JP5320638B2 - Rolled copper foil and method for producing the same - Google Patents
Rolled copper foil and method for producing the same Download PDFInfo
- Publication number
- JP5320638B2 JP5320638B2 JP2008112476A JP2008112476A JP5320638B2 JP 5320638 B2 JP5320638 B2 JP 5320638B2 JP 2008112476 A JP2008112476 A JP 2008112476A JP 2008112476 A JP2008112476 A JP 2008112476A JP 5320638 B2 JP5320638 B2 JP 5320638B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- rolled copper
- measurement
- rolled
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 248
- 239000011889 copper foil Substances 0.000 title claims abstract description 203
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 239000010949 copper Substances 0.000 claims abstract description 173
- 239000013078 crystal Substances 0.000 claims abstract description 124
- 238000005097 cold rolling Methods 0.000 claims abstract description 86
- 238000000137 annealing Methods 0.000 claims abstract description 78
- 238000000984 pole figure measurement Methods 0.000 claims abstract description 54
- 238000001953 recrystallisation Methods 0.000 claims abstract description 51
- 229910052802 copper Inorganic materials 0.000 claims abstract description 45
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 40
- 230000001747 exhibiting effect Effects 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 79
- 238000005096 rolling process Methods 0.000 claims description 79
- 230000008569 process Effects 0.000 claims description 68
- 238000005259 measurement Methods 0.000 claims description 60
- 238000012545 processing Methods 0.000 claims description 24
- 238000005452 bending Methods 0.000 description 41
- 230000000052 comparative effect Effects 0.000 description 41
- 239000000463 material Substances 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 239000004744 fabric Substances 0.000 description 7
- 238000005482 strain hardening Methods 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001028 reflection method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Images
Landscapes
- Metal Rolling (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、圧延銅箔に関し、特に、フレキシブルプリント配線板等の可撓性配線部材に好適な優れた屈曲特性を有する圧延銅箔に関するものである。 The present invention relates to a rolled copper foil, and more particularly to a rolled copper foil having excellent bending characteristics suitable for a flexible wiring member such as a flexible printed wiring board.
フレキシブルプリント配線板(Flexible Printed Circuit、以下、FPCと称す)は、厚みが薄く可撓性に優れる特長から、電子機器等への実装形態における自由度が高い。そのため、現在では、折り畳み式携帯電話の折り曲げ部・デジタルカメラ・プリンターヘッドなどの可動部、ならびに、HDD (Hard Disk Drive)やDVD (Digital Versatile Disc),CD (Compact Disk)など、ディスク関連機器の可動部の配線等にFPCが広く用いられている。 A flexible printed circuit (hereinafter referred to as “FPC”) has a high degree of freedom in mounting on an electronic device or the like because of its thin thickness and excellent flexibility. For this reason, the folding parts of foldable mobile phones, movable parts such as digital cameras and printer heads, and disk-related equipment such as HDD (Hard Disk Drive), DVD (Digital Versatile Disc), and CD (Compact Disk) are now available. FPC is widely used for wiring of movable parts.
FPCの導電体としては、種々の表面処理が施された純銅箔または銅合金箔(以下、単に「銅箔」という)が一般的に用いられている。銅箔は、その製造方法の違いにより、電解銅箔と圧延銅箔に大別される。FPCは、前述のように繰り返し可動する部分の配線材として用いられることから優れた屈曲特性(例えば、100万回以上の屈曲特性)が要求され、銅箔としては圧延銅箔が使用されることが多い。 As the FPC conductor, pure copper foil or copper alloy foil (hereinafter simply referred to as “copper foil”) subjected to various surface treatments is generally used. Copper foils are roughly classified into electrolytic copper foils and rolled copper foils depending on the manufacturing method. FPC is used as a wiring material for parts that can be repeatedly moved as described above, and therefore excellent bending characteristics (for example, bending characteristics of 1 million times or more) are required, and rolled copper foil is used as the copper foil. There are many.
一般的に、圧延銅箔の製造は、原材料となるタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)の鋳塊に熱間圧延を施した後、所定の厚さまで冷間圧延と中間焼鈍を繰り返し施すことによって行われる。FPC用の圧延銅箔に要求される厚さは、通常、50μm以下であるが、最近では十数μm以下と更に薄くなる傾向にある。 In general, rolled copper foil is manufactured by hot rolling an ingot of tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020), which is a raw material, and then cold rolling to a predetermined thickness. It is performed by repeatedly performing intermediate annealing. The thickness required for the rolled copper foil for FPC is usually 50 μm or less, but recently, it has a tendency to be further reduced to a dozen μm or less.
FPCの製造工程は、概略的に、「FPC用銅箔と、ポリイミドなどの樹脂からなるベースフィルム(基材)とを貼り合わせてCCL (Copper Claded Laminate)を形成する工程(CCL工程)」と、「該CCLにエッチング等の手法により回路配線を形成する工程」と、「該回路上に配線保護のための表面処理を行う工程」などから構成されている。CCL工程には、接着剤を介して銅箔と基材を積層した後、熱処理により接着剤を硬化して密着させる(3層CCL)方法と、接着剤を介さず、表面処理の施された銅箔を基材に直接張り合わせた後、加熱・加圧により一体化する(2層CCL)方法の2種類がある。 The manufacturing process of FPC is roughly as follows: "Copper for FPC and base film (base material) made of resin such as polyimide are bonded to form CCL (Copper Claded Laminate) (CCL process)" , “A step of forming a circuit wiring on the CCL by a technique such as etching”, “a step of performing a surface treatment for protecting the wiring on the circuit”, and the like. In the CCL process, after laminating the copper foil and the base material via an adhesive, the adhesive was cured and adhered by heat treatment (three-layer CCL), and the surface treatment was applied without using the adhesive. There are two types of methods in which a copper foil is directly bonded to a substrate and then integrated by heating and pressing (two-layer CCL).
ここで、FPCの製造工程においては、製造の容易性の観点から冷間圧延加工上がり(加工硬化した硬質な状態)の銅箔が用いられることが多い。銅箔が焼鈍された(軟化した)状態にあると、銅箔の裁断や基材との積層時に銅箔の変形(例えば、伸び、しわ、折れ、等)が生じ易く、製品不良になりやすいためである。 Here, in the manufacturing process of the FPC, a copper foil that has been cold-rolled (hardened after work hardening) is often used from the viewpoint of ease of manufacturing. When the copper foil is in an annealed (softened) state, the copper foil is likely to be deformed (for example, stretched, wrinkled, broken, etc.) during the cutting of the copper foil or the lamination with the base material, resulting in a defective product. Because.
一方、銅箔の屈曲特性は、再結晶焼鈍を行うことにより、圧延加工上がりの状態よりも著しく向上する。そこで、上述のCCL工程における基材と銅箔とを密着・一体化させるための熱処理で、銅箔の再結晶焼鈍を兼ねる製造方法が一般的に選択されている。なお、このときの熱処理条件は、180〜300℃で1〜60分間(代表的には200℃で30分間)であり、銅箔は再結晶組織に調質した状態となる。 On the other hand, the bending characteristics of the copper foil are remarkably improved as compared with the state after the rolling process by performing recrystallization annealing. Therefore, a manufacturing method that also serves as recrystallization annealing of the copper foil is generally selected in the heat treatment for bringing the base material and the copper foil into close contact and integration in the above-described CCL process. The heat treatment conditions at this time are 180 to 300 ° C. for 1 to 60 minutes (typically 200 ° C. for 30 minutes), and the copper foil is tempered into a recrystallized structure.
FPCの屈曲特性を高めるためには、その素材となる圧延銅箔の屈曲特性を高めることが有効である。また、一般的に、再結晶焼鈍後の銅箔の屈曲特性は、立方体集合組織が発達するほど向上することが知られている。なお、一般に言われている「立方体集合組織が発達」とは、圧延面において{200}Cu面の占有率が高いこと(例えば、85%以上)のみを意味する。 In order to improve the bending characteristics of FPC, it is effective to increase the bending characteristics of the rolled copper foil as the material. In general, it is known that the bending characteristics of a copper foil after recrystallization annealing improve as the cubic texture develops. Note that “cubic texture development” generally referred to only means that the occupancy of the {200} Cu surface is high (for example, 85% or more) on the rolled surface.
従来、屈曲特性に優れた圧延銅箔やその製造方法として、次のようなものが報告されている。最終冷間圧延工程の総加工度を高くすること(例えば、90%以上)によって立方体集合組織を発達させる方法、および再結晶焼鈍後の立方体集合組織の発達度合を規定した銅箔(例えば、圧延面のX線回折で求めた(200)面の強度が粉末X線回折で求めた(200)面の強度の20倍より大きい銅箔)。最終冷間圧延工程前の中間焼鈍の際に立方体集合組織を発達させておき、最終冷間圧延工程の総加工度を93%以上にして再結晶後の立方体集合組織を更に発達させる方法。銅箔板厚方向の貫通結晶粒の割合を規定した銅箔(例えば、断面面積率で40%以上が貫通結晶粒である銅箔)。微量添加元素の添加により軟化温度を制御した銅箔(例えば、120〜150℃の半軟化温度に制御した銅箔)。双晶境界の長さを規定した銅箔(例えば、長さ5μmを超える双晶境界が1mm2の面積あたり合計長さ20 mm以下である銅箔)。微量添加元素の添加により再結晶組織を制御した銅箔(例えば、Snを0.01〜0.2質量%添加し、平均結晶粒径を5μm以下、最大結晶粒径を15μm以下に制御した銅箔)などが報告されている(例えば、特許文献1乃至7参照)。 Conventionally, the following has been reported as a rolled copper foil having excellent bending characteristics and a method for producing the same. A method of developing a cubic texture by increasing the total degree of work in the final cold rolling process (for example, 90% or more), and a copper foil that defines the degree of development of the cubic texture after recrystallization annealing (for example, rolling) A copper foil having a strength of (200) plane determined by X-ray diffraction of the plane greater than 20 times the strength of (200) plane determined by powder X-ray diffraction. A method in which a cube texture is developed during intermediate annealing before the final cold rolling step, and the total degree of work in the final cold rolling step is set to 93% or more to further develop the cube texture after recrystallization. A copper foil that defines the ratio of through crystal grains in the thickness direction of the copper foil plate (for example, a copper foil having a cross-sectional area ratio of 40% or more being through crystal grains). A copper foil whose softening temperature is controlled by adding a trace amount of additive elements (for example, a copper foil controlled to a semi-softening temperature of 120 to 150 ° C.). A copper foil having a defined twin boundary length (for example, a copper foil having a twin boundary exceeding 5 μm in length and having a total length of 20 mm or less per 1 mm 2 area). Copper foils whose recrystallized structure is controlled by adding trace elements (for example, copper foils with 0.01 to 0.2% by mass of Sn added, controlled to an average crystal grain size of 5 μm or less and a maximum crystal grain size of 15 μm or less), etc. Have been reported (for example, see Patent Documents 1 to 7).
前述したように、従来技術では、最終冷間圧延工程の総加工度を高くするほど再結晶焼鈍後に圧延銅箔の立方体集合組織が発達して屈曲性が向上すると報告されている。しかしながら、冷間圧延加工においては、総加工度が高くなるほど加工硬化によって材料(銅箔)が硬くなることから、1パスあたりの加工度の制御が難しくなり圧延銅箔の製造効率が低下する問題がある。具体的には、冷間圧延の総加工度が約90%以上(特に93%以上)になると、1パスあたりの加工度制御や圧延加工自体が急激に難しくなる。 As described above, it has been reported in the prior art that the higher the total degree of work in the final cold rolling step, the more the cubic texture of the rolled copper foil develops after recrystallization annealing and the flexibility increases. However, in cold rolling, the higher the total degree of work, the harder the material (copper foil) by work hardening, so the control of the degree of work per pass becomes difficult and the production efficiency of the rolled copper foil decreases. There is. Specifically, when the total workability of cold rolling is about 90% or more (particularly 93% or more), control of the workability per pass and the rolling work itself become rapidly difficult.
一方、近年、電子機器類の小型化、高集積化(高密度実装化)や高性能化等の進展に伴い、FPCには従来よりも更なる高屈曲特性の要求が益々高まってきている。FPCの屈曲特性は実質的に銅箔のそれによって決まるため、要求を満たすためには銅箔の屈曲特性を更に向上させることが必須である。また、電子部品に対する低コスト化の要求は強まる一方である。 On the other hand, in recent years, with the progress of downsizing, high integration (high density mounting), high performance, etc. of electronic devices, demands for higher bending characteristics than ever are increasing. Since the bending characteristics of the FPC are substantially determined by that of the copper foil, it is essential to further improve the bending characteristics of the copper foil in order to satisfy the requirements. In addition, there is an increasing demand for cost reduction of electronic components.
従って、本発明の目的は、フレキシブルプリント配線板(FPC)等の可撓性配線部材に適しており、優れた屈曲特性を有する圧延銅箔を提供することにある。さらには、最終冷間圧延工程において従来のような高い総加工度を実施しなくても、高屈曲特性を有する圧延銅箔を安定して効率良く(すなわち、低コストで)製造できる製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a rolled copper foil which is suitable for a flexible wiring member such as a flexible printed wiring board (FPC) and has excellent bending characteristics. Furthermore, a manufacturing method capable of stably and efficiently producing a rolled copper foil having high bending characteristics (ie, at low cost) without performing a high total workability as in the past in the final cold rolling process. It is to provide.
本発明者らは、圧延銅箔における金属結晶学的な詳細検討を行い、生地焼鈍の後で最終冷間圧延工程前の圧延銅箔および最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔における結晶粒の方位・配向状態が、再結晶焼鈍後の結晶粒配向状態および銅箔の屈曲特性との間に特定の相関関係を有することを見出した。また、その現象がこれまで考えられていた原理と異なる現象と思われることを見出したことに基づき、本発明を完成した(詳細は後述する)。 The present inventors have made detailed metallographic studies on rolled copper foil, rolled copper foil after dough annealing and before the final cold rolling step, and rolling before recrystallization annealing after the final cold rolling step It has been found that the orientation and orientation state of crystal grains in the copper foil have a specific correlation between the crystal grain orientation state after recrystallization annealing and the bending characteristics of the copper foil. Further, the present invention has been completed based on the finding that the phenomenon seems to be a phenomenon different from the previously considered principle (details will be described later).
本発明は、上記目的を達成するため、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔であって、再結晶焼鈍によって立方体集合組織が発達する銅箔からなり、圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220} Cu面回折ピークがβ角度の90±5°毎に存在して4回対称性を示す結晶粒が存在することを特徴とする圧延銅箔を提供する。 In order to achieve the above object, the present invention is a rolled copper foil after the final cold rolling process and before recrystallization annealing, comprising a copper foil in which a cubic texture develops by recrystallization annealing, and is based on the rolling surface. As a result of X-ray diffraction pole figure measurement, the { 220 } Cu plane diffraction peak of copper crystal obtained by β scan at α angle = 45 ° of pole figure measurement exists every 90 ± 5 ° of β angle Thus, there is provided a rolled copper foil characterized by the presence of crystal grains exhibiting 4-fold symmetry.
また、本発明は、上記目的を達成するため、上記の本発明に係る圧延銅箔において、
前記4回対称性を示す回折ピークが、前記β走査で得られる銅結晶の{220}Cu面回折の最小強度に対して1.5倍以上の回折強度を有することを特徴とする圧延銅箔を提供する。
Moreover, in order to achieve the above object, the present invention provides the rolled copper foil according to the present invention,
Provided is a rolled copper foil characterized in that the diffraction peak exhibiting the 4-fold symmetry has a diffraction intensity of 1.5 times or more with respect to the minimum intensity of {220} Cu plane diffraction of the copper crystal obtained by the β scan. To do.
また、本発明は、上記目的を達成するため、上記の本発明に係る圧延銅箔において、
前記圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220}Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=25〜35°の間に前記規格化強度の極大値Pが存在し、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加しており、前記極大値Pと前記極大値Qと前記α=90°における前記規格化強度の値Rとが「Q≦P≦R」であることを特徴とする圧延銅箔を提供する。
Moreover, in order to achieve the above object, the present invention provides the rolled copper foil according to the present invention,
The result obtained by X-ray diffraction pole figure measurement based on the rolling surface, and the standard of {220} Cu plane diffraction peak of copper crystal obtained by β scanning at each α angle with the α angle of the pole figure measurement as the horizontal axis When the normalized intensity is expressed as a graph, the normalized strength maximum P exists between α = 25 to 35 °, and the normalized strength maximum Q between α = 40 to 50 °. The normalized strength monotonically increases between α = 85 and 90 °, and the maximum value P, the maximum value Q, and the normalized strength value R at α = 90 ° are expressed as “ Provided is a rolled copper foil characterized in that Q ≦ P ≦ R ”.
また、本発明は、上記目的を達成するため、上記の本発明に係る圧延銅箔において、
前記圧延面に対するX線回折2θ/θ測定により得られる結果で、銅結晶の回折ピークの強度が「I{200}Cu ≧ I{220}Cu」であることを特徴とする圧延銅箔を提供する。
Moreover, in order to achieve the above object, the present invention provides the rolled copper foil according to the present invention,
Provided is a rolled copper foil characterized in that the intensity of a diffraction peak of a copper crystal is “I {200} Cu ≧ I {220} Cu ” as a result of X-ray diffraction 2θ / θ measurement on the rolled surface To do.
また、本発明は、上記目的を達成するため、最終冷間圧延工程後に再結晶焼鈍を施した後の圧延銅箔であって、再結晶焼鈍によって立方体集合組織が発達する銅箔からなり、圧延面に対するX線回折2θ/θ測定から算出される立方体集合組織の比率[A]と、当該立方体集合組織の結晶粒についてX線回折ロッキングカーブ測定から算出される面外配向比率[B]と、前記立方体集合組織の結晶粒について前記圧延面を基準としたX線回折極点図測定から算出される面内配向比率[C]との積が、「[A]×[B]×[C] ≧ 0.5」であることを特徴とする圧延銅箔を提供する。 Further, in order to achieve the above object, the present invention is a rolled copper foil that has been subjected to recrystallization annealing after the final cold rolling step, and is composed of a copper foil in which a cubic texture is developed by recrystallization annealing, and is rolled. The ratio [A] of the cube texture calculated from the X-ray diffraction 2θ / θ measurement to the surface, and the out-of-plane orientation ratio [B] calculated from the X-ray diffraction rocking curve measurement for the crystal grains of the cube texture; The product of the cubic textured grains and the in-plane orientation ratio [C] calculated from the X-ray diffraction pole figure measurement based on the rolling surface is “[A] × [B] × [C] ≧ Provided is a rolled copper foil characterized by being "0.5".
また、本発明は、上記目的を達成するため、再結晶焼鈍によって立方体集合組織が発達する銅箔からなる圧延銅箔であって、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220} Cu面回折ピークがβ角度の90±5°毎に存在して4回対称性を示す結晶粒が存在する圧延銅箔の製造方法であって、前記最終冷間圧延工程における2パス目以降の圧延パスにおいて、直前の圧延パスの加工度よりも1.1倍以上大きい加工度を有する圧延パスが1パス以上含まれ、前記最終冷間圧延工程のうちの最終パスまたは最終直前のパスが、2パス目以降の圧延パスで最も大きい1パスあたりの加工度を有し、前記最終冷間圧延工程における総加工度が80%以上90%未満であることを特徴とする圧延銅箔の製造方法を提供する。 In order to achieve the above object, the present invention is a rolled copper foil made of a copper foil whose cubic texture is developed by recrystallization annealing, and after the final cold rolling step, before the recrystallization annealing. The results obtained by X-ray diffraction pole figure measurement with reference to the rolling surface in Fig. 6 show that the { 220 } Cu plane diffraction peak of the copper crystal obtained by β scan at the α angle = 45 ° of the pole figure measurement is 90 ± A method for producing a rolled copper foil in which crystal grains having a 4-fold symmetry are present every 5 °, and in the rolling pass after the second pass in the final cold rolling step, processing of the immediately preceding rolling pass One or more rolling passes having a working degree 1.1 times larger than the degree are included, and the last pass in the final cold rolling step or the pass immediately before the final pass is the largest one in the second and subsequent passes. With a degree of processing To provide a method of manufacturing a rolled copper foil, wherein the total working ratio in rolling process is less than 80% to 90%.
また、本発明は、上記目的を達成するため、再結晶焼鈍によって立方体集合組織が発達する銅箔からなる圧延銅箔であって、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220} Cu面回折ピークがβ角度の90±5°毎に存在して4回対称性を示す結晶粒が存在し、極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220} Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=25〜35°の間に前記規格化強度の極大値Pが存在し、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加しており、前記極大値Pと前記極大値Qと前記α=90°における前記規格化強度の値Rとが「Q≦P≦R」である圧延銅箔の製造方法であって、生地焼鈍の後で前記最終冷間圧延工程前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、前記極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220} Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=20〜40°の間に前記規格化強度の極小値Sが存在し、前記極大値Qと前記極小値Sとの比が「2≦ Q/S ≦3」である圧延銅箔を焼鈍生地として用い、前記最終冷間圧延工程における総加工度が80%以上93%未満であることを特徴とする圧延銅箔の製造方法である。
In order to achieve the above object, the present invention is a rolled copper foil made of a copper foil whose cubic texture is developed by recrystallization annealing, and after the final cold rolling step, before the recrystallization annealing. The results obtained by X-ray diffraction pole figure measurement with reference to the rolling surface in Fig. 6 show that the { 220 } Cu plane diffraction peak of the copper crystal obtained by β scan at the α angle = 45 ° of the pole figure measurement is 90 ± There is a crystal grain that exists every 5 ° and exhibits 4-fold symmetry, and the standard of { 220 } Cu plane diffraction peak of copper crystal obtained by β scan at each α angle with α angle of pole figure measurement as horizontal axis When the normalized intensity is expressed as a graph, the normalized strength maximum P exists between α = 25 to 35 °, and the normalized strength maximum Q between α = 40 to 50 °. The normalized strength monotonously increases between α = 85 and 90 °, and the maximum value P and the maximum Q is a method for producing a rolled copper foil in which the normalized strength value R at α = 90 ° is “Q ≦ P ≦ R”, and rolling before dough annealing and before the final cold rolling step { 220 } Cu surface diffraction of copper crystals obtained by X-ray diffraction pole figure measurement based on the rolled surface in copper foil, with the α angle of the pole figure measurement as the horizontal axis and β scan at each α angle When the normalized intensity of the peak is shown as a graph on the vertical axis, there is a maximum value Q of the normalized intensity between α = 40 and 50 °, and the normalized intensity of the peak between α = 20 and 40 °. A rolled copper foil in which a minimum value S exists and the ratio between the maximum value Q and the minimum value S is “2 ≦ Q / S ≦ 3” is used as an annealed fabric, and the total workability in the final cold rolling step Is 80% or more and less than 93%.
本発明によれば、フレキシブルプリント配線板(FPC)等の可撓性配線部材に適しており、優れた屈曲特性を有する圧延銅箔を提供することができる。さらには、高屈曲特性を有する圧延銅箔を安定して効率良く(すなわち、低コストで)製造する製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is suitable for flexible wiring members, such as a flexible printed wiring board (FPC), and can provide the rolled copper foil which has the outstanding bending characteristic. Furthermore, the manufacturing method which manufactures the rolled copper foil which has a high bending characteristic stably and efficiently (namely, low cost) can be provided.
本発明に関係する銅結晶の主な結晶面を示す模式図を図1に示す。銅の結晶構造は立方晶であることから、{200}Cu面と{220}Cu面のなす角度は45°になる。なお、{ }は等価な面を表すものとする(図1参照)。 A schematic diagram showing main crystal planes of a copper crystal related to the present invention is shown in FIG. Since the crystal structure of copper is cubic, the angle between the {200} Cu face and the {220} Cu face is 45 °. Note that {} represents an equivalent surface (see FIG. 1).
図2は、X線回折(以下、XRDと表記する場合もある)における入射X線・検出器・試料・走査軸の関係を示す概略図である。以下、図2を用いてXRDによる圧延銅箔の結晶粒配向状態に関する評価方法を説明する。なお、図2における3つの走査軸は、一般的に、θ軸が試料軸、α軸があおり軸、β軸が面内回転軸と呼ばれている。また、本発明におけるX線回折は、すべてCu Kα線によるものとする。 FIG. 2 is a schematic diagram showing a relationship among incident X-rays, detectors, samples, and scanning axes in X-ray diffraction (hereinafter sometimes referred to as XRD). Hereafter, the evaluation method regarding the crystal grain orientation state of the rolled copper foil by XRD is demonstrated using FIG. Note that the three scanning axes in FIG. 2 are generally called a sample axis, an α axis having a θ axis, and a β axis being an in-plane rotation axis. Further, all X-ray diffraction in the present invention is based on Cu Kα rays.
入射X線に対して、試料と検出器をθ軸で走査し、試料の走査角をθ、検出器の走査角を2θで走査する測定方法を2θ/θ測定という。2θ/θ測定による回折ピークの強度よって、多結晶体である圧延銅箔の試料面(本発明では圧延面)において、どの結晶面が優勢であるのかを評価できる。 A measurement method in which a sample and a detector are scanned with respect to incident X-rays along the θ axis, the scanning angle of the sample is scanned with θ, and the scanning angle of the detector with 2θ is called 2θ / θ measurement. Based on the intensity of the diffraction peak by 2θ / θ measurement, it is possible to evaluate which crystal plane is dominant on the sample surface (rolled surface in the present invention) of a rolled copper foil that is a polycrystalline body.
ある1つの回折面{hkl}Cuに着目して、着目した{hkl}Cu面の2θ値に対し(検出器の走査角2θを固定し)、試料のみをθ軸走査させる測定方法をロッキングカーブ測定という。この測定による{hkl}Cu面ピークの半価幅または積分幅で{hkl}Cu面の圧延面垂直方向の配向度を評価できる。このとき、半価幅または積分幅の値が小さいほど圧延面に垂直方向の結晶配向性に優れているといえる(以下、「圧延面に垂直方向の結晶配向性」を「面外配向性」と称する)。なお、半価幅は回折ピークの最大強度の半分の強度におけるピーク幅、積分幅は回折ピークの積分強度を該回折ピークの最大強度で除したものと定義する。 Focusing on a certain diffractive surface {hkl} Cu , the rocking curve is a measurement method that scans only the sample with the θ-axis relative to the 2θ value of the focused {hkl} Cu surface (with the detector scanning angle 2θ fixed) This is called measurement. The degree of orientation of the {hkl} Cu plane in the direction perpendicular to the rolling plane can be evaluated by the half width or integral width of the {hkl} Cu plane peak obtained by this measurement. At this time, it can be said that the smaller the value of the half width or the integral width, the better the crystal orientation in the direction perpendicular to the rolling surface (hereinafter referred to as “crystal orientation in the direction perpendicular to the rolling surface” as “out-of-plane orientation”). Called). The half width is defined as the peak width at half the maximum intensity of the diffraction peak, and the integral width is defined as the integral intensity of the diffraction peak divided by the maximum intensity of the diffraction peak.
極点図測定の特徴を利用した評価方法の1つに面内配向測定がある。これは、着目した{hkl}Cu面と幾何学的に対応する結晶面{h'k'l'}Cuが該{hkl}Cu面となす角度をα'とした場合、「α=90−α'」となるようにα軸走査し(試料を傾け)、{h'k'l'}Cu面の2θ値に対して(検出器の走査角2θを固定して)、試料をβ軸走査(0〜360°まで面内回転(自転))させる測定方法である。この測定による{h'k'l'}Cu面ピークの半価幅または積分幅で、{h'k'l'}Cu面と幾何学的に対応する{hkl}Cu面の圧延面内2軸方向の配向度が評価できる。このとき、前述と同様に、該回折ピークの半価幅または積分幅の値が小さいほど圧延面内方向の結晶配向性に優れているといえる(以下、「圧延面内方向の結晶配向性」を「面内配向性」と称する)。なお、本発明のXRD極点図測定では、試料面に垂直な方向をα=90°と定義し、測定の基準とする。また、極点図測定には、反射法(α=15〜90°)と透過法(α=0〜15°)があるが、本発明における極点図測定は、反射法(α=15〜90°)のみの測定を考慮する。
One of evaluation methods using the characteristics of pole figure measurement is in-plane orientation measurement. This is because when the angle between the {hkl} Cu plane of interest and the crystal plane {h'k'l '} Cu geometrically corresponding to the {hkl} Cu plane is α ′, “α = 90− Scan the α axis so that it becomes “α ′” (tilt the sample), and fix the sample to the β axis with respect to the 2θ value of the {h′k′l ′} Cu surface (fixing the scanning angle 2θ of the detector) This is a measurement method of scanning (in-plane rotation (rotation) from 0 to 360 °). 'In Cu surface half width or integration width of a peak, {h'k'l {h'k'l}' by this measure} Cu plane geometrically corresponding {hkl} Cu plane of the rolling
〔本発明の第1の実施形態〕
(面内配向測定)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔であって、圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220}Cu面回折ピークがβ角度の少なくとも90±5°毎に存在して4回対称性を示すことを特徴とする。例えば、極点図測定において銅箔の圧延方向をβ=0°とした場合、4回対称の回折ピークの中心はそれぞれβ≒0°, 90°, 180°, 270°,(360°)となる。
[First embodiment of the present invention]
(In-plane orientation measurement)
The rolled copper foil in the present embodiment is a rolled copper foil after the final cold rolling process and before recrystallization annealing, and is a result obtained by X-ray diffraction pole figure measurement based on the rolled surface. A {220} Cu plane diffraction peak of a copper crystal obtained by β scanning at a measurement α angle = 45 ° exists at every 90 ± 5 ° of the β angle and exhibits fourfold symmetry. For example, when the rolling direction of copper foil is β = 0 ° in the pole figure measurement, the centers of the four-fold symmetric diffraction peaks are β≈0 °, 90 °, 180 °, 270 °, (360 °), respectively. .
上述の面内配向測定結果において、{220}Cu面回折ピークが90±5°毎の4回対称性を示さない場合、再結晶焼鈍を施しても高屈曲特性を有する圧延銅箔が得られない。よって、上記のように規定する。なお、極点図測定のα角度=45°においてβ走査で得られる銅結晶の{220}Cu面回折ピークが90±5°毎の4回対称性を示すということは、該{220}Cu面と結晶幾何学的に45°の角度をなす{200}Cu面が銅箔の圧延面で面内配向していることを意味する。また、当該4回対称性の回折ピークは、それぞれの回折ピーク強度がβ軸走査(0〜360°までの面内回転)で得られる{220}Cu面回折の最小強度に対して1.5倍以上を有することが望ましい。 In the above in-plane orientation measurement results, when the {220} Cu plane diffraction peak does not show the 4-fold symmetry every 90 ± 5 °, a rolled copper foil having high bending properties can be obtained even if recrystallization annealing is performed. Absent. Therefore, it is defined as described above. It should be noted that the {220} Cu plane diffraction peak of the copper crystal obtained by β scanning at the α angle = 45 ° of the pole figure measurement shows the 4-fold symmetry every 90 ± 5 ° indicates that the {220} Cu plane The {200} Cu plane, which forms an angle of 45 ° with respect to the crystal geometry, means that the in-plane orientation is in the rolled plane of the copper foil. In addition, the diffraction peak of the 4-fold symmetry is 1.5 times or more than the minimum intensity of {220} Cu- plane diffraction, where each diffraction peak intensity is obtained by β-axis scanning (in-plane rotation from 0 to 360 °). It is desirable to have
〔本発明の第2の実施形態〕
(規格化強度)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔であって、前記圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220}Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=25〜35°の間に前記規格化強度の極大値Pが存在し、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加しており、前記極大値Pと前記極大値Qと前記α=90°における前記規格化強度の値Rとが「Q≦P≦R」であることを特徴とする。上述のXRD極点図測定の結果において、{220}Cu面回折ピークの規格化強度がα=25〜35°の極大値Pとα=40〜50°の極大値Qとα=85〜90°の単調増加とを示さず、前記極大値Pと前記極大値Qと前記α=90°における規格化強度の値Rとが「Q≦P≦R」の関係を示さない場合、再結晶焼鈍を施しても高屈曲特性を有する圧延銅箔が得られない。よって、上記のように規定する。
[Second Embodiment of the Present Invention]
(Standardized strength)
The rolled copper foil in the present embodiment is a rolled copper foil after the final cold rolling process and before recrystallization annealing, and is a result obtained by X-ray diffraction pole figure measurement based on the rolled surface. When graphed with the normalized intensity of the {220} Cu- plane diffraction peak of the copper crystal obtained by β scanning at each α angle as the abscissa and α = 25 to 35 ° There is a maximum value P of the normalized strength, and there is a maximum value Q of the standardized strength between α = 40 to 50 °, and the normalized strength increases monotonously between α = 85 to 90 °. The maximum value P, the maximum value Q, and the normalized strength value R at α = 90 ° satisfy “Q ≦ P ≦ R”. As a result of the above XRD pole figure measurement, the normalized intensity of the {220} Cu plane diffraction peak is a maximum value P of α = 25 to 35 °, a maximum value Q of α = 40 to 50 °, and α = 85 to 90 °. If the maximum value P, the maximum value Q, and the normalized strength value R at α = 90 ° do not show the relationship of “Q ≦ P ≦ R”, the recrystallization annealing is not performed. Even if applied, a rolled copper foil having high bending properties cannot be obtained. Therefore, it is defined as described above.
なお、規格化強度Rcとは、XRD極点図測定において、各α角度におけるβ軸走査(面内回転軸走査)による所定の{hkl}Cu回折ピーク強度を平均化したカウント数であり、次式(詳細は下記文献を参照)により算出することができる。なお、規格化の計算は通常コンピューターで実施される。
Rc=Ic / Istd
ここで、
Ic:補正強度(バックグラウンド補正、吸収補正)
Istd:計算で求めた規格化するための強度
である。
(文献名)「RAD システム応用ソフトウェア 集合組織解析プログラム 取扱説明書(説明書番号:MJ201RE)」,理学電機株式会社,p.22〜23.
(文献名)「CN9258E101 RINT2000シリーズ アプリケーションソフトウェア 正極点 取扱説明書(説明書番号:MJ10102A01)」理学電機株式会社,p.8〜10.
また、XRDピーク強度を規格化して用いる理由は、XRD測定の際の管電圧や管電流などの条件設定の違いによる影響をなくして比較できるようにするためである(実質的に装置依存性がなくなる)。
Note that the normalized intensity R c is a count number obtained by averaging predetermined {hkl} Cu diffraction peak intensities by β-axis scanning (in-plane rotation axis scanning) at each α angle in the XRD pole figure measurement. It can be calculated by an equation (refer to the following document for details). The normalization calculation is usually performed by a computer.
R c = I c / I std
here,
I c : correction intensity (background correction, absorption correction)
I std : strength for normalization obtained by calculation.
(Literature name) “RAD system application software texture analysis program instruction manual (manual number: MJ201RE)”, Rigaku Corporation, p. 22-23.
(Literature name) “CN9258E101 RINT2000 Series Application Software Positive Point Instruction Manual (manual number: MJ10102A01)” Rigaku Corporation, p. 8-10.
The reason for using the standardized XRD peak intensity is to allow comparison without the influence of differences in conditions such as tube voltage and tube current during XRD measurement. Disappear).
〔本発明の第3の実施形態〕
(2θ/θ測定)
本実施の形態における圧延銅箔は、最終冷間圧延工程の後で再結晶焼鈍前の状態において、前記圧延面に対するX線回折2θ/θ測定により得られる結果で、銅結晶の回折ピークの強度Iが「I{200}Cu ≧ I{220}Cu」であることを特徴とする。
[Third embodiment of the present invention]
(2θ / θ measurement)
The rolled copper foil in the present embodiment is a result obtained by X-ray diffraction 2θ / θ measurement on the rolled surface in the state after the final cold rolling process and before recrystallization annealing, and the intensity of the diffraction peak of the copper crystal. I is characterized by “I {200} Cu ≧ I {220} Cu ”.
前述したように本発明に係る圧延銅箔は、最終冷間圧延工程の後で再結晶焼鈍前の状態において、{200}Cu面が銅箔の圧延面で配向している。このことは、多結晶体である銅箔の圧延面に{200}Cu面配向した結晶粒が相当量存在することを意味する。図3は、本発明に係る圧延銅箔において、最終冷間圧延工程の後かつ再結晶焼鈍前の状態で、圧延面に対してX線回折2θ/θ測定を行った結果の1例である。 As described above, in the rolled copper foil according to the present invention, the {200} Cu plane is oriented with the rolled surface of the copper foil in the state after the final cold rolling step and before the recrystallization annealing. This means that a considerable amount of {200} Cu face-oriented crystal grains are present on the rolled surface of the copper foil which is a polycrystal. FIG. 3 is an example of the result of X-ray diffraction 2θ / θ measurement performed on the rolled surface in the rolled copper foil according to the present invention after the final cold rolling step and before recrystallization annealing. .
図3から明らかなように、圧延面は{200}Cu面の回折強度が強く、{200}Cu面配向した結晶粒が多く存在していることを示している。銅箔の圧延面において{200}Cu面が強く配向していないと、再結晶焼鈍を施しても高屈曲特性を有する圧延銅箔が得られない。よって、上記のように規定する。 As apparent from FIG. 3, the diffraction intensity of the rolled surface is {200} Cu surface is strong, indicating that there exists a number {200} Cu plane oriented crystal grains. If the {200} Cu surface is not strongly oriented on the rolled surface of the copper foil, a rolled copper foil having high bending properties cannot be obtained even if recrystallization annealing is performed. Therefore, it is defined as described above.
〔本発明の第4の実施形態〕
(総合配向比率)
本実施の形態における圧延銅箔は、最終冷間圧延工程後に再結晶焼鈍を施した後の圧延銅箔であって、圧延面に対するX線回折2θ/θ測定から算出される立方体集合組織の比率[A]と、当該立方体集合組織の結晶粒についてX線回折ロッキングカーブ測定から算出される面外配向比率[B]と、前記立方体集合組織の結晶粒について前記圧延面を基準としたX線回折極点図測定から算出される面内配向比率[C]との積が、「[A]×[B]×[C] ≧ 0.5」であることを特徴とする。本発明においては、[A]×[B]×[C]を総合配向比率と定義する。総合配向比率が0.5未満([A]×[B]×[C] < 0.5)であると、高い屈曲特性が得られない。よって、総合配向比率を0.5以上とする。より望ましくは0.55以上であり、更に望ましくは0.6以上である。
[Fourth Embodiment of the Present Invention]
(Total orientation ratio)
The rolled copper foil in the present embodiment is a rolled copper foil after recrystallization annealing after the final cold rolling step, and the ratio of the cube texture calculated from the X-ray diffraction 2θ / θ measurement with respect to the rolled surface [A], the out-of-plane orientation ratio calculated from the X-ray diffraction rocking curve measurement for the crystal grains of the cubic texture, and the X-ray diffraction of the cubic texture crystals based on the rolling surface The product of the in-plane orientation ratio [C] calculated from the pole figure measurement is “[A] × [B] × [C] ≧ 0.5”. In the present invention, [A] × [B] × [C] is defined as the total orientation ratio. When the total orientation ratio is less than 0.5 ([A] × [B] × [C] <0.5), high bending characteristics cannot be obtained. Therefore, the overall orientation ratio is set to 0.5 or more. More desirably, it is 0.55 or more, and more desirably 0.6 or more.
次に、立方体集合組織の比率[A]、立方体集合組織の面外配向比率[B]、立方体集合組織の面内配向比率[C]について説明する。 Next, the ratio [A] of the cube texture, the out-of-plane orientation ratio [B] of the cube texture, and the in-plane orientation ratio [C] of the cube texture will be described.
立方体集合組織の比率[A]とは、最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔の圧延面に対しX線回折2θ/θ測定を行い、立方体集合組織を現す{200}Cu面回折ピークの全回折ピークに対する比率を次式により算出したものと定義する。
立方体集合組織の比率[A] = I{200}Cu / (I{111}Cu+I{200}Cu+I{220}Cu+I{311}Cu)
ここで、
I{111}Cu:{111}Cu面の回折ピーク強度
I{200}Cu:{200}Cu面の回折ピーク強度
I{220}Cu:{220}Cu面の回折ピーク強度
I{311}Cu:{311}Cu面の回折ピーク強度
である。
Cubic texture ratio [A] is the result of X-ray diffraction 2θ / θ measurement on the rolled surface of the rolled copper foil that has been recrystallized and annealed after the final cold rolling step to represent the cubic texture {200} The ratio of the Cu plane diffraction peak to the total diffraction peak is defined as calculated by the following formula.
Cubic texture ratio [A] = I {200} Cu / (I {111} Cu + I {200} Cu + I {220} Cu + I {311} Cu )
here,
I {111} Cu : Diffraction peak intensity of {111} Cu surface
I {200} Cu : {200} Diffraction peak intensity on Cu surface
I {220} Cu : {220} Diffraction peak intensity of Cu plane
I {311} Cu : {311} The diffraction peak intensity on the Cu surface.
立方体集合組織の面外配向比率[B]とは、最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔の圧延面における{200}Cu面のX線回折ロッキングカーブ測定を行い、その{200}Cu面回折ピークの半価幅と積分幅の比率を次式により算出したものと定義する。
立方体集合組織の面外配向比率[B] = ΔθFWHM / ΔθIW
なお、
ΔθFWHM:{200}Cu面回折ピークの最大強度の半分の強度におけるピーク幅
ΔθIW:{200}Cu面回折ピークの積分強度を該回折ピークの最大強度で除したもの
とする。
The out-of-plane orientation ratio [B] of the cube texture is measured by measuring the X-ray diffraction rocking curve of the {200} Cu surface on the rolled surface of the rolled copper foil subjected to recrystallization annealing after the final cold rolling step. {200} The ratio of the half-value width and the integral width of the Cu plane diffraction peak is defined as calculated by the following equation.
Out-of-plane orientation ratio of cubic texture [B] = Δθ FWHM / Δθ IW
In addition,
Δθ FWHM : {200} Peak width at half the maximum intensity of the Cu plane diffraction peak Δθ IW : {200} The integrated intensity of the Cu plane diffraction peak is divided by the maximum intensity of the diffraction peak.
立方体集合組織の面内配向比率[C]とは、最終冷間圧延工程の後に再結晶焼鈍を施した圧延銅箔に対し圧延面を基準としてα角度=45°における{220}Cu面のX線回折極点図測定を行い、β走査で得られる4回対称の{220}Cu面回折ピークのうち、いずれか1つの回折ピークの半価幅と積分幅の比率を次式により算出したものと定義する。
立方体集合組織の面外配向比率[C] = ΔβFWHM / ΔβIW
なお、
ΔβFWHM:{220}Cu面回折ピークの最大強度の半分の強度におけるピーク幅
ΔβIW:{220}Cu面回折ピークの積分強度を該回折ピークの最大強度で除したもの
とする。
The in-plane orientation ratio [C] of the cubic texture is the X of the {220} Cu surface at an α angle = 45 ° with respect to the rolled surface of the rolled copper foil subjected to recrystallization annealing after the final cold rolling step. A line diffraction pole figure measurement was performed, and the ratio of the half width and the integral width of any one of the four-fold symmetrical {220} Cu surface diffraction peaks obtained by β scanning was calculated by the following equation: Define.
Out-of-plane orientation ratio of cubic texture [C] = Δβ FWHM / Δβ IW
In addition,
Δβ FWHM : {220} Peak width at half the maximum intensity of the Cu- plane diffraction peak Δβ IW : {220} The integrated intensity of the Cu- plane diffraction peak is divided by the maximum intensity of the diffraction peak.
ここで、面外配向比率[B]および面内配向比率[C]において、回折ピークの半価幅と積分幅の比をとる意味について説明する。図4は、結晶配向性の良否と回折ピークの半価幅・積分幅との関係を示す模式図である。結晶配向性の低い圧延銅箔においてロッキングカーブ測定や面内配向測定を行うと、図4の(a)に示すように、ピーク中心近傍は比較的シャープであるがテール部分が大きい(裾野の広い)回折ピーク形状が得られやすい。一方、結晶配向性の高い圧延銅箔に対してロッキングカーブ測定や面内配向測定を行うと、図4の(b)に示すようなピーク中心近傍に集中した回折ピーク形状が得られる。 Here, the meaning of taking the ratio of the half width of the diffraction peak to the integral width in the out-of-plane orientation ratio [B] and the in-plane orientation ratio [C] will be described. FIG. 4 is a schematic diagram showing the relationship between the quality of crystal orientation and the half-value width and integral width of a diffraction peak. When rocking curve measurement or in-plane orientation measurement is performed on a rolled copper foil with low crystal orientation, as shown in FIG. 4 (a), the vicinity of the peak center is relatively sharp but the tail portion is large (wide base). ) A diffraction peak shape is easily obtained. On the other hand, when rocking curve measurement or in-plane orientation measurement is performed on a rolled copper foil with high crystal orientation, a diffraction peak shape concentrated near the peak center as shown in FIG. 4B is obtained.
これらの回折ピークに対しそれぞれ半価幅と積分幅を評価すると、結晶配向性の低い(a)の場合には半価幅と積分幅とで大きな差が生じ、結晶配向性の高い(b)の場合には半価幅と積分幅の差が小さくなることが判る。そして、このような差異は、回折ピーク形状におけるテール部分の大小(回折ピーク形状に占めるテール部分の大きさ)に起因すると考えられる。そこで回折ピークの半価幅と積分幅の比をとることにより、半価幅や積分幅を個々に比較するよりも、圧延銅箔の結晶配向性の優劣をより明確に判定することができるようになる。 When the half width and the integral width are evaluated for these diffraction peaks, respectively, when the crystal orientation is low (a), a large difference occurs between the half width and the integral width, and the crystal orientation is high (b). In the case of, it can be seen that the difference between the half width and the integral width becomes small. Such a difference is considered to be caused by the size of the tail portion in the diffraction peak shape (the size of the tail portion in the diffraction peak shape). Therefore, by taking the ratio of the half width and integral width of the diffraction peak, it is possible to more clearly determine the superiority or inferiority of the crystal orientation of the rolled copper foil than comparing the half width and integral width individually. become.
〔圧延銅箔の製造方法〕
次に、図5を参照しながら、本発明に係る圧延銅箔の製造方法を説明する。図5は、本発明に係る圧延銅箔の製造工程の1例を示すフロー図である。
[Method for producing rolled copper foil]
Next, the manufacturing method of the rolled copper foil which concerns on this invention is demonstrated, referring FIG. FIG. 5 is a flowchart showing an example of a process for producing a rolled copper foil according to the present invention.
はじめに、原材料となるタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)などのインゴット(鋳塊)を用意する(工程a)。次に、熱間圧延を行う熱間圧延工程(工程b)を行う。熱間圧延工程の後、冷間圧延を行う冷間圧延工程(工程c)と冷間圧延による加工硬化を緩和する中間焼鈍工程(工程d)とを適宜繰り返し行うことにより「生地」と呼ばれる銅条が製造される。次に、生地焼鈍工程(工程d')が行われる。生地焼鈍工程においては、それ以前の加工歪が十分に緩和されること(例えば、略完全焼鈍)が望ましい。 First, ingots (ingots) such as tough pitch copper (JIS H3100 C1100) and oxygen-free copper (JIS H3100 C1020) as raw materials are prepared (step a). Next, the hot rolling process (process b) which performs hot rolling is performed. After the hot rolling process, a copper called “dough” is obtained by appropriately repeating a cold rolling process (process c) for performing cold rolling and an intermediate annealing process (process d) for relaxing work hardening by cold rolling. Articles are manufactured. Next, a dough annealing step (step d ′) is performed. In the dough annealing process, it is desirable that the previous processing strain is sufficiently relaxed (for example, substantially complete annealing).
その後、焼鈍した「生地」(「焼鈍生地」と称す)に対して最終冷間圧延工程(工程e、「仕上げ圧延工程」と称される場合もある)を施して、所定厚さの圧延銅箔が製造される。最終冷間圧延工程後の圧延銅箔は、必要に応じて表面処理等が施され(工程f)、FPC製造工程(工程g)に供給される。前述したように、再結晶焼鈍(工程g’)は工程gの中(例えば、CCL工程)で為されることが多い。本発明において、「最終冷間圧延工程」とは工程eを意味し、「再結晶焼鈍」工程g’とは工程gの中で為されるものを意味するものとする。 Thereafter, the annealed “fabric” (referred to as “annealed fabric”) is subjected to a final cold rolling step (sometimes referred to as “step e” or “finish rolling step”), and rolled copper having a predetermined thickness. A foil is produced. The rolled copper foil after the final cold rolling process is subjected to surface treatment or the like as necessary (process f) and supplied to the FPC manufacturing process (process g). As described above, the recrystallization annealing (step g ′) is often performed in the step g (for example, the CCL step). In the present invention, the “final cold rolling step” means the step e, and the “recrystallization annealing” step g ′ means that performed in the step g.
ここにおいて、本発明に係る圧延銅箔の製造方法の1つは、前記最終冷間圧延工程における2パス目以降の圧延パスにおいて、直前の圧延パスの加工度よりも1.1倍以上大きい加工度を有する圧延パスが1パス以上含まれることを特徴とする。これにより、該冷間圧延工程の最終段階で{220}Cu面配向の圧延集合組織形成を強め、さらに該圧延集合組織中に立方体組織の種結晶を積極的に形成することができる。そして、この立方体組織の種結晶が、再結晶焼鈍による立方体集合組織の高配向成長に寄与しているものと考えられる(詳細は後述する)。 Here, one of the methods for producing a rolled copper foil according to the present invention has a degree of processing that is 1.1 times greater than the degree of processing of the immediately preceding rolling pass in the second and subsequent passes in the final cold rolling step. One or more rolling passes are included. Thereby, in the final stage of the cold rolling process, the formation of {220} Cu plane-oriented rolling texture can be strengthened, and a cubic structure seed crystal can be actively formed in the rolling texture. And it is thought that the seed crystal of this cube structure has contributed to the high orientation growth of the cube texture by recrystallization annealing (details are mentioned later).
より好ましくは「直前の圧延パスの加工度よりも1.15倍以上大きい加工度を有する圧延パスが1パス以上含まれること」であり、さらに好ましくは「直前の圧延パスの加工度よりも1.2倍以上大きい加工度を有する圧延パスが1パス以上含まれること」である。上記規定から外れる「1.1倍より小さい加工度を有する圧延パス」では、圧延集合組織中に立方体組織の種結晶を形成することが困難である。 More preferably, “a rolling pass having a processing degree 1.15 times or more larger than the processing degree of the immediately preceding rolling pass is included”, and more preferably “1.2 times or more the processing degree of the immediately preceding rolling pass” “One or more rolling passes having a large degree of work are included”. In a “rolling pass having a degree of work smaller than 1.1 times” deviating from the above definition, it is difficult to form a cubic structure seed crystal in the rolling texture.
また、最終冷間圧延工程のうちの最終パスまたは最終直前のパスが、2パス目以降の圧延パスで最も大きい1パスあたりの加工度を有していることが望ましい。これにより、圧延集合組織中に形成した立方体組織の種結晶が、圧延工程の進行に伴って他方位に回転してしまうことを抑制することができる(詳細は後述する)。また、最終冷間圧延工程における総加工度を80%以上90%未満とすることにより、圧延工程の総パス数を低減することができるのに加えて、過度の加工硬化による圧延加工制御の困難性を回避でき、製造の低コスト化に寄与できる。上記のような特徴を有する本発明の製造方法によって、圧延銅箔における高屈曲特性化と低コスト化を両立することができる。
In addition, it is desirable that the final pass or the pass immediately before the final pass in the final cold rolling process has the highest degree of processing per pass in the second and subsequent passes. Thereby, it can suppress that the seed crystal of the cube structure | tissue formed in the rolling texture rotates to the other position with progress of a rolling process (details are mentioned later). In addition to reducing the total number of passes in the rolling process by making the total workability in the final
また、上記の製造方法に換わる本発明に係る圧延銅箔の他の製造方法は、少なくとも生地焼鈍工程(工程d')を制御することによって、焼鈍生地を以下のように調整する製造方法である。生地焼鈍(工程d')の後で最終冷間圧延工程(工程e)前の圧延銅箔(焼鈍生地)において、圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220}Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=40〜50°の間に規格化強度の極大値Qが存在し、α=20〜40°の間に規格化強度の極小値Sが存在し、前記極大値Qと前記極小値Sとの比が「2≦ Q/S ≦3」である圧延銅箔を最終冷間圧延工程への焼鈍生地として用いることを特徴とする。さらに、そのような焼鈍生地に対して、総加工度が80%以上93%未満となるような最終冷間圧延工程(工程e)を施すことを特徴とする。なお、生地焼鈍条件としては、例えば、600℃以上700℃未満(銅箔の実態温度)で1〜30分間保持する条件が好ましい。より好ましい温度は650℃以上700℃未満である。 Moreover, the other manufacturing method of the rolled copper foil which concerns on this invention replaced with said manufacturing method is a manufacturing method which adjusts an annealing material | dough as follows by controlling a material | dough annealing process (process d ') at least. . In the rolled copper foil (annealed dough) after the dough annealing (step d ′) and before the final cold rolling step (step e), the results are obtained by X-ray diffraction pole figure measurement based on the rolling surface. The graph shows the normalized intensity of the {220} Cu plane diffraction peak of the copper crystal obtained by β scanning at each α angle as the abscissa and α = 40 to 50 °. There is a maximum value Q of standardized strength, there is a minimum value S of standardized strength between α = 20 to 40 °, and the ratio of the maximum value Q to the minimum value S is “2 ≦ Q / S It is characterized by using a rolled copper foil of ≦ 3 ”as an annealed material for the final cold rolling process. Furthermore, the final cold rolling step (step e) is performed on such an annealed material so that the total degree of processing becomes 80% or more and less than 93%. In addition, as material | dough annealing conditions, the conditions hold | maintained for 1 to 30 minutes at 600 degreeC or more and less than 700 degreeC (actual temperature of copper foil) are preferable, for example. A more preferable temperature is 650 ° C. or higher and lower than 700 ° C.
これにより、最終冷間圧延工程(工程e)の後で再結晶焼鈍(工程g’)前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220}Cu面回折ピークがβ角度の少なくとも90±5°毎に存在して4回対称性を示す結晶粒が存在し、加えて、極点図測定のα角度を横軸としβ走査で得られる銅結晶の{220}Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=25〜35°の間に規格化強度の極大値Pが存在し、α=40〜50°の間に規格化強度の極大値Qが残存し、α=85〜90°の間は規格化強度が単調増加しており、極大値Pと極大値Qとα=90°における規格化強度の値Rとが「Q≦P≦R」となる本発明に係る圧延銅箔が得られる。 As a result, the pole figure measurement is a result obtained by the X-ray diffraction pole figure measurement based on the rolling surface in the rolled copper foil after the final cold rolling process (process e) and before the recrystallization annealing (process g ′). {220} Cu plane diffraction peak of copper crystal obtained by β scan at α angle = 45 ° of the crystal exists at least every 90 ± 5 ° of β angle, and there is a crystal grain showing 4-fold symmetry. When the graph shows the normalized intensity of the {220} Cu plane diffraction peak of copper crystals obtained by β-scanning with the α angle of the pole figure measurement as the horizontal axis, the standard is between α = 25 to 35 °. There is a maximum value P of normalized strength, the maximum value Q of standardized strength remains between α = 40-50 °, and the normalized strength monotonically increases between α = 85-90 °. The rolled copper foil according to the present invention in which the value P, the maximum value Q, and the normalized strength value R at α = 90 ° are “Q ≦ P ≦ R” is obtained.
前述したように、銅結晶の{220}Cu面と{200}Cu面とは、幾何学的に45°(両結晶面のなす角が45°)の関係にある。よって、α=40〜50°の間にある規格化強度の極大値Qは、圧延銅箔の圧延面において{200}Cu面の結晶粒が面内配向している程度に関係していると考えられる。言い換えると、生地焼鈍(工程d')の後で最終冷間圧延工程(工程e)前の生地において圧延面に存在した{200}Cu面配向かつ面内配向の結晶粒が、最終冷間圧延工程(工程e)を経て「Q≦P≦R」の関係となる程度に残存しているところに本発明の特徴がある。 As described above, the {220} Cu plane and the {200} Cu plane of the copper crystal have a geometrical relationship of 45 ° (the angle between both crystal planes is 45 °). Therefore, the maximum value Q of the normalized strength between α = 40 and 50 ° is related to the degree to which the crystal grains of the {200} Cu plane are in-plane oriented on the rolled surface of the rolled copper foil. Conceivable. In other words, the {200} Cu- plane-oriented and in-plane-oriented crystals present on the rolling surface in the dough after the dough annealing (step d ′) and before the final cold rolling step (step e) are finally cold rolled. The feature of the present invention resides in that it remains after the process (process e) to the extent that “Q ≦ P ≦ R” is satisfied.
また、最終冷間圧延工程における総加工度を80%以上93%未満とすることにより、従来の高加工度圧延銅箔に比して圧延工程の総パス数を低減することができるのに加えて、過度の加工硬化による圧延加工制御の困難性を回避でき、製造設備への負荷低減および製造の低コスト化に寄与できる。このような特徴を有する本発明の製造方法によって、圧延銅箔における高屈曲特性化と低コスト化を両立することができる。 In addition, by setting the total workability in the final cold rolling process to 80% or more and less than 93%, the total number of passes in the rolling process can be reduced compared to conventional high-workability rolled copper foil. Thus, difficulty in controlling the rolling process due to excessive work hardening can be avoided, and the load on the manufacturing facility can be reduced and the manufacturing cost can be reduced. With the production method of the present invention having such characteristics, it is possible to achieve both high bending characteristics and low cost in the rolled copper foil.
(高屈曲特性化のメカニズムの考察)
つぎに、本発明の実施の形態に係る圧延銅箔の高屈曲特性化のメカニズムについて説明する。
(Consideration of mechanism for high bending characteristics)
Below, the mechanism of the high bending characteristic of the rolled copper foil which concerns on embodiment of this invention is demonstrated.
金属結晶に応力が掛かると、結晶中の転位の移動は結晶のすべり面に沿って生じやすい。しかしながら、結晶粒界は一般的に転位の移動に対する障害物となる。多結晶体である圧延銅箔において、屈曲運動により転位が結晶粒界等に集積すると、集積箇所でクラックが生じやすくなり、いわゆる金属疲労を起こすと考えられる。言い換えると、金属多結晶体において転位が集積することを抑制できれば、屈曲特性が向上することが期待される。 When stress is applied to the metal crystal, the movement of dislocations in the crystal tends to occur along the slip plane of the crystal. However, crystal grain boundaries are generally an obstacle to dislocation movement. In a rolled copper foil that is a polycrystalline body, when dislocations accumulate at a grain boundary or the like due to a bending motion, cracks are likely to occur at the accumulation location, which is considered to cause so-called metal fatigue. In other words, if it is possible to suppress the accumulation of dislocations in the metal polycrystal, it is expected that the bending characteristics will be improved.
本発明の実施の形態に係る圧延銅箔は、焼鈍生地および/または最終冷間圧延工程後における結晶粒配向状態を制御することにより再結晶焼鈍後の立方体集合組織を制御することが可能であることを示している。再結晶によって、銅結晶の面心立方構造特有のすべり面である{111}Cu面の配向(すなわち、すべり方向を揃えること)が結晶粒界を跨いで良く制御された立方体集合組織を得ることができれば、それにより屈曲運動の際に転位が交差すべりを起こす確率が高くなり、その結果、高い屈曲特性が得られるものと考えられる。すなわち、結晶粒同士が3次元的に配向した(総合配向比率の高い)立方体集合組織をどのようにして形成するかがポイントとなる。 The rolled copper foil according to the embodiment of the present invention can control the cubic texture after the recrystallization annealing by controlling the annealing dough and / or the crystal grain orientation state after the final cold rolling process. It is shown that. Recrystallized to obtain a cubic texture in which the orientation of the {111} Cu plane (that is, aligning the slip direction), which is the slip plane peculiar to the face-centered cubic structure of copper crystals, is well controlled across the grain boundaries. If it is possible, the probability that the dislocations will cross and slip during the bending motion increases, and as a result, it is considered that high bending characteristics can be obtained. That is, the key point is how to form a cubic texture in which crystal grains are three-dimensionally oriented (having a high overall orientation ratio).
一方、圧延加工時に対象物に掛かる応力は、対象物に対して「圧縮応力成分」と「引張応力成分」に分けて考えることができる。また、銅箔に対する冷間圧延加工において、銅箔中の銅結晶は、圧延加工時の応力により回転現象を起こし、加工の進展とともに圧延集合組織を形成する。このとき、応力方向による結晶の回転方位(圧延面に配向する方位)は、一般的に、圧縮応力の場合が{220}Cu面、引張応力の場合が{311}Cu面や{211}Cu面である。これら回転現象に伴う加工ひずみの蓄積が、再結晶時における立方体集合組織形成の駆動力になると考えられてきた。 On the other hand, the stress applied to the object at the time of rolling can be divided into “compressive stress component” and “tensile stress component” for the object. Moreover, in the cold rolling process with respect to copper foil, the copper crystal in copper foil raise | generates a rotation phenomenon with the stress at the time of a rolling process, and forms a rolling texture with progress of a process. At this time, the rotation direction of the crystal depending on the stress direction (orientation oriented on the rolling surface) is generally {220} Cu surface in the case of compressive stress and {311} Cu surface or {211} Cu in the case of tensile stress. Surface. It has been considered that the accumulation of processing strains accompanying these rotational phenomena becomes the driving force for forming the cube texture during recrystallization.
従来の圧延銅箔においては、上記の観点から、最終冷間圧延工程における総加工度を高め(例えば、93%以上)に設定し、圧縮応力を高めることで{220}Cu面配向(圧延集合組織)と加工ひずみの蓄積を高めることを意図していた。なお、前述したように、立方体集合組織としては、圧延面において{200}Cu面の占有率が高くなること(圧延面に垂直方向の1次元配向)のみに着目し、圧延面内での配向状態(すなわち、結晶粒同士の3次元配向)には特段の考慮がなされていなかった。また、最終冷間圧延工程における総加工度のみに着目し、1パスあたりの加工度には特段の考慮がなされていなかった。ただし、圧延加工が進行するほど加工硬化によって材料(銅箔)が硬くなることから、圧延加工の進行に伴って1パスあたりの加工度は小さくなるのが一般的と思われる。 In the conventional rolled copper foil, from the above viewpoint, the total workability in the final cold rolling process is set high (for example, 93% or more), and the {220} Cu plane orientation (rolling assembly) is set by increasing the compressive stress. It was intended to increase the accumulation of processing strains. In addition, as mentioned above, the cubic texture is focused on only the fact that the {200} Cu plane occupancy is high on the rolled surface (one-dimensional orientation in the direction perpendicular to the rolled surface). No particular consideration has been given to the state (that is, the three-dimensional orientation between crystal grains). Moreover, paying attention only to the total workability in the final cold rolling process, no special consideration has been given to the workability per pass. However, since the material (copper foil) becomes harder due to work hardening as the rolling process progresses, it seems that the degree of processing per pass decreases as the rolling process progresses.
しかしながら、そのようなパススケジュールは、高加工度パス(1パスあたりの加工度が大きい圧延パス)によって一旦{220}Cu面配向させられた結晶粒の一部が、その後の低加工度パスによって{311}Cu面配向や{211}Cu面配向に回転し始めることにつながると考えられる。これは、1パスあたりの加工度が大きい圧延パスは「圧縮応力成分」が優勢となり、1パスあたりの加工度が小さい圧延パスでは「引張応力成分」が優勢になると考えられるためである。 However, in such a pass schedule, a part of the crystal grains once {220} Cu- plane oriented by a high workability pass (rolling pass having a high workability per pass) is obtained by a subsequent low workability pass. It is thought that this leads to rotation to {311} Cu plane orientation or {211} Cu plane orientation. This is because the “compressive stress component” predominates in a rolling pass with a high degree of work per pass, and the “tensile stress component” predominates in a roll pass with a low degree of work per pass.
これに対し、本発明に係る圧延銅箔の製造方法の1つは、最終冷間圧延工程における2パス目以降の圧延パスにおいて、直前の圧延パスの加工度よりも1.1倍以上大きい加工度を有する圧延パスが1パス以上含まれるようなパススケジュールを採用している。具体的には、例えば、2パス目以降の圧延パスで最も大きい1パスあたりの加工度を有する圧延パスが圧延パススケジュールの後半に実行される構成や、1パスあたりの加工度が2パス目以降で徐々に大きくなるような構成が挙げられる。このような圧延加工方法は、従来の方法とはパススケジュールが逆の構成になっている。また、最終冷間圧延工程の2パス目以降(特に、圧延パススケジュールの後半)に、1パスあたりの加工度が高い圧延パスを実行することにより、圧延加工途中で部分的な再結晶現象等が生じ、圧延集合組織中に立方体組織の種結晶({200}Cu面配向の結晶粒)が形成されることが判明した。そして、この立方体組織の種結晶が、再結晶焼鈍における立方体集合組織の高配向成長に寄与しているものと考えられる。 In contrast, one of the methods for producing a rolled copper foil according to the present invention has a degree of processing that is 1.1 times greater than the degree of processing of the immediately preceding rolling pass in the second and subsequent passes in the final cold rolling step. A pass schedule is adopted in which one or more rolling passes are included. Specifically, for example, a configuration in which a rolling pass having the largest degree of processing per pass in the second and subsequent passes is executed in the second half of the rolling pass schedule, or the degree of processing per pass is the second pass. The structure which becomes large gradually after that is mentioned. Such a rolling method has a configuration in which the pass schedule is opposite to that of the conventional method. In addition, by executing a rolling pass with a high degree of processing per pass after the second pass of the final cold rolling process (particularly in the second half of the rolling pass schedule), a partial recrystallization phenomenon during the rolling process, etc. It was found that a seed crystal having a cubic structure ({200} Cu plane oriented crystal grains) was formed in the rolling texture. And it is thought that the seed crystal of this cube structure is contributing to the high orientation growth of the cube texture in recrystallization annealing.
一方、本発明に係る圧延銅箔の他の製造方法は、最終冷間圧延工程(工程e)に供する焼鈍生地を制御し、最終冷間圧延工程(工程e)における圧延集合組織({220}Cu面配向)の形成過程において、該圧延集合組織中に適度な量(「Q≦P≦R」の関係となる程度)の立方体組織({200}Cu面配向)の結晶粒を残存させることにポイントがある。そして、加工ひずみを蓄積した圧延集合組織中に分散して残存させた立方体組織を有する結晶粒が、再結晶焼鈍における立方体集合組織形成の種結晶として機能することで、高配向成長(特に3次元配向)に寄与しているものと考えられる。 On the other hand, the other manufacturing method of the rolled copper foil which concerns on this invention controls the annealing dough used for a final cold rolling process (process e), and the rolling texture ({220} in a final cold rolling process (process e)) In the formation process of ( Cu plane orientation), an appropriate amount (about the degree of relation of “Q ≦ P ≦ R”) of cubic grains ({200} Cu plane orientation) remains in the rolled texture. There is a point. Then, the crystal grains having a cubic structure dispersed and left in the rolled texture in which the working strain is accumulated function as a seed crystal for forming the cubic texture in the recrystallization annealing, thereby achieving highly oriented growth (especially three-dimensional growth). It is thought that it contributes to (orientation).
さらに、圧延銅箔の当該製造方法は、最終冷間圧延工程における総加工度が80%以上93%未満であり、上述した立方体組織の結晶粒(結晶面の回転現象が生じていない結晶粒)の残存と併せて、銅箔への加工ひずみの蓄積が従来技術の圧延銅箔(例えば、93%以上の総加工度)に比して十分少ないと考えられる。これは、再結晶焼鈍時における原子再配列の駆動力が小さいことにつながり、再結晶粒の粒成長(結晶粒の粗大化)を抑制することができる。再結晶粒の過剰粒成長の抑制は、FPC製造工程で最近問題になっている「Dish Down現象」を解決できることにつながる。なお、「Dish Down現象」とは、FPC製造工程中において銅箔をハーフエッチングする際、結晶粒単位でエッチングされる傾向があるために粒径の大きい結晶粒が優先的にエッチングされ、銅箔表面がクレーター状になってしまう現象をいう。 Further, in the manufacturing method of the rolled copper foil, the total degree of work in the final cold rolling process is 80% or more and less than 93%, and the above-mentioned cubic structure crystal grains (crystal grains in which the rotation phenomenon of the crystal plane does not occur) It is considered that the accumulation of processing strain on the copper foil is sufficiently small as compared with the remaining copper foil (for example, the total processing degree of 93% or more). This leads to a small driving force of atomic rearrangement during recrystallization annealing, and can suppress the growth of recrystallized grains (grain coarsening). Suppressing the excessive growth of recrystallized grains leads to the solution of the “Dish Down phenomenon”, which has recently become a problem in the FPC manufacturing process. The “Dish Down Phenomenon” means that when a copper foil is half-etched during the FPC manufacturing process, it tends to be etched in units of crystal grains. A phenomenon in which the surface becomes crater-like.
〔他の実施の形態〕
工程aにおいて、溶解・鋳造方法に制限はなく、また、材料の寸法にも制限はない。工程b、工程cおよび工程dにおいても、特段の制限はなく、通常の方法・条件でよい。また、FPCに用いる圧延銅箔の厚みは一般的に50μm以下であり、本発明の圧延銅箔の厚みも、50μm以下であれば制限はないが、20μm以下が特に好ましい。
[Other Embodiments]
In step a, the melting / casting method is not limited, and the material dimensions are not limited. There are no particular restrictions on step b, step c, and step d, and ordinary methods and conditions may be used. Moreover, the thickness of the rolled copper foil used for FPC is generally 50 μm or less, and the thickness of the rolled copper foil of the present invention is not limited as long as it is 50 μm or less, but 20 μm or less is particularly preferable.
〔フレキシブルプリント配線板の製造〕
上記実施の形態の圧延銅箔を用いて、通常行われている製造方法により、フレキシブルプリント配線板を得ることができる。また、圧延銅箔に対する再結晶焼鈍は、通常のCCL工程で行われる熱処理でもよいし、別工程で行われてもよい。
[Manufacture of flexible printed wiring boards]
A flexible printed wiring board can be obtained by the manufacturing method currently performed normally using the rolled copper foil of the said embodiment. Moreover, the recrystallization annealing for the rolled copper foil may be a heat treatment performed in a normal CCL process or may be performed in a separate process.
〔実施の形態の効果〕
上記の本発明の実施の形態によれば、下記の効果を奏する。
(1)従来よりも優れた屈曲特性を有する圧延銅箔を得ることができる。
(2)従来よりも優れた屈曲特性を有する圧延銅箔を安定して効率良く(すなわち、低コストで)製造することができる。
(3)従来よりも優れた屈曲特性を有するフレキシブルプリント配線板(FPC)等の可撓性配線を得ることができる。
(4)フレキシブルプリント配線板(FPC)のみに留まらず、高い屈曲特性(屈曲寿命)が要求される他の導電部材(例えば、耐振動性が必要な自動車用リチウムイオン電池の負極材料など)にも適用できる。
[Effect of the embodiment]
According to the above embodiment of the present invention, the following effects can be obtained.
(1) A rolled copper foil having bending properties superior to those of the conventional art can be obtained.
(2) A rolled copper foil having bending properties superior to those of conventional ones can be produced stably and efficiently (that is, at a low cost).
(3) A flexible wiring such as a flexible printed wiring board (FPC) having bending characteristics superior to those of the conventional one can be obtained.
(4) Not only flexible printed wiring boards (FPC) but also other conductive members that require high bending characteristics (flexion life) (for example, negative electrode materials for automotive lithium-ion batteries that require vibration resistance) Is also applicable.
以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these.
〔実施例1〜3および比較例1〜3〕
(作製手順)
はじめに、原料素材としてタフピッチ銅(酸素含有量150ppm)を作製し、厚さ200 mm、幅650 mmの鋳塊を製造した。その後、図5記載のフローにしたがって、10 mmの厚さまで熱間圧延を行った後、冷間圧延および中間焼鈍(生地焼鈍を含む)を適宜繰り返して、0.2 mmと0.1 mmの厚みを有する焼鈍生地を製造した。生地焼鈍としては、約700℃の温度で約1分間保持する熱処理(実施例1および比較例1)、約650℃の温度で約2分間保持する熱処理(実施例2)、約690℃の温度で約1分間保持する熱処理(実施例3)、約550℃の温度で約2分間保持する熱処理(比較例2)、約800℃の温度で1分間保持する熱処理(比較例3)を行った。なお、生地焼鈍の温度は、焼鈍炉の設定温度ではなく銅箔の実態温度である。
[Examples 1-3 and Comparative Examples 1-3]
(Production procedure)
First, tough pitch copper (oxygen content 150 ppm) was produced as a raw material, and an ingot having a thickness of 200 mm and a width of 650 mm was produced. Then, after performing hot rolling to a thickness of 10 mm according to the flow shown in FIG. 5, cold rolling and intermediate annealing (including dough annealing) are repeated as appropriate, and annealing having thicknesses of 0.2 mm and 0.1 mm A dough was produced. As the dough annealing, a heat treatment (Example 1 and Comparative Example 1) held at a temperature of about 700 ° C. for about 1 minute, a heat treatment held at a temperature of about 650 ° C. for about 2 minutes (Example 2), and a temperature of about 690 ° C. Heat treatment (Example 3) held at about 550 ° C., heat treatment held for about 2 minutes at a temperature of about 550 ° C. (Comparative Example 2), and heat treatment held for about 1 minute at a temperature of about 800 ° C. (Comparative Example 3). . The temperature of the fabric annealing is not the set temperature of the annealing furnace but the actual temperature of the copper foil.
つぎに、上記の焼鈍生地に対し、表1または表2に示す条件で最終冷間圧延工程を行うことにより、厚さ16μmの圧延銅箔(実施例1〜3および比較例1〜3)を作製した。 Next, by performing a final cold rolling process on the above-mentioned annealed dough under the conditions shown in Table 1 or Table 2, a rolled copper foil (Examples 1 to 3 and Comparative Examples 1 to 3) having a thickness of 16 μm is obtained. Produced.
(圧延銅箔に対するXRD評価)
圧延銅箔(生地焼鈍後、最終冷間圧延工程途中、最終冷間圧延工程後、再結晶焼鈍後)に対するXRD評価は次のように行った。なお、各種XRD測定(2θ/θ測定、ロッキングカーブ測定、極点図測定、面内配向測定)には、X線回折装置(株式会社リガク製、型式:RAD−B)を用いた。対陰極(ターゲット)はCuを用い、管電圧および管電流はそれぞれ40 kV、30 mAとした。また、XRD測定に供する試料の大きさは、約15×約15 mm2とした。
(XRD evaluation for rolled copper foil)
XRD evaluation for rolled copper foil (after dough annealing, during the final cold rolling process, after the final cold rolling process, and after recrystallization annealing) was performed as follows. An X-ray diffractometer (manufactured by Rigaku Corporation, model: RAD-B) was used for various XRD measurements (2θ / θ measurement, rocking curve measurement, pole figure measurement, in-plane orientation measurement). The counter cathode (target) was Cu, and the tube voltage and tube current were 40 kV and 30 mA, respectively. The size of the sample used for XRD measurement was about 15 × about 15 mm 2 .
XRD2θ/θ測定の条件は、一般的な広角ゴニオメータを用い、2θ=40〜100°の範囲で測定した。2θ/θ測定におけるスリット条件は、発散スリットが1°、受光スリットが0.15 mm、散乱スリットが1°とした。また、XRDロッキングカーブ測定は、2θ/θ測定により得られた{200}Cu面回折ピークの2θ値に検出器を固定し、試料をθ=15〜35°まで走査して測定した。なお、ロッキングカーブ測定におけるスリット条件は2θ/θ測定と同じとした。 The XRD 2θ / θ measurement was performed using a general wide-angle goniometer in the range of 2θ = 40 to 100 °. The slit conditions in the 2θ / θ measurement were 1 ° for the divergent slit, 0.15 mm for the light receiving slit, and 1 ° for the scattering slit. The XRD rocking curve was measured by fixing the detector to the 2θ value of the {200} Cu plane diffraction peak obtained by 2θ / θ measurement, and scanning the sample to θ = 15 to 35 °. Note that the slit conditions in the rocking curve measurement were the same as in the 2θ / θ measurement.
XRD極点図測定および面内配向測定の条件は、一般的なシュルツ反射法を用い、α=15〜90°(圧延面に垂直方向がα=90°)の範囲でβ角度を0〜360°まで走査(自転)しながら、{220}Cu面の回折強度を測定した(2θ≒74°で、2θ値は試料毎に予備測定した結果を用いた)。このときのスリット条件は、発散スリット=1°、散乱スリット=7mm、受光スリット=7mmおよびシュルツスリット(スリット高さ1mm)を用いた。なお、面内配向測定はα=45°に固定して行った。 The conditions for XRD pole figure measurement and in-plane orientation measurement are the general Schulz reflection method, and the β angle is 0 to 360 ° within the range of α = 15 to 90 ° (α = 90 ° perpendicular to the rolling surface). The diffraction intensity of the {220} Cu surface was measured while scanning (spinning) until 2θ was about 74 ° (2θ value was obtained by using the result of preliminary measurement for each sample). The slit conditions at this time were diverging slit = 1 °, scattering slit = 7 mm, light receiving slit = 7 mm, and Schulz slit (slit height 1 mm). The in-plane orientation measurement was performed with α = 45 ° fixed.
〔実施例1および比較例1〕
(最終冷間圧延工程上がりの圧延銅箔)
上記のようにして作製した実施例1および比較例1の圧延加工上がりの状態(最終冷間圧延工程の後で再結晶焼鈍前)の各圧延銅箔(厚さ16μm)に対し、XRD測定を行った。図6は、最終冷間圧延工程上がりの圧延銅箔に対して面内配向測定(α=45°における{220}Cu面の測定)を行った結果の1例である。図6(a)は実施例1、図6(b)は比較例1である。
[Example 1 and Comparative Example 1]
(Rolled copper foil after the final cold rolling process)
XRD measurement was performed on each rolled copper foil (thickness: 16 μm) in the state after rolling of Example 1 and Comparative Example 1 manufactured as described above (after the final cold rolling step and before recrystallization annealing). went. FIG. 6 shows an example of the result of in-plane orientation measurement (measurement of {220} Cu plane at α = 45 °) on the rolled copper foil after the final cold rolling process. 6A shows Example 1, and FIG. 6B shows Comparative Example 1.
図6から判るように、実施例1の圧延銅箔は90±5°毎に存在する4回対称性の回折ピーク(黒矢印で示す)が認められる。また、該回折ピークはβ走査で得られる{220}Cu面回折の最小強度に対して1.5倍以上の回折強度を有している。これは、銅箔の圧延面で{200}Cu面が良好な面内配向性を有していることを意味している。これに対し、比較例1の圧延銅箔では、β≒0°(360°),180°に弱い回折ピークが見られるものの、β≒90°,270°には回折ピークがほとんど認められない。 As can be seen from FIG. 6, the rolled copper foil of Example 1 has a four-fold symmetry diffraction peak (indicated by a black arrow) present every 90 ± 5 °. The diffraction peak has a diffraction intensity of 1.5 times or more with respect to the minimum intensity of {220} Cu plane diffraction obtained by β scanning. This means that the {200} Cu surface has a good in-plane orientation on the rolled surface of the copper foil. In contrast, the rolled copper foil of Comparative Example 1 shows weak diffraction peaks at β≈0 ° (360 °) and 180 °, but hardly shows diffraction peaks at β≈90 ° and 270 °.
図7は、比較例1における最終冷間圧延工程上がりの圧延銅箔に対して2θ/θ測定を行った結果の1例である。また、図3は、実施例1における2θ/θ測定結果の1例である。前述したように、図3に示す実施例1の圧延銅箔は、{200}Cu面配向した結晶粒が圧延面で多く存在していることを示している。図3における{200}Cu面の回折ピーク強度I{200}Cuを100とした場合、{220}Cu面の回折ピーク強度I{220}Cuは48であった。なお、銅結晶粉末における{200}Cu面と{220}Cu面とのX線回折強度比がおよそ2:1であることを考慮すると、図3の圧延銅箔は、その圧延面において{200}Cu面配向の結晶粒と{220}Cu面配向の結晶粒が面積比で略同程度に存在していると考えられる。 FIG. 7 is an example of the result of 2θ / θ measurement performed on the rolled copper foil after the final cold rolling process in Comparative Example 1. FIG. 3 is an example of 2θ / θ measurement results in Example 1. As described above, the rolled copper foil of Example 1 shown in FIG. 3 shows that many {200} Cu face-oriented crystal grains exist on the rolled face. If the {200} 100 diffraction peak intensity I {200} Cu of Cu surface in FIG. 3, the diffraction peak intensity I {220} Cu of {220} Cu plane was 48. In consideration of the X-ray diffraction intensity ratio between the {200} Cu plane and the {220} Cu plane in the copper crystal powder being about 2: 1, the rolled copper foil of FIG. } It is considered that the crystal grains of Cu plane orientation and the grains of {220} Cu plane orientation exist in substantially the same area ratio.
一方、図7に示す比較例1の圧延銅箔は、{220}Cu面の回折ピーク強度I{220}Cuを100とした場合、{200}Cu面の回折ピーク強度I{200}Cuは76であり、{220}Cu面配向の結晶粒の方が銅箔の圧延面で圧倒的に優勢である。言い換えると、種結晶となる{200}Cu面配向の結晶粒が非常に少ないことを意味している。 On the other hand, in the rolled copper foil of Comparative Example 1 shown in FIG. 7, when the diffraction peak intensity I {220} Cu on the {220} Cu plane is 100, the diffraction peak intensity I {200} Cu on the {200} Cu plane is 76, and {220} Cu -oriented crystal grains are overwhelmingly dominant on the rolled surface of the copper foil. In other words, it means that there are very few {200} Cu plane-oriented crystal grains to be seed crystals.
上記の面内配向測定および2θ/θ測定の結果を考え合わせると、実施例1の圧延銅箔には、立方体集合組織形成の種結晶となる3次元配向した銅結晶が確実に存在していることが判る。これに対し、比較例1の圧延銅箔では、圧延面に対して{200}Cu面配向している結晶粒が存在するものの、それらは面内配向性に乏しく、3次元配向した種結晶がほとんど存在していないことが示唆される。 Considering the results of the in-plane orientation measurement and 2θ / θ measurement described above, the rolled copper foil of Example 1 surely has a three-dimensionally oriented copper crystal serving as a seed crystal for forming a cube texture. I understand that. In contrast, in the rolled copper foil of Comparative Example 1, although {200} Cu plane-oriented crystal grains exist with respect to the rolled surface, they are poor in in-plane orientation and three-dimensionally oriented seed crystals are formed. It is suggested that there is hardly any.
〔実施例2〜3および比較例2〜3〕
(焼鈍生地)
上記のようにして作製した4種類の焼鈍生地(生地焼鈍の後で最終冷間圧延工程前、厚さ0.2 mmと0.1 mm)に対し、XRD極点図測定を行った。図8は、焼鈍生地の圧延面に対して{220}Cu面のXRD極点図測定を行った結果の1例である。図8(a)は実施例2、図8(b)は実施例3、図8(c)は比較例2、図8(d)は比較例3である。
[Examples 2-3 and Comparative Examples 2-3]
(Annealed fabric)
XRD pole figure measurements were performed on the four types of annealed fabrics prepared as described above (after the fabric annealing and before the final cold rolling step, thicknesses of 0.2 mm and 0.1 mm). FIG. 8 is an example of the result of XRD pole figure measurement of {220} Cu surface with respect to the rolled surface of the annealed material. 8A shows Example 2, FIG. 8B shows Example 3, FIG. 8C shows Comparative Example 2, and FIG. 8D shows Comparative Example 3. FIG.
図8から判るように、全ての試料においてα=40〜50°の間に規格化強度の極大値Qが存在し、α=20〜40°の間に規格化強度の極小値Sが存在している。ここで、極大値Qと極小値Sとの比Q/Sを取ると、実施例2および実施例3がそれぞれ2.2、2.6となり「2≦ Q/S ≦3」の範囲であるのに対し、比較例2および比較例3のそれは、それぞれ3.1、1.5となり前記範囲から外れているのが判る。 As can be seen from FIG. 8, the standardized strength maximum value Q exists between α = 40 to 50 ° and the standardized strength minimum value S exists between α = 20 to 40 ° in all samples. ing. Here, when the ratio Q / S between the maximum value Q and the minimum value S is taken, Example 2 and Example 3 are 2.2 and 2.6, respectively, whereas in the range of “2 ≦ Q / S ≦ 3”, The values of Comparative Example 2 and Comparative Example 3 are 3.1 and 1.5, respectively.
(最終冷間圧延工程途中の圧延銅箔)
上記4種類の生地を用いた最終冷間圧延工程途中の圧延銅箔に対し、XRD極点図測定を行った。図9は、最終冷間圧延工程途中の圧延銅箔の圧延面に対して{220}Cu面のXRD極点図測定を行った結果の1例である。図9(a)は実施例2、図9(b)は実施例3、図9(c)は比較例2、図9(d)は比較例3である。
(Rolled copper foil during final cold rolling process)
The XRD pole figure measurement was performed with respect to the rolled copper foil in the middle of the final cold rolling process using the above four types of dough. FIG. 9 is an example of the result of XRD pole figure measurement of {220} Cu surface with respect to the rolled surface of the rolled copper foil during the final cold rolling process. 9A shows Example 2, FIG. 9B shows Example 3, FIG. 9C shows Comparative Example 2, and FIG. 9D shows Comparative Example 3. FIG.
図9から判るように、各試料においてα=25〜35°の間に規格化強度の極大値Pが存在し(またはその兆候が見られ)、α=40〜50°の間に規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加している。また、それに伴ってそれぞれ図8(a)〜(d)と比較して、極大値Qの規格化強度が減少していることが判る。このような変化は、前述した圧延加工時の応力による銅結晶の回転現象に起因するものと考えられる。 As can be seen from FIG. 9, there is a maximum value P of the normalized strength between α = 25 to 35 ° in each sample (or a sign thereof), and the normalized strength between α = 40 to 50 °. And the normalized strength monotonously increases between α = 85 and 90 °. In addition, it can be seen that the normalized strength of the maximum value Q is reduced as compared with FIGS. 8 (a) to 8 (d). Such a change is considered to be caused by the rotation phenomenon of the copper crystal due to the stress during the rolling process described above.
(最終冷間圧延工程上がりの圧延銅箔)
上記のようにして作製した圧延加工上がりの状態(最終冷間圧延工程の後で再結晶焼鈍前)の圧延銅箔(厚さ16μm)に対し、XRD測定を行った。図10は、最終冷間圧延工程上がりの圧延銅箔に対して{220}Cu面のXRD極点図測定を行った結果の1例である。図10(a)は実施例2、図10(b)は実施例3、図10(c)は比較例2、図10(d)は比較例3である。
(Rolled copper foil after the final cold rolling process)
XRD measurement was performed on the rolled copper foil (thickness 16 μm) in the state after rolling (prepared after the final cold rolling step and before recrystallization annealing) produced as described above. FIG. 10 is an example of the result of XRD pole figure measurement of {220} Cu surface on the rolled copper foil after the final cold rolling process. 10 (a) is Example 2, FIG. 10 (b) is Example 3, FIG. 10 (c) is Comparative Example 2, and FIG. 10 (d) is Comparative Example 3.
図10から判るように、実施例2と実施例3の圧延銅箔は「Q≦P≦R」の関係になっているが、比較例2の圧延銅箔は「Q>P,Q>R」となっており、比較例3の圧延銅箔では極大値Qがほとんど検出されない。「Q≦P≦R」の関係とは、面内配向した立方体組織の種結晶が適度な量で存在し、加工ひずみを蓄積した圧延集合組織が必要十分な量で存在していることを意味していると考えられる。これに対し、極大値Qがほとんど検出されなかった比較例3は、面内配向した立方体組織の種結晶がほとんど無いことを示唆している。また、「Q>P,Q>R」である比較例2では、面内配向した立方体組織の銅結晶が存在すると考えられるが、加工ひずみを蓄積した圧延集合組織の形成が不十分であることを示唆している。 As can be seen from FIG. 10, the rolled copper foils of Example 2 and Example 3 have a relationship of “Q ≦ P ≦ R”, while the rolled copper foil of Comparative Example 2 has “Q> P, Q> R”. In the rolled copper foil of Comparative Example 3, the maximum value Q is hardly detected. The relationship of “Q ≦ P ≦ R” means that an in-plane oriented cubic structure seed crystal is present in an appropriate amount, and a rolling texture in which processing strain is accumulated is present in a necessary and sufficient amount. it seems to do. On the other hand, Comparative Example 3 in which almost no maximum value Q was detected suggests that there are almost no in-plane oriented seed crystals of the cubic structure. Further, in Comparative Example 2 where “Q> P, Q> R”, it is considered that in-plane oriented copper crystals of a cubic structure exist, but the formation of a rolling texture with accumulated work strain is insufficient. It suggests.
図11は、上記最終冷間圧延工程上がりの圧延銅箔に対して2θ/θ測定を行った結果の1例である。図11(a)は実施例2、図11(b)は実施例3、図11(c)は比較例2である。図11から判るように、実施例2と実施例3の圧延銅箔は、{200}Cu面配向した結晶粒が圧延面で多く存在していることを示している。これに対し、比較例2の圧延銅箔は、{200}Cu面配向した結晶粒が圧延面で多く存在する一方で、{111}Cu面配向した結晶粒も多く存在し、{220}Cu面配向した結晶粒が少なくなっている。なお、比較例3は図7と略同じ結果が得られ、種結晶となる{200}Cu面配向の結晶粒が非常に少なく、{220}Cu面配向の結晶粒の方が優勢であった。 FIG. 11 shows an example of the result of 2θ / θ measurement performed on the rolled copper foil after the final cold rolling process. 11A shows the second embodiment, FIG. 11B shows the third embodiment, and FIG. 11C shows the second comparative example. As can be seen from FIG. 11, the rolled copper foils of Example 2 and Example 3 show that there are many {200} Cu face-oriented crystal grains on the rolled surface. In contrast, the rolled copper foil of Comparative Example 2 has many {200} Cu face-oriented crystal grains on the rolled face, while many {111} Cu face-oriented crystal grains exist, and {220} Cu The number of plane-oriented crystal grains is reduced. In Comparative Example 3, substantially the same results as in FIG. 7 were obtained, and there were very few {200} Cu plane-oriented crystal grains serving as seed crystals, and {220} Cu plane-oriented crystal grains were dominant. .
上記の極点図測定および2θ/θ測定の結果を考え合わせると、実施例2〜3の圧延銅箔には、立方体集合組織形成の種結晶となる3次元配向した銅結晶が適度な量で残存していることが判る。これに対し、比較例3の圧延銅箔では、圧延面に対して{200}Cu面配向している結晶粒が存在するものの、それらは面内配向性に乏しく、3次元配向した種結晶がほとんど存在していないことが示唆される。また、比較例2においては、立方体組織の{200}Cu面配向の結晶粒が確かに残存するものの、立方体集合組織形成の駆動力となる「加工ひずみを蓄積した圧延集合組織」の形成が不十分であると考えられる。 Considering the results of the above pole figure measurement and 2θ / θ measurement in combination, the rolled copper foils of Examples 2 to 3 have an appropriate amount of three-dimensionally oriented copper crystals that become seed crystals for forming the cube texture. You can see that On the other hand, in the rolled copper foil of Comparative Example 3, although there are crystal grains with {200} Cu plane orientation with respect to the rolling surface, they are poor in in-plane orientation and three-dimensionally oriented seed crystals are formed. It is suggested that there is hardly any. Further, in Comparative Example 2, although {200} Cu plane oriented crystal grains in the cubic structure remain, the formation of the “rolling texture with accumulated work strain” that serves as the driving force for the formation of the cubic texture is not possible. It is considered sufficient.
〔実施例1〜3および比較例1〜3〕
(再結晶焼鈍後の圧延銅箔)
上記のようにして作製した各圧延銅箔(厚さ16μm、最終冷間圧延工程上がり)に対し、温度180℃で60分間保持する再結晶焼鈍を施した後にXRD測定を行い、総合配向比率[A]×[B]×[C]を評価した。立方体集合組織の比率[A]の結果を表3に示し、面外配向比率[B]および面内配向比率[C]の結果を表4に示し、総合配向比率[A]×[B]×[C]の結果を表5に示す。
[Examples 1-3 and Comparative Examples 1-3]
(Rolled copper foil after recrystallization annealing)
Each rolled copper foil (thickness 16μm, final cold rolling process completed) produced as described above is subjected to recrystallization annealing that is held at a temperature of 180 ° C. for 60 minutes, and then XRD measurement is performed. A] × [B] × [C] was evaluated. The results of the cubic texture ratio [A] are shown in Table 3, the results of out-of-plane orientation ratio [B] and in-plane orientation ratio [C] are shown in Table 4, and the total orientation ratio [A] × [B] × The results of [C] are shown in Table 5.
なお、前述したように、[A], [B], [C]はそれぞれ次のような式で算出した。
立方体集合組織の比率[A] = I{200}Cu / (I{111}Cu+I{200}Cu+I{220}Cu+I{311}Cu)
立方体集合組織の面外配向比率[B] = ΔθFWHM / ΔθIW
立方体集合組織の面外配向比率[C] = ΔβFWHM / ΔβIW
As described above, [A], [B], and [C] were calculated by the following equations, respectively.
Cubic texture ratio [A] = I {200} Cu / (I {111} Cu + I {200} Cu + I {220} Cu + I {311} Cu )
Out-of-plane orientation ratio of cubic texture [B] = Δθ FWHM / Δθ IW
Out-of-plane orientation ratio of cubic texture [C] = Δβ FWHM / Δβ IW
表5の結果から明らかなように、実施例1〜3の圧延銅箔は総合配向比率[A]×[B]×[C]が0.5を十分に上回っているが、比較例1〜3の圧延銅箔は総合配向比率が0.5を下回った。これは、最終冷間圧延工程上がりの圧延銅箔において、立方体集合組織形成の種結晶となる3次元配向した銅結晶が存在するか否か、および/または加工ひずみを蓄積した圧延集合組織の形成の程度に起因するものと考えられる。 As is clear from the results in Table 5, the rolled copper foils of Examples 1 to 3 have a total orientation ratio [A] × [B] × [C] sufficiently higher than 0.5. The rolled copper foil had an overall orientation ratio of less than 0.5. This is because, in the rolled copper foil after the final cold rolling process, whether or not there is a three-dimensionally oriented copper crystal serving as a seed crystal for the formation of a cubic texture and / or formation of a rolled texture that accumulates processing strain. This is thought to be due to the degree of the above.
(再結晶焼鈍後の圧延銅箔の屈曲特性)
上記のようにして作製した各圧延銅箔(実施例1〜3および比較例1〜3、厚さ16μm、再結晶焼鈍後)に対する屈曲特性の評価は、次のように行った。図12は、屈曲特性評価(摺動屈曲試験)の概略を表した模式図である。摺動屈曲試験装置は信越エンジニアリング株式会社製、型式:SEK−31B2Sを用い、R=2.5 mm、振幅ストローク=10 mm、周波数=25 Hz(振幅速度=1500回/分)、試料幅=12.5 mm、試料長さ=220 mm、試料片の長手方向が圧延方向となる条件で測定した。測定は10試料ずつ行った。結果を表6に示す。
(Bending characteristics of rolled copper foil after recrystallization annealing)
Evaluation of the bending characteristic with respect to each rolled copper foil (Examples 1-3 and Comparative Examples 1-3, thickness 16 micrometers, after recrystallization annealing) produced as mentioned above was performed as follows. FIG. 12 is a schematic diagram showing an outline of bending characteristic evaluation (sliding bending test). Sliding and bending test equipment manufactured by Shin-Etsu Engineering Co., Ltd., model: SEK-31B2S, R = 2.5 mm, amplitude stroke = 10 mm, frequency = 25 Hz (amplitude velocity = 1500 times / min), sample width = 12.5 mm The sample length was 220 mm, and the measurement was performed under the condition that the longitudinal direction of the sample piece was the rolling direction. Measurement was performed for 10 samples. The results are shown in Table 6.
表6の結果から明らかなように、実施例1〜3の圧延銅箔は、比較例1〜3に比して2倍以上の屈曲寿命回数(高い屈曲特性)を有していることが判る。この結果は、実施例1〜3における立方体集合組織の高い総合配向比率(表5参照)に起因しているものと考えられる。 As is apparent from the results in Table 6, it can be seen that the rolled copper foils of Examples 1 to 3 have a bending life frequency (high bending characteristics) that is twice or more that of Comparative Examples 1 to 3. . This result is considered to be due to the high overall orientation ratio (see Table 5) of the cube texture in Examples 1 to 3.
1…銅箔、2…試料固定板、2a…ねじ、3…振動伝達部、4…発振駆動体、
R…曲率。
DESCRIPTION OF SYMBOLS 1 ... Copper foil, 2 ... Sample fixing plate, 2a ... Screw, 3 ... Vibration transmission part, 4 ... Oscillation drive body,
R: Curvature.
Claims (8)
再結晶焼鈍によって立方体集合組織が発達する銅箔からなり、
圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220} Cu面回折ピークがβ角度の90±5°毎に存在して4回対称性を示す結晶粒が存在することを特徴とする圧延銅箔。 A rolled copper foil after the final cold rolling process and before recrystallization annealing,
It consists of a copper foil that develops a cubic texture by recrystallization annealing,
The result obtained by X-ray diffraction pole figure measurement based on the rolling surface, and the { 220 } Cu plane diffraction peak of the copper crystal obtained by β scanning at the α angle = 45 ° of the pole figure measurement is 90 ± 5 with a β angle of 90 ± 5. A rolled copper foil characterized by the presence of crystal grains which are present every 4 ° and show fourfold symmetry.
前記4回対称性を示す回折ピークが、前記β走査で得られる銅結晶の{220} Cu面回折の最小強度に対して1.5倍以上の回折強度を有することを特徴とする圧延銅箔。 In the rolled copper foil according to claim 1,
The rolled copper foil, wherein the diffraction peak showing the 4-fold symmetry has a diffraction intensity of 1.5 times or more with respect to a minimum intensity of { 220 } Cu plane diffraction of the copper crystal obtained by the β scan.
前記圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220} Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、
α=25〜35°の間に前記規格化強度の極大値Pが存在し、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加しており、
前記極大値Pと前記極大値Qと前記α=90°における前記規格化強度の値Rとが「Q≦P≦R」であることを特徴とする圧延銅箔。 In the rolled copper foil of Claim 1 or Claim 2,
Results obtained by X-ray diffraction pole figure measurement based on the rolled surface, and the standard of { 220 } Cu plane diffraction peak of copper crystal obtained by β scan at each α angle with the α angle of the pole figure measurement as the horizontal axis When the graphed strength is plotted on the vertical axis,
The maximum value P of the normalized strength exists between α = 25 to 35 °, the maximum value Q of the normalized strength exists between α = 40 to 50 °, and between α = 85 to 90 ° The normalized strength is monotonically increasing,
The rolled copper foil, wherein the maximum value P, the maximum value Q, and the normalized strength value R at α = 90 ° are “Q ≦ P ≦ R”.
前記圧延面に対するX線回折2θ/θ測定により得られる結果で、銅結晶の回折ピークの強度が「I{200}Cu ≧ I{220}Cu」であることを特徴とする圧延銅箔。
In the rolled copper foil according to any one of claims 1 to 3,
A rolled copper foil characterized in that the intensity of a diffraction peak of a copper crystal is “I {200} Cu ≧ I { 220 } Cu ” as a result obtained by X-ray diffraction 2θ / θ measurement on the rolled surface.
前記圧延面に対するX線回折2θ/θ測定から算出される立方体集合組織の比率[A]と、当該立方体集合組織の結晶粒についてX線回折ロッキングカーブ測定から算出される面外配向比率[B]と、前記立方体集合組織の結晶粒について前記圧延面を基準としたX線回折極点図測定から算出される面内配向比率[C]との積が、「[A]×[B]×[C] ≧ 0.5」であることを特徴とする圧延銅箔。 It is the rolled copper foil after giving recrystallization annealing with respect to the rolled copper foil of any one of Claims 1 thru | or 4,
The ratio [A] of the cube texture calculated from the X-ray diffraction 2θ / θ measurement with respect to the rolled surface, and the out-of-plane orientation ratio [B] calculated from the X-ray diffraction rocking curve measurement for the crystal grains of the cube texture And the in-plane orientation ratio [C] calculated from the X-ray diffraction pole figure measurement based on the rolling surface for the crystal grains of the cubic texture is “[A] × [B] × [C ] A rolled copper foil characterized by satisfying ≧ 0.5 ”.
再結晶焼鈍によって立方体集合組織が発達する銅箔からなり、
圧延面に対するX線回折2θ/θ測定から算出される立方体集合組織の比率[A]と、当該立方体集合組織の結晶粒についてX線回折ロッキングカーブ測定から算出される面外配向比率[B]と、前記立方体集合組織の結晶粒について前記圧延面を基準としたX線回折極点図測定から算出される面内配向比率[C]との積が、「[A]×[B]×[C] ≧ 0.5」であることを特徴とする圧延銅箔。 It is a rolled copper foil after recrystallization annealing after the final cold rolling process,
It consists of a copper foil that develops a cubic texture by recrystallization annealing,
The ratio [A] of the cube texture calculated from the X-ray diffraction 2θ / θ measurement with respect to the rolled surface, and the out-of-plane orientation ratio [B] calculated from the X-ray diffraction rocking curve measurement for the crystal grains of the cube texture The product of the crystal texture of the cubic texture and the in-plane orientation ratio [C] calculated from the X-ray diffraction pole figure measurement based on the rolling surface is “[A] × [B] × [C]”. A rolled copper foil characterized by ≧ 0.5 ”.
前記最終冷間圧延工程における2パス目以降の圧延パスにおいて、直前の圧延パスの加工度よりも1.1倍以上大きい加工度を有する圧延パスが1パス以上含まれ、
前記最終冷間圧延工程のうちの最終パスまたは最終直前のパスが、2パス目以降の圧延パスで最も大きい1パスあたりの加工度を有し、
前記最終冷間圧延工程における総加工度が80%以上90%未満であることを特徴とする圧延銅箔の製造方法。 X-ray diffraction pole figure measurement based on the rolled surface of a rolled copper foil made of a copper foil whose cubic texture is developed by recrystallization annealing and before the recrystallization annealing after the final cold rolling step From the results obtained by the above, the { 220 } Cu plane diffraction peak of the copper crystal obtained by the β scan at the α angle = 45 ° of the pole figure measurement is present every 90 ± 5 ° of the β angle and exhibits 4-fold symmetry. A method for producing a rolled copper foil in which crystal grains exist,
In the rolling pass after the second pass in the final cold rolling step, one or more rolling passes having a working degree 1.1 times or more larger than the working degree of the immediately preceding rolling pass are included,
The final pass of the final cold rolling step or the pass immediately before the final has the greatest degree of processing per pass in the second and subsequent passes,
The method for producing a rolled copper foil, wherein the total degree of work in the final cold rolling step is 80% or more and less than 90%.
最終冷間圧延工程の後で再結晶焼鈍前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、極点図測定のα角度=45°におけるβ走査で得られる銅結晶の{220} Cu面回折ピークがβ角度の90±5°毎に存在して4回対称性を示す結晶粒が存在し、
極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220} Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=25〜35°の間に前記規格化強度の極大値Pが存在し、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=85〜90°の間は前記規格化強度が単調増加しており、前記極大値Pと前記極大値Qと前記α=90°における前記規格化強度の値Rとが「Q≦P≦R」である圧延銅箔の製造方法であって、
生地焼鈍の後で前記最終冷間圧延工程前の圧延銅箔における圧延面を基準としたX線回折極点図測定により得られる結果で、前記極点図測定のα角度を横軸とし各α角度におけるβ走査で得られる銅結晶の{220} Cu面回折ピークの規格化強度を縦軸としてグラフ表記した際に、α=40〜50°の間に前記規格化強度の極大値Qが存在し、α=20〜40°の間に前記規格化強度の極小値Sが存在し、前記極大値Qと前記極小値Sとの比が「2≦ Q/S ≦3」である圧延銅箔を焼鈍生地として用い、
前記最終冷間圧延工程における総加工度が80%以上93%未満であることを特徴とする圧延銅箔の製造方法。 A rolled copper foil composed of a copper foil in which a cubic texture is developed by recrystallization annealing,
Result obtained by X-ray diffraction pole figure measurement based on the rolling surface of the rolled copper foil after the final cold rolling process and before recrystallization annealing, and obtained by β scanning at α angle = 45 ° of pole figure measurement The { 220 } Cu surface diffraction peak of the copper crystal is present every 90 ± 5 ° of the β angle, and there are crystal grains exhibiting 4-fold symmetry,
When the graph shows the normalized intensity of the { 220 } Cu plane diffraction peak of the copper crystal obtained by β scanning at each α angle as the abscissa and the α axis of the pole figure measurement as the ordinate, α = 25 to 35 ° There is a maximum value P of the normalized strength in between, there is a maximum value Q of the normalized strength in the range of α = 40 to 50 °, and the normalized strength is monotonous in the range of α = 85 to 90 °. A method for producing a rolled copper foil in which the maximum value P, the maximum value Q, and the normalized strength value R at α = 90 ° are “Q ≦ P ≦ R”,
The result obtained by X-ray diffraction pole figure measurement based on the rolling surface in the rolled copper foil after the dough annealing and before the final cold rolling step, with the α angle of the pole figure measurement as the horizontal axis at each α angle When the normalized intensity of the { 220 } Cu plane diffraction peak of the copper crystal obtained by β-scanning is expressed as a graph, the maximum value Q of the normalized intensity exists between α = 40 to 50 °, Annealing a rolled copper foil in which the minimum value S of the normalized strength exists between α = 20 to 40 ° and the ratio of the maximum value Q to the minimum value S is “2 ≦ Q / S ≦ 3” Used as dough,
The method for producing a rolled copper foil, wherein a total degree of processing in the final cold rolling step is 80% or more and less than 93%.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008112476A JP5320638B2 (en) | 2008-01-08 | 2008-04-23 | Rolled copper foil and method for producing the same |
US12/346,962 US20090173414A1 (en) | 2008-01-08 | 2008-12-31 | Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil |
CN2009100016070A CN101481760B (en) | 2008-01-08 | 2009-01-05 | Rolled copper foil and manufacturing method of rolled copper foil |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008001069 | 2008-01-08 | ||
JP2008001069 | 2008-01-08 | ||
JP2008112476A JP5320638B2 (en) | 2008-01-08 | 2008-04-23 | Rolled copper foil and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009185376A JP2009185376A (en) | 2009-08-20 |
JP5320638B2 true JP5320638B2 (en) | 2013-10-23 |
Family
ID=40879050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008112476A Active JP5320638B2 (en) | 2008-01-08 | 2008-04-23 | Rolled copper foil and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5320638B2 (en) |
CN (1) | CN101481760B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5390852B2 (en) * | 2008-12-24 | 2014-01-15 | 株式会社Shカッパープロダクツ | Rolled copper foil |
JP5129189B2 (en) * | 2009-03-31 | 2013-01-23 | Dowaメタルテック株式会社 | Metal-ceramic bonding substrate and manufacturing method thereof |
JP5094834B2 (en) * | 2009-12-28 | 2012-12-12 | Jx日鉱日石金属株式会社 | Copper foil manufacturing method, copper foil and copper clad laminate |
JP5539055B2 (en) * | 2010-06-18 | 2014-07-02 | 株式会社Shカッパープロダクツ | Copper alloy material for electric / electronic parts and method for producing the same |
JP5124039B2 (en) * | 2011-03-23 | 2013-01-23 | Jx日鉱日石金属株式会社 | Copper foil and copper-clad laminate using the same |
JP5189683B2 (en) * | 2011-03-24 | 2013-04-24 | Jx日鉱日石金属株式会社 | Rolled copper alloy foil |
JP5496139B2 (en) * | 2011-03-28 | 2014-05-21 | Jx日鉱日石金属株式会社 | Copper foil and secondary battery using the same |
JP5752536B2 (en) * | 2011-08-23 | 2015-07-22 | Jx日鉱日石金属株式会社 | Rolled copper foil |
JP5273236B2 (en) * | 2011-12-06 | 2013-08-28 | 日立電線株式会社 | Rolled copper foil |
JP5126436B1 (en) * | 2012-02-17 | 2013-01-23 | 日立電線株式会社 | Rolled copper foil |
JP5246526B1 (en) * | 2012-02-17 | 2013-07-24 | 日立電線株式会社 | Rolled copper foil |
JP5201432B1 (en) * | 2012-05-17 | 2013-06-05 | 日立電線株式会社 | Rolled copper foil |
JP5201431B1 (en) * | 2012-05-17 | 2013-06-05 | 日立電線株式会社 | Rolled copper foil |
JP6058915B2 (en) * | 2012-05-28 | 2017-01-11 | Jx金属株式会社 | Rolled copper foil or rolled copper alloy foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same |
JP6202718B2 (en) * | 2013-03-26 | 2017-09-27 | 三菱マテリアル株式会社 | Heat dissipation board |
CN106304689A (en) * | 2015-06-05 | 2017-01-04 | Jx日矿日石金属株式会社 | Rolled copper foil, copper-clad laminated board and flexible printed board and electronic equipment |
CN105714382B (en) * | 2016-02-23 | 2017-12-29 | 北京大学 | The preparation method of large scale Cu (100) monocrystalline copper foil |
DE102016222644A1 (en) * | 2016-03-14 | 2017-09-28 | Sms Group Gmbh | Process for rolling and / or heat treating a metallic product |
CN112339464B (en) * | 2020-10-30 | 2022-03-11 | 河北师范大学 | Method for generating pictures and texts on surface of copper foil by utilizing illumination |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3009383B2 (en) * | 1998-03-31 | 2000-02-14 | 日鉱金属株式会社 | Rolled copper foil and method for producing the same |
JP3734372B2 (en) * | 1998-10-12 | 2006-01-11 | 三宝伸銅工業株式会社 | Lead-free free-cutting copper alloy |
JP3514180B2 (en) * | 1999-08-24 | 2004-03-31 | 日立電線株式会社 | Method for producing rolled copper foil |
JP3709109B2 (en) * | 1999-11-16 | 2005-10-19 | 日鉱金属加工株式会社 | Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same |
JP3798260B2 (en) * | 2001-05-17 | 2006-07-19 | 株式会社神戸製鋼所 | Copper alloy for electric and electronic parts and electric and electronic parts |
JP3911173B2 (en) * | 2002-02-27 | 2007-05-09 | 日鉱金属株式会社 | Rolled copper foil for copper clad laminate and method for producing the same (2) |
DE10308779B8 (en) * | 2003-02-28 | 2012-07-05 | Wieland-Werke Ag | Lead-free copper alloy and its use |
JP4242801B2 (en) * | 2004-03-26 | 2009-03-25 | 住友金属鉱山伸銅株式会社 | Rolled copper foil and method for producing the same |
JP2006283078A (en) * | 2005-03-31 | 2006-10-19 | Nikko Kinzoku Kk | Rolled copper foil for copper-clad laminate, and manufacturing method therefor |
JP2006283146A (en) * | 2005-04-01 | 2006-10-19 | Nikko Kinzoku Kk | Rolled copper foil and method for producing the same |
-
2008
- 2008-04-23 JP JP2008112476A patent/JP5320638B2/en active Active
-
2009
- 2009-01-05 CN CN2009100016070A patent/CN101481760B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101481760A (en) | 2009-07-15 |
CN101481760B (en) | 2012-07-04 |
JP2009185376A (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5320638B2 (en) | Rolled copper foil and method for producing the same | |
JP4466688B2 (en) | Rolled copper foil | |
JP4285526B2 (en) | Rolled copper foil and method for producing the same | |
JP4215093B2 (en) | Rolled copper foil and method for producing the same | |
JP5245813B2 (en) | Rolled copper foil | |
US7789977B2 (en) | Rolled copper foil and manufacturing method thereof | |
JP3009383B2 (en) | Rolled copper foil and method for producing the same | |
JP5752536B2 (en) | Rolled copper foil | |
JP3856582B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP4992940B2 (en) | Rolled copper foil | |
JP2010150597A (en) | Rolled copper foil | |
JP5390852B2 (en) | Rolled copper foil | |
JP6696895B2 (en) | Rolled copper foil, rolled copper foil manufacturing method, flexible flat cable, flexible flat cable manufacturing method | |
JP2000212660A (en) | Rolled copper foil for flexible printed circuit board and its production | |
JP2007107038A (en) | Copper or copper alloy foil for circuit | |
US20090173414A1 (en) | Rolled Copper Foil and Manufacturing Method of Rolled Copper Foil | |
JP3709109B2 (en) | Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same | |
JP2008038170A (en) | Rolled copper foil | |
JP5562218B2 (en) | Rolled copper foil | |
JP3986707B2 (en) | Rolled copper foil for flexible printed circuit board and method for producing the same | |
JP2010121154A (en) | Method for producing rolled copper foil and rolled copper foil | |
JP5562217B2 (en) | Rolled copper foil | |
JP5698634B2 (en) | Rolled copper foil | |
JP2014139335A (en) | Copper plating layer-clad rolled copper foil | |
JP2013189702A (en) | Rolled copper foil and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130618 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5320638 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |