JP5496139B2 - Copper foil and secondary battery using the same - Google Patents

Copper foil and secondary battery using the same Download PDF

Info

Publication number
JP5496139B2
JP5496139B2 JP2011070213A JP2011070213A JP5496139B2 JP 5496139 B2 JP5496139 B2 JP 5496139B2 JP 2011070213 A JP2011070213 A JP 2011070213A JP 2011070213 A JP2011070213 A JP 2011070213A JP 5496139 B2 JP5496139 B2 JP 5496139B2
Authority
JP
Japan
Prior art keywords
copper foil
less
copper
work hardening
oil film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011070213A
Other languages
Japanese (ja)
Other versions
JP2012201965A (en
Inventor
黒▲崎▼郁也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011070213A priority Critical patent/JP5496139B2/en
Publication of JP2012201965A publication Critical patent/JP2012201965A/en
Application granted granted Critical
Publication of JP5496139B2 publication Critical patent/JP5496139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池などの二次電池の集電体として好適な銅箔及びそれを用いた二次電池に関する。   The present invention relates to a copper foil suitable as a current collector of a secondary battery such as a lithium ion secondary battery and a secondary battery using the copper foil.

リチウムイオン二次電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有し、ノートパソコン、ビデオカメラ、デジタルカメラ、携帯電話等の小型電子機器用に多用されている。また、リチウムイオン二次電池は、電気自動車や一般家庭の分散配置型電源といった大型機器の電源としても利用が始められており、他の二次電池と比較して軽量でエネルギー密度が高いことから、各種の電源を必要とする機器で広く使用されている。   Lithium ion secondary batteries have a high energy density and can obtain a relatively high voltage, and are widely used for small electronic devices such as notebook computers, video cameras, digital cameras, and mobile phones. Lithium ion secondary batteries have also begun to be used as power sources for large-scale equipment such as electric vehicles and distributed power sources for general households, and are lighter and have higher energy density than other secondary batteries. Widely used in equipment that requires various power sources.

リチウムイオン二次電池の電極体は一般に、巻回構造又は各電極を積層されたスタック構造を有している。リチウムイオン二次電池の正極は、アルミニウム箔製の集電体とその表面に設けられたLiCoO2、LiNiO2及びLiMn24等のリチウム複合酸化物を材料とする正極活物質から構成され、負極は銅箔製の集電体とその表面に設けられたカーボン等を材料とする負極活物質から構成されるのが一般的である。 An electrode body of a lithium ion secondary battery generally has a winding structure or a stack structure in which electrodes are stacked. The positive electrode of the lithium ion secondary battery is composed of a current collector made of aluminum foil and a positive electrode active material made of a lithium composite oxide such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 provided on the surface thereof, The negative electrode is generally composed of a negative electrode active material made of a copper foil current collector and carbon or the like provided on the surface thereof.

ところで、特に電極体を巻回する構造の電池では、充放電に伴う電極の膨張、収縮により、集電体にクラックが生じたり、破断しやすい。このため、負極集電体である銅箔の伸びを2〜15%に調整することで、破断を防止する方法が開示されている(特許文献1)。   By the way, especially in a battery having a structure in which an electrode body is wound, the current collector is easily cracked or easily broken due to expansion and contraction of the electrode accompanying charging and discharging. For this reason, the method of preventing a fracture | rupture is disclosed by adjusting elongation of the copper foil which is a negative electrode collector to 2 to 15% (patent document 1).

特開2000−208149号公報JP 2000-208149 A

しかしながら、本発明者らが検討したところ、伸びの大きい銅箔を電池の負極集電体に用いても、充放電によって集電体にクラックや破断が発生する場合があることが判明した。
すなわち、本発明は、二次電池の集電体に用いた場合に充放電によるクラックや破断の発生を防止した銅箔及びそれを用いた二次電池の提供を目的とする。
However, when the present inventors examined, even if it used copper foil with large elongation for the negative electrode collector of a battery, it became clear that a collector and a crack may generate | occur | produce by charging / discharging.
That is, an object of the present invention is to provide a copper foil that prevents the occurrence of cracks and breaks due to charge and discharge when used as a current collector of a secondary battery, and a secondary battery using the copper foil.

本発明者は、銅箔の加工硬化指数(n値)が、二次電池の充放電サイクル寿命に影響することを見出した。
すなわち、本発明は、
(1)厚み5〜30μmであり、加工硬化指数が0.3以上0.45以下で、かつI(220)/I(200)が0.11以下であり、JIS−C1100に規格するタフピッチ銅又はJIS−C1020に規格する無酸素銅からなる銅箔、
(2)厚み5〜30μmであり、350℃で0.5時間焼鈍後に、加工硬化指数が0.3以上0.45以下となり、かつI(220)/I(200)が0.11以下となり、JIS−C1100に規格するタフピッチ銅又はJIS−C1020に規格する無酸素銅からなる銅箔、
(3)半軟化温度が150℃以下である(1)又は(2)に記載の銅箔、
(4)gを500質量ppm以下、及び/又はSnを100質量ppm以下含有し、かつこれらの合計添加量を500質量ppm以下とする(1)〜(3)のいずれかに記載の銅箔、
(5)最終冷間圧延時の総加工度を85%以上とし、かつ前記最終冷間圧延における最終3パスでの油膜当量を以下の条件として圧延してなる(1)〜()のいずれかに記載の銅箔、
最終パスの2つ前の油膜当量;25000以下、最終パスの1つ前の油膜当量;30000以下、最終パスの油膜当量;35000以下
(6)(1)〜()のいずれかに記載の銅箔を集電体として用いた二次電池、
である。

The present inventor has found that the work hardening index (n value) of the copper foil affects the charge / discharge cycle life of the secondary battery.
That is, the present invention
(1) a thickness of 5 to 30 [mu] m, work hardening index at 0.3 to 0.45, and I (220) / I (200) is Ri der 0.11, the tough pitch copper or JIS-C1020 to standards JIS-C1100 Rudohaku such from oxygen-free copper to standard,
(2) and a thickness 5 to 30 [mu] m, after 0.5 hours annealing at 350 ° C., work hardening coefficient becomes 0.3 to 0.45, and I (220) / I (200) Ri is Do 0.11 or less, standards JIS-C1100 Rudohaku such oxygen-free copper to standards tough pitch copper or JIS-C1020 to,
(3) The copper foil according to (1) or (2) , wherein the semi-softening temperature is 150 ° C. or lower,
(4) the A g 500 ppm by mass or less, and / or contain Sn than 100 mass ppm, and copper according to any one of the total amount of these is less 500 ppm by weight (1) ~ (3) Foil,
(5) Any one of (1) to ( 4 ), wherein the total degree of work at the time of final cold rolling is 85% or more, and the oil film equivalent in the final three passes in the final cold rolling is rolled under the following conditions: Crab copper foil,
Oil film equivalent before the final pass; 25000 or less, oil film equivalent before the final pass; 30000 or less, oil film equivalent of the final pass; 35000 or less
(6) A secondary battery using the copper foil according to any one of (1) to ( 5 ) as a current collector,
It is.

本発明によれば、二次電池の集電体に用いた場合に充放電によるクラックや破断の発生を防止した銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, when it uses for the collector of a secondary battery, the copper foil which prevented generation | occurrence | production of the crack by a charging / discharging and a fracture | rupture is obtained.

以下、本発明の実施形態に係る銅箔について説明する。なお、特に説明しない限り、%は質量%を表す。   Hereinafter, the copper foil which concerns on embodiment of this invention is demonstrated. Unless otherwise specified,% represents mass%.

(加工硬化指数(n値))
本発明の銅箔は、加工硬化指数が0.3以上0.45以下である。
銅箔を二次電池の集電体に用いた場合に、銅箔の伸びでなく、加工硬化指数(n値)が二次電池の充放電サイクル寿命(充放電による集電体の破断やクラック)に影響する理由は以下のように考えられる。
まず、とりわけ電極体を巻回する構造の電池(円筒電池等)では、電極体を構成する負極集電体である銅箔が巻き取られて屈曲した状態で電池内に保持されている。そして、充放電によって集電体上の活物質層の膨張・収縮が繰り返されると、集電体である銅箔も変形するが、特に集電体の曲げ部が不均一に変形すると破断やクラックが発生し易い。
ここで、加工硬化指数は、材料の加工硬化挙動を示す値の1つであり、この値が大きいほど材料は加工硬化しやすい性質を持つ。材料は引張変形を受けると局部的にくびれを起こして破断するが、加工硬化係数が大きい材料では、くびれを起こした部分が加工硬化し、くびれ部が変形しにくくなる。そのため、変形し難いくびれ部に代わって、それ以外の部分が変形しはじめる。これを繰り返すことで、材料全体が均等に変形する。一方、伸びはそのような状況を考慮せずにマクロ的に捕らえた指標なので、伸びが大きいものでも加工硬化指数が大きいとは限らず、上記した集電体の曲げ部が均一に変形するか否かの指標とならない。
(Work hardening index (n value))
The copper foil of the present invention has a work hardening index of 0.3 or more and 0.45 or less.
When copper foil is used as a current collector for a secondary battery, the work hardening index (n value) is not the elongation of the copper foil but the charge / discharge cycle life of the secondary battery (the current collector breaks or cracks due to charge / discharge) ) Is considered as follows.
First, particularly in a battery (such as a cylindrical battery) having a structure in which an electrode body is wound, a copper foil, which is a negative electrode current collector constituting the electrode body, is wound and bent and held in the battery. When the active material layer on the current collector is repeatedly expanded and contracted by charging and discharging, the copper foil as the current collector is also deformed. Is likely to occur.
Here, the work hardening index is one of the values indicating the work hardening behavior of the material, and the larger the value, the easier the material is to work harden. When the material is subjected to tensile deformation, the material is locally constricted and fractured. However, in a material having a large work hardening coefficient, the constricted portion is work hardened and the constricted portion is hardly deformed. Therefore, instead of the constricted portion that is difficult to deform, other portions begin to deform. By repeating this, the entire material is uniformly deformed. On the other hand, elongation is an index that is captured macroscopically without taking such circumstances into consideration. Therefore, even if the elongation is large, the work hardening index is not always large, and whether the bent portion of the current collector is uniformly deformed. It is not an indicator of whether or not.

そこで、本発明者らは、銅箔の加工硬化指数(n値)を規定することで、二次電池の充放電サイクル寿命を向上させることに成功した。
加工硬化指数(n値)は、降伏点以上の塑性変形域における応力とひずみとの関係を、以下の式1(Hollomonの式)で近似した場合の指数nで表される。
[真応力]=[材料定数]×[真ひずみ]n (1)
加工硬化指数は値が大きいほど局所変形が起こりにくく、変形を行ったときに破断しにくい。
Then, the present inventors succeeded in improving the charge / discharge cycle life of the secondary battery by defining the work hardening index (n value) of the copper foil.
The work hardening index (n value) is represented by an index n when the relationship between stress and strain in the plastic deformation region above the yield point is approximated by the following formula 1 (Hollomon formula).
[True stress] = [material constant] × [true strain] n (1)
As the work hardening index is larger, local deformation is less likely to occur and is less likely to break when deformed.

銅箔の加工硬化指数が0.3以上であると、銅箔を集電体に用いて充放電サイクルを繰り返した際に、銅箔に局所変形が起こりにくく、巻回された曲げ部全体で変形を担うので、銅箔が破断しにくい。但し、加工硬化指数が0.45を超える材料は、焼鈍後の強度が低く、取り扱い性が悪化するので好ましくない。   When the copper foil has a work hardening index of 0.3 or more, when the copper foil is used as a current collector and the charge / discharge cycle is repeated, local deformation of the copper foil hardly occurs, and the entire bent portion is not deformed. Because it bears, copper foil is hard to break. However, a material having a work hardening index exceeding 0.45 is not preferable because the strength after annealing is low and the handleability deteriorates.

(厚み)
なお、従来、構造部材のような厚みのある材料の絞り加工において、材料全体の均等な変形のしやすさの指標である加工硬化指数が用いられた例はあるが、銅箔のように薄い材料は絞り加工などの加工を行わないので、加工硬化指数を指標に用いることはなかった。
このようなことから、本発明の銅箔の厚みを5〜30μmに規定する。
(Thickness)
Conventionally, there is an example in which a work hardening index, which is an index of the ease of uniform deformation of the entire material, is used in drawing a thick material such as a structural member, but it is as thin as a copper foil. Since the material is not subjected to processing such as drawing, the work hardening index was not used as an index.
For this reason, the thickness of the copper foil of the present invention is specified to be 5 to 30 μm.

又、銅箔の厚みが5〜30μmと比較的薄い場合、材料表面に面した結晶粒の割合が多くなるため、変形によって導入された転位は結晶粒界に蓄積せず、材料表面から解放される割合が高くなる。このため銅箔の加工硬化指数は、比較的厚い材料に比べて低くなる。一方、加工硬化指数は、変形によって材料中に導入される転位の量と、転位の移動し易さとによって決まる。つまり、転位ループの発生源となるような析出物や、転位の移動を妨げる固溶元素及び結晶粒界が存在すると加工硬化指数は大きくなる。しかしながら、転位の移動を大きく妨げる程度の固溶元素や、析出物を生成しうる程度の合金元素の添加は導電率の低下を招くため、電池集電体として好ましくない。   Also, when the copper foil thickness is relatively thin, 5-30 μm, the ratio of crystal grains facing the material surface increases, so dislocations introduced by deformation do not accumulate at the crystal grain boundaries and are released from the material surface. The ratio becomes higher. For this reason, the work hardening index of copper foil becomes low compared with a comparatively thick material. On the other hand, the work hardening index is determined by the amount of dislocations introduced into the material by deformation and the ease of movement of dislocations. That is, the work hardening index increases if there are precipitates that can cause dislocation loops, solid solution elements that hinder the movement of dislocations, and grain boundaries. However, the addition of a solid solution element that greatly hinders the movement of dislocations or an alloy element that can generate a precipitate causes a decrease in electrical conductivity, which is not preferable as a battery current collector.

(組成)
そこで、本発明の銅箔は、JIS-C1100に規格するタフピッチ銅又はJIS-C1020に規格する無酸素銅を組成とすることが好ましい。上記した純銅に近い組成とすると、銅箔の導電率が低下せず、電池集電体に適する。銅箔に含まれる酸素濃度は、タフピッチ銅の場合は0.01〜0.05質量%、無酸素銅の場合は0.001質量%以下である。
さらに、Agを500質量ppm以下、及び/又はSnを100質量ppm以下含有し、かつこれらの合計添加量を500質量ppm以下としてもよい。銅箔にAg又はSnを添加すると、仕上げ圧延後の材料強度が高くなり、材料の取り扱い性が良好となる。銅箔へのAgとSnの合計添加量が500質量ppmを超えると、導電率が低下すると共に再結晶温度が上昇し、最終焼鈍において銅箔の表面酸化を抑えつつ再結晶焼鈍することが困難になる場合がある。なお、AgとSnの合計添加量の下限は特に規定しないが、通常、合計10質量ppm以上である。
(composition)
Therefore, the copper foil of the present invention preferably has a composition of tough pitch copper standardized to JIS-C1100 or oxygen-free copper standardized to JIS-C1020. If it is set as the composition close | similar to the above-mentioned pure copper, the electrical conductivity of copper foil will not fall and it is suitable for a battery electrical power collector. The oxygen concentration contained in the copper foil is 0.01 to 0.05% by mass in the case of tough pitch copper, and 0.001% by mass or less in the case of oxygen-free copper.
Furthermore, it is good also as Ag containing 500 mass ppm or less and / or 100 mass ppm or less of Sn, and making these total addition amount into 500 mass ppm or less. When Ag or Sn is added to the copper foil, the material strength after finish rolling is increased, and the handleability of the material is improved. If the total amount of Ag and Sn added to the copper foil exceeds 500 ppm by mass, the conductivity will decrease and the recrystallization temperature will rise, making it difficult to recrystallize while suppressing the surface oxidation of the copper foil in the final annealing. It may become. In addition, although the minimum in particular of the total addition amount of Ag and Sn is not prescribed | regulated, it is usually 10 mass ppm or more in total.

本発明の銅箔の加工硬化指数を上記範囲に調整する方法としては、最終冷間圧延時の総加工度を85%以上とし、かつ最終冷間圧延における最終3パスでの油膜当量を所定の条件として圧延することが挙げられる。
上記したように、多量の添加元素を用いて加工硬化指数を大きくすることは導電率を低下させる点で好ましくないことから、添加元素によらず、変形方向に対するすべり面の角度を制御することにより、加工硬化指数を大きくするこができることを本発明者らは見出した。
ここで、変形により印加される応力によって材料はすべり変形を起こすが、このときに複数の等価なすべり面が活動することにより加工硬化が増大する。このことを利用して、導電性を損なわずに加工硬化指数を高めることができる。
つまり、具体的には、銅箔の最終冷間圧延における最終3パスでの油膜当量を以下の条件として圧延する。
最終パスの2つ前の油膜当量;25000以下、最終パスの1つ前の油膜当量;30000以下、最終パスの油膜当量;35000以下
As a method of adjusting the work hardening index of the copper foil of the present invention to the above range, the total degree of work at the time of final cold rolling is 85% or more, and the oil film equivalent in the final three passes in the final cold rolling is a predetermined value. An example of the condition is rolling.
As described above, it is not preferable to increase the work hardening index using a large amount of additive elements in terms of lowering the conductivity. Therefore, by controlling the angle of the sliding surface with respect to the deformation direction regardless of the additive elements. The present inventors have found that the work hardening index can be increased.
Here, the material undergoes slip deformation due to the stress applied by the deformation, and at this time, work hardening increases due to the action of a plurality of equivalent slip surfaces. By utilizing this fact, the work hardening index can be increased without impairing electrical conductivity.
That is, specifically, the oil film equivalent in the final three passes in the final cold rolling of the copper foil is rolled under the following conditions.
Oil film equivalent before the final pass; 25000 or less, oil film equivalent before the final pass; 30000 or less, oil film equivalent of the final pass; 35000 or less

なお、材料厚みが薄くなると油膜当量は大きくなる傾向にあるため、最終3パスにおける油膜当量の値は徐々に大きくなる。そこで、それぞれ厚みの異なる最終3パスについて、上記範囲に油膜当量を設定する必要がある。
例えば、最終冷間圧延において圧延油粘度と材料降伏応力が全パスで等しいとすると、油膜当量は、(圧延速度)/(噛み込み角)に比例する。そして、材料厚みが薄くなると噛み込み角は小さくなるため、最終パスに近づくほど油膜当量は大きくなる傾向にある。また生産性を保つためには、材料長さの長い最終パスに近づくほど圧延速度を上げる必要があり、これによっても最終パスに近づくほど油膜当量は大きくなる傾向にある。この場合、最終冷間圧延における最終パスの2つ前のパスおよび1つ前のパスでの油膜当量が35000より大きくなると、最終パスで油膜当量のみを低く抑えても充分な効果を得ることができない。このようなことから、最終冷間圧延における最終3パスにおける油膜当量を上記範囲に管理している。
さらに、油膜当量を低減するために、最終冷間圧延における最終パスの圧延加工度を25%以上にするのが良い。
Since the oil film equivalent tends to increase as the material thickness decreases, the oil film equivalent value in the final three passes gradually increases. Therefore, it is necessary to set the oil film equivalent in the above range for the last three passes having different thicknesses.
For example, if the rolling oil viscosity and the material yield stress are equal in all passes in the final cold rolling, the oil film equivalent is proportional to (rolling speed) / (engagement angle). And, since the biting angle becomes smaller as the material thickness becomes thinner, the oil film equivalent tends to increase as it approaches the final pass. In order to maintain productivity, it is necessary to increase the rolling speed as the material passes closer to the final pass, and the oil film equivalent tends to increase as the material approaches the final pass. In this case, if the oil film equivalent in the second pass and the previous pass in the final cold rolling is greater than 35000, sufficient effects can be obtained even if only the oil film equivalent is kept low in the final pass. Can not. For this reason, the oil film equivalent in the final three passes in the final cold rolling is controlled within the above range.
Furthermore, in order to reduce the oil film equivalent, the rolling degree of the final pass in the final cold rolling is preferably 25% or more.

なお、上記油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm)×(ロール噛込角;rad)}
圧延油粘度は4.0〜8.0cSt程度、圧延速度200〜600m/分、ロールの噛込角は例えば0.0005〜0.005rad、好ましくは0.001〜0.04radとすることができる。
The oil film equivalent is represented by the following formula.
(Oil film equivalent) = {(rolling oil viscosity, kinematic viscosity at 40 ° C .; cSt) × (rolling speed; m / min)} / {(yield stress of material; kg / mm 2 ) × (roll biting angle; rad )}
The rolling oil viscosity is about 4.0 to 8.0 cSt, the rolling speed is 200 to 600 m / min, and the biting angle of the roll is, for example, 0.0005 to 0.005 rad, preferably 0.001 to 0.04 rad.

(I(220)/I(200))
本発明の実施形態に係る銅箔において、圧延面のX線回折を行ったとき、それぞれ(220)面及び(200)面の強度の積分値(I)の比I(220)/I(200)が0.11以下である。
純銅型の銅の再結晶集合組織は、表面方向に(200)面が向くことが特徴であるが、このとき圧延方向及び圧延直角方向にも(200)面が向く。一般に銅箔を曲げる場合は、圧延方向(RD)又は圧延直角方向(TD)に曲げ軸を取るが、このとき銅箔にかかる変形によって銅の主すべり面である{111}面が多重すべりを生じ、高い加工硬化指数が得られる。一方、(200)面以外の結晶方位である(220)面の配向度が高くなると、充分な多重すべりが起こらず、高い加工硬化指数が得られない。以上から、 (200)面の配向度が高く、かつ、(220)面の配向度が低くなる、すなわち、その比I(220)/I(200)が低くなると良く、その比が0.11以下であるのが好ましい。
ここで、純銅型の銅の再結晶集合組織は、ND方向(圧延面法線方向)、RD方向、TD方向の各方向に{001}方位を向けることから、曲げ方向であるRD方向、TD方向を代用して測定の容易なND方向の(200)面回折強度を指標として用いる。
(I (220) / I (200))
In the copper foil according to the embodiment of the present invention, when the X-ray diffraction of the rolled surface was performed, the ratio I (220) / I (200) of the integral value (I) of the intensity of the (220) plane and (200) plane, respectively. ) Is 0.11 or less.
The recrystallized texture of pure copper type copper is characterized in that the (200) plane faces in the surface direction, and at this time, the (200) plane also faces in the rolling direction and the direction perpendicular to the rolling. In general, when bending copper foil, the bending axis is taken in the rolling direction (RD) or the perpendicular direction to rolling (TD). At this time, the deformation on the copper foil causes the {111} surface, which is the main sliding surface of copper, to undergo multiple sliding. Resulting in a high work hardening index. On the other hand, when the degree of orientation of the (220) plane, which is a crystal orientation other than the (200) plane, increases, sufficient multiple slip does not occur and a high work hardening index cannot be obtained. From the above, the degree of orientation of the (200) plane is high and the degree of orientation of the (220) plane is low, that is, the ratio I (220) / I (200) is preferably low, and the ratio is 0.11 or less. Preferably there is.
Here, since the recrystallized texture of pure copper type copper has the {001} direction in each of the ND direction (rolling surface normal direction), the RD direction, and the TD direction, Instead of the direction, the (200) plane diffraction intensity in the ND direction, which is easy to measure, is used as an index.

又、加工硬化指数を規定範囲に調整するため、焼鈍によって充分に再結晶組織を得る必要がある。再結晶が不十分の場合には、加工硬化指数を上記範囲に調整することが難しいことから、銅箔の半軟化温度を150℃以下にすることが好ましい。充分に再結晶組織を得るためには、銅箔の組成と加工度を調整して再結晶温度を適切に管理する必要があるが、銅箔の組成と加工度を上記範囲に規定すれば、再結晶温度が130〜200℃程度となり、半軟化温度を150℃以下とすることができる。
ここで、未再結晶組織は加工ひずみが残留しており、すでに加工硬化しているために曲げ変形による加工硬化がしにくく、加工硬化指数が小さくなり、曲げ性が悪くなる。加工硬化指数を大きな値にするには、銅箔を集電体として活物質を塗布後に乾燥加熱した状態が加工硬化してない状態、すなわち加工歪が除去された状態である必要がある。言い換えれば、活物質の塗布及び乾燥過程で銅箔は熱処理を受けるが、その熱処理により歪が除去され、再結晶することが必要となる。そして、銅箔の半軟化温度が150℃以下であれば、活物質の塗布及び乾燥過程で受ける程度の熱処理によっても銅箔の再結晶が期待でき、加工硬化指数を大きくすることができる。
Moreover, in order to adjust the work hardening index to a specified range, it is necessary to obtain a recrystallized structure sufficiently by annealing. When recrystallization is insufficient, it is difficult to adjust the work hardening index within the above range, and therefore, the semi-softening temperature of the copper foil is preferably 150 ° C. or lower. In order to sufficiently obtain a recrystallized structure, it is necessary to adjust the composition and processing degree of the copper foil and appropriately control the recrystallization temperature, but if the copper foil composition and the processing degree are defined in the above range, The recrystallization temperature is about 130 to 200 ° C., and the semi-softening temperature can be 150 ° C. or less.
Here, the non-recrystallized structure has a work strain remaining, and since it has already been work hardened, it is difficult to work harden by bending deformation, the work hardening index becomes small, and the bendability deteriorates. In order to increase the work hardening index, it is necessary that the state of drying and heating after applying the active material with the copper foil as the current collector is not work hardened, that is, the state where the work strain is removed. In other words, the copper foil undergoes a heat treatment during the application and drying process of the active material, but the strain is removed by the heat treatment and recrystallization is required. And if the semi-softening temperature of copper foil is 150 degrees C or less, recrystallization of copper foil can be anticipated also by the heat processing received to the extent of application | coating of an active material and a drying process, and a work hardening index | exponent can be enlarged.

なお、本発明の銅箔としては、既に熱処理等がされて加工硬化指数及びI(220)/I(200)が上記範囲であるものの他、350℃で0.5時間焼鈍後の加工硬化指数及びI(220)/I(200)が上記範囲となる未再結晶の銅箔も含む。ここで、350℃で0.5時間焼鈍は、銅箔への活物質の塗工後の乾燥工程の加熱を模したものであり、特に、活物質として充放電による膨張、収縮が大きい合金系材料を用いる場合にはバインダーとして一般にポリイミド系が用いられ、この時の銅箔集電体に活物質を塗工した後の加熱条件を模したためである。なお、焼鈍は非酸化性雰囲気にて行なうのが好ましい。
さらに、250℃で0.5時間焼鈍後の加工硬化指数についても0.3以上0.45以下であることが好ましい。これは、活物質として黒鉛系活物質を用いる場合には、銅箔集電体に活物質を塗工した後の加熱温度が一般に250℃以下程度であるからである。
ここで、加熱によって銅箔が再結晶すると加工硬化指数が大きくなるため、350℃より低温の250℃で加工硬化指数が0.3以上であれば、350℃でも加工硬化指数が0.3以上となる。
In addition, as the copper foil of the present invention, the work hardening index and I (220) / I (200) that have already been heat-treated and the like are in the above range, and the work hardening index and I after annealing at 350 ° C. for 0.5 hour. Also included is an unrecrystallized copper foil in which (220) / I (200) is in the above range. Here, annealing at 350 ° C. for 0.5 hours imitates the heating in the drying process after the application of the active material to the copper foil. In particular, an alloy material that has a large expansion and contraction due to charge and discharge as the active material is used. This is because polyimide is generally used as a binder when used, and the heating conditions after applying an active material to the copper foil current collector at this time are simulated. The annealing is preferably performed in a non-oxidizing atmosphere.
Further, the work hardening index after annealing at 250 ° C. for 0.5 hour is preferably 0.3 or more and 0.45 or less. This is because when a graphite-based active material is used as the active material, the heating temperature after applying the active material to the copper foil current collector is generally about 250 ° C. or less.
Here, when the copper foil is recrystallized by heating, the work hardening index increases. Therefore, if the work hardening index is 0.3 or more at 250 ° C. lower than 350 ° C., the work hardening index is 0.3 or more even at 350 ° C.

本発明の銅箔を、二次電池の集電体(特に負極集電体)に用いると好ましい。
本発明の銅箔が適用される二次電池としては特に限定されないが、好ましくはリチウムイオン二次電池を用いることができる。リチウムイオン二次電池としては負極に金属リチウムを使用する電池の他、金属リチウムを電池内に含まずに電解質中のリチウムイオンが電気伝導を担う電池が含まれる。リチウムイオン二次電池の負極活物質としては、限定的ではないが、炭素、珪素、スズ、ゲルマニウム、鉛、アンチモン、アルミニウム、インジウム、リチウム、酸化珪素、酸化スズ、チタン酸リチウム、窒化リチウム、インジウムを固溶した酸化スズ、あるいはこれら2種類以上を組み合わせた合金等が挙げられる。
二次電池としては、電極体(負極と正極とをセパレータで挟んだもの)を巻回した構造又は各電極体を積層したスタック構造が挙げられる。
The copper foil of the present invention is preferably used for a current collector (particularly a negative electrode current collector) of a secondary battery.
Although it does not specifically limit as a secondary battery to which the copper foil of this invention is applied, Preferably a lithium ion secondary battery can be used. The lithium ion secondary battery includes a battery that uses metallic lithium for the negative electrode, and a battery that does not contain metallic lithium in the battery and that is responsible for electrical conduction by lithium ions in the electrolyte. The negative electrode active material of the lithium ion secondary battery is not limited, but carbon, silicon, tin, germanium, lead, antimony, aluminum, indium, lithium, silicon oxide, tin oxide, lithium titanate, lithium nitride, indium Or a combination of two or more of them.
Examples of the secondary battery include a structure in which an electrode body (a structure in which a negative electrode and a positive electrode are sandwiched between separators) is wound, or a stack structure in which each electrode body is stacked.

本発明の銅箔は、例えば、電気銅に必要に応じて合金元素を添加してインゴット(通常、厚み100〜300mm)を鋳造し、このインゴットを熱間圧延した後(通常、熱間圧延後の厚み5〜20mm)、冷間圧延と焼鈍を繰り返し、さらに最終冷間圧延で所定の厚みに仕上げて製造することができる。   The copper foil of the present invention is obtained by, for example, adding an alloying element to electrolytic copper as necessary, casting an ingot (usually 100 to 300 mm in thickness), and hot rolling the ingot (usually after hot rolling) 5 to 20 mm), and cold rolling and annealing are repeated, and the final cold rolling is finished to a predetermined thickness.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。
(実施例1)
[銅箔の製造]
無酸素銅(JIS−C1020:表1で「OFC」と表示)又はタフピッチ銅(JIS−C1100:表1で「TPC」と表示)を溶解し、必要に応じてAg又はSnを表1に示す量投入して厚さ20mm、幅60mmのインゴットを鋳造し、熱間圧延により10mmまで圧延した。
次に、焼鈍と冷間圧延を繰り返して表1の厚みまで圧延して銅箔を得た。なお、軟化温度を調整するため、最終冷間圧延時の総加工度を85%以上とし、かつ表面粗さを低減するために、表面が平滑(ロール軸方向でRa≦0.1μm)なロールを用いて最終冷間圧延した。最終冷間圧延の圧延油粘度を4.0〜8.0cSt程度とし、圧延速度200〜600m/分、ロールの噛込角0.003〜0.03radの範囲で調整し、最終冷間圧延における最終3パスでの油膜当量を、最終パスの2つ前の油膜当量;25000以下、最終パスの1つ前の油膜当量;30000以下、最終パスの油膜当量; 35000以下となるようにした。
EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.
Example 1
[Manufacture of copper foil]
Oxygen-free copper (JIS-C1020: indicated as “OFC” in Table 1) or tough pitch copper (JIS-C1100: indicated as “TPC” in Table 1) is dissolved, and Ag or Sn is indicated in Table 1 as necessary. An ingot having a thickness of 20 mm and a width of 60 mm was cast by casting the amount, and rolled to 10 mm by hot rolling.
Next, annealing and cold rolling were repeated and rolled to the thickness shown in Table 1 to obtain a copper foil. In order to adjust the softening temperature, the total workability during final cold rolling should be 85% or more, and in order to reduce the surface roughness, a roll with a smooth surface (Ra ≦ 0.1μm in the roll axis direction) should be used. Used for final cold rolling. The final cold rolling oil viscosity is about 4.0 to 8.0 cSt, the rolling speed is adjusted to 200 to 600 m / min, and the roll bite angle is 0.003 to 0.03 rad, and the oil film in the final three passes in the final cold rolling. The equivalent oil film equivalent was 25000 or less before the final pass; 25000 or less, the oil film equivalent immediately before the final pass; 30000 or less, the oil film equivalent of the final pass; 35000 or less.

<加工硬化指数>
得られた銅箔を、それぞれ250℃×0.5時間、及び350℃×0.5時間で非酸化性雰囲気にて焼鈍した後に引張試験(JIS−Z2241に準拠)を行い、加工硬化指数を求めた。なお、加工硬化指数は、材料が降伏した後の均一伸びと応力とを用いて求める必要があるため、伸び2%から最大応力点までの値を用いた。そして、測定した伸び及び応力から求めた真ひずみと、真応力との両対数グラフを最小自乗法で近似し、グラフの傾きから加工硬化指数を求めた。真ひずみと真応力は以下の式で求めた。
[真ひずみ]=ln(1+[ひずみ])
[真応力]=(1+[真ひずみ])×[応力]
<Work hardening index>
The obtained copper foil was annealed in a non-oxidizing atmosphere at 250 ° C. for 0.5 hour and 350 ° C. for 0.5 hour, respectively, and then subjected to a tensile test (based on JIS-Z2241) to obtain a work hardening index. Note that the work hardening index needs to be obtained using the uniform elongation and stress after the material yields, so the value from the elongation of 2% to the maximum stress point was used. Then, a logarithmic graph of true strain and true stress obtained from the measured elongation and stress was approximated by the method of least squares, and a work hardening index was obtained from the slope of the graph. True strain and true stress were determined by the following formulas.
[True strain] = ln (1+ [Strain])
[True stress] = (1+ [true strain]) x [stress]

<半軟化温度>
得られた銅箔を、それぞれ100〜400℃×0.5時間で非酸化性雰囲気にて焼鈍した後に引張試験を行い、熱処理条件に対する強度(引張り強さ)を求めた。焼鈍後の強度が、圧延上がり(焼鈍前)の強度と、完全に軟化(400℃で30分間焼鈍)した状態の強度の中間の値となる焼鈍温度を、半軟化温度とした。
<Semi-softening temperature>
The obtained copper foil was annealed in a non-oxidizing atmosphere at 100 to 400 ° C. for 0.5 hour, respectively, and then a tensile test was performed to determine the strength (tensile strength) against the heat treatment conditions. The annealing temperature at which the strength after annealing was an intermediate value between the strength after rolling (before annealing) and the strength after being completely softened (annealed at 400 ° C. for 30 minutes) was defined as the semi-softening temperature.

<I(220)/I(200)>
得られた銅箔を、350℃×0.5時間および250℃×0.5時間で非酸化性雰囲気にて焼鈍した後,圧延面のX線回折を行い、それぞれ(220)面及び(200)面の回折ピーク強度の積分値(I)を求めた。
<I (220) / I (200)>
The obtained copper foil was annealed in a non-oxidizing atmosphere at 350 ° C. for 0.5 hours and 250 ° C. for 0.5 hours, and then subjected to X-ray diffraction on the rolled surface, and the (220) plane and (200) plane, respectively. The integral value (I) of the diffraction peak intensity was determined.

[充放電サイクル寿命]
得られた銅箔を負極集電体に用い、定格容量が1Ahの18650サイズの円筒電池型リチウムイオン二次電池を以下の手順で作製し、充放電サイクル寿命を測定した。
(1)負極活物質として平均粒径15μmの天然黒鉛、バインダーとしてPVDFを重量比92:8の比率でNMP(N-メチル-2-ピロリドン)に分散させてスラリーを調製した。このスラリーを銅箔上に塗布後、90℃で30分間乾燥させ、さらに120℃で10分乾燥させた。これを銅箔の片面あたり2回繰返し、銅箔両面に負極活物質層を形成した。さらに、加圧プレスにより、活物質の密度1.4g/cm3、活物質の厚み80μmの電極を形成した。
(2)正極活物質としてコバルト酸リチウム(LiCoO2)、バインダーとしてPVDF、導電助剤としてアセチレンブラックを重量比92:4:4の比率でNMPに分散させてスラリーを調製した。このスラリーを厚み20μmのアルミ箔上に塗布後、120℃で30分乾燥させた。これをアルミ箔の片面あたり2回繰返し、アルミ箔両面に正極活物質層を形成した。さらに、加圧プレスにより、活物質の密度3.2g/cm3、活物質の厚み75μmの電極を作製した。
(3)以上のように作製した正極と負極の間に、厚さ20μmの多孔質ポリエチレンフィルムからなるセパレータを介在させた状態で巻回し、電池ケースに収納した。
(4)上記電池ケースの蓋に、正極の電極リードを接続した後、溶媒としてエチレンカーボネートとジエチルカーボネートを体積比2:3、電解質として1mol/LのLiPF6を溶解した非水電解液を電池ケース内に注液し、電池缶の蓋をかしめて封口して円筒型リチウムイオン二次電池を作製した。
[Charge / discharge cycle life]
Using the obtained copper foil as a negative electrode current collector, a 18650 size cylindrical battery type lithium ion secondary battery having a rated capacity of 1 Ah was prepared by the following procedure, and the charge / discharge cycle life was measured.
(1) A slurry was prepared by dispersing natural graphite having an average particle diameter of 15 μm as a negative electrode active material and PVDF as a binder in NMP (N-methyl-2-pyrrolidone) at a weight ratio of 92: 8. The slurry was applied on a copper foil, dried at 90 ° C. for 30 minutes, and further dried at 120 ° C. for 10 minutes. This was repeated twice per side of the copper foil to form negative electrode active material layers on both sides of the copper foil. Furthermore, an electrode having an active material density of 1.4 g / cm 3 and an active material thickness of 80 μm was formed by a pressure press.
(2) A slurry was prepared by dispersing lithium cobaltate (LiCoO 2) as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive additive in NMP at a weight ratio of 92: 4: 4. The slurry was applied on an aluminum foil having a thickness of 20 μm and then dried at 120 ° C. for 30 minutes. This was repeated twice per side of the aluminum foil to form positive electrode active material layers on both sides of the aluminum foil. Furthermore, an electrode having an active material density of 3.2 g / cm 3 and an active material thickness of 75 μm was produced by a pressure press.
(3) It wound with the separator which consists of a 20-micrometer-thick porous polyethylene film interposed between the positive electrode produced as mentioned above, and the negative electrode, and accommodated in the battery case.
(4) After connecting the electrode lead of the positive electrode to the lid of the battery case, a non-aqueous electrolyte solution in which ethylene carbonate and diethyl carbonate are dissolved in a volume ratio of 2: 3 as a solvent and 1 mol / L LiPF6 is dissolved as an electrolyte is used in the battery case. The solution was poured into the inside, and the lid of the battery can was crimped and sealed to produce a cylindrical lithium ion secondary battery.

作製した18650サイズの円筒型電池につき、25℃の環境下で充電と放電のサイクルを繰り返し、容量維持率を調べた。2回目の充放電を初期容量とし、初期容量に対して放電容量が80%以下に低下するまでの充放電サイクル数につき、100回未満を「×」、100〜300回を「△」、300回を超えたものを「○」としてサイクル特性を評価した。サイクル寿命の評価が○、△であれば実用上問題はない。
充放電条件は、1A定電流で4.2Vまで充電してから4.2Vの定電流で、充電時間が2時間となるまでとし、放電は1Aの定電流で、3.0Vまでとした。
With respect to the produced 18650 size cylindrical battery, the cycle of charging and discharging was repeated in an environment of 25 ° C., and the capacity retention rate was examined. With the second charge / discharge as the initial capacity, the number of charge / discharge cycles until the discharge capacity is reduced to 80% or less of the initial capacity is less than 100 “x”, 100 to 300 times “Δ”, 300 The cycle characteristics were evaluated with “○” as the number exceeding the number of times. If the evaluation of the cycle life is ○ or Δ, there is no practical problem.
The charge / discharge conditions were a constant current of 1A and a constant current of 4.2V until the charging time was 2 hours, and a constant current of 1A and a discharge of 3.0V.

得られた結果を表1に示す。なお、表1の組成において、OFC及びTPCは、それぞれ無酸素銅及びタフピッチ銅(JIS H3100)を示し、Ag100ppmTPCは、タフピッチ銅にAgを100質量ppm添加したものを示す。   The obtained results are shown in Table 1. In the composition of Table 1, OFC and TPC indicate oxygen-free copper and tough pitch copper (JIS H3100), respectively, and Ag100 ppm TPC indicates that 100 mass ppm of Ag is added to tough pitch copper.

Figure 0005496139
Figure 0005496139

表1から明らかなように、350℃で0.5時間焼鈍後の加工硬化指数が0.3以上、かつI(220)/I(200)が0.11以下である実施例1〜14の場合、充放電サイクル寿命に優れたものとなった。また、実施例15〜17は、負極スラリーを集電体に塗工する前に、予め250℃で30分間焼鈍し、再結晶させたものであり、加工硬化指数が0.3以上、かつI(220)/I(200)が0.11以下であるため、充放電サイクル寿命に優れたものとなった。   As is clear from Table 1, in the case of Examples 1 to 14 where the work hardening index after annealing at 350 ° C. for 0.5 hour is 0.3 or more and I (220) / I (200) is 0.11 or less, the charge / discharge cycle life It was excellent. In Examples 15 to 17, before the negative electrode slurry was applied to the current collector, it was previously annealed at 250 ° C. for 30 minutes and recrystallized, and the work hardening index was 0.3 or more, and I (220 ) / I (200) is 0.11 or less, the charge / discharge cycle life is excellent.

一方、最終冷間圧延時の総加工度を85%未満とした比較例2、3、4の場合、350℃で0.5時間焼鈍後の加工硬化指数が0.3未満となり、充放電サイクル寿命が劣化した。
又、銅箔中のSnの添加量が100質量ppmを超えた比較例1の場合、350℃で0.5時間焼鈍後の加工硬化指数が0.3未満となり、充放電サイクル寿命が劣化した。これは、半軟化温度が150℃を超えたためと考えられる。
最終冷間圧延における最終3パスでの油膜当量として、最終パスの1つ前の油膜当量;30000を超え、最終パスの油膜当量が35000を超えた比較例5の場合、加工硬化指数が0.45を超え、負極集電体に用いる際に銅箔にシワが発生して活物質の塗布ができず、充放電サイクル寿命の試験が行えなかった。
On the other hand, in Comparative Examples 2, 3, and 4 in which the total degree of work during the final cold rolling was less than 85%, the work hardening index after annealing at 350 ° C. for 0.5 hour was less than 0.3, and the charge / discharge cycle life was deteriorated. .
Further, in the case of Comparative Example 1 in which the amount of Sn added in the copper foil exceeded 100 mass ppm, the work hardening index after annealing at 350 ° C. for 0.5 hour was less than 0.3, and the charge / discharge cycle life was deteriorated. This is presumably because the semi-softening temperature exceeded 150 ° C.
As the oil film equivalent in the final three passes in the final cold rolling, in the case of Comparative Example 5 in which the oil film equivalent of the previous one of the final pass exceeds 30000 and the oil film equivalent of the final pass exceeds 35000, the work hardening index is 0.45. When used for the negative electrode current collector, wrinkles were generated in the copper foil, and the active material could not be applied, and the charge / discharge cycle life test could not be performed.

Claims (6)

厚み5〜30μmであり、加工硬化指数が0.3以上0.45以下で、かつI(220)/I(200)が0.11以下であり、
JIS−C1100に規格するタフピッチ銅又はJIS−C1020に規格する無酸素銅からなる銅箔。
And a thickness of 5 to 30 [mu] m, work hardening index at 0.3 to 0.45, and I (220) / I (200 ) is Ri der 0.11 or less,
Rudohaku such oxygen-free copper to standards tough pitch copper or JIS-C1020 standards to JIS-C1100.
厚み5〜30μmであり、350℃で0.5時間焼鈍後に、加工硬化指数が0.3以上0.45以下となり、かつI(220)/I(200)が0.11以下となり、
JIS−C1100に規格するタフピッチ銅又はJIS−C1020に規格する無酸素銅からなる銅箔。
And a thickness of 5 to 30 [mu] m, after 0.5 hours annealing at 350 ° C., work hardening coefficient becomes 0.3 to 0.45, and I (220) / I (200 ) Ri is Do 0.11 or less,
Rudohaku such oxygen-free copper to standards tough pitch copper or JIS-C1020 standards to JIS-C1100.
半軟化温度が150℃以下である請求項1又は2に記載の銅箔。 The copper foil according to claim 1 or 2, wherein the semi-softening temperature is 150 ° C or lower. さらに、Agを500質量ppm以下、及び/又はSnを100質量ppm以下含有し、かつこれらの合計添加量を500質量ppm以下とする請求項1〜3のいずれかに記載の銅箔。 Furthermore, the copper foil in any one of Claims 1-3 which contains Ag 500 mass ppm or less and / or Sn 100 mass ppm or less, and makes these total addition amounts 500 mass ppm or less . 最終冷間圧延時の総加工度を85%以上とし、かつ前記最終冷間圧延における最終3パスでの油膜当量を以下の条件として圧延してなる請求項1〜4のいずれかに記載の銅箔。  The copper according to any one of claims 1 to 4, wherein the total degree of work at the time of final cold rolling is 85% or more, and the oil film equivalent in the final three passes in the final cold rolling is rolled under the following conditions. Foil.
最終パスの2つ前の油膜当量;25000以下、最終パスの1つ前の油膜当量;30000以下、最終パスの油膜当量;35000以下    Oil film equivalent before the final pass; 25000 or less, oil film equivalent before the final pass; 30000 or less, oil film equivalent of the final pass; 35000 or less
請求項1〜5のいずれかに記載の銅箔を集電体として用いた二次電池。  A secondary battery using the copper foil according to claim 1 as a current collector.
JP2011070213A 2011-03-28 2011-03-28 Copper foil and secondary battery using the same Active JP5496139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070213A JP5496139B2 (en) 2011-03-28 2011-03-28 Copper foil and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070213A JP5496139B2 (en) 2011-03-28 2011-03-28 Copper foil and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2012201965A JP2012201965A (en) 2012-10-22
JP5496139B2 true JP5496139B2 (en) 2014-05-21

Family

ID=47183271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070213A Active JP5496139B2 (en) 2011-03-28 2011-03-28 Copper foil and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5496139B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5882932B2 (en) * 2012-11-06 2016-03-09 Jx金属株式会社 Rolled copper foil, surface-treated copper foil and laminate
JP6039868B2 (en) * 2012-12-27 2016-12-07 株式会社Uacj製箔 Method for producing negative electrode current collector for secondary battery
JP2016036829A (en) * 2014-08-07 2016-03-22 Jx日鉱日石金属株式会社 Rolled copper foil, and secondary battery power collector using the same
JP6476227B2 (en) * 2017-03-31 2019-02-27 Jx金属株式会社 Copper or copper alloy strip, traverse coil and manufacturing method thereof
JP7093317B2 (en) 2019-02-06 2022-06-29 Jx金属株式会社 Traverse coil and its manufacturing method
CN114447340A (en) * 2020-11-06 2022-05-06 松山湖材料实验室 Anti-cracking copper foil and battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310864A (en) * 1998-04-28 1999-11-09 Kobe Steel Ltd Copper foil excellent in adhesive property to coating layer
JP4716520B2 (en) * 2007-03-30 2011-07-06 Jx日鉱日石金属株式会社 Rolled copper foil
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
JP5575632B2 (en) * 2010-12-17 2014-08-20 株式会社Shカッパープロダクツ Method for producing copper foil for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2012201965A (en) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5571616B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
JP5496139B2 (en) Copper foil and secondary battery using the same
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
WO2012086448A1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP2011216463A (en) Rolled copper foil, and negative electrode collector, negative electrode plate and secondary battery using the same
WO2012086447A1 (en) Aluminum alloy foil for electrode current collectors and manufacturing method thereof
JP5345974B2 (en) Rolled copper alloy foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP2013001982A (en) Rolled copper foil
KR20140138912A (en) Aluminum alloy foil for electrode current collector and method for manufacturing same
JP5416077B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
WO2020179515A1 (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP6058915B2 (en) Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP5143208B2 (en) Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2015030893A (en) Copper alloy foil and secondary battery negative electrode
JP2016018653A (en) Negative electrode current collector, nonaqueous electrolyte battery negative electrode, and nonaqueous electrolyte battery
JP2013001983A (en) Rolled copper foil
JP2023178071A (en) Rolled copper foil for secondary batteries, and secondary battery negative electrode and method for producing secondary battery using the same
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil
JP2019175705A (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140304

R150 Certificate of patent or registration of utility model

Ref document number: 5496139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250