxygen-free copper.
(6) 0 to 0.1% by mass in total of one or more alloy elements selected from the group consisting of Ag, Sn, Cr, Fe, Zn and Zr, with the balance being from copper and inevitable impurities The copper foil for a negative electrode current collector of the secondary battery according to (4), characterized in that the material is made of tough pitch copper or oxygen-free copper.
(7) A negative electrode current collector composed of the rolled copper foil according to any one of (4) to (6).
(8) A negative electrode plate having a negative electrode active material layer mainly composed of a carbonaceous material or a graphite material on at least one surface of the negative electrode current collector according to (7).
(9) An active material containing at least one selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound on at least one surface of the negative electrode current collector according to (7). A negative electrode plate having a material layer.
(10) An electrode plate group in which the negative electrode plate according to (8) or (9) is insulated and disposed through a separator having a lithium transition metal composite oxide as a main component of a positive electrode active material and a separator, non-aqueous electrolysis And a battery case containing the electrode plate group and the non-aqueous electrolyte.
(11) After the ingot is hot-rolled, it includes a step of repeating cold rolling and annealing, and finishing to a predetermined thickness by final cold rolling, in which the rolling degree is 90% or more in the final cold rolling, and the final pass In each previous pass, a rolling roll having an arithmetic average roughness Ra of 0.02 to 0.04 μm was used, and in a final pass, a rolling roll having an arithmetic average roughness Ra of the rolled material surface of 0.07 to 0.14 μm was used. It uses, The manufacturing method of the copper foil as described in any one of (1)-(3) characterized by the above-mentioned.
(12) After the ingot is hot-rolled, it includes a step of repeating cold rolling and annealing, finishing to a predetermined thickness by final cold rolling, and then recrystallizing the copper foil by heat treatment, and rolling in the final cold rolling The degree of work is 90% or more, and a rolling roll having an arithmetic average roughness Ra of 0.02 to 0.04 μm is used in each pass before the final pass, and the arithmetic average roughness Ra of the rolled material surface is 0 in the final pass. A method for producing a copper foil according to any one of (4) to (6), wherein a rolling roll of 0.07 to 0.14 μm is used.

本発明によれば、リチウムイオン二次電池をはじめとする二次電池の負極集電体材料として好適な、充放電サイクル寿命に優れる圧延銅箔、並びにこれを用いた負極集電体、負極板及び二次電池を提供する。   ADVANTAGE OF THE INVENTION According to this invention, the rolled copper foil which is suitable as a negative electrode collector material of secondary batteries including a lithium ion secondary battery, and is excellent in charging / discharging cycle life, and a negative electrode collector and negative electrode plate using the same And a secondary battery.

一般的な二次電池の構造を示す概略図である。It is the schematic which shows the structure of a general secondary battery. 銅箔上に形成されるオイルピットを模式的に示す図である。It is a figure which shows typically the oil pit formed on copper foil. オイルピットの面積率を評価するに際して得た銅箔試料表面の光学顕微鏡像を模式的に示す図である。It is a figure which shows typically the optical microscope image of the copper foil sample surface obtained when evaluating the area ratio of an oil pit. 図3の光学顕微鏡像の同位置での2値化処理像を模式的に示す図である。It is a figure which shows typically the binarization processing image in the same position of the optical microscope image of FIG.

(1)銅箔の成分
本発明の銅箔の素材は、JIS−1100規定のタフピッチ銅またはJIS−C1020規定の無酸素銅である。
タフピッチ銅または無酸素銅を素材とする銅箔は、一般的に、圧延上がりで400〜550MPaの引張強さを有する。この銅箔は負極板製造の際の乾燥工程において再結晶し、引張強さが250MPa以下に低下する。乾燥工程における熱負荷は、代表的に200℃で30分の熱処理に相当する(特開2000−303128号公報参照)。
(1) Components of Copper Foil The material of the copper foil of the present invention is JIS-1100 defined tough pitch copper or JIS-C1020 defined oxygen-free copper.
A copper foil made of tough pitch copper or oxygen-free copper generally has a tensile strength of 400 to 550 MPa after rolling. This copper foil is recrystallized in the drying process during the production of the negative electrode plate, and the tensile strength is reduced to 250 MPa or less. The heat load in the drying process typically corresponds to a heat treatment at 200 ° C. for 30 minutes (see JP 2000-303128 A).

本発明の効果は、負極板製造の際の乾燥工程で軟化する、すなわち200℃で30分加熱した際に引張強さが250MPa以下に低下する銅箔であれば、タフピッチ銅または無酸素銅に微量の合金元素を添加した銅箔でも発現する。すなわち本発明の一実施形態においては、Ag、Sn、Cr、Fe、ZnおよびZrよりなる群から選択される合金元素の1種又は2種以上を合計で0.1質量%以下含有し、残部が銅及び不可避的不純物からなるタフピッチ銅または無酸素銅を使用することができる。その一例として、常温で保管中の軟化を防止することを目的に、Agを0.01〜0.05質量%添加したタフピッチ銅(例えば特開2000−212661号公報)、Snを0.001〜0.01質量%添加した無酸素銅(例えば特開2008−106313号公報)が挙げられる。   The effect of the present invention is tough tough pitch copper or oxygen-free copper as long as it is a copper foil that softens in the drying step during the production of the negative electrode plate, that is, when the tensile strength decreases to 250 MPa or less when heated at 200 ° C. for 30 minutes. It appears even in copper foil added with a small amount of alloying elements. That is, in one embodiment of the present invention, one or more alloy elements selected from the group consisting of Ag, Sn, Cr, Fe, Zn and Zr are contained in a total amount of 0.1% by mass or less, and the balance Can be made of tough pitch copper or oxygen-free copper consisting of copper and inevitable impurities. As an example, for the purpose of preventing softening during storage at room temperature, tough pitch copper added with 0.01 to 0.05% by mass of Ag (for example, Japanese Patent Laid-Open No. 2000-212661), Sn is 0.001 to 0.001%. An oxygen-free copper added in an amount of 0.01% by mass (for example, JP-A-2008-106313) can be mentioned.

Cuよりも酸化しやすいSn、Cr、Fe、ZnおよびZrのいずれか1種以上の元素を採用する場合は、添加元素が銅中で酸化物を形成することを避けるために、無酸素銅溶湯中に添加するのが一般的である。AgはCuより酸化しにくいので、タフピッチ銅溶湯中、無酸素銅溶湯中ともに添加できる。   When one or more elements of Sn, Cr, Fe, Zn, and Zr, which are easier to oxidize than Cu, are employed, an oxygen-free copper melt is used in order to prevent the additive element from forming an oxide in copper. It is common to add in. Since Ag is less susceptible to oxidation than Cu, it can be added both in the tough pitch copper melt and in the oxygen free copper melt.

(2)銅箔の結晶方位
銅箔の金属組織においてCube方位が多くBrass方位およびCopper方位が少ないと、電池の充放電による繰り返しストレスを受けた際の銅箔の疲労破壊が抑制され、電池のサイクル寿命が向上する。
ここで、Cube方位とは、圧延面法線方向(ND)に(001)面が、圧延方向(RD)に(100)面が向いている状態であり、{001}<100>の指数で示される。Brass方位とは、NDに(110)面が、RDに(112)面が向いている状態であり、{110}<112>の指数で示される。Copper方位とは、NDに(112)面が、RDに(111)面が向いている状態であり、{112}<111>の指数で示される。
(2) Crystal orientation of copper foil When the Cube orientation is large and the Brass orientation and Copper orientation are small in the metal structure of the copper foil, fatigue failure of the copper foil when the battery is subjected to repeated stress due to charging / discharging is suppressed. Cycle life is improved.
Here, the Cube orientation is a state in which the (001) plane faces the rolling surface normal direction (ND) and the (100) plane faces the rolling direction (RD), and is an index of {001} <100>. Indicated. The Brass orientation is a state in which the (110) plane faces the ND and the (112) plane faces the RD, and is indicated by an index of {110} <112>. The Copper orientation is a state in which the (112) plane faces the ND and the (111) plane faces the RD, and is indicated by an index of {112} <111>.

Cube方位の面積率が30%以上になると、電池のサイクル寿命が向上する。これに加えCopper方位の面積率及びBrass方位の面積率の双方が20%以下になると、電池のサイクル寿命がさらに向上する。
より好ましくは、Cube方位の面積率が50%以上、Copper方位及びBrass方位の面積率がそれぞれ10%以下であり、この場合、良好な電池のサイクル寿命がより安定して得られる。
When the area ratio of the Cube orientation is 30% or more, the cycle life of the battery is improved. In addition, when both the area ratio in the Copper orientation and the area ratio in the Brass orientation are 20% or less, the cycle life of the battery is further improved.
More preferably, the area ratio of the Cube orientation is 50% or more, and the area ratios of the Copper orientation and the Brass orientation are each 10% or less. In this case, a good battery cycle life can be obtained more stably.

Cube方位面積率の上限値については電池特性の点からは規制されないが、実用上Cube方位面積率が99.9%を超えることはない。同様に、Brass方位およびCopper方位の面積率の下限値については電池特性の点からは規制されないが、実用上Brass方位およびCopper方位の面積率が0.1%未満になることはない。   The upper limit value of the Cube orientation area ratio is not restricted from the viewpoint of battery characteristics, but the Cube orientation area ratio does not practically exceed 99.9%. Similarly, the lower limit value of the area ratio of the Brass orientation and the Copper orientation is not restricted from the viewpoint of battery characteristics, but the area ratio of the Brass orientation and the Copper orientation is never practically less than 0.1%.

(3)圧延銅箔の表面性状
銅箔素材を冷間圧延すると、圧延ロールの表面凹凸の圧延材表面への転写(ロール面転写)、および圧延ロールと圧延材との間に封じ込められた潤滑油によって圧延材表面に生じる凹み(オイルピット)により、圧延銅箔表面の粗さが形成される。
(3) Surface properties of the rolled copper foil When the copper foil material is cold-rolled, the surface irregularities of the rolling roll are transferred to the surface of the rolled material (roll surface transfer), and the lubrication enclosed between the rolling roll and the rolled material. The roughness of the rolled copper foil surface is formed by the dent (oil pit) generated on the rolled material surface by the oil.

圧延ロール表面はロールを回転させながら研削砥石を当てることで円周方向に研磨され、ロール表面の凹凸はこの研磨痕によって構成される。したがって、ロール面転写による銅箔表面の凹凸は、圧延方向と平行に伸びる緻密なスジ状模様として観察される。ロール面転写で形成された凹凸の程度は、接触粗さ計を用い、JIS−B0601に準拠し、圧延方向と直交する方向に、算術平均粗さRaを測定することによって評価できる。 The surface of the rolling roll is polished in the circumferential direction by applying a grinding wheel while rotating the roll, and the unevenness of the roll surface is constituted by this polishing mark. Therefore, the unevenness | corrugation of the copper foil surface by roll surface transcription | transfer is observed as a precise | minute streaky pattern extended in parallel with a rolling direction. The degree of unevenness formed by roll surface transfer can be evaluated by measuring the arithmetic average roughness Ra in a direction orthogonal to the rolling direction using a contact roughness meter in accordance with JIS-B0601.

一方、オイルピットは図2に模式的に示すように、圧延方向と直交して伸びるクラック状として観察され、その底部から斜めにせん断帯が発達している。オイルピット生成の程度は、例えばコンフォーカル(共焦点)顕微鏡を用い銅箔表面における凹部の面積率(以下、オイルピット面積率)を測定することによって評価できる。   On the other hand, as schematically shown in FIG. 2, the oil pit is observed as a crack extending perpendicular to the rolling direction, and a shear band is developed obliquely from the bottom. The degree of oil pit generation can be evaluated, for example, by measuring the area ratio of recesses on the copper foil surface (hereinafter referred to as oil pit area ratio) using a confocal microscope.

(3−1)オイルピット面積率
Brass方位およびCopper方位の結晶粒は、銅箔が再結晶する際、せん断帯に沿って生成する。このため、圧延上がりの銅箔におけるオイルピット面積率は、再結晶後の銅箔におけるBrass方位およびCopper方位の面積率と良い相関を示す。いいかえれば、圧延銅箔表面のオイルピット面積率を指標に圧延条件を適宜調整することにより、再結晶の際にBrass方位およびCopper方位が生成しにくい性状を銅箔に付与することができる。
(3-1) Oil Pit Area Ratio Crystal grains of Brass orientation and Copper orientation are generated along the shear band when the copper foil is recrystallized. For this reason, the oil pit area ratio in the copper foil after rolling shows a good correlation with the area ratios of the Brass orientation and Copper orientation in the copper foil after recrystallization. In other words, by appropriately adjusting the rolling conditions using the oil pit area ratio on the surface of the rolled copper foil as an index, the copper foil can be imparted with a property in which the Brass orientation and the Copper orientation are not easily generated during recrystallization.

オイルピットの面積率が20%を超えると、Brass方位およびCopper方位のいずれか一方が20%を超え、電池のサイクル寿命が低下する。一方、オイルピットには銅箔表面と活物質との密着強度を改善する効果もあり、オイルピット面積率が減少すると銅箔表面と活物質との密着強度が低下する。オイルピット面積率が3%未満になると、後述するRaをいかに調整しても所望の密着強度が得られなくなる。その結果、電池の充放電による繰り返しストレスを受けた際に銅箔表面から活物質が剥離し、電池のサイクル寿命が却って低下する。そこで、オイルピットの面積率を3〜20%に規定する。より好ましいオイルピットの面積率は6〜15%である。   When the area ratio of the oil pit exceeds 20%, either the Brass orientation or the Copper orientation exceeds 20%, and the cycle life of the battery decreases. On the other hand, the oil pit also has an effect of improving the adhesion strength between the copper foil surface and the active material. When the oil pit area ratio decreases, the adhesion strength between the copper foil surface and the active material decreases. If the oil pit area ratio is less than 3%, the desired adhesion strength cannot be obtained no matter how Ra is adjusted. As a result, the active material peels from the surface of the copper foil when subjected to repeated stress due to charging / discharging of the battery, and the cycle life of the battery is reduced. Therefore, the area ratio of the oil pit is specified to be 3 to 20%. A more preferable area ratio of the oil pit is 6 to 15%.

(3−2)圧延直交方向の表面粗さRa
圧延直交方向のRaが大きくなると、銅箔表面と活物質との密着強度が向上する。オイルピット面積率が3〜20%の条件下で所望の密着強度を得るためには、該Raを0.05μm以上に調整する必要がある。該Raが0.05μm未満になると、電池の充放電による繰り返しストレスを受けた際に銅箔表面から活物質が剥離し、電池のサイクル寿命が低下する。一方、該Raが0.12μmを超えると、電池の充放電による繰り返しストレスを受けた際、銅箔表面の凹凸の切欠きが疲労クラックの起点として作用するようになり、電池のサイクル寿命が却って低下する。そこで、該Raを0.05〜0.12μmに規定する。より好ましい該Raは0.07〜0.11μmである。
(3-2) Surface roughness Ra in the direction perpendicular to rolling
When Ra in the direction perpendicular to rolling is increased, the adhesion strength between the copper foil surface and the active material is improved. In order to obtain a desired adhesion strength under a condition where the oil pit area ratio is 3 to 20%, it is necessary to adjust Ra to 0.05 μm or more. When the Ra is less than 0.05 μm, the active material peels from the surface of the copper foil when subjected to repeated stress due to charging / discharging of the battery, and the cycle life of the battery is reduced. On the other hand, when the Ra exceeds 0.12 μm, when the battery is subjected to repeated stress due to charging / discharging, the notch on the surface of the copper foil acts as a starting point for fatigue cracks, and the cycle life of the battery is reversed. descend. Therefore, Ra is specified to be 0.05 to 0.12 μm. The more preferable Ra is 0.07 to 0.11 μm.

(4)銅箔の製造方法
酸素濃度を調整した溶銅を鋳造し、インゴットを製造する。溶銅の酸素濃度の調整はカーボン脱酸等の当業者公知の技術により行うことができる。このインゴットを熱間圧延により厚さ10mm程度の板とし、その後冷間圧延と再結晶焼鈍とを繰り返し、最後に冷間圧延で所定厚みに仕上げる。
(4) Manufacturing method of copper foil The molten copper which adjusted oxygen concentration is cast, and an ingot is manufactured. The oxygen concentration of the molten copper can be adjusted by techniques known to those skilled in the art, such as carbon deoxidation. The ingot is made into a plate having a thickness of about 10 mm by hot rolling, and then cold rolling and recrystallization annealing are repeated, and finally, the cold rolling is performed to a predetermined thickness.

本発明の効果は銅箔の厚みによらず得られるものであるが、実用に供される銅箔の厚みは一般的に35〜5μmである。厚みが5μm未満になると、電池の製造工程において銅箔が破断しやすくなり、35μmを超えると負極板が厚くなるため二次電池を小型化しにくくなる。   Although the effect of the present invention can be obtained regardless of the thickness of the copper foil, the thickness of the copper foil provided for practical use is generally 35 to 5 μm. If the thickness is less than 5 μm, the copper foil tends to break in the battery manufacturing process, and if it exceeds 35 μm, the negative electrode plate becomes thick, making it difficult to reduce the size of the secondary battery.

再結晶焼鈍は、炉温が300〜800℃の範囲、焼鈍時間が数秒間〜数時間の範囲で、焼鈍後の結晶粒径が所定の大きさ(通常は3〜30μm)になる条件で行われる。焼鈍後の材料は、焼鈍中に生成した表面酸化膜を除去するため、硫酸水溶液等を用いて酸洗される。   Recrystallization annealing is performed under the conditions that the furnace temperature is in the range of 300 to 800 ° C., the annealing time is in the range of several seconds to several hours, and the crystal grain size after annealing is a predetermined size (usually 3 to 30 μm). Is called. The material after annealing is pickled using a sulfuric acid aqueous solution or the like in order to remove the surface oxide film generated during the annealing.

上述したCube方位の面積率、オイルピットの面積率(CopperおよびBrass方位の面積率と強い相関を有する)および圧延直交方向のRaを制御する方法は、特定の方法に限定される訳ではないが、例えば、最終の冷間圧延条件を調整することで制御できる。   The above-described method for controlling the area ratio of the Cube orientation, the area ratio of the oil pit (which has a strong correlation with the area ratio of the Copper and Brass orientations), and Ra in the rolling orthogonal direction is not limited to a specific method. For example, it can be controlled by adjusting the final cold rolling conditions.

最終再結晶焼鈍後の最終冷間圧延では、一対の圧延ロール間に材料を繰り返し通過させ、目標の箔厚に仕上げてゆく。
最終冷間圧延の加工度rを高くすると、電池の製造プロセスにおいて銅箔が再結晶する際にCube方位が発達し、その面積率が上昇する。Cube方位面積率を30%以上にするためには、rを90%以上にする必要がある。より好ましいrは95%以上である。ここで、加工度rは、最終冷間圧延における板厚減少率であり、r=(t0−t)/t0(t0:最終冷間圧延前の厚み、t:最終冷間圧延後の厚み)で与えられる。
In the final cold rolling after the final recrystallization annealing, the material is repeatedly passed between a pair of rolling rolls to finish the target foil thickness.
When the workability r of the final cold rolling is increased, the Cube orientation develops when the copper foil is recrystallized in the battery manufacturing process, and the area ratio increases. In order to increase the Cube orientation area ratio to 30% or more, r must be 90% or more. More preferable r is 95% or more. Here, the working degree r is a sheet thickness reduction rate in the final cold rolling, and r = (t 0 -t) / t 0 (t 0 : thickness before final cold rolling, t: after final cold rolling. Thickness).

オイルピットの発達を抑制する方策としては、最終圧延において表面粗さが小さい圧延ロールを用いることが有効である。一方、銅箔と活物質との密着強度を高くするためには、最終圧延上がり銅箔の表面において圧延直交方向のRaを大きくする必要があり、表面粗さが大きい圧延ロールを用いることでこれが可能となる。すなわち、オイルピット抑制のためにはロール粗さが小さい方が好ましく、活物質密着強度のためにはロール粗さが大きい方が好ましい。   As a measure for suppressing the development of oil pits, it is effective to use a rolling roll having a small surface roughness in the final rolling. On the other hand, in order to increase the adhesion strength between the copper foil and the active material, it is necessary to increase Ra in the rolling orthogonal direction on the surface of the copper foil after final rolling, and this is achieved by using a rolling roll having a large surface roughness. It becomes possible. That is, a smaller roll roughness is preferable for suppressing oil pits, and a larger roll roughness is preferable for active material adhesion strength.

本発明者らは、オイルピットを抑制し銅箔表面のRaを大きくするという、互いに矛盾する課題の解決策として、最終パスより前の各パス(以下、中間パス)で粗さの小さいロールを用い、最終パスで粗さの大きいロールを用いる方策を見出した。   As a solution to the contradictory problem of suppressing the oil pit and increasing the Ra of the copper foil surface, the present inventors used a roll having a small roughness in each pass before the final pass (hereinafter referred to as an intermediate pass). We found a strategy to use a roll with a large roughness in the final pass.

具体的には、中間パスではRaが0.02〜0.04μmのロールを用い、最終パスではRaが0.07〜0.14μmのロールを用いる。ここで、圧延ロールのRaとは、接触粗さ計を用い、JIS−B0601に準拠し、ロールの円周方向と直交する方向に測定される算術平均粗さである。 Specifically, a roll having Ra of 0.02 to 0.04 μm is used in the intermediate pass, and a roll having Ra of 0.07 to 0.14 μm is used in the final pass. Here, Ra of a rolling roll is arithmetic mean roughness measured in the direction orthogonal to the circumferential direction of a roll based on JIS-B0601 using a contact roughness meter.

中間パスロールのRaが0.04μmを超えると、オイルピット面積率を20%以下に調整することが難しくなる。中間パスロールのRaが0.02μm未満になると、オイルピット面積率を3%以上に調整することが難しくなる。
最終パスロールのRaが0.14μmを超えると、銅箔表面のRaを0.12μm以下に調整することが難しくなる。最終パスロールのRaが0.07μm未満になると、銅箔表面のRaを0.05μm以上に調整することが難しくなる。
If Ra of the intermediate pass roll exceeds 0.04 μm, it is difficult to adjust the oil pit area ratio to 20% or less. When Ra of the intermediate pass roll is less than 0.02 μm, it is difficult to adjust the oil pit area ratio to 3% or more.
If Ra of the final pass roll exceeds 0.14 μm, it becomes difficult to adjust the Ra of the copper foil surface to 0.12 μm or less. When Ra of the final pass roll is less than 0.07 μm, it is difficult to adjust the Ra of the copper foil surface to 0.05 μm or more.

(電池の構成)
本発明に関わる負極板及び二次電池は、上記銅箔を負極集電体として用いることを特徴とするものであり、これ以外の構成については限定されず、一般に用いられている公知のものを用いることができる。また、典型的な二次電池は、例えば、負極板がリチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群と、非水電解液と、この極板群及び非水電解質を収容する電池ケースとを備える。
(Battery configuration)
The negative electrode plate and the secondary battery according to the present invention are characterized by using the above copper foil as a negative electrode current collector, and other configurations are not limited, and commonly used known ones are used. Can be used. In addition, a typical secondary battery includes, for example, a positive electrode plate in which a negative electrode plate is mainly composed of a lithium transition metal composite oxide as a main component of a positive electrode active material, an electrode plate group insulatively arranged via a separator, and a nonaqueous electrolyte. And a battery case containing the electrode plate group and the non-aqueous electrolyte.

(負極)
負極は、本発明の負極集電体と、負極集電体の片面もしくは両面に形成される負極活物質より構成される。負極活物質としては、リチウムの吸蔵放出が可能な炭素質物、金属、金属化合物(金属酸化物、金属硫化物、金属窒化物)、リチウム合金などが挙げられる。
(Negative electrode)
A negative electrode is comprised from the negative electrode collector of this invention, and the negative electrode active material formed in the single side | surface or both surfaces of a negative electrode collector. Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium, metals, metal compounds (metal oxides, metal sulfides, metal nitrides), lithium alloys, and the like.

前記炭素質物としては、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体などの黒鉛質材料もしくは炭素質材料;熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ系炭素、メソフェーズピッチ系炭素繊維、メソフェーズ小球体などに500〜3000℃で熱処理を施すことにより得られる黒鉛質材料又は炭素質材料等が挙げられる。
前記金属としては、リチウム、アルミニウム、マグネシウム、すず、けい素等が挙げられる。
前記金属酸化物としては、すず酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等が挙げられる。前記金属硫化物としては、すず硫化物、チタン硫化物等が挙げられる。前記金属窒化物としては、リチウムコバルト窒化物、リチウム鉄窒化物、リチウムマンガン窒化物等が挙げられる。
リチウム合金としては、リチウムアルミニウム合金、リチウムすず合金、リチウム鉛合金、リチウムケイ素合金等が挙げられる。
Examples of the carbonaceous material include graphite materials, carbonaceous materials such as graphite, coke, carbon fiber, spherical carbon, pyrolytic vapor phase carbonaceous material, and resin fired body; thermosetting resin, isotropic pitch, and mesophase pitch carbon. Examples thereof include graphite materials or carbonaceous materials obtained by subjecting mesophase pitch-based carbon fibers, mesophase microspheres, etc. to heat treatment at 500 to 3000 ° C.
Examples of the metal include lithium, aluminum, magnesium, tin, and silicon.
Examples of the metal oxide include tin oxide, silicon oxide, lithium titanium oxide, niobium oxide, and tungsten oxide. Examples of the metal sulfide include tin sulfide and titanium sulfide. Examples of the metal nitride include lithium cobalt nitride, lithium iron nitride, and lithium manganese nitride.
Examples of the lithium alloy include a lithium aluminum alloy, a lithium tin alloy, a lithium lead alloy, and a lithium silicon alloy.

負極活物質含有層には結着剤を含有させることができる。結着剤としては、カルボキシメチルセルロース(CMC)及びスチレンブタジエン(SBR)を含む混合物が挙げられる。CMC及びSBRを含む結着剤を使用することによって、負極活物質と集電体との密着性をより高くすることができる。
負極活物質含有層には、導電剤を含有させることができる。導電剤としては、アセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等が挙げられる。
The negative electrode active material-containing layer can contain a binder. Examples of the binder include a mixture containing carboxymethyl cellulose (CMC) and styrene butadiene (SBR). By using a binder containing CMC and SBR, the adhesion between the negative electrode active material and the current collector can be further increased.
The negative electrode active material-containing layer can contain a conductive agent. Examples of the conductive agent include acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.

(正極)
正極は、正極集電体と、前記正極集電体の片面もしくは両面に形成される正極活物質含有層より構成される。
正極集電体としては、アルミニウム板、アルミニウムメッシュ材等が挙げられる。
正極活物質含有層は、例えば、活物質と結着剤とを含有する。正極活物質としては、二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物が挙げられる。これらのカルコゲン化合物は、2種以上の混合物で用いても良い。結着剤としては、フッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、又はフッ素ゴムのようなゴム系樹脂を用いることができる。
活物質含有層には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することができる。
(Positive electrode)
The positive electrode includes a positive electrode current collector and a positive electrode active material-containing layer formed on one or both surfaces of the positive electrode current collector.
Examples of the positive electrode current collector include an aluminum plate and an aluminum mesh material.
The positive electrode active material-containing layer contains, for example, an active material and a binder. Examples of the positive electrode active material include chalcogen compounds such as manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 . These chalcogen compounds may be used in a mixture of two or more. As the binder, a fluoroelastomer resin, a polyolefin resin, a styrene resin, a thermoplastic elastomer resin such as an acrylic resin, or a rubber resin such as fluororubber can be used.
The active material-containing layer may further contain acetylene black, graphite such as powdered expanded graphite, carbon fiber pulverized material, graphitized carbon fiber pulverized material, and the like as a conductive auxiliary material.

(セパレータ)
正極と負極の間には、セパレータか、固体もしくはゲル状の電解質層を配置することができる。セパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
(Separator)
A separator or a solid or gel electrolyte layer can be disposed between the positive electrode and the negative electrode. As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

(非水電解質)
非水電解質には、液状、ゲル状もしくは固体状の形態を有するものを使用することができる。また、非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質とを含むことが望ましい。
非水溶媒としては、エチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン等が挙げられる。使用する非水溶媒の種類は、1種類もしくは2種類以上にすることが可能である。
電解質としては、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)等が挙げられる。電解質は、単独でも混合物の形態でも使用することができる。
(Nonaqueous electrolyte)
As the non-aqueous electrolyte, those having a liquid, gel or solid form can be used. The non-aqueous electrolyte preferably includes a non-aqueous solvent and an electrolyte that is dissolved in the non-aqueous solvent.
Examples of the non-aqueous solvent include ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, and γ-butyrolactone. The kind of nonaqueous solvent to be used can be one kind or two or more kinds.
Examples of the electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and the like. The electrolyte can be used alone or in the form of a mixture.

(圧延銅箔の作製)
酸素濃度を調整した溶銅を幅が500mm、厚みが200mmのインゴットに鋳造した。一部のインゴットでは、溶銅にAgまたはSnを添加した。なお、Agについては、意図的に添加しなくても、不可避的不純物として、タフピッチ銅および無酸素銅中に0.001%程度含有されている。
このインゴットを850℃で3時間加熱し、熱間圧延により厚み10mmの板に加工し、表面の酸化スケールを研削除去した。その後、再結晶焼鈍と冷間圧延を繰り返して、最終の圧延で厚みを18〜6μmに仕上げた。
(Production of rolled copper foil)
The molten copper with adjusted oxygen concentration was cast into an ingot having a width of 500 mm and a thickness of 200 mm. In some ingots, Ag or Sn was added to the molten copper. In addition, about 0.001% of Ag is contained in tough pitch copper and oxygen-free copper as an unavoidable impurity even if not intentionally added.
The ingot was heated at 850 ° C. for 3 hours, processed into a plate having a thickness of 10 mm by hot rolling, and the oxidized scale on the surface was removed by grinding. Thereafter, recrystallization annealing and cold rolling were repeated, and the final rolling finished to a thickness of 18 to 6 μm.

最終冷間圧延における加工度rを変化させるために、最終再結晶焼鈍(最終冷間圧延直前の焼鈍)を施す板厚を調整した。最終再結晶焼鈍は連続焼鈍ラインを用いて行った。炉温を700℃とし、焼鈍後の結晶粒径が15〜30μmになるように、材料の通板速度(炉内の滞留時間)を調整した。
最終冷間圧延では、1パスあたりの加工度を20〜30%とし、材料を圧延ロール間に複数回通過させて、最終的に表1に記載された加工度になるように銅箔試料を作製した。また、中間パスおよび最終パスで用いる圧延ロールの表面粗さを種々変化させた。
得られた銅箔試料につき次の評価を行った。
In order to change the workability r in the final cold rolling, the thickness of the plate to which the final recrystallization annealing (annealing immediately before the final cold rolling) was performed was adjusted. The final recrystallization annealing was performed using a continuous annealing line. The temperature of the furnace was set to 700 ° C., and the material passing speed (residence time in the furnace) was adjusted so that the crystal grain size after annealing was 15 to 30 μm.
In the final cold rolling, the processing degree per pass is 20 to 30%, the material is passed through the rolling rolls a plurality of times, and the copper foil sample is finally formed to the processing degree described in Table 1. Produced. Also, the surface roughness of the rolling roll used in the intermediate pass and the final pass was variously changed.
The following evaluation was performed about the obtained copper foil sample.

(成分)
銅箔中の酸素濃度を不活性ガス溶融−赤外線吸収法で、Sn及びAg濃度をICP−質量分析法で分析した。ここで、Sn及びAg分析には銅箔試料を用いたが、酸素(O)分析には1.5mmの板から採取した試料を用いた。これは、箔試料では質量に対する表面積の比率が非常に大きいため(例えば1gの試料の場合、厚さ1.5mmの板の表面積は1.5cm2に対し、厚さ10μmの箔の表面積は220cm2)、銅箔試料を用いて酸素を分析すると、表面の酸化膜及び吸着水膜中の酸素が加算され、酸素分析値が銅箔中の酸素濃度より50ppm程度増加するためである。なお、箔試料を用い、これが無酸素銅ベースの箔であることを判定するためには、例えば、試料の金属組織を観察し、酸化物粒子が存在しないこと(直径2μm以上の酸化物粒子が0.01個/mm2以下)を確認すればよい。また、タフピッチ銅ベースの箔であることを判定するためには、例えば、試料の金属組織を観察し、直径1〜5μmの酸化銅粒子が100個/mm2以上の頻度で分布していることを確認すればよい。ここでいう粒子の直径とは粒子を取り囲むことのできる最小円の直径を指す。
(component)
The oxygen concentration in the copper foil was analyzed by an inert gas melting-infrared absorption method, and the Sn and Ag concentrations were analyzed by ICP-mass spectrometry. Here, a copper foil sample was used for Sn and Ag analysis, but a sample taken from a 1.5 mm plate was used for oxygen (O) analysis. This is because the ratio of the surface area to the mass of the foil sample is very large (for example, in the case of a 1 g sample, the surface area of a 1.5 mm thick plate is 1.5 cm 2 while the surface area of a 10 μm thick foil is 220 cm. 2 ) When oxygen is analyzed using a copper foil sample, oxygen in the surface oxide film and adsorbed water film is added, and the oxygen analysis value is increased by about 50 ppm from the oxygen concentration in the copper foil. In addition, in order to determine that this is an oxygen-free copper-based foil using a foil sample, for example, the metal structure of the sample is observed and no oxide particles are present (oxide particles having a diameter of 2 μm or more are present). 0.01 piece / mm 2 or less) may be confirmed. Further, in order to determine that the foil is based on tough pitch copper, for example, the metal structure of the sample is observed, and copper oxide particles having a diameter of 1 to 5 μm are distributed at a frequency of 100 particles / mm 2 or more. You can confirm. The diameter of a particle here refers to the diameter of the smallest circle that can surround the particle.

(引張強さ)
最終冷間圧延上がりの試料に対しIPC(Institute for Interconnecting and Packaging Electronics Circuits)規格、IPC−TM−650;Method 2.4.19に準じて引張強さを求めた。試験片は、幅12.7mm、長さ150mmとし、試験片の長さ方向が圧延方向と平行になるように採取した。引張り速度は50mm/minとした。また、負極活物質の乾燥工程を模して圧延銅箔試料を200℃で30分間加熱した後の試料に対しても、同様に引張強さを求めた。
(Tensile strength)
The tensile strength was calculated | required according to IPC (Institute for Interconnecting and Packaging Electronics Circuits) specification, IPC-TM-650; Method 2.4.19 with respect to the sample after final cold rolling. The test piece was 12.7 mm in width and 150 mm in length, and was collected so that the length direction of the test piece was parallel to the rolling direction. The pulling speed was 50 mm / min. Moreover, the tensile strength was similarly calculated | required also about the sample after heating the rolled copper foil sample for 30 minutes at 200 degreeC imitating the drying process of a negative electrode active material.

(製品の結晶方位測定)
200℃で30分間加熱した後の銅箔試料表面において、Cube方位、Copper方位およびBrass方位の面積率をEBSDにより測定した。ここで、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)とは、SEM(Scanning Electron Microscope:走査電子顕微鏡)内で試料に電子線を照射したときに生じる反射電子菊池線回折(菊池パターン)を利用し結晶方位を解析する技術である。
電解研磨により試料表面を鏡面に仕上げ、1000μm×1000μmの面積に対し、5μmのステップでスキャンし、結晶方位分布を測定した。そして、結晶方位密度関数解析を行い、Cube方位、Copper方位、Brass方位のそれぞれから15°以内の方位を持つ結晶粒の面積を測定面積で除し、面積率とした。以上の解析にはTSL社のOIM Analysis 5.3を使用した。なお、EBSDによる方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して充分に小さいため、面積率として記載した。
(Measurement of crystal orientation of products)
On the surface of the copper foil sample after heating at 200 ° C. for 30 minutes, the area ratios of the Cube orientation, Copper orientation, and Brass orientation were measured by EBSD. Here, EBSD (Electron Back Scatter Diffraction: Electron Back Scattering Diffraction) refers to reflected electron Kikuchi line diffraction (Kikuchi pattern) that occurs when a sample is irradiated with an electron beam in a SEM (Scanning Electron Microscope). This is a technique for analyzing crystal orientation.
The sample surface was finished to a mirror surface by electrolytic polishing, and the crystal orientation distribution was measured by scanning the area of 1000 μm × 1000 μm in steps of 5 μm. Then, a crystal orientation density function analysis was performed, and the area of crystal grains having an orientation within 15 ° from each of the Cube orientation, Copper orientation, and Brass orientation was divided by the measurement area to obtain an area ratio. OSL Analysis 5.3 of TSL was used for the above analysis. Note that the information obtained in the azimuth analysis by EBSD includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample, but is sufficiently small with respect to the area being measured. Described.

(オイルピットの面積率)
最終圧延上がりの銅箔試料表面において、コンフォーカル顕微鏡(レーザーテック社製、型番:HD100D)を用い、300μm×300μmの面積に対し、オイルピット面積率を測定した。測定視野内で試料を光軸方向に移動させ、銅箔表面から10nmの深さの画像(Focus Scan Memory画像)を取り込んだ。そして、銅箔表面から10nmより深い部分をオイルピットとみなして2値化処理をおこなった。一例として図3、4にそれぞれ試料表面の光学顕微鏡像および同位置の2値化処理像を示す。2値化処理像中の明るい部分がオイルピットである。この明るい色の面積を市販の画像処理ソフトを用いて求め、測定面積で除しオイルピットの面積率とした。
(Area ratio of oil pit)
On the surface of the copper foil sample after final rolling, the oil pit area ratio was measured for an area of 300 μm × 300 μm using a confocal microscope (manufactured by Lasertec, model number: HD100D). The sample was moved in the optical axis direction within the measurement visual field, and an image (Focus Scan Memory image) having a depth of 10 nm was captured from the copper foil surface. And the binarization process was performed considering the part deeper than 10 nm from the copper foil surface as an oil pit. As an example, FIGS. 3 and 4 show an optical microscope image of the sample surface and a binarized image at the same position, respectively. The bright part in the binarized image is an oil pit. The area of this bright color was obtained using commercially available image processing software, and was divided by the measurement area to obtain the oil pit area ratio.

(銅箔表面のRa)
最終圧延上がりの銅箔試料表面において、接触粗さ計を用い、JIS−B0601に準拠し、圧延方向と直交する方向に、算術平均粗さRaを測定した。
(Ra of copper foil surface)
On the surface of the copper foil sample after the final rolling, the arithmetic average roughness Ra was measured in a direction orthogonal to the rolling direction using a contact roughness meter in accordance with JIS-B0601.

(サイクル寿命)
厚みが10μmの銅箔につき、図1に示す円筒型のリチウムイオン二次電池を以下の手順で作製し、サイクル寿命を測定した。
(1)負極活物質として鱗片状黒鉛粉末50重量部、結着剤としてスチレンブタジエンゴム5重量部、そして増粘剤としてカルボキシルメチルセルロース1重量部に対して水99重量部に溶解した増粘剤水溶液23重量部を、混錬分散して負極用ペーストを得た。この負極用ペーストを圧延銅箔試料表面にドクターブレード方式で厚さ200μmに両面塗布し、200℃で30分間加熱し乾燥した。加圧して厚さを160μmに調整した後、せん断加工により成型し負極板6を得た。
(2)正極活物質としてLiCoO2粉末50重量部、導電剤としてアセチレンブラック1.5重量部、結着剤としてPTFE50%水性ディスパージョン7重量部、増粘剤としてカルボキシルメチルセルロース1%水溶液41.5重量部を、混練分散して正極用ペーストを得た。この正極用ペーストを、厚さ30μmのアルミニウム箔からなる集電体上にドクターブレード方式で厚さ約230μmに両面塗布して200℃で1時間加熱し乾燥した。加圧して厚さを180μmに調整した後、せん断加工により成型し正極板5を得た。
(3)正極板5と負極板6とを、厚さ20μmのポリプロピレン樹脂製の微多孔膜からなるセパレータ7を介して絶縁した状態で渦巻状に巻回した電極群を電池ケース8に収容した。
(4)負極板6から連接する負極リード9を、前記ケース8と下部絶縁板10を介して電気的に接続した。同様に正極板5から連接する正極リード3を、封口板1の内部端子に上部絶縁板4を介して電気的に接続した。これらの後、非水電解液を注液し、封口板1と電池ケース8とを絶縁ガスケット2を介してかしめ封口して、直径17mm、高さ50mmサイズで電池容量が780mAhの円筒型リチウムイオン二次電池を作製した。
(5)電解液は、エチレンカーボネート30体積%、エチルメチルカーボネート50体積%、プロピオン酸メチル20体積%の混合溶媒中に、電解質としてヘキサフルオロリン酸リチウム(LiPF6)を1.0モル溶かした電解液を所定量注液した。この電解液を正極活物質層及び負極活物質層内に含浸させた。
(Cycle life)
A cylindrical lithium ion secondary battery shown in FIG. 1 was produced by the following procedure for a copper foil having a thickness of 10 μm, and the cycle life was measured.
(1) A thickener aqueous solution dissolved in 99 parts by weight of water with respect to 50 parts by weight of flaky graphite powder as a negative electrode active material, 5 parts by weight of styrene butadiene rubber as a binder, and 1 part by weight of carboxymethylcellulose as a thickener. 23 parts by weight was kneaded and dispersed to obtain a negative electrode paste. This negative electrode paste was applied on both sides of a rolled copper foil sample surface to a thickness of 200 μm by a doctor blade method, heated at 200 ° C. for 30 minutes, and dried. After pressurizing to adjust the thickness to 160 μm, the negative electrode plate 6 was obtained by molding by shearing.
(2) 50 parts by weight of LiCoO 2 powder as a positive electrode active material, 1.5 parts by weight of acetylene black as a conductive agent, 7 parts by weight of PTFE 50% aqueous dispersion as a binder, 41.5% aqueous solution of carboxymethyl cellulose as a thickener A weight part was kneaded and dispersed to obtain a positive electrode paste. This positive electrode paste was applied on both sides to a thickness of about 230 μm by a doctor blade method on a current collector made of an aluminum foil having a thickness of 30 μm, heated at 200 ° C. for 1 hour and dried. After pressurizing and adjusting the thickness to 180 μm, it was molded by shearing to obtain a positive electrode plate 5.
(3) A battery case 8 accommodates an electrode group wound in a spiral shape in a state where the positive electrode plate 5 and the negative electrode plate 6 are insulated through a separator 7 made of a polypropylene resin microporous film having a thickness of 20 μm. .
(4) The negative electrode lead 9 connected from the negative electrode plate 6 was electrically connected through the case 8 and the lower insulating plate 10. Similarly, the positive electrode lead 3 connected from the positive electrode plate 5 was electrically connected to the internal terminal of the sealing plate 1 via the upper insulating plate 4. After these, a non-aqueous electrolyte is injected, and the sealing plate 1 and the battery case 8 are caulked and sealed through the insulating gasket 2 to form a cylindrical lithium ion having a diameter of 17 mm, a height of 50 mm and a battery capacity of 780 mAh. A secondary battery was produced.
(5) The electrolytic solution was obtained by dissolving 1.0 mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in a mixed solvent of 30% by volume of ethylene carbonate, 50% by volume of ethyl methyl carbonate, and 20% by volume of methyl propionate. A predetermined amount of electrolyte was injected. The electrolytic solution was impregnated in the positive electrode active material layer and the negative electrode active material layer.

作製した電池を用い、充放電サイクル特性を評価した。20℃の環境下で充放電を行い、3サイクル目における放電容量を初期容量とし、初期容量に対して放電容量が80%に低下するまでサイクル数を計数し、これをサイクル寿命とした。充電条件:4.2Vで2時間の定電流−定電圧充電を行い、電池電圧が4.2Vに達するまでは550mA(0.7CmA)の定電流充電を行った後、さらに電流値が減衰して40mA(0.05CmA)になるまで充電した。放電条件:780mA(1CmA)の定電流で3.0Vの放電終止電圧まで放電した。サイクル寿命が400回以上になった場合に良好なサイクル特性が得られたと判定した。   Charge / discharge cycle characteristics were evaluated using the produced batteries. Charging / discharging was performed in an environment of 20 ° C., the discharge capacity at the third cycle was taken as the initial capacity, the number of cycles was counted until the discharge capacity was reduced to 80% of the initial capacity, and this was taken as the cycle life. Charging conditions: Constant current-constant voltage charging at 4.2V for 2 hours, and after 550mA (0.7CmA) constant current charging until the battery voltage reaches 4.2V, the current value further attenuates The battery was charged to 40 mA (0.05 CmA). Discharge conditions: Discharge to a discharge end voltage of 3.0 V with a constant current of 780 mA (1 CmA). It was determined that good cycle characteristics were obtained when the cycle life reached 400 times or more.

評価結果を表1に示す。
発明例1〜16および比較例1〜8は、箔厚10μmの銅箔について、本発明の効果を検証したものである。発明例1〜16は、200℃で30分焼鈍後の引張強さが250MPa以下になるように銅箔成分を調整し、最終圧延では加工度を90%以上、中間パスロールのRaを0.02〜0.04μm、最終パスロールのRaを0.07〜0.14%とし、厚み10μmまで圧延した。その結果、オイルピット面積率が3〜20%、銅箔試料表面のRaが0.05〜0.12μm、Cube方位が30%以上、CopperおよびBrass方位が20%以下となった。これら発明例では400回を越える良好なサイクル寿命が得られた。
The evaluation results are shown in Table 1.
Inventive Examples 1 to 16 and Comparative Examples 1 to 8 verify the effects of the present invention on a copper foil having a foil thickness of 10 μm. Inventive Examples 1 to 16 adjust the copper foil component so that the tensile strength after annealing at 200 ° C. for 30 minutes is 250 MPa or less, and in the final rolling, the working degree is 90% or more, and the Ra of the intermediate pass roll is 0.02 The final pass roll Ra was 0.07 to 0.14% and rolled to a thickness of 10 μm. As a result, the oil pit area ratio was 3 to 20%, the Ra of the copper foil sample surface was 0.05 to 0.12 μm, the Cube orientation was 30% or more, and the Copper and Brass orientation was 20% or less. In these inventive examples, a good cycle life exceeding 400 times was obtained.

比較例1は最終圧延加工度が90%未満であったため、Cube方位が30%未満となり、銅箔の疲労破壊によりサイクル寿命が低下した。
比較例2は中間パスロールのRaが0.02μm未満であったため、オイルピット面積率が3%未満となった。その結果、活物質の剥離によりサイクル寿命が低下した。
比較例3は中間パスロールのRaが0.04μmを超えたため、オイルピット面積率が20%を超えた。その結果、Copper方位が20%を超え、銅箔の疲労破壊によりサイクル寿命が低下した。
比較例4は中間パスロールのRaが0.04μmを超えてさらに大きくなったものであり、オイルピット面積率がさらに増大し、CopperおよびBrass方位が20%を超えるとともにCube方位が30%未満となり、サイクル寿命が著しく低下した。
比較例5は最終パスロールのRaが0.07μm未満になったため、銅箔表面のRaが0.05μm未満となり、活物質の剥離によりサイクル寿命が低下した。
比較例6は最終パスロールのRaが0.14μmを超えたため、銅箔表面のRaが0.12μmを超え、銅箔の疲労破壊によりサイクル寿命が低下した。
比較例7はタフプッチ銅へのAgの添加量が過大であったため、また比較例8は無酸素銅へのSnの添加量が過大であっため、200℃で30分焼鈍後の引張強さが250MPaを超えた。すなわち、200℃で30分の焼鈍で十分に再結晶しなかったため、Cube方位が30%未満となりCopperおよびBrass方位が20%を超え、サイクル寿命が低下した。
In Comparative Example 1, since the final rolling degree was less than 90%, the Cube orientation was less than 30%, and the cycle life was reduced due to fatigue failure of the copper foil.
In Comparative Example 2, since the Ra of the intermediate pass roll was less than 0.02 μm, the oil pit area ratio was less than 3%. As a result, the cycle life decreased due to the peeling of the active material.
In Comparative Example 3, since the Ra of the intermediate pass roll exceeded 0.04 μm, the oil pit area ratio exceeded 20%. As a result, the Copper orientation exceeded 20%, and the cycle life was reduced due to fatigue failure of the copper foil.
In Comparative Example 4, Ra of the intermediate pass roll is further increased beyond 0.04 μm, the oil pit area ratio is further increased, the Copper and Brass orientations are over 20%, and the Cube orientation is less than 30%. The cycle life was significantly reduced.
In Comparative Example 5, since the Ra of the final pass roll was less than 0.07 μm, the Ra of the copper foil surface was less than 0.05 μm, and the cycle life was reduced due to the peeling of the active material.
In Comparative Example 6, since Ra of the final pass roll exceeded 0.14 μm, Ra on the surface of the copper foil exceeded 0.12 μm, and the cycle life decreased due to fatigue failure of the copper foil.
Since Comparative Example 7 had an excessive amount of Ag added to Tufucci Copper, and Comparative Example 8 had an excessive amount of Sn added to oxygen-free copper, the tensile strength after annealing at 200 ° C. for 30 minutes was high. It exceeded 250 MPa. That is, since recrystallization was not sufficiently performed by annealing at 200 ° C. for 30 minutes, the Cube orientation was less than 30%, the Copper and Brass orientations were over 20%, and the cycle life was reduced.

発明例17〜19および比較例9〜11は、異なる箔厚でも、最終圧延における加工度と圧延ロールのRaとの調整により、オイルピット面積率、銅箔試料表面のRa、Cube、CopperおよびBrass各方位の面積率を制御でき、これによりサイクル寿命が向上することを検証したものである。箔厚10μmのときと同様の結果が得られた。   Inventive Examples 17 to 19 and Comparative Examples 9 to 11 have oil pit area ratio, Ra on the copper foil sample surface, Cube, Copper and Brass, by adjusting the degree of processing in the final rolling and the Ra of the rolling roll even at different foil thicknesses. It has been verified that the area ratio in each direction can be controlled, thereby improving the cycle life. Similar results were obtained when the foil thickness was 10 μm.

1:封口板
2:絶縁ガスケット
3:正極リード
4:上部絶縁板
5:正極板
6:負極板
7:セパレータ
8:電池ケース
9:負極リード
10:下部絶縁板
1: Sealing plate 2: Insulating gasket 3: Positive electrode lead 4: Upper insulating plate 5: Positive electrode plate 6: Negative electrode plate 7: Separator 8: Battery case 9: Negative electrode lead 10: Lower insulating plate

Claims (12)

200℃で30分間焼鈍することにより、引張強さが250MPa以下に低下し、200℃で30分間加熱した後に測定したときに、Cube方位{001}<100>面積率が30%以上、Brass方位{110}<112>面積率が20%以下、Copper方位{112}<111>面積率が20%以下なる結晶方位を有し、オイルピットの面積率が3〜20%であり、圧延方向と直交する方向の算術平均粗さRaが0.05〜0.12μmであることを特徴とする、二次電池の負極集電体用銅箔。 By annealing at 200 ° C. for 30 minutes, the tensile strength decreases to 250 MPa or less, and when measured after heating at 200 ° C. for 30 minutes, the Cube orientation {001} <100> area ratio is 30% or more, and the Brass orientation {110} <112> area ratio of 20% or less, has a crystal orientation Copper orientation {112} to <111> area ratio is 20% or less, the area ratio of the oil pit is 3-20%, the rolling direction wherein the orthogonal directions of the arithmetic flat Hitoshiara Ra of a 0.05~0.12Myuemu, the negative electrode current collector foil of the secondary battery. タフピッチ銅または無酸素銅を素材とすることを特徴とする、請求項1に記載の二次電池の負極集電体用銅箔。   The copper foil for a negative electrode current collector of a secondary battery according to claim 1, wherein the material is made of tough pitch copper or oxygen-free copper. Ag、Sn、Cr、Fe、Zn及びZrよりなる群から選択される合金元素の1種又は2種以上を合計で0〜0.1質量%含有し残部が銅及び不可避的不純物からなるタフピッチ銅または無酸素銅を素材とすることを特徴とする、請求項1に記載の二次電池の負極集電体用銅箔。   Tough pitch copper containing 0 to 0.1% by mass in total of one or more alloy elements selected from the group consisting of Ag, Sn, Cr, Fe, Zn and Zr, with the balance being copper and unavoidable impurities 2. The copper foil for a negative electrode current collector of a secondary battery according to claim 1, wherein the material is oxygen-free copper. 引張強さが250MPa以下であり、Cube方位{001}<100>面積率が30%以上、Brass方位{110}<112>面積率が20%以下、Copper方位{112}<111>面積率が20%以下なる結晶方位を有し、オイルピットの面積率が3〜20%であり、圧延方向と直交する方向の算術平均粗さRaが0.05〜0.12μmであることを特徴とする、二次電池の負極集電体用銅箔。 Tensile strength is 250 MPa or less, Cube orientation {001} <100> area ratio is 30% or more, Brass orientation {110} <112> area ratio is 20% or less, Copper orientation {112} <111> area ratio is It has a crystal orientation consisting of 20% or less, 3 to 20 percent the area ratio of the oil pits, and wherein the arithmetic flat Hitoshiara Ra of the direction perpendicular to the rolling direction is 0.05~0.12μm A copper foil for a negative electrode current collector of a secondary battery. タフピッチ銅または無酸素銅を素材とすることを特徴とする、請求項4に記載の二次電池の負極集電体用銅箔。   The copper foil for a negative electrode current collector of a secondary battery according to claim 4, wherein the material is made of tough pitch copper or oxygen-free copper. Ag、Sn、Cr、Fe、Zn及びZrよりなる群から選択される合金元素の1種又は2種以上を合計で0〜0.1質量%含有し残部が銅及び不可避的不純物からなるタフピッチ銅または無酸素銅を素材とすることを特徴とする、請求項4に記載の二次電池の負極集電体用銅箔。   Tough pitch copper containing 0 to 0.1% by mass in total of one or more alloy elements selected from the group consisting of Ag, Sn, Cr, Fe, Zn and Zr, with the balance being copper and unavoidable impurities 5. The copper foil for a negative electrode current collector of a secondary battery according to claim 4, wherein the material is oxygen-free copper. 請求項4〜6のいずれか一項に記載の圧延銅箔より構成される負極集電体。   The negative electrode electrical power collector comprised from the rolled copper foil as described in any one of Claims 4-6. 請求項7に記載の負極集電体の少なくとも片面に、炭素質材料又は黒鉛質材料を主成分とする負極活物質層を有する負極板。   The negative electrode plate which has the negative electrode active material layer which has a carbonaceous material or a graphite material as a main component on the at least single side | surface of the negative electrode collector of Claim 7. 請求項7に記載の負極集電体の少なくとも片面に、金属リチウム、金属すず、すず化合物、けい素単体、及びけい素化合物からなる群から選ばれた少なくとも1種以上を含有する活物質層を有する負極板。   An active material layer containing at least one selected from the group consisting of metallic lithium, metallic tin, a tin compound, a silicon simple substance, and a silicon compound is formed on at least one surface of the negative electrode current collector according to claim 7. A negative electrode plate. 請求項8又は9に記載の負極板が、リチウム遷移金属複合酸化物を正極活物質の主成分とする正極板とセパレータを介して絶縁配置された極板群、非水電解液、並びに該極板群及び該非水電解液を収容する電池ケースとを有する二次電池。   10. A negative electrode plate according to claim 8 or 9, wherein the negative electrode plate group comprises a positive electrode plate having a lithium transition metal composite oxide as a main component of the positive electrode active material and a separator, a non-aqueous electrolyte, and the electrode. A secondary battery having a plate group and a battery case containing the non-aqueous electrolyte. インゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返して、最終冷間圧延で所定厚みに仕上げる工程を含み、該最終冷間圧延において圧延加工度を90%以上とし、最終パスより前の各パスにおいて算術平均粗さRaが0.02〜0.04μmの圧延ロールを用い、最終のパスにおいて圧延材表面の算術平均粗さRaが0.07〜0.14μmの圧延ロールを用いることを特徴とする請求項1〜3のいずれか一項に記載の銅箔の製造方法。   After the ingot is hot-rolled, it includes a step of repeating cold rolling and annealing, and finishing to a predetermined thickness by final cold rolling, with the rolling degree being 90% or more in the final cold rolling, before the final pass A rolling roll having an arithmetic average roughness Ra of 0.02 to 0.04 μm is used in each pass, and a rolling roll having an arithmetic average roughness Ra of 0.07 to 0.14 μm on the surface of the rolled material is used in the final pass. The manufacturing method of the copper foil as described in any one of Claims 1-3 characterized by the above-mentioned. インゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返して、最終冷間圧延で所定厚みに仕上げ、その後熱処理により銅箔を再結晶させる工程を含み、該最終冷間圧延において圧延加工度を90%以上とし、最終パスより前の各パスにおいて算術平均粗さRaが0.02〜0.04μmの圧延ロールを用い、最終のパスにおいて圧延材表面の算術平均粗さRaが0.07〜0.14μmの圧延ロールを用いることを特徴とする請求項4〜6のいずれか一項に記載の銅箔の製造方法。   After the ingot is hot-rolled, it includes a step of repeating cold rolling and annealing, finishing to a predetermined thickness by final cold rolling, and then recrystallizing the copper foil by heat treatment. It is 90% or more, and a rolling roll having an arithmetic average roughness Ra of 0.02 to 0.04 μm is used in each pass before the final pass, and an arithmetic average roughness Ra of the rolled material surface is 0.07 to 0.07 in the final pass. A method for producing a copper foil according to any one of claims 4 to 6, wherein a 0.14 µm rolling roll is used.
JP2011110335A 2011-05-17 2011-05-17 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same Active JP5571616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110335A JP5571616B2 (en) 2011-05-17 2011-05-17 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110335A JP5571616B2 (en) 2011-05-17 2011-05-17 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2012243454A JP2012243454A (en) 2012-12-10
JP5571616B2 true JP5571616B2 (en) 2014-08-13

Family

ID=47464978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110335A Active JP5571616B2 (en) 2011-05-17 2011-05-17 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5571616B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518165B (en) * 2013-09-06 2017-08-18 古河电气工业株式会社 Copper alloy wire and its manufacture method
CN106164306B (en) * 2014-03-31 2020-03-17 古河电气工业株式会社 Copper alloy wire and method for producing same
JP6425404B2 (en) * 2014-04-16 2018-11-21 株式会社Shカッパープロダクツ Copper alloy material for ceramic wiring substrate, ceramic wiring substrate, and method of manufacturing ceramic wiring substrate
DE112016003224T5 (en) 2015-07-17 2018-04-19 Toppan Printing Co., Ltd. METAL MASK SUBSTRATE FOR STEAM SEPARATION, METAL MASK FOR STEAM SEPARATION, PRODUCTION METHOD FOR METAL MASK SUBSTRATE FOR STEAM DISPOSAL, AND METHOD FOR PRODUCING METAL MASK FOR STEAM SEPARATION
CN113403574A (en) 2015-07-17 2021-09-17 凸版印刷株式会社 Base material for metal mask and method for producing same, metal mask for vapor deposition and method for producing same
DE112016003225T5 (en) 2015-07-17 2018-04-19 Toppan Printing Co., Ltd. METAL MASK SUBSTRATE, METAL MASK AND METAL MASK MANUFACTURING METHOD
JP2018028120A (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
JP6611751B2 (en) * 2017-03-31 2019-11-27 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP6442020B1 (en) * 2017-10-12 2018-12-19 福田金属箔粉工業株式会社 Hard rolled copper foil and method for producing the hard rolled copper foil
JP2019175705A (en) * 2018-03-28 2019-10-10 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP7284612B2 (en) 2019-03-28 2023-05-31 Jx金属株式会社 METHOD FOR MANUFACTURING METAL ROLLED SHEET AND METAL PRODUCT
CN112848577A (en) * 2019-11-27 2021-05-28 无锡恩捷新材料科技有限公司 External packing material for high-depth-of-penetration battery device and battery
KR102514891B1 (en) * 2020-06-23 2023-03-28 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Secondary battery and device including the same
JP7042961B1 (en) * 2021-11-17 2022-03-28 Jx金属株式会社 Rolled copper foil for secondary batteries, and secondary battery negative electrodes and secondary batteries using it
WO2024014169A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Copper foil, and copper-clad laminate and flexible printed wiring board each using same
WO2024014170A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminated plate, production method for copper-clad laminated plate, production method for flexible printed circuit, and production method for electronic component
WO2024014171A1 (en) * 2022-07-14 2024-01-18 Jx金属株式会社 Rolled copper foil, copper-clad laminate, method for manufacturing copper-clad laminate, method for manufacturing flexible printed circuit board, and method for manufacturing electronic part

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798260B2 (en) * 2001-05-17 2006-07-19 株式会社神戸製鋼所 Copper alloy for electric and electronic parts and electric and electronic parts
JP4401998B2 (en) * 2005-03-31 2010-01-20 日鉱金属株式会社 High-gloss rolled copper foil for copper-clad laminate and method for producing the same
JP4968533B2 (en) * 2007-11-30 2012-07-04 日立電線株式会社 Copper alloy material for electrical and electronic parts
JP4972115B2 (en) * 2009-03-27 2012-07-11 Jx日鉱日石金属株式会社 Rolled copper foil
JP2011017072A (en) * 2009-07-10 2011-01-27 Furukawa Electric Co Ltd:The Copper alloy material
JP5219952B2 (en) * 2009-07-17 2013-06-26 Jx日鉱日石金属株式会社 Copper foil for lithium-ion battery current collector
JP5525247B2 (en) * 2009-08-04 2014-06-18 株式会社神戸製鋼所 Copper alloy with high strength and excellent bending workability
EP2610359A4 (en) * 2010-08-27 2017-08-02 Furukawa Electric Co., Ltd. Copper alloy sheet and method for producing same

Also Published As

Publication number Publication date
JP2012243454A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5490673B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
US10158119B2 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5722813B2 (en) Electrode copper foil and negative electrode current collector for secondary battery
EP2787563B1 (en) Lithium secondary battery having improved safety and stability
CN105637106B (en) Copper alloy foil
JP5108588B2 (en) Positive electrode plate for secondary battery and manufacturing method thereof
US10122021B2 (en) Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same
JP5329372B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
EP3331072B1 (en) Composition for forming secondary battery cathode, and secondary battery cathode and secondary battery, which are manufactured using same
WO2010071166A1 (en) Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
JP5219973B2 (en) Rolled copper foil excellent in shear workability, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5698196B2 (en) Electrolytic copper foil, and secondary battery current collector and secondary battery using the same
JP2019077891A (en) Rolled copper foil for secondary battery negative electrode power collection body, secondary battery negative electrode and secondary battery using the same, and manufacturing method of rolled copper foil for secondary battery negative electrode power collection body
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
CN112136232A (en) Nonaqueous electrolyte secondary battery
JP2012216285A (en) Nonaqueous electrolyte secondary battery
JP5369120B2 (en) Non-aqueous electrolyte secondary battery positive electrode and method for producing the same, and non-aqueous electrolyte secondary battery including the non-aqueous electrolyte secondary battery positive electrode and method for producing the same
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2014197523A (en) Composite metal oxide, positive electrode for lithium ion secondary battery using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140626

R150 Certificate of patent or registration of utility model

Ref document number: 5571616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250