JP5490761B2 - Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same - Google Patents

Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Download PDF

Info

Publication number
JP5490761B2
JP5490761B2 JP2011191090A JP2011191090A JP5490761B2 JP 5490761 B2 JP5490761 B2 JP 5490761B2 JP 2011191090 A JP2011191090 A JP 2011191090A JP 2011191090 A JP2011191090 A JP 2011191090A JP 5490761 B2 JP5490761 B2 JP 5490761B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
copper foil
area
measurement point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011191090A
Other languages
Japanese (ja)
Other versions
JP2013054866A (en
Inventor
郁也 黒▲崎▼
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011191090A priority Critical patent/JP5490761B2/en
Publication of JP2013054866A publication Critical patent/JP2013054866A/en
Application granted granted Critical
Publication of JP5490761B2 publication Critical patent/JP5490761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池に関する。   The present invention relates to a rolled copper foil for a secondary battery negative electrode current collector, a negative electrode material for a lithium ion secondary battery using the rolled copper foil, and a lithium ion secondary battery.

リチウムイオン二次電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器に多用されている。また、リチウムイオン二次電池は、電気自動車や一般家庭の分散配置型電源といった大型機器の電源としても利用が始められており、他の二次電池と比較して軽量でエネルギー密度が高いことから、各種の電源を必要とする機器で広く使用されている。   Lithium ion secondary batteries have a high energy density and can obtain a relatively high voltage, and are widely used in small electronic devices such as notebook computers, video cameras, digital cameras, and mobile phones. Lithium ion secondary batteries have also begun to be used as power sources for large-scale equipment such as electric vehicles and distributed power sources for general households, and are lighter and have higher energy density than other secondary batteries. Widely used in equipment that requires various power sources.

リチウムイオン二次電池の電極体は一般に、巻回構造又は各電極を積層されたスタック構造を有している。リチウムイオン二次電池の正極は、アルミニウム箔製の集電体とその表面に設けられたLiCoO2、LiNiO2及びLiMn24等のリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔製の集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成されるのが一般的である。 An electrode body of a lithium ion secondary battery generally has a winding structure or a stack structure in which electrodes are stacked. The positive electrode of the lithium ion secondary battery is composed of a current collector made of aluminum foil and a positive electrode active material made of a lithium composite oxide such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 provided on the surface thereof, The negative electrode is generally composed of a negative electrode active material made of a copper foil current collector and carbon or the like provided on the surface thereof.

ところで、電極体を巻回する構造の電池では、充放電に伴う活物質の膨張、収縮により、特に曲率半径が小さくなる巻回構造の内周部分近傍に応力が集中することで、集電体にクラックが生じたり、破断しやすく、電池のサイクル特性を劣化させる原因となる。このような不具合を回避する方法としては、負極集電体である銅箔の伸びを2〜15%に調整することで、破断を防止する方法が開示されている(特許文献1)。   By the way, in a battery having a structure in which an electrode body is wound, a current collector is obtained by concentrating stress in the vicinity of the inner peripheral portion of the wound structure in which the radius of curvature becomes small due to expansion and contraction of the active material accompanying charging and discharging. Cracks are easily generated or broken, causing deterioration of the cycle characteristics of the battery. As a method of avoiding such a problem, a method of preventing breakage by adjusting the elongation of a copper foil as a negative electrode current collector to 2 to 15% is disclosed (Patent Document 1).

特開2000−208149号公報JP 2000-208149 A

しかしながら、本発明者らが検討したところ、伸びの大きい銅箔を負極集電体に用いても、充放電によって銅箔にクラックや破断が発生する場合があることが判明した。詳細に調査した結果、充放電によって活物質が膨張、収縮することにより、集電体である銅箔が繰返しの応力集中を受けることで、疲労により転移セルを形成し、この転移セルが繰返しの応力負荷による疲労の進行に伴って回転することで、結晶粒内の結晶方位に微小な角度差を生じるようになり、やがて破壊に至ることが判明した。ここで、再結晶した銅箔を使用する場合はもとより、未再結晶の銅箔を使用して負極を製造する場合は、集電体である銅箔にスラリーを塗工し、これを乾燥させる熱処理工程において銅箔が再結晶し、再結晶後の銅結晶粒内は、ほぼ均一で微小な角度差もほとんどない。このように作製した負極材を電池に組み込んだ後、充放電による膨張収縮の繰返しにより、銅箔が受ける応力によって結晶方位に角度差が生じ、上記の応力集中によってクラック等が発生することが充放電性能低下の原因となっている。   However, when the present inventors examined, even if it used the copper foil with large elongation for a negative electrode electrical power collector, it turned out that a crack and a fracture | rupture may occur in copper foil by charging / discharging. As a result of detailed investigation, the active material expands and contracts due to charge and discharge, and the copper foil as a current collector is subjected to repeated stress concentration, thereby forming a transition cell due to fatigue. It turns out that by rotating with the progress of fatigue due to stress loading, a minute angle difference is produced in the crystal orientation in the crystal grain, and eventually it breaks. Here, not only when using recrystallized copper foil, but also when manufacturing a negative electrode using non-recrystallized copper foil, slurry is applied to the copper foil that is the current collector and dried. In the heat treatment step, the copper foil is recrystallized, and the recrystallized copper crystal grains have almost uniform and almost no small angle difference. After incorporating the negative electrode material thus fabricated into the battery, the expansion and contraction due to charging and discharging repeatedly causes an angle difference in the crystal orientation due to the stress applied to the copper foil, and cracks and the like are generated due to the above stress concentration. This is a cause of a decrease in discharge performance.

そこで、本発明は、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制される二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することを課題とする。   Accordingly, the present invention provides a rolled copper foil for a secondary battery negative electrode current collector that, when used as a current collector for a lithium ion secondary battery, can effectively suppress the occurrence of cracks and breaks even when charging and discharging are repeated. An object is to provide a negative electrode material for a lithium ion secondary battery and a lithium ion secondary battery using the same.

本発明者らは、鋭意検討の結果、リチウムイオン二次電池の集電体用銅箔として、再結晶焼鈍後に結晶内における結晶方位の角度差が所定の条件を満たすように制御された圧延銅箔を用いることで、充放電を繰返しても集電体のクラックや破断の発生を良好に制御することができることを見出した。   As a result of intensive studies, the present inventors have determined that rolled copper that has been controlled so that the difference in crystal orientation in the crystal after recrystallization annealing satisfies a predetermined condition as a copper foil for a current collector of a lithium ion secondary battery. It has been found that by using the foil, the occurrence of cracks and breakage of the current collector can be well controlled even when charging and discharging are repeated.

以上の知見を基礎として完成した本発明は一側面において、200℃で30分熱処理したときに、結晶の金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
結晶の金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
面積BT/面積AT×100(%) < 20(%)
を満たす二次電池負極集電体用圧延銅箔である。
The present invention completed on the basis of the above knowledge, in one aspect, the crystal orientation obtained by irradiating the measurement point a of the metal structure of the crystal with an electron beam when heat-treated at 200 ° C. for 30 minutes, and the measurement point Centering on the measurement point a where the average value of the azimuth angle difference with the crystal orientation obtained by irradiating the electron beam to a plurality of adjacent measurement points located 200 nm apart from a is less than 0.4 ° The area of the regular hexagon whose distance between the measurement point a and each side is 100 nm is area A, and the total of the areas A is area AT.
The crystal orientation obtained by irradiating an electron beam to the measurement point b of the metallographic structure of the crystal and the electron beam irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. An area of a regular hexagon centered on the measurement point b where the average value of the orientation angle difference with the crystal orientation is not less than 0.4 ° and less than 2.0 °, and the distance between the measurement point b and each side is 100 nm. Is area B, and the total of area B is area BT,
Area BT / Area AT x 100 (%) <20 (%)
It is the rolled copper foil for secondary battery negative electrode collectors which satisfy | fills.

本発明に係る二次電池負極集電体用圧延銅箔の一実施形態においては、JIS−C1100に規格するタフピッチ銅、又は、JIS−C1020に規格する無酸素銅を用いて形成されている。   In one embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, it is formed using tough pitch copper standardized to JIS-C1100 or oxygen-free copper standardized to JIS-C1020.

本発明に係る二次電池負極集電体用圧延銅箔の別の実施形態においては、さらにAgを10〜500質量ppm含む。   In another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, Ag is further contained in an amount of 10 to 500 ppm by mass.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、さらにSnを10〜100質量ppm含む、JIS−C1020に規格する無酸素銅を用いて形成されている。   In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, the rolled copper foil further includes 10 to 100 mass ppm of Sn, and is formed using oxygen free copper standardized to JIS-C1020. .

本発明に係る二次電池負極集電体用圧延銅箔の更に別の実施形態においては、さらにFe、In、Mg、Zn、Si、Ni、Pb、Cr及びZrよりなる群から選択される1種又は2種以上を合計で0〜0.01質量%含む。   In yet another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, 1 is further selected from the group consisting of Fe, In, Mg, Zn, Si, Ni, Pb, Cr and Zr. It contains 0 to 0.01% by mass in total of seeds or two or more kinds.

本発明に係る二次電池負極集電体用圧延銅箔の更に別の一実施形態においては、厚さが5〜20μmである。   In still another embodiment of the rolled copper foil for a secondary battery negative electrode current collector according to the present invention, the thickness is 5 to 20 μm.

本発明は別の一側面において、本発明に係る圧延銅箔を備えたリチウムイオン二次電池用負極材である。   Another aspect of the present invention is a negative electrode material for a lithium ion secondary battery including the rolled copper foil according to the present invention.

本発明は更に別の一側面において、本発明の負極材を備えたリチウムイオン二次電池である。   In still another aspect, the present invention is a lithium ion secondary battery including the negative electrode material of the present invention.

本発明によれば、リチウムイオン二次電池の集電体として用いられたときに、充放電を繰り返してもクラックや破断の発生が良好に抑制される二次電池負極集電体用圧延銅箔、それを用いたリチウムイオン二次電池用負極材及びリチウムイオン二次電池を提供することができる。   According to the present invention, when used as a current collector of a lithium ion secondary battery, the rolled copper foil for a secondary battery negative electrode current collector is satisfactorily suppressed from generating cracks and breaks even after repeated charge and discharge. A negative electrode material for a lithium ion secondary battery and a lithium ion secondary battery using the same can be provided.

圧延銅箔の結晶方位の測定態様を表す模式図である。It is a schematic diagram showing the measurement aspect of the crystal orientation of rolled copper foil.

(圧延銅箔の組成)
二次電池負極集電体用圧延銅箔の材料としては、JIS−C1100に規格するタフピッチ銅、又は、JIS−C1020に規格する無酸素銅が好ましい。これらの組成は純銅に近いため、銅箔の導電率が低下せず、集電体に適する。銅箔に含まれる酸素濃度は、タフピッチ銅の場合は0.01〜0.02質量%、無酸素銅の場合は0.001質量%以下である。
さらに、Agを500質量ppm以下含んでもよく、Snを100質量ppm以下含んでもよい。銅箔にAg又はSnを添加すると、仕上げ圧延後の材料強度が高くなり、材料の取り扱い性が良好となるものの、Agの添加量が500質量ppm、Snの添加量が100質量ppmをそれぞれ超えると、導電率が低下すると共に再結晶温度が上昇し、銅合金の表面酸化を抑えつつ再結晶焼鈍することが困難、あるいは負極材の製造工程で、活物質塗工後の乾燥時に集電体である銅箔が再結晶し難くなる。従って、Agの添加量は500質量ppm以下、Snの添加量は100質量ppm以下がそれぞれ好ましい。なお、AgとSnの添加量の下限は特に限定されないが、通常、合計10ppm以上である。また、AgとSnを同時に添加しても良い。
また、AgやSnを過剰に添加した場合と同様に、銅中の不純物であるFe、In、Mg、Zn、Si、Ni、Pb、Cr及びZrにつき、これらの元素が合計で0.01質量%を超えると、導電率が低下すると共に再結晶温度が上昇してしまうため、これら元素の合計につき0.01質量%以下とするのが好ましい。
ここで、AgはCuよりも酸化しにくいので、タフピッチ銅および無酸素銅のどちらの溶湯中でも添加可能である。ただし、酸素濃度が500質量ppmを超えると酸化銅粒子が増大し、電池の充放電サイクル試験における銅箔の亀裂発生の起点となるなどの悪影響が考えられるため、500質量ppm以下に調整することが好ましい。
また、SnはCuよりも酸化しやすいので、銅箔中で酸化物を形成して電池の充放電サイクル試験における亀裂発生の起点となるなどの悪影響が考えられるため、無酸素銅の溶湯中に添加するのが一般的である。
なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとし、「タフピッチ銅及び無酸素銅」を単独で用いたときにはタフピッチ銅及び無酸素銅をベースとした銅合金箔を含むものとする。
(Composition of rolled copper foil)
As a material of the rolled copper foil for the secondary battery negative electrode current collector, tough pitch copper standardized to JIS-C1100 or oxygen-free copper standardized to JIS-C1020 is preferable. Since these compositions are close to pure copper, the conductivity of the copper foil does not decrease and is suitable for a current collector. The oxygen concentration contained in the copper foil is 0.01 to 0.02% by mass in the case of tough pitch copper, and 0.001% by mass or less in the case of oxygen-free copper.
Furthermore, 500 mass ppm or less of Ag may be included, and 100 mass ppm or less of Sn may be included. When Ag or Sn is added to the copper foil, the material strength after finish rolling is increased, and the handleability of the material is improved, but the addition amount of Ag exceeds 500 mass ppm and the addition amount of Sn exceeds 100 mass ppm. And the conductivity decreases and the recrystallization temperature rises, it is difficult to recrystallize and suppress the surface oxidation of the copper alloy, or the current collector is dried after the active material coating in the negative electrode material manufacturing process It becomes difficult to recrystallize the copper foil. Therefore, the addition amount of Ag is preferably 500 ppm by mass or less, and the addition amount of Sn is preferably 100 ppm by mass or less. In addition, although the minimum of the addition amount of Ag and Sn is not specifically limited, Usually, it is 10 ppm or more in total. Moreover, you may add Ag and Sn simultaneously.
Further, in the same manner as when Ag or Sn is added excessively, the total amount of these elements is 0.01 mass for Fe, In, Mg, Zn, Si, Ni, Pb, Cr and Zr which are impurities in copper. If it exceeds 50%, the electrical conductivity decreases and the recrystallization temperature increases. Therefore, the total amount of these elements is preferably 0.01% by mass or less.
Here, since Ag is harder to oxidize than Cu, it can be added in either a tough pitch copper or oxygen-free copper melt. However, if the oxygen concentration exceeds 500 ppm by mass, the copper oxide particles increase, and adverse effects such as starting of cracking of the copper foil in the battery charge / discharge cycle test can be considered. Is preferred.
In addition, since Sn is easier to oxidize than Cu, adverse effects such as the formation of an oxide in the copper foil and starting cracks in the charge / discharge cycle test of the battery can be considered. It is common to add.
In addition, when the term “copper foil” is used alone in this specification, the copper alloy foil is also included. When “tough pitch copper and oxygen-free copper” is used alone, copper alloy based on tough pitch copper and oxygen-free copper is used. Includes foil.

(圧延銅箔の厚さ)
本発明に用いることのできる圧延銅箔の厚さとしては、5〜20μmが好ましい。銅箔の厚さが5μm未満であると銅箔のハンドリングが悪くなるため、5μm以上が好ましい。箔が厚くなる場合、電池の単位重量あたりのエネルギー密度が低下し、さらに材料のコストも上昇するため、20μm以下が好ましい。
(Rolled copper foil thickness)
As thickness of the rolled copper foil which can be used for this invention, 5-20 micrometers is preferable. When the thickness of the copper foil is less than 5 μm, the handling of the copper foil is deteriorated, and therefore, preferably 5 μm or more. When the foil is thick, the energy density per unit weight of the battery is lowered, and the cost of the material is also increased. Therefore, the thickness is preferably 20 μm or less.

(結晶方位制御)
本発明の圧延銅箔は、リチウムイオン二次電池用負極材用の集電体である銅箔を再結晶させた状態、例えば、銅箔が充分再結晶する条件である200℃で30分熱処理したときに、異なる測定点における結晶方位の方位角度差が下記に示す所定の条件となるように制御されている。当該方位角度差に関する条件について具体的に説明する。
まず、結晶の金属組織の測定点aを決定する。この測定点aは、電子線を照射して得られた結晶方位と、測定点aの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である。また、結晶の金属組織の測定点bを決定する。この測定点bは、電子線を照射して得られた結晶方位と、測定点bの周囲に200nm離間して位置する6点の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である。なお、測定点と隣接測定点の結晶方位との方位角度差が2.0°以上である隣接測定点は結晶粒界であると判定し、上記方位角度差の平均値の算出においては考慮しなかった。そのため、例えば6点の隣接測定点の内、2点が結晶粒界であると判定された場合、測定点に電子線を照射して得られた結晶方位と結晶粒界以外の残りの4点の隣接測定点の結晶方位との方位角度差の平均値が、測定点に電子線を照射して得られた結晶方位と隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値となる。
本発明の圧延銅箔は、200℃で30分熱処理したときに、測定点aを中心とし、測定点aと各辺との距離がそれぞれ100nmである正六角形の面積Aとし、前記面積Aの合計面積ATとし、測定点bを中心とし、測定点bと各辺の距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに
面積BT/面積AT×100(%) < 20(%)
を満たす。
(Crystal orientation control)
The rolled copper foil of the present invention is in a state where a copper foil as a current collector for a negative electrode material for a lithium ion secondary battery is recrystallized, for example, heat treatment at 200 ° C. for 30 minutes, which is a condition for sufficiently recrystallizing the copper foil. In this case, the orientation angle difference between crystal orientations at different measurement points is controlled so as to satisfy the following predetermined conditions. The conditions regarding the azimuth angle difference will be specifically described.
First, the measurement point a of the metal structure of the crystal is determined. This measurement point a includes a crystal orientation obtained by irradiating an electron beam, and a crystal orientation obtained by irradiating an electron beam to six adjacent measurement points located 200 nm apart around the measurement point a. The average value of the azimuth angle differences is less than 0.4 °. Further, the measurement point b of the metal structure of the crystal is determined. The measurement point b includes a crystal orientation obtained by irradiating an electron beam, and a crystal orientation obtained by irradiating an electron beam to six adjacent measurement points located 200 nm apart around the measurement point b. The average value of the azimuth angle differences is 0.4 ° or more and less than 2.0 °. In addition, it is determined that the adjacent measurement point where the azimuth angle difference between the measurement point and the crystal orientation of the adjacent measurement point is 2.0 ° or more is a crystal grain boundary, and is taken into consideration in calculating the average value of the above azimuth angle difference. There wasn't. Therefore, for example, if two of the six adjacent measurement points are determined to be crystal grain boundaries, the crystal orientation obtained by irradiating the measurement points with an electron beam and the remaining four points other than the crystal grain boundaries The average value of the azimuth angle difference from the crystal orientation of the adjacent measurement point is the orientation between the crystal orientation obtained by irradiating the measurement point with the electron beam and the crystal orientation obtained by irradiating the adjacent measurement point with the electron beam. The average value of the angle difference.
When the rolled copper foil of the present invention is heat-treated at 200 ° C. for 30 minutes, the area A is a regular hexagon whose center is the measurement point a and the distance between the measurement point a and each side is 100 nm. The total area is AT, the area of the regular hexagon having the measurement point b as the center and the distance between the measurement point b and each side being 100 nm is defined as area B, and the total of the areas B is defined as area BT / area. AT x 100 (%) <20 (%)
Meet.

図1に、本発明の圧延銅箔の結晶方位の測定態様を表す模式図を示す。まず測定点を決定する。図1では、測定点a又はbを、No.1(以下、測定点1という)と記載している。また、測定点1を中心とし、測定点1と各辺との距離がそれぞれ100nmである正六角形を決定する。隣接測定点(測定点2〜7)は、この測定点1を中心にして、周囲に200nm離間して位置する。そして、測定点1〜7について電子線を照射して得られた結晶方位を測定し、測定点1と、測定点2〜7の方位角度差をそれぞれ求める。このようにして求めた方位角度差の平均値が0.4°未満であるとき、その測定点1を測定点aとし、測定点aを中心とする正六角形の面積を面積Aとする。また、方位角度差の平均値が0.4°以上2.0°未満であるとき、その測定点1を測定点bとし、測定点bを中心とする正六角形の面積を面積Bとする。   In FIG. 1, the schematic diagram showing the measurement aspect of the crystal orientation of the rolled copper foil of this invention is shown. First, the measurement point is determined. In FIG. 1 (hereinafter referred to as measurement point 1). Further, a regular hexagon having the measurement point 1 as the center and the distance between the measurement point 1 and each side being 100 nm is determined. Adjacent measurement points (measurement points 2 to 7) are located around the measurement point 1 and spaced apart by 200 nm. And the crystal orientation obtained by irradiating an electron beam about the measurement points 1-7 is measured, and the azimuth | direction angle difference of the measurement point 1 and the measurement points 2-7 is calculated | required, respectively. When the average value of the azimuth angle differences thus obtained is less than 0.4 °, the measurement point 1 is defined as the measurement point a, and the regular hexagonal area centered on the measurement point a is defined as the area A. Further, when the average value of the azimuth angle difference is 0.4 ° or more and less than 2.0 °, the measurement point 1 is defined as a measurement point b, and the area of a regular hexagon centering on the measurement point b is defined as an area B.

さらに、これらの隣接測定点(測定点2〜7)について、測定点1と同様に、それぞれを中心として各辺との距離がそれぞれ100nmである正六角形を決定する。このように正六角形を順に決定していくと、図1に示すように互いに接し合う複数の正六角形で銅箔の金属組織が埋められていく。そして、各測定点についても上述と同様にして測定点aかbかを判定し、面積A又はBを求める。このようにして銅箔の測定面全体を測定することで得られた各測定点における面積Aの合計を面積ATとし、各測定点における面積Bの合計を面積BTとしたとき、面積BT/面積AT×100(%)<20(%)を満たしている、すなわち、面積ATに対する面積BTが20%未満となっている。疲労前の圧延銅箔において、結晶方位の方位角度差の平均値が0.4°以上2.0°未満である領域の面積が、0.4°未満である領域の面積よりも小さければ小さいほど、耐疲労特性が良好となることを発明者は見出している。この点、本発明の圧延銅箔はこのような構成により0.4°以上2.0°未満である領域の面積BTが0.4°未満である領域の面積ATに対して20%未満と小さいため、良好な耐疲労特性を有している。面積BTは、より好ましくは面積ATに対して15%未満である。   Further, for these adjacent measurement points (measurement points 2 to 7), similarly to the measurement point 1, a regular hexagon whose distance from each side is 100 nm is determined. When the regular hexagons are sequentially determined in this way, the metal structure of the copper foil is filled with a plurality of regular hexagons in contact with each other as shown in FIG. Then, the measurement points a or b are determined for each measurement point in the same manner as described above, and the area A or B is obtained. Thus, when the total area A at each measurement point obtained by measuring the entire measurement surface of the copper foil is defined as area AT and the total area B at each measurement point is defined as area BT, area BT / area AT × 100 (%) <20 (%) is satisfied, that is, the area BT with respect to the area AT is less than 20%. In the rolled copper foil before fatigue, the area of the region where the average value of the crystallographic orientation angle difference is not less than 0.4 ° and less than 2.0 ° is small if it is smaller than the area of the region less than 0.4 °. The inventor has found that the fatigue resistance is improved. In this respect, the rolled copper foil of the present invention has an area BT of the region that is 0.4 ° or more and less than 2.0 °, and is less than 20% with respect to the area AT of the region that is less than 0.4 °. Since it is small, it has good fatigue resistance. The area BT is more preferably less than 15% with respect to the area AT.

上述の結晶方位の測定は、EBSP(Electron BackScattering Pattern)のいわゆるKAM(Kernel Average Misorientation)値で200nmステップによるものが挙げられる。方位角度差が2°以上ある場所は結晶粒界としたため省いている。KAM値はEBSPを測定するステップ間隔により大きく変化するが、ステップ間隔を短くしていくと徐々に変化しなくなり、本発明の圧延銅箔では200nm以下であればほぼ一定の値となる。このため、200nmステップで測定したKAM値を用いることができる。   The measurement of the crystal orientation described above is based on a so-called KAM (Kernel Average Misorientation) value of EBSP (Electron Back Scattering Pattern) in 200 nm steps. Locations with an azimuth angle difference of 2 ° or more are omitted because they are grain boundaries. The KAM value varies greatly depending on the step interval for measuring EBSP, but as the step interval is shortened, the KAM value does not change gradually. In the rolled copper foil of the present invention, the KAM value is almost constant as long as it is 200 nm or less. For this reason, the KAM value measured at 200 nm steps can be used.

(リチウムイオン二次電池用負極材及びリチウムイオン二次電池)
本発明のリチウムイオン二次電池用負極材は、上述の本発明の圧延銅箔を材料とした負極集電体と、その集電体の表面に設けられた負極活物質とを備えている。負極活物質は、例えばカーボン等を主材料とするものを用いることができるが、特に限定されず、リチウムを吸蔵・放出する性質を有するものであればよい。負極集電体の表面に負極活物質を設ける方法としては、公知の方法を用いることが可能である。例えば、一般的な活物質、バインダー及び溶媒(水系バインダーではさらに増粘剤を加える)との混合物からなるスラリーを集電体上に塗布、乾燥する方法に加えて、スパッタリング、蒸着、CVDなどの真空成膜技術、鍍金、ゾルゲル法のような化学的成膜技術、インクジェット、グラビア印刷、スクリーン印刷、スピンコートなどの塗布技術などの多様な手法を採用することができる。
本発明のリチウムイオン二次電池は、正極と、本発明の負極材と、これらの間に介在する多孔質ポリエチレンフィルム等で形成されたセパレータとで構成される電極群を有しており、電極群には、リチウムイオン伝導性を有する電解質が含浸されている。本発明のリチウムイオン二次電池についても、本発明の負極材を用いて公知の方法で作製することができる。
(Anode material for lithium ion secondary battery and lithium ion secondary battery)
The negative electrode material for a lithium ion secondary battery of the present invention includes a negative electrode current collector made of the above-described rolled copper foil of the present invention, and a negative electrode active material provided on the surface of the current collector. As the negative electrode active material, for example, a material mainly composed of carbon or the like can be used. As a method of providing the negative electrode active material on the surface of the negative electrode current collector, a known method can be used. For example, in addition to a method of applying and drying a slurry made of a mixture of a general active material, a binder and a solvent (adding a thickener in the case of an aqueous binder) on a current collector, sputtering, vapor deposition, CVD, etc. Various methods such as vacuum film formation techniques, chemical film formation techniques such as plating and sol-gel methods, and coating techniques such as ink jet, gravure printing, screen printing, and spin coating can be employed.
The lithium ion secondary battery of the present invention has an electrode group composed of a positive electrode, a negative electrode material of the present invention, and a separator formed by a porous polyethylene film or the like interposed therebetween, The group is impregnated with an electrolyte having lithium ion conductivity. The lithium ion secondary battery of the present invention can also be produced by a known method using the negative electrode material of the present invention.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

(実施例1〜20、比較例1〜6)
タフピッチ銅あるいは無酸素銅に表1に記載の元素を添加して作製したインゴットを熱間圧延で厚さ7mmの板に加工し、表面研削で酸化物を取り除いた後、冷間圧延、焼鈍、酸洗を繰り返して、厚さ1.0mmにした。この後、表1記載の厚さまでの冷間圧延を各パスの平均加工度が10%以下となるように表1に記載の条件で冷間圧延を行って加工した。また、0.1mm以下の冷間圧延で1パスの加工度が10%を超えた場合、そのパスの後に80〜120℃で焼鈍した後に次のパスに移った。ここで、「パス」とは、一対のロール間に材料を通過させて所望の厚みに仕上げる操作を示す。例えば、「1パス目」とは、上記の操作で所望の厚みに仕上げる操作における1回目の操作を示す。
なお、各パスの平均加工度は、下記式のように、各パスの加工度の合計をパス回数で除した値とした。
各パスの平均加工度(%)=(1パス目加工度(%)+2パス目加工度(%)+…+最終パス加工度(%))/(パス回数)
仕上げ圧延後、脱脂した銅箔を負極集電体として使用した。なお、実施例15〜18では、銅箔を非酸化性雰囲気中で180℃で60分焼鈍して予め再結晶させた後、これを集電体として用いた。
(Examples 1-20, Comparative Examples 1-6)
An ingot produced by adding the elements shown in Table 1 to tough pitch copper or oxygen-free copper is processed into a 7 mm thick plate by hot rolling, and after removing the oxide by surface grinding, cold rolling, annealing, Pickling was repeated to a thickness of 1.0 mm. Thereafter, cold rolling to the thickness shown in Table 1 was performed by performing cold rolling under the conditions shown in Table 1 so that the average degree of processing in each pass was 10% or less. Moreover, when the workability of 1 pass exceeded 10% by cold rolling of 0.1 mm or less, it moved to the next pass after annealing at 80 to 120 ° C. after that pass. Here, “pass” refers to an operation in which a material is passed between a pair of rolls and finished to a desired thickness. For example, the “first pass” indicates the first operation in the operation of finishing to a desired thickness by the above operation.
Note that the average degree of processing of each pass was a value obtained by dividing the total degree of processing of each pass by the number of passes, as in the following equation.
Average machining degree of each pass (%) = (First pass machining degree (%) + Second pass machining degree (%) + ... + Final pass machining degree (%)) / (Pass number)
After finish rolling, the degreased copper foil was used as a negative electrode current collector. In Examples 15 to 18, the copper foil was annealed at 180 ° C. for 60 minutes in a non-oxidizing atmosphere and recrystallized in advance, and then used as a current collector.

[面積BT/面積AT]
得られた銅箔を、下記の負極材作製後に、活物質が塗工されていない部分を切り出し、電子顕微鏡JEOL FE−SEMを用い、TSL社製の解析ソフトを用いてEBSPをとってKAM値を算出した。これによって銅箔表面の500μm×500μmの範囲を測定し、当該測定面における上述の面積AT及び面積BTを求め、それらを用いて面積ATに対する面積BTの割合を算出した。
[Area BT / Area AT]
For the obtained copper foil, after the preparation of the following negative electrode material, the portion where the active material was not applied was cut out, and the EBSP was taken using the analysis software manufactured by TSL using the electron microscope JEOL FE-SEM, and the KAM value was obtained. Was calculated. Thus, a range of 500 μm × 500 μm on the surface of the copper foil was measured, the above-described area AT and area BT on the measurement surface were obtained, and the ratio of the area BT to the area AT was calculated using them.

[充放電サイクル寿命]
得られた銅箔を負極集電体に用い、定格容量が1Ahの18650サイズの円筒電池型リチウムイオン二次電池を以下の手順で作成し、充放電サイクル寿命を測定した。
負極活物質として平均粒径15μmの天然黒鉛、バインダーとしてPVDFを重量比92:8の比率でNMP(N−メチル−2−ピロリドン)に分散させてスラリーを調整した。このスラリーを銅箔上に塗布後、90℃で30分間乾燥させ、更に120℃で10分乾燥させた。これを銅箔の片面あたり2回繰返し、銅箔両面に負極活物質層を形成した。更に、加圧プレスにより、活物質の密度1.4g/cm3、活物質の厚み80μmの電極を形成した。また、水分を充分蒸発させる目的で、真空中にて200℃で30分間、負極材を乾燥した。
正極活物質としてコバルト酸リチウム(LiCoO2)、バインダーとしてPVDF、導電助剤としてアセチレンブラックを重量比92:4:4の比率でNMPに分散させてスラリーを調整した。このスラリーを厚み20μmのアルミ箔上に塗布後、120℃で30分乾燥させた。これをアルミ箔の片面あたり2回繰返し、アルミ箔両面に正極活物質層を形成した。さらに、加圧プレスにより、活物質の密度3.2g/cm3、活物質の厚み75μmの電極を作製した。
以上のように作製した正極と負極の間に、厚さ20μmの多孔質ポリエチレンフィルムからなるセパレータを介在させた状態で巻回し、電池ケースに収納した。
上記電池ケースの蓋に、正極の電極リードを接続した後、溶媒としてエチレンカーボネートとジエチルカーボネートを体積比2:3、電解質として1mol/LのLiPF6を溶解した非水電解液を電池ケース内に注液し、電池缶の蓋をかしめて封口して円筒型リチウムイオン二次電池を作製した。
[Charge / discharge cycle life]
Using the obtained copper foil as a negative electrode current collector, a 18650 size cylindrical battery type lithium ion secondary battery having a rated capacity of 1 Ah was prepared by the following procedure, and the charge / discharge cycle life was measured.
A slurry was prepared by dispersing natural graphite having an average particle diameter of 15 μm as a negative electrode active material and PVDF as a binder in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 92: 8. The slurry was applied on a copper foil, dried at 90 ° C. for 30 minutes, and further dried at 120 ° C. for 10 minutes. This was repeated twice per side of the copper foil to form negative electrode active material layers on both sides of the copper foil. Furthermore, an electrode having an active material density of 1.4 g / cm 3 and an active material thickness of 80 μm was formed by a pressure press. Further, the negative electrode material was dried at 200 ° C. for 30 minutes in a vacuum for the purpose of sufficiently evaporating moisture.
A slurry was prepared by dispersing lithium cobaltate (LiCoO2) as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive additive in NMP at a weight ratio of 92: 4: 4. The slurry was applied on an aluminum foil having a thickness of 20 μm and then dried at 120 ° C. for 30 minutes. This was repeated twice per side of the aluminum foil to form positive electrode active material layers on both sides of the aluminum foil. Further, an electrode having an active material density of 3.2 g / cm 3 and an active material thickness of 75 μm was produced by a pressure press.
The battery was wound with a separator made of a porous polyethylene film having a thickness of 20 μm interposed between the positive electrode and the negative electrode produced as described above, and stored in a battery case.
After connecting the electrode lead of the positive electrode to the lid of the battery case, a non-aqueous electrolyte solution in which ethylene carbonate and diethyl carbonate as a solvent was dissolved in a volume ratio of 2: 3 and 1 mol / L LiPF6 as an electrolyte was poured into the battery case. Then, the lid of the battery can was crimped and sealed to produce a cylindrical lithium ion secondary battery.

作製した18650サイズの円筒型電池につき、25℃の環境下で充電と放電のサイクルを繰返し、容量維持率を調べた。2回目の充放電を初期容量とし、初期容量に対して放電容量が80%以下に低下するまでの充放電サイクル数につき、100回未満を「×」、100〜300回を「△」、300回を超えたものを「○」としてサイクル特性を評価した。サイクル寿命の評価が○、△であれば実用上問題はない。
充放電条件は、1A定電流で4.2Vまで充電してから4.2Vの定電流で、充電時間が2時間となるまでとし、放電は1Aの定電流で3.0Vまでとした。
The produced 18650 size cylindrical battery was repeatedly charged and discharged in an environment of 25 ° C., and the capacity retention rate was examined. With the second charge / discharge as the initial capacity, the number of charge / discharge cycles until the discharge capacity is reduced to 80% or less of the initial capacity is less than 100 “x”, 100 to 300 times “Δ”, 300 The cycle characteristics were evaluated with “○” as the number exceeding the number of times. If the evaluation of the cycle life is ○ or Δ, there is no practical problem.
The charging / discharging conditions were a constant current of 4.2 A and a charging time of 2 hours after charging to 4.2 V with a constant current of 1 A, and a discharging of 3.0 V with a constant current of 1 A.

得られた結果を表1に示す。なお、表1の組成において、「OFC」及び「TPC」は、それぞれ無酸素銅(JIS−C1020)及びタフピッチ銅(JIS−C1100)を示し、例えば「Ag100ppmTPC」は、タフピッチ銅にAgを100重量ppm添加したものを示す。




















The obtained results are shown in Table 1. In the composition of Table 1, “OFC” and “TPC” indicate oxygen-free copper (JIS-C1020) and tough pitch copper (JIS-C1100), respectively. It shows what added ppm.




















(評価)
実施例1〜14、19、20は、いずれも面積BT/面積ATが20%未満であり、電池のサイクル寿命が良好であった。
実施例15〜18は、負極集電体作製前に、予め再結晶焼鈍した銅箔を使用しているが、いずれについても負極材作製後の面積BT/面積ATが20%未満であり、電池のサイクル寿命が良好であった。
比較例1、2は、厚さ0.1mm以下の圧延時の平均加工度が10%を超えており、さらに、圧延時に1パスの加工度が10%を超えたときに焼鈍を実施していないため、面積BT/面積ATが20%を超えており、電池のサイクル寿命が悪かった。
比較例3は、厚さ0.1mm以下の圧延時の平均加工度が10%以下となっているが、圧延時に1パスの加工度が10%を超えたときに焼鈍を実施していないため、面積BT/面積ATが20%を超えており、電池のサイクル寿命が悪かった。
比較例4は、圧延時に1パスの加工度が10%を超えたときに焼鈍を実施しているが、厚さ0.1mm以下の圧延時の平均加工度が10%を超えているため、面積BT/面積ATが20%を超えており、電池のサイクル寿命が悪かった。
比較例5は、Sn濃度が100質量ppmを超えており、負極の電極作製工程で充分に再結晶しなかったため、面積BT/ATが20%を超えており、電池のサイクル寿命が悪かった。
比較例6は、Ag濃度が500質量ppmを超えており、負極の電極作製工程で充分に再結晶しなかったため、面積BT/ATが20%を超えており、電池のサイクル寿命が悪かった。
(Evaluation)
In each of Examples 1 to 14, 19, and 20, the area BT / area AT was less than 20%, and the cycle life of the battery was good.
Examples 15 to 18 use a copper foil that has been pre-recrystallized and annealed before the preparation of the negative electrode current collector, and in all cases, the area BT / area AT after the production of the negative electrode material is less than 20%, and the battery The cycle life was good.
In Comparative Examples 1 and 2, the average workability during rolling with a thickness of 0.1 mm or less exceeds 10%, and further, annealing is performed when the workability of one pass exceeds 10% during rolling. Therefore, the area BT / area AT exceeded 20%, and the cycle life of the battery was poor.
In Comparative Example 3, the average workability during rolling with a thickness of 0.1 mm or less is 10% or less, but annealing is not performed when the workability of one pass exceeds 10% during rolling. The area BT / area AT exceeded 20%, and the cycle life of the battery was poor.
In Comparative Example 4, annealing is performed when the degree of processing in one pass exceeds 10% during rolling, but the average degree of processing during rolling with a thickness of 0.1 mm or less exceeds 10%. The area BT / area AT exceeded 20%, and the cycle life of the battery was poor.
In Comparative Example 5, the Sn concentration exceeded 100 ppm by mass, and recrystallization was not sufficiently performed in the negative electrode preparation step. Therefore, the area BT / AT exceeded 20%, and the cycle life of the battery was poor.
In Comparative Example 6, since the Ag concentration exceeded 500 ppm by mass and the crystal was not sufficiently recrystallized in the negative electrode preparation process, the area BT / AT exceeded 20%, and the cycle life of the battery was poor.

Claims (8)

200℃で30分熱処理したときに、結晶の金属組織の測定点aに電子線を照射して得られた結晶方位と、前記測定点aの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°未満である前記測定点aを中心とし、前記測定点aと各辺との距離がそれぞれ100nmである正六角形の面積を面積Aとし、前記面積Aの合計を面積ATとし、
結晶の金属組織の測定点bに電子線を照射して得られた結晶方位と、前記測定点bの周囲に200nm離間して位置する複数の隣接測定点に電子線を照射して得られた結晶方位との方位角度差の平均値が0.4°以上2.0°未満である前記測定点bを中心とし、前記測定点bと各辺との距離がそれぞれ100nmである正六角形の面積を面積Bとし、前記面積Bの合計を面積BTとしたときに、
面積BT/面積AT×100(%) < 20(%)
を満たす二次電池負極集電体用圧延銅箔。
When heat-treated at 200 ° C. for 30 minutes, the crystal orientation obtained by irradiating the measurement point a of the crystalline structure of the crystal with an electron beam and a plurality of adjacent measurement points located 200 nm apart around the measurement point a Centering on the measurement point a where the average value of the azimuth angle difference with the crystal orientation obtained by irradiating the electron beam with less than 0.4 ° is the center, and the distance between the measurement point a and each side is 100 nm. The area of a regular hexagon is defined as area A, and the total of the areas A is defined as area AT.
The crystal orientation obtained by irradiating an electron beam to the measurement point b of the metallographic structure of the crystal and the electron beam irradiated to a plurality of adjacent measurement points located 200 nm apart around the measurement point b. An area of a regular hexagon centered on the measurement point b where the average value of the orientation angle difference with the crystal orientation is not less than 0.4 ° and less than 2.0 °, and the distance between the measurement point b and each side is 100 nm. Is area B, and the total of area B is area BT,
Area BT / Area AT x 100 (%) <20 (%)
The rolled copper foil for secondary battery negative electrode collectors which satisfy | fills.
JIS−C1100に規格するタフピッチ銅、又は、JIS−C1020に規格する無酸素銅を用いて形成された請求項1に記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for secondary battery negative electrode collectors of Claim 1 formed using the tough pitch copper specified to JIS-C1100, or the oxygen-free copper specified to JIS-C1020. Agを10〜500質量ppm含む請求項2に記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for secondary battery negative electrode collectors of Claim 2 containing 10-500 mass ppm of Ag. さらにSnを10〜100質量ppm含む、JIS−C1020に規格する無酸素銅を用いて形成された請求項1又は3に記載の二次電池負極集電体用圧延銅箔。   Furthermore, the rolled copper foil for secondary battery negative electrode collectors of Claim 1 or 3 formed using the oxygen-free copper which contains Sn in 10-100 mass ppm and is standardized to JIS-C1020. さらにFe、In、Mg、Zn、Si、Ni、Pb、Cr及びZrよりなる群から選択される1種又は2種以上を合計で0〜0.01質量%含む請求項2〜4のいずれかに記載の二次電池負極集電体用圧延銅箔。   Furthermore, 0-0.01 mass% in total including 1 type, or 2 or more types selected from the group which consists of Fe, In, Mg, Zn, Si, Ni, Pb, Cr, and Zr is included. The rolled copper foil for secondary battery negative electrode collectors of description. 厚さが5〜20μmである請求項1〜5のいずれかに記載の二次電池負極集電体用圧延銅箔。   The rolled copper foil for a secondary battery negative electrode current collector according to any one of claims 1 to 5, having a thickness of 5 to 20 µm. 請求項1〜6のいずれかに記載の圧延銅箔を備えたリチウムイオン二次電池用負極材。   The negative electrode material for lithium ion secondary batteries provided with the rolled copper foil in any one of Claims 1-6. 請求項7に記載の負極材を備えたリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode material according to claim 7.
JP2011191090A 2011-09-01 2011-09-01 Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same Active JP5490761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011191090A JP5490761B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011191090A JP5490761B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2013054866A JP2013054866A (en) 2013-03-21
JP5490761B2 true JP5490761B2 (en) 2014-05-14

Family

ID=48131695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011191090A Active JP5490761B2 (en) 2011-09-01 2011-09-01 Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5490761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887213B2 (en) * 2014-10-10 2021-06-16 Jx金属株式会社 Manufacturing method of rolled copper foil, copper-clad laminate, flexible printed wiring board, electronic equipment and rolled copper foil
JP2018028120A (en) * 2016-08-16 2018-02-22 古河電気工業株式会社 Copper alloy foil
CN111549254A (en) * 2020-04-29 2020-08-18 铜陵有色金属集团股份有限公司金威铜业分公司 Oxygen-free copper-based microalloy and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760668B2 (en) * 1999-04-19 2006-03-29 日立電線株式会社 Secondary battery current collector
JP4743977B2 (en) * 2001-03-07 2011-08-10 株式会社神戸製鋼所 Rolled copper alloy foil and manufacturing method thereof
JP5416077B2 (en) * 2009-12-07 2014-02-12 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5476149B2 (en) * 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability
JP5788225B2 (en) * 2011-05-30 2015-09-30 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment

Also Published As

Publication number Publication date
JP2013054866A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
US20100136434A1 (en) Electrolytic Copper Foil for Lithium Rechargeable Battery and Process for Producing the Copper Foil
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
JP4366451B1 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP6849817B2 (en) Cathode for secondary battery, its manufacturing method and lithium secondary battery manufactured using this
KR20160002364A (en) Solid state lithium secondary battery and method for producing the same
JP2010043333A (en) Aluminum foil for positive electrode collector
JP5496139B2 (en) Copper foil and secondary battery using the same
JP2013001982A (en) Rolled copper foil
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5369120B2 (en) Non-aqueous electrolyte secondary battery positive electrode and method for producing the same, and non-aqueous electrolyte secondary battery including the non-aqueous electrolyte secondary battery positive electrode and method for producing the same
JP2010027304A (en) Aluminum foil for positive current collector
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2020179515A1 (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
KR102003342B1 (en) Copper foil for negative electrode current collector of lithium secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
WO2021100272A1 (en) Secondary battery and method for producing same
CN115336073A (en) Method for manufacturing lithium secondary battery and method for charging lithium secondary battery
JP2013001983A (en) Rolled copper foil
JP4145061B2 (en) Method for producing electrode for lithium secondary battery
CN116387457A (en) Battery cell and battery
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250