JP5189683B2 - Rolled copper alloy foil - Google Patents

Rolled copper alloy foil Download PDF

Info

Publication number
JP5189683B2
JP5189683B2 JP2012034762A JP2012034762A JP5189683B2 JP 5189683 B2 JP5189683 B2 JP 5189683B2 JP 2012034762 A JP2012034762 A JP 2012034762A JP 2012034762 A JP2012034762 A JP 2012034762A JP 5189683 B2 JP5189683 B2 JP 5189683B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy foil
rolled copper
test piece
fpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012034762A
Other languages
Japanese (ja)
Other versions
JP2012211388A (en
Inventor
喜寛 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012034762A priority Critical patent/JP5189683B2/en
Publication of JP2012211388A publication Critical patent/JP2012211388A/en
Application granted granted Critical
Publication of JP5189683B2 publication Critical patent/JP5189683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気回路の屈曲部分に好適に用いられるフレキシブルプリント基板(FPC:Flexible Printed Circuit)に使用される圧延銅合金箔に関するものである。   The present invention relates to a rolled copper alloy foil used for a flexible printed circuit (FPC) that is preferably used in a bent portion of an electric circuit.

現在、携帯電話等の配線のうち、屈曲部分に使用されるFPCは、銅箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とするキャスト法と呼ばれる方法や、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと銅箔とを重ねて加熱ロールなどを通して圧着するラミネート法と呼ばれる方法によって製造されている。これらの方法で得られたフレキシブル銅貼積層板は二層フレキシブル銅貼積層板と呼ばれている。このようなFPCは帯状に加工され、一端に端子部分を回路形成してコネクタ(FPCコネクタ)を取り付けて使用されることも多い。
又、エポキシ系などの接着剤で圧延銅合金箔とポリイミドフィルムを接着した三層フレキシブル銅貼積層板も知られている。
これらのFPC用銅箔として、再結晶焼鈍させ、屈曲性を与える200面のI/I0を40以上とした技術が知られている(特許文献1,2)。
Currently, FPCs used for bent parts of mobile phones, etc. are coated with a polyimide varnish on copper foil, dried and cured by heating, and a method called the cast method, which is bonded in advance. It is manufactured by a method called a laminating method in which a polyimide film coated with a strong thermoplastic polyimide and a copper foil are stacked and pressure-bonded through a heating roll or the like. The flexible copper-clad laminate obtained by these methods is called a two-layer flexible copper-clad laminate. Such an FPC is often processed into a strip shape, and a terminal part is formed at one end and a connector (FPC connector) is attached.
A three-layer flexible copper-clad laminate in which a rolled copper alloy foil and a polyimide film are bonded with an epoxy-based adhesive is also known.
As these FPC copper foils, a technique is known in which the I / I0 of the 200 plane that gives reflex annealing and gives flexibility is 40 or more (Patent Documents 1 and 2).

特開2001-323354号公報(段落0014)JP 2001-323354 A (paragraph 0014) 特開平11-286760JP 11-286760

ところで、近年、電子部品の小型化が促進されており、NON-ZIFタイプと称される小型のFPCコネクタが用いられている。しかしながら、従来の銅貼積層板を用いたFPCに雄型FPCコネクタを取り付け、この雄型FPCコネクタを外部基板のメス型FPCコネクタに挿入しようとすると、コネクタが小さく、基板のスペースも狭いため、FPC側の雄型FPCコネクタを上下に動かしながら挿入することとなる。
その際、FPCと雄型FPCコネクタの境界部分近傍に上下方向(面に垂直な方向)に繰り返し曲げ応力が加わり、FPCの端子部分が破断するという問題がある。この曲げ応力は、単なる繰り返し曲げとは異なり、コネクタを取り付けたFPCに特有の応力であると考えられる。更に、銅張積層板の場合、銅箔表面に表面処理が施され、かつ、反対側の面には樹脂が接着されているため、従来の曲げ性評価方法である90度曲げや180度曲げ試験では、曲げ性の優劣を見極めにくくなってきている。
Incidentally, in recent years, miniaturization of electronic components has been promoted, and a small FPC connector called NON-ZIF type is used. However, when a male FPC connector is attached to a conventional FPC using a copper-clad laminate and this male FPC connector is inserted into a female FPC connector on an external board, the connector is small and the board space is also narrow. The male FPC connector on the FPC side is inserted while moving up and down.
At this time, there is a problem that bending stress is repeatedly applied in the vertical direction (direction perpendicular to the surface) near the boundary between the FPC and the male FPC connector, and the terminal portion of the FPC is broken. This bending stress is considered to be a stress peculiar to the FPC to which the connector is attached, unlike simple repeated bending. Furthermore, in the case of copper-clad laminates, surface treatment is applied to the surface of the copper foil, and resin is bonded to the opposite surface, so 90-degree bending and 180-degree bending, which are conventional bendability evaluation methods, are used. In tests, it has become difficult to determine superiority or inferiority of bendability.

従って、本発明の目的は、面に垂直な方向に繰り返し曲げ応力が加わっても破断し難い圧延銅合金箔を提供することにある。   Accordingly, an object of the present invention is to provide a rolled copper alloy foil that is difficult to break even when repeated bending stress is applied in a direction perpendicular to the surface.

本発明者らは、所定の組成を有する圧延銅合金箔の片面に樹脂層を積層して銅張積層板を形成すると、圧延銅合金箔自身よりも曲げ性が向上し、面に垂直な方向に繰り返し曲げ応力が加わっても破断し難くなることを見出した。
すなわち、本発明のコネクタ付FPC用圧延銅合金箔は、無酸素銅又はタフピッチ銅に対し、Ag,Sn,Ti及びZrの群から選ばれる1種以上を合計500質量ppm以下添加した組成からなる厚み5〜50μmの圧延銅合金箔であって、該圧延銅合金箔の片面に化学処理を行ってエポキシ系接着剤を10μm塗布した後、厚み12.5μmのポリイミド樹脂層からなるベースフィルムを積層し、該圧延銅合金箔の反対面に厚み6μmのNi層を形成した銅張積層板を形成し、この銅張積層板の前記圧延銅合金箔に電気回路を形成し幅3.2mm、長さ30mmで長さ方向が圧延方向と平行になるように切り出した試験片を用意し、前記試験片の長手方向に沿って前記ベースフィルムの他端部を除く下面には、アクリル系熱硬化接着剤からなる粘着剤を介してポリイミドからなる第1補強板が接着され、前記試験片の前記他端部側にて前記Ni層が形成されずに前記圧延銅合金箔が表出した上面には、エポキシ系熱硬化接着剤を介してポリイミドからなるカバーフィルムが接着され、前記試験片、前記粘着剤、及び前記第1補強板の合計厚みtは、0.3mmであり、該試験片の長手方向に沿って一端側をバイスにてその締付け力(締め付けトルク)を、2〜6cN・mとして緩く保持し、かつ該試験片の前記他端側の前記カバーフィルムが形成されている位置を厚み方向に隙間を開けつつ保持し、前記試験片の前記一端側と前記他端側の保持部分との曲げ長を5mm以上とし、負荷のかからない状態を中心として該厚み方向に変位量2.0mmで上下方向の変位速度を5mm/分として振幅させて繰返し曲げを行ったとき、前記電気回路が断線するまでの曲げ回数が10回以上となる。
一方の面にNi層が形成されていてもよい。
When the present inventors form a copper clad laminate by laminating a resin layer on one side of a rolled copper alloy foil having a predetermined composition, the bendability is improved more than the rolled copper alloy foil itself, and the direction perpendicular to the plane It was found that even when bending stress was repeatedly applied to the film, it was difficult to break.
That is, the rolled copper alloy foil for FPC with a connector of the present invention has a composition in which one or more selected from the group of Ag, Sn, Ti and Zr are added to oxygen-free copper or tough pitch copper in a total of 500 mass ppm or less. It is a rolled copper alloy foil having a thickness of 5 to 50 μm, and after applying chemical treatment to one side of the rolled copper alloy foil and applying 10 μm of an epoxy adhesive, a base film made of a polyimide resin layer having a thickness of 12.5 μm is laminated. Then, a copper-clad laminate having a 6 μm thick Ni layer formed on the opposite surface of the rolled copper alloy foil is formed, and an electric circuit is formed on the rolled copper alloy foil of the copper-clad laminate to have a width of 3.2 mm and a length of A test piece cut out at 30 mm so that the length direction is parallel to the rolling direction is prepared, and an acrylic thermosetting adhesive is provided on the lower surface excluding the other end of the base film along the longitudinal direction of the test piece. First reinforcement made of polyimide through an adhesive made of A cover film made of polyimide with an epoxy thermosetting adhesive on the upper surface where the rolled copper alloy foil is exposed without forming the Ni layer on the other end side of the test piece The total thickness t of the test piece, the pressure-sensitive adhesive, and the first reinforcing plate is 0.3 mm, and the clamping force (clamping) is performed with a vice at one end along the longitudinal direction of the test piece. Torque) 2-6 cN · m loosely, and the position where the cover film is formed on the other end of the test piece is held with a gap in the thickness direction, and the one end of the test piece The bending length of the holding portion on the other side and the other end side is set to 5 mm or more, and the bending is repeatedly performed with the displacement amount being 2.0 mm in the thickness direction and the vertical displacement speed being 5 mm / min with the load being the center. When the electrical circuit Bending number until the breakage is more than 10 times.
A Ni layer may be formed on one surface.

本発明によれば、その片面に樹脂層を積層して銅張積層板を形成した場合に、面に垂直な方向に繰り返し曲げ応力が加わっても破断し難い圧延銅合金箔を得ることができる。   According to the present invention, when a resin layer is laminated on one side to form a copper-clad laminate, it is possible to obtain a rolled copper alloy foil that is difficult to break even when repeated bending stress is applied in a direction perpendicular to the surface. .

圧延銅合金箔表面の粗さと、せん断変形帯との関係を示す図である。It is a figure which shows the relationship between the roughness of a rolled copper alloy foil surface, and a shear deformation zone. コネクタFPC用繰返し曲げ試験装置の構成を示す図である。It is a figure which shows the structure of the repeated bending test apparatus for connector FPC. コネクタFPC用繰返し曲げ試験に用いる試験片の構造を示す断面図である。It is sectional drawing which shows the structure of the test piece used for the repeated bending test for connector FPC. コネクタFPC用繰返し曲げ試験を行う方法を示す図である。It is a figure which shows the method of performing the repeated bending test for connector FPC. 180度の繰返し曲げ試験を行う方法を示す図である。It is a figure which shows the method of performing a 180 degree | times repeated bending test.

本発明の圧延銅合金箔の片面に樹脂層を積層して銅張積層板を形成すると、圧延銅合金箔自身よりも曲げ性が向上する。   When a resin layer is laminated on one side of the rolled copper alloy foil of the present invention to form a copper clad laminate, the bendability is improved as compared with the rolled copper alloy foil itself.

<圧延銅合金箔>
本発明の圧延銅合金箔は、無酸素銅又はタフピッチ銅に対し、Ag,Sn,Ti及びZrの群から選ばれる1種以上を合計500質量ppm以下添加した組成からなる。これら元素を添加した圧延銅合金箔の片面に樹脂を背気相した銅張積層板は、圧延銅合金箔単体よりも破断伸びが向上する。又、圧延銅合金箔として、通常、片面に化学処理(銅系粗化めっき)を施したものも用いることができる。無酸素銅はJIS-H3510に規格され、タフピッチ銅はJIS-H3250に規格されている。
<Rolled copper alloy foil>
The rolled copper alloy foil of the present invention has a composition in which one or more selected from the group of Ag, Sn, Ti and Zr are added to oxygen-free copper or tough pitch copper in a total amount of 500 mass ppm or less. A copper-clad laminate in which a resin is back-phased on one side of a rolled copper alloy foil to which these elements are added has a higher elongation at break than a rolled copper alloy foil alone. In addition, as the rolled copper alloy foil, one having a chemical treatment (copper-based rough plating) on one side can also be used. Oxygen-free copper is specified in JIS-H3510, and tough pitch copper is specified in JIS-H3250.

圧延銅合金箔は、厚み5〜50μm、圧延平行方向の表面粗さRa≦0.1μm、350℃で0.5時間焼鈍後の加工硬化指数(n値)が0.3以上0.45以下であることが好ましい。ここで、n値は、降伏点以上の塑性域における真応力σと、対数ひずみεとに対し、σ=F×εで近似した時の指数nである。n値の測定法はJIS Z 2241に規格されているが、伸び2%から最大応力点までの値を用いる。そして、測定した伸び及び応力から求めた対数ひずみεと、真応力σとの両対数グラフを最小自乗法で近似し、グラフの傾きから加工硬化指数を求める。
圧延銅合金箔の半軟化温度が150℃以下であると、屈曲性が優れるので好ましい。
The rolled copper alloy foil preferably has a thickness of 5 to 50 μm, a surface roughness Ra ≦ 0.1 μm in the rolling parallel direction, and a work hardening index (n value) after annealing at 350 ° C. for 0.5 hour is 0.3 or more and 0.45 or less. Here, the n value is an index n when approximating σ = F × ε n with respect to the true stress σ and the logarithmic strain ε in the plastic region above the yield point. The n value measurement method is specified in JIS Z 2241, but values from 2% elongation to the maximum stress point are used. Then, a logarithmic graph of logarithmic strain ε and true stress σ obtained from the measured elongation and stress is approximated by the least square method, and a work hardening index is obtained from the slope of the graph.
It is preferable that the semi-softening temperature of the rolled copper alloy foil is 150 ° C. or lower because the flexibility is excellent.

圧延銅合金箔は、常法に従って、インゴットを熱間圧延及び冷間圧延して製造することができるが、最終冷間圧延の総加工度を85%以上とし、かつ最終パスの加工度が26%以上で、かつ最終冷間圧延における最終3パスでの油膜当量を以下の条件として圧延すると、結晶粒径が均一に微細化し、焼鈍後の加工性が向上するので好ましい。具体的には、最終冷間圧延の最終3パスでの油膜当量として、最終パスの2つ前の油膜当量;25000以下、最終パスの1つ前の油膜当量;30000以下、最終パスの油膜当量; 35000以下とする。   The rolled copper alloy foil can be manufactured by hot rolling and cold rolling an ingot according to a conventional method, but the final cold rolling has a total workability of 85% or more and a workability of the final pass of 26%. Rolling at an oil film equivalent of 3% or more and the final three passes in the final cold rolling under the following conditions is preferable because the crystal grain size is uniformly refined and the workability after annealing is improved. Specifically, as the oil film equivalent in the final three passes of the final cold rolling, the oil film equivalent in the last two passes; 25,000 or less, the oil film equivalent in the last pass; 30000 or less, the oil film equivalent in the final pass ; 35000 or less.

<銅張積層板>
上記した圧延銅合金箔の片面に樹脂層を積層することで銅張積層板を形成することができる。又、銅張積層板を形成する際、通常は圧延銅合金箔の反対面にNi層を形成する。
<樹脂層>
樹脂層としては特に制限はなく、例えばポリイミドが挙げられるが、ラミネート法の場合は積層前にフィルム状であり、キャスト法の場合は積層前に液体の(未硬化の)ポリイミドであり、これを圧延銅合金箔に塗布して加熱すると硬化して樹脂層になる。
キャスト法は、圧延銅合金箔にポリイミドのワニスを塗布し、熱を加えて乾燥、硬化させ積層板とする。ラミネート法は、予め接着力のある熱可塑性ポリイミドを塗布したポリイミドフィルムと圧延銅合金箔とを重ねて加熱ロールなどを通して圧着する。接着剤を介して圧延銅合金箔と樹脂層とを積層してもよい。
樹脂層厚みは50μm以下が好ましい。
<Copper-clad laminate>
A copper-clad laminate can be formed by laminating a resin layer on one side of the rolled copper alloy foil. In forming a copper clad laminate, a Ni layer is usually formed on the opposite surface of the rolled copper alloy foil.
<Resin layer>
The resin layer is not particularly limited, and examples include polyimide. In the case of a lamination method, it is a film before lamination, and in the case of a cast method, it is a liquid (uncured) polyimide before lamination. When it is applied to a rolled copper alloy foil and heated, it hardens and becomes a resin layer.
In the casting method, a varnish of polyimide is applied to a rolled copper alloy foil, and heat is applied to dry and cure to obtain a laminate. In the laminating method, a polyimide film on which a thermoplastic polyimide having adhesive strength is applied in advance and a rolled copper alloy foil are stacked and pressure-bonded through a heating roll or the like. You may laminate | stack a rolled copper alloy foil and a resin layer through an adhesive agent.
The resin layer thickness is preferably 50 μm or less.

<Ni層>
Ni層は、例えばNiめっきにより形成することができ、圧延銅合金箔の片面の全面に限らず、その一部に形成してもよい。Niめっきは、ワット浴等の公知のNiめっき浴を用いて電気めっきすればよく、好ましくは、厚み2〜10μm、硬さHv150以上の無光沢又は光沢Niめっき層とし、Niめっき層の結晶方位のうち(200)面の配向割合が40%以上である。
特に、無光沢Ni層は光沢Ni層よりも軟らかく、片面に無光沢Ni層を形成した銅張積層板は、圧延銅合金箔単体よりも繰り返し曲げ回数が向上するので好ましい。これは、Niめっき層を形成することにより、圧延銅合金箔面への曲げ応力の集中が緩和されることと、Niめっきの膜厚分の曲げ半径が大きくなり応力が小さくなることによるものと考えられる。
Ni層厚みは2〜10μmが好ましい。
<Ni layer>
The Ni layer can be formed by, for example, Ni plating, and may be formed not only on the entire surface of one side of the rolled copper alloy foil but also on a part thereof. The Ni plating may be electroplated using a known Ni plating bath such as a Watt bath, preferably a matte or bright Ni plating layer having a thickness of 2 to 10 μm and a hardness of Hv 150 or more, and the crystal orientation of the Ni plating layer Of these, the orientation ratio of the (200) plane is 40% or more.
In particular, a matte Ni layer is softer than a glossy Ni layer, and a copper-clad laminate having a matte Ni layer formed on one side is preferable because the number of times of bending is improved more than a rolled copper alloy foil alone. This is because the formation of the Ni plating layer alleviates the concentration of bending stress on the rolled copper alloy foil surface, and the bending radius corresponding to the Ni plating film thickness increases and the stress decreases. Conceivable.
The Ni layer thickness is preferably 2 to 10 μm.

本発明の圧延銅合金箔から形成した銅張積層板は、面に垂直な方向に繰り返し曲げ応力が加わっても破断し難いという特徴がある。特に、この銅張積層板にコネクタを取り付けたFPCを製造したときに、繰り返し曲げ回数が向上する。
図1は、本発明の圧延銅合金箔から形成した銅張積層板に電気回路を形成した帯状のFPC(フレキシブル配線板)60に、雄コネクタ200を取り付けた構造を示す断面図である。FPC60は、圧延銅合金箔61の下面に接着剤(例えばエポキシ系熱硬化接着剤)62を介してベースフィルム(樹脂層)63を積層してなり、圧延銅合金箔61の上面全体にはNi層61aaが形成され、Ni層61aaのうち雄コネクタ200の端子部に対向する部分(FPC60の一端)には、この端子部と電気的に接続するためのAuめっき層61abが形成されている。ベースフィルム63としては、例えばポリイミドが用いられる。
The copper clad laminate formed from the rolled copper alloy foil of the present invention has a feature that it is difficult to break even when a bending stress is repeatedly applied in a direction perpendicular to the surface. In particular, when an FPC having a connector attached to this copper-clad laminate is manufactured, the number of repeated bendings is improved.
FIG. 1 is a cross-sectional view showing a structure in which a male connector 200 is attached to a strip-like FPC (flexible wiring board) 60 in which an electric circuit is formed on a copper clad laminate formed from a rolled copper alloy foil of the present invention. The FPC 60 is formed by laminating a base film (resin layer) 63 on the lower surface of the rolled copper alloy foil 61 with an adhesive (for example, epoxy-based thermosetting adhesive) 62 interposed therebetween. A layer 61aa is formed, and a portion of the Ni layer 61aa facing the terminal portion of the male connector 200 (one end of the FPC 60) is formed with an Au plating layer 61ab for electrical connection with the terminal portion. As the base film 63, for example, polyimide is used.

雄コネクタ200を雌コネクタ(図示せず)に接続する際には、雄コネクタ200を持ち、FPC60(銅貼積層板)の面に垂直な方向(図1の上下方向の矢印A)に動かしながら挿入することとなる。そのため、FPC60と雄型コネクタ200の境界部分であるAuめっき層61ab(図1の矢印B)に繰り返し曲げ応力が加わり、この部分のFPCが破断し易くなる。
そこで、本発明の圧延銅合金箔から形成した銅張積層板を用いることで、コネクタを取り付ける用途においてもFPCの破断を防止することができる。
When connecting the male connector 200 to the female connector (not shown), hold the male connector 200 and move it in a direction perpendicular to the surface of the FPC 60 (copper-laminated laminate) (up and down arrow A in FIG. 1). Will be inserted. Therefore, repeated bending stress is applied to the Au plating layer 61ab (arrow B in FIG. 1), which is a boundary portion between the FPC 60 and the male connector 200, and the FPC in this portion is easily broken.
Therefore, by using the copper clad laminate formed from the rolled copper alloy foil of the present invention, it is possible to prevent the FPC from being broken even in the use for attaching the connector.

銅張積層板において、Ni層61aaの一部にAu層61abを形成し、圧延銅合金箔61に電気回路を形成した帯状の試験片を用意し、試験片のうちAu層61abが形成されていない一端を緩く保持しつつ、Au層61abが形成されている他端を厚み方向に隙間を開けつつ保持し、該他端を面方向に垂直な方向に変位量2.0mmで振幅させて繰返し曲げを行ったとき、電気回路が断線するまでの曲げ回数が10回以上であると、コネクタを取り付ける用途においてもFPCの破断を有効に防止できる。
この繰り返し曲げ試験(以下、「コネクタFPC用繰返し曲げ試験という」)は、従来の180度の曲げ試験等とは異なり、以下の図2〜図4のようにして行う。
In the copper clad laminate, a strip-shaped test piece in which an Au layer 61ab is formed on a part of the Ni layer 61aa and an electric circuit is formed on the rolled copper alloy foil 61 is prepared, and the Au layer 61ab is formed among the test pieces. While holding one end loosely, the other end on which the Au layer 61ab is formed is held with a gap in the thickness direction, and the other end is repeatedly bent with an amplitude of 2.0 mm in the direction perpendicular to the surface direction. If the number of times of bending until the electric circuit is disconnected is 10 times or more, the FPC can be effectively prevented from being broken even when the connector is attached.
This repeated bending test (hereinafter referred to as “repetitive bending test for connector FPC”) is performed as shown in FIGS. 2 to 4 below, unlike the conventional 180 ° bending test.

図2は、コネクタFPC用繰返し曲げ試験装置100の構成を示す。コネクタFPC用繰返し曲げ試験装置100は、ロードセル11を取り付けて上下方向に変位する引張り試験機10と、フレキシブル配線板の試験片50の一端50a側を緩く保持するバイス(チャック)31、32と、試験片50の他端50b側を厚み方向に隙間を開けつつ保持する保持具20とを備えている。保持具20は、より詳しくはコ字状の本体23と、本体23のコ字の開口部を横にした時にコ字の開口縁の上下に互いに対向配置される1対の保持ブレード21、22と、本体23の上方に取り付けられてロードセル11を装着するロードセル装着部25とを備えている。
又、バイス31、32は試験片50の一端50aを上下から挟むように配置され、ネジ33によってバイス31、32の間隔を調整可能になっている。なお、保持ブレード21、22の幅は試験片50の幅以上になっている。
FIG. 2 shows a configuration of the connector FPC repeated bending test apparatus 100. The connector FPC repeated bending test apparatus 100 includes a tensile testing machine 10 that is mounted in the vertical direction with the load cell 11 attached thereto, and vices (chucks) 31 and 32 that loosely hold one end 50a side of the test piece 50 of the flexible wiring board, And a holder 20 that holds the other end 50b side of the test piece 50 with a gap in the thickness direction. More specifically, the holding tool 20 includes a U-shaped main body 23 and a pair of holding blades 21 and 22 that are disposed opposite to each other above and below the U-shaped opening edge when the U-shaped opening of the main body 23 is placed sideways. And a load cell mounting portion 25 that is mounted above the main body 23 and mounts the load cell 11.
The vices 31 and 32 are arranged so as to sandwich one end 50a of the test piece 50 from above and below, and the interval between the vices 31 and 32 can be adjusted by a screw 33. The width of the holding blades 21 and 22 is equal to or larger than the width of the test piece 50.

図3に示すように、試験片50は、FPC60に試験用の補強板等を貼付した構造をなしている。FPC60は、図1に示した構造であり、Ni層61aaとAu層61abとをまとめて、Ni下地Auめっき層61aと表示する。
そして、FPC60のベースフィルム63の右端部を除く下面には、粘着剤(例えばアクリル系熱硬化接着剤)51を介してポリイミド等からなる第1補強板52が接着されている。さらに、ポリイミド補強板52の右端の下面には、粘着剤(両面テープ)53を介してエポキシ樹脂等からなる第2補強板54が接着されている。一方、FPC60の圧延銅合金箔61の右端部の上面には、接着剤(例えばエポキシ系熱硬化接着剤)55を介してカバーフィルム56が接着されている。なお、FPC60の右側が試験片50の他端50b側に対応する。
ベースフィルム63及びカバーフィルム56としては、例えばポリイミドが用いられる。又、FPC60、粘着剤51、及びポリイミド補強板52の合計厚みtは、たとえば0.3mm程度である。
As shown in FIG. 3, the test piece 50 has a structure in which a test reinforcing plate or the like is attached to the FPC 60. The FPC 60 has the structure shown in FIG. 1, and the Ni layer 61aa and the Au layer 61ab are collectively displayed as a Ni underlayer Au plating layer 61a.
A first reinforcing plate 52 made of polyimide or the like is bonded to the lower surface of the base film 63 of the FPC 60 excluding the right end portion through an adhesive (for example, an acrylic thermosetting adhesive) 51. Furthermore, a second reinforcing plate 54 made of an epoxy resin or the like is bonded to the lower surface of the right end of the polyimide reinforcing plate 52 through an adhesive (double-sided tape) 53. On the other hand, a cover film 56 is bonded to the upper surface of the right end portion of the rolled copper alloy foil 61 of the FPC 60 via an adhesive (for example, an epoxy thermosetting adhesive) 55. The right side of the FPC 60 corresponds to the other end 50b side of the test piece 50.
As the base film 63 and the cover film 56, for example, polyimide is used. The total thickness t of the FPC 60, the adhesive 51, and the polyimide reinforcing plate 52 is, for example, about 0.3 mm.

次に、図4を参照し、試験片50を用いた曲げ性評価方法について説明する。まず、試験片50の一端50a側をバイス(チャック)31、32で掴んで保持する。このとき、バイス31、32の締付け力が強くなり過ぎると、雄コネクタを手で雌コネクタに挿入する際に上下に繰り返し動かしながら挿入した時に、雌コネクタが雄コネクタを緩く締め付けている状態が再現できず、さらにNi下地Auめっき層61aが凹み、試験片50の他端50b側を振幅させたときに当該凹部が割れの起点になってしまい、正確な評価ができなくなる。そこで、測定においてはバイス31、32の締付け力を適度に緩くすることで再現され、例えば、バイス31、32の締付け力(締め付けトルク)を、2〜6cN・mとすると好ましい。   Next, a bendability evaluation method using the test piece 50 will be described with reference to FIG. First, the one end 50 a side of the test piece 50 is grasped and held by the vice (chuck) 31, 32. At this time, if the tightening force of the vices 31 and 32 becomes too strong, when the male connector is inserted into the female connector by hand and repeatedly moved up and down, the female connector loosely tightens the male connector is reproduced. Further, the Ni underlayer Au plating layer 61a is recessed, and when the other end 50b side of the test piece 50 is made to swing, the recess becomes a starting point of cracking, and accurate evaluation cannot be performed. Therefore, the measurement is reproduced by moderately loosening the tightening force of the vices 31 and 32. For example, the tightening force (tightening torque) of the vices 31 and 32 is preferably 2 to 6 cN · m.

一方、試験片50の他端50b側においては、第2補強板54より中央側で、かつカバーフィルム56が形成されている位置(図3の位置H参照)で、保持ブレード21、22により他端50bを上下から保持する。このとき、保持ブレード21、22と他端50b表面との間にそれぞれ隙間Gを設けるようにする。
保持ブレード21に加えて保持ブレード22を設けることで上下に繰返し曲げ(振幅)することができ、これにより、雄コネクタを手で雌コネクタに挿入する際に上下に繰り返し動かす動きを再現することができる。これに対して、通常の繰返し曲げ試験機では保持ブレード21のみが設けられ、負荷の掛からない水平状態から下への振幅のみとなり、コネクタ挿入時の上下に繰り返し動かす動きは再現されない。
また、このように、隙間Gを設けることで、他端50b側を上下に繰返し曲げ(振幅)する際、他端50bに張力がかかり難くなり、作業員の手で行われるコネクタの挿入作業時曲げを再現することができる。隙間Gは例えば0.5mm程度とすることができる。
なお、保持ブレード21、22の先端の厚みは薄くなっていてナイフエッジを形成し、試験片50の幅方向に線接触するようになっている。
又、試験片50の一端50a側は雄コネクタが取り付けられる側であり、他端50b側はコネクタの挿入作業時に作業員が手で持つ部分に対応する。又、第2補強板54は、繰返し曲げの際の振幅を増大させてコネクタの挿入作業時曲げをさらに再現するものであるが、省略してもよい。
On the other hand, on the other end 50b side of the test piece 50, the holding blades 21 and 22 are used in the center side of the second reinforcing plate 54 and the position where the cover film 56 is formed (see position H in FIG. 3). The end 50b is held from above and below. At this time, a gap G is provided between the holding blades 21 and 22 and the surface of the other end 50b.
By providing the holding blade 22 in addition to the holding blade 21, it can be repeatedly bent (amplitude) up and down, thereby reproducing the movement that repeatedly moves up and down when the male connector is inserted into the female connector by hand. it can. On the other hand, in a normal repeated bending test machine, only the holding blade 21 is provided, and only the amplitude from the horizontal state where no load is applied to the bottom is provided, and the movement repeatedly moving up and down at the time of inserting the connector is not reproduced.
In addition, by providing the gap G in this way, when the other end 50b side is repeatedly bent up and down (amplitude), it is difficult to apply tension to the other end 50b, and the connector is inserted by the operator's hand. Bending can be reproduced. The gap G can be about 0.5 mm, for example.
The tips of the holding blades 21 and 22 are thin so that a knife edge is formed, and line contact is made in the width direction of the test piece 50.
Further, one end 50a side of the test piece 50 is a side to which a male connector is attached, and the other end 50b side corresponds to a part held by a worker during insertion of the connector. The second reinforcing plate 54 further increases the amplitude during repeated bending and further reproduces the bending during connector insertion work, but may be omitted.

なお、試験片50の一端50a側を固定端とし、当該固定端と、試験片50の他端側50bの保持部分(保持ブレード21、22の先端と試験片50との接触部)との曲げ長Lが5mm以上であれば、他端50b側を上下に繰返し曲げすることができ、曲げ性の評価が行える。
又、本体23への保持ブレード21、22の取付け位置を変更可能にすれば、異なる厚みや幅を有する試験片50を試験することができる。さらに、保持ブレード21、22を交換可能としても、同様に異なる厚みや幅を有する試験片50を試験することができる。
Note that one end 50a side of the test piece 50 is a fixed end, and bending between the fixed end and a holding portion on the other end side 50b of the test piece 50 (a contact portion between the tip of the holding blades 21 and 22 and the test piece 50). If the length L is 5 mm or more, the other end 50b side can be repeatedly bent up and down, and the bendability can be evaluated.
Further, if the mounting positions of the holding blades 21 and 22 on the main body 23 can be changed, the test pieces 50 having different thicknesses and widths can be tested. Furthermore, even if the holding blades 21 and 22 can be replaced, the test pieces 50 having different thicknesses and widths can be similarly tested.

このようにして試験片50をバイス31、32及び保持ブレード21、22に保持した後、引張り試験機10に取り付けられたロードセル11を上下方向に変位させることで、試験片50の他端50b側を上下に繰返し曲げする。このとき、ロードセル11に掛かる応力を一定にすると共に、ロードセル11の上下方向の変位速度及び変位量を所定の値に制御するとよい。例えば、ロードセル11の上下方向の変位速度を5mm/分程度とし、変位量(振幅)を2.0mmとすることができ、この場合、1つの上又は下への変位が30秒程度かかることになる。
又、試験片50を構成するFPC60の圧延銅合金箔61に所定の配線部(電気回路)を形成しておき、繰返し曲げ(振幅)試験中に該配線部の導通(電気抵抗)を測定すれば、試験片50の断線(破断)をリアルタイムで検知することができ、このときの断線時のロードセル11の変位量を見積もることで、曲げ性を定量的に評価することができる。
After the test piece 50 is held by the vices 31 and 32 and the holding blades 21 and 22 in this way, the load cell 11 attached to the tensile tester 10 is displaced in the vertical direction, whereby the other end 50b side of the test piece 50 is obtained. Is repeatedly bent up and down. At this time, the stress applied to the load cell 11 may be made constant, and the displacement speed and displacement amount of the load cell 11 in the vertical direction may be controlled to predetermined values. For example, the displacement speed in the vertical direction of the load cell 11 can be set to about 5 mm / min, and the amount of displacement (amplitude) can be set to 2.0 mm. In this case, one up or down displacement takes about 30 seconds. Become.
A predetermined wiring portion (electric circuit) is formed on the rolled copper alloy foil 61 of the FPC 60 constituting the test piece 50, and the continuity (electric resistance) of the wiring portion is measured during a repeated bending (amplitude) test. For example, the disconnection (break) of the test piece 50 can be detected in real time, and the bendability can be quantitatively evaluated by estimating the displacement amount of the load cell 11 at the time of the disconnection.

<圧延銅合金箔>
無酸素銅又はタフピッチ銅に対し、表1に示す組成の成分を加え、溶解鋳造で厚み200mm程度の直方体のインゴットを製造した。このインゴットを熱間圧延で10mm前後まで加工し、冷間圧延と焼鈍とを繰り返し、さらに最終冷間圧延し、厚み18μmの圧延銅合金箔を得た。圧延銅合金箔の片面に化学処理(銅系粗化めっき)を施し、積層に供した。
<Rolled copper alloy foil>
A component having the composition shown in Table 1 was added to oxygen-free copper or tough pitch copper, and a rectangular parallelepiped ingot having a thickness of about 200 mm was manufactured by melt casting. This ingot was processed to about 10 mm by hot rolling, repeated cold rolling and annealing, and further finally cold rolled to obtain a rolled copper alloy foil having a thickness of 18 μm. One side of the rolled copper alloy foil was subjected to chemical treatment (copper-based rough plating) and subjected to lamination.

<Niめっき>
圧延銅合金箔のうち化学処理を行わなかった面に、ワット浴(めっき浴組成:塩化ニッケル45g/L、硫酸ニッケル240g/L、硼酸30g/L)で光沢Niめっきを施して厚み6μmのNi層を形成した。めっき条件は、浴温度40〜60℃、電流密度1〜5A/dm2とし、めっき浴にサッカリン系添加剤(商品名YNi−RH1)を加えてめっきを行った。
<Ni plating>
The surface of the rolled copper alloy foil that had not been subjected to chemical treatment was subjected to bright Ni plating with a watt bath (plating bath composition: nickel chloride 45 g / L, nickel sulfate 240 g / L, boric acid 30 g / L). A layer was formed. The plating conditions were such that the bath temperature was 40 to 60 ° C., the current density was 1 to 5 A / dm 2, and plating was performed by adding a saccharin-based additive (trade name YNi-RH1) to the plating bath.

<樹脂層>
圧延銅合金箔の化学処理を行った面にエポキシ系接着剤を10μm塗布した後、厚み12.5μmのポリイミド樹脂を貼付して銅貼積層板を作製した。
<Resin layer>
After 10 μm of an epoxy adhesive was applied to the surface of the rolled copper alloy foil that had been chemically treated, a 12.5 μm thick polyimide resin was pasted to prepare a copper-clad laminate.

<圧延銅合金箔の半軟化温度>
圧延銅合金箔を種々の温度で30分間の焼鈍を行なった後の引張り強さを測定した。そして,焼鈍後の引張り強さが,圧延上がりの引張り強さと300℃で30分間焼鈍し完全に軟化させた後の引張り強さとの中間の値になるときの焼鈍温度を求めた。
なお、引張強さ(TS)は、引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向における0.2%耐力をそれぞれ測定した。
<圧延銅合金箔のRa(中心線平均粗さ)>
圧延銅合金箔のRa(中心線平均粗さ)は、JIS B0601に従って測定した。
<Semi-softening temperature of rolled copper alloy foil>
The tensile strength after annealing the rolled copper alloy foil at various temperatures for 30 minutes was measured. Then, the annealing temperature was determined when the tensile strength after annealing reached an intermediate value between the tensile strength after rolling and the tensile strength after annealing at 300 ° C for 30 minutes and complete softening.
In addition, the tensile strength (TS) measured 0.2% yield strength in the direction parallel to a rolling direction according to JIS-Z2241, respectively with the tensile tester.
<Ra (centerline average roughness) of rolled copper alloy foil>
Ra (centerline average roughness) of the rolled copper alloy foil was measured according to JIS B0601.

<圧延銅合金箔の加工硬化指数(n値)>
n値は、降伏点以上の塑性域における真応力σと、対数ひずみεとに対し、σ=F×εで近似した時の指数nであり、n値の測定はJIS Z 2241に規格されている方法に従った。又、n値は、材料が降伏した後の均一伸びと応力とを用いて求める必要があるため、伸び2%から最大応力点までの値を用いた。そして、測定した伸び及び応力から求めた対数ひずみεと、真応力σとの両対数グラフを最小自乗法で近似し、グラフの傾きからn値を求めた。
なお、n値の測定の際、表1に示すように、引張試験前にそれぞれ350℃で0.5時間、200℃で0.5時間の熱処理を圧延銅合金箔に施した。
<圧延銅合金箔のI(220)/I(200)>
室温で、圧延銅合金箔の220面及び200面のX線回折強度比を測定した。半値幅は、JIS K0131に基づいて得られ、X線回折強度のピーク高さの半分の値におけるピーク幅である。
<Work hardening index of rolled copper alloy foil (n value)>
The n value is an index n when approximating σ = F × ε n for the true stress σ and logarithmic strain ε in the plastic region above the yield point. The measurement of the n value is specified in JIS Z 2241. Followed the method. Further, since the n value needs to be determined using the uniform elongation and stress after the material yields, the value from the elongation of 2% to the maximum stress point was used. Then, a logarithmic graph of logarithmic strain ε and true stress σ obtained from the measured elongation and stress was approximated by the method of least squares, and the n value was obtained from the slope of the graph.
When measuring the n value, as shown in Table 1, the rolled copper alloy foil was heat-treated at 350 ° C. for 0.5 hours and at 200 ° C. for 0.5 hours before the tensile test, respectively.
<I (220) / I (200) of rolled copper alloy foil>
At room temperature, the X-ray diffraction intensity ratio of the 220 plane and the 200 plane of the rolled copper alloy foil was measured. The full width at half maximum is obtained based on JIS K0131 and is a peak width at a value half the peak height of the X-ray diffraction intensity.

<Ni層のビッカース硬さ(Hv)>
JIS Z 2244に従い、測定した。
<Vickers hardness of Ni layer (Hv)>
Measured according to JIS Z 2244.

<破断伸び>
引張試験機により、JIS−Z2241に従い、圧延方向と平行な方向に引っ張り、試験片が破断したときの標点間の長さLと、試験前の標点距離L0との差を%で求めて破断伸びとした。
<Elongation at break>
Using a tensile tester, pull in the direction parallel to the rolling direction according to JIS-Z2241, and obtain the difference between the length L between the gauge points when the test piece is broken and the gauge distance L0 before the test in%. It was set as elongation at break.

<180度の繰返し曲げ試験>
180度密着曲げは以下の手順で行った。まず、試料を幅3.2mm、長さ30mmで試験片の長さ方向が圧延方向と平行になるように切り出して試験片とし、樹脂層面を内側にしてループ状にし、ハンドプレスで潰して180度密着曲げを行った。そして、曲げ部の断面の圧延銅合金箔部分の破断の有無を光学顕微鏡で観察した。破断がなければ、密着曲げ後の試料を開き、ハンドプレスを用いて平らに伸ばした後に、同じ場所でもう一度折り返してハンドプレスで潰した。このようにして、圧延銅合金箔が破断(テスターを使用して試験片両端の導通がなくなった時を破断とした)するまでの曲げ回数を求めた。
<180 degree repeated bending test>
180 degree contact bending was performed according to the following procedure. First, the specimen was cut out so that the width of the specimen was 3.2 mm and the length was 30 mm, and the length direction of the test piece was parallel to the rolling direction to make a test piece. Close bending was performed. And the presence or absence of the fracture | rupture of the rolled copper alloy foil part of the cross section of a bending part was observed with the optical microscope. If there was no break, the sample after close contact bending was opened and stretched flat using a hand press, then folded back at the same place and crushed with a hand press. In this way, the number of times of bending until the rolled copper alloy foil broke (when the tester was used to eliminate continuity at both ends of the test piece was taken as the break) was determined.

<コネクタFPC用繰返し曲げ試験>
各銅張積層板試料に電気回路を形成し、幅3.2mm 、長さ30mmで試験片の長さ方向が圧延方向と平行になるように切り出し、図3に示す試験片(FPC)とした。この試験片に対し、図2、図4のコネクタFPC用繰返し曲げ試験装置を用いて曲げ試験を行った。
試験条件は、隙間Gを0.5mmとし、ロードセル11の上下方向の変位速度を5mm/分とし、変位量(振幅)を2.0mmとした。
<Repeated bending test for connector FPC>
An electric circuit was formed on each copper-clad laminate sample, and the test piece (FPC) shown in FIG. 3 was cut out with a width of 3.2 mm and a length of 30 mm so that the length direction of the test piece was parallel to the rolling direction. . This test piece was subjected to a bending test using the connector FPC repeated bending test apparatus shown in FIGS.
The test conditions were a gap G of 0.5 mm, a vertical displacement speed of the load cell 11 of 5 mm / min, and a displacement (amplitude) of 2.0 mm.

得られた結果を表1、2に示す。   The obtained results are shown in Tables 1 and 2.

Figure 0005189683
Figure 0005189683

Figure 0005189683
Figure 0005189683

表1、表2から明らかなように、無酸素銅又はタフピッチ銅に対し、Ag,Sn,Ti及びZrの群から選ばれる1種以上を合計500質量ppm以下添加した実施例1〜10の場合、銅合金箔の破断伸びが6%以上であり、かつ曲げ変位2.0mmのコネクタFPC用繰返し曲げ試験による破断までの回数が10回以上であった。又、従来の180度の繰返し曲げ試験による破断までの回数が5回以上であった。
このように曲げ性が向上する理由は、実施例1〜10の圧延銅合金箔が銅貼積層板に加工される際の樹脂ラミネート加工時に、加熱ロールにより圧延銅合金箔が適度に軟化したためと考えられる。
As is clear from Tables 1 and 2, in the case of Examples 1 to 10 in which one or more selected from the group of Ag, Sn, Ti and Zr was added to oxygen-free copper or tough pitch copper in a total of 500 mass ppm or less The breaking elongation of the copper alloy foil was 6% or more, and the number of times to break by the repeated bending test for connector FPC with a bending displacement of 2.0 mm was 10 times or more. Further, the number of times until breakage by the conventional 180 degree repeated bending test was 5 times or more.
The reason why the bendability is improved in this way is that the rolled copper alloy foil is softened moderately by the heating roll during the resin laminating process when the rolled copper alloy foil of Examples 1 to 10 is processed into a copper-clad laminate. Conceivable.

一方、最終冷間圧延における最終3パスでの油膜当量のうち、最終パスの2つ前の油膜当量が25000を超えるか、最終パスの1つ前の油膜当量が30000を超えるか、最終パスの油膜当量が35000を超えた比較例1,3,4の場合、圧延銅合金箔の圧延平行方向の表面粗さRaが0.1μmを超え、曲げ変位2.0mmのコネクタFPC用繰返し曲げ試験による破断までの回数が10回未満となり、曲げ加工性が劣化した。
圧延銅合金箔の最終冷間圧延時の総加工度を85%未満とした比較例2、5、6、7の場合、350℃で0.5時間焼鈍後の加工硬化指数が0.3未満となり、曲げ変位2.0mmのコネクタFPC用繰返し曲げ試験による破断までの回数が10回未満となり、曲げ加工性が劣化した。
圧延銅合金箔中のSn添加量が500質量ppmを超えた比較例8の場合、圧延銅合金箔の半軟化温度が150℃を超え、350℃で0.5時間焼鈍後の加工硬化指数が0.3未満となり、曲げ変位2.0mmのコネクタFPC用繰返し曲げ試験による破断までの回数が10回未満となり、曲げ加工性が劣化した。
On the other hand, among the oil film equivalents in the final three passes in the final cold rolling, the oil film equivalent two previous to the final pass exceeds 25,000, the oil film equivalent one previous to the final pass exceeds 30000, In the case of Comparative Examples 1, 3, and 4 where the oil film equivalent exceeded 35000, the surface roughness Ra in the rolling parallel direction of the rolled copper alloy foil exceeded 0.1 μm, and until the fracture by repeated bending test for connector FPC with a bending displacement of 2.0 mm. Was less than 10 times, and bending workability deteriorated.
In the case of Comparative Examples 2, 5, 6, and 7 in which the total degree of work at the time of final cold rolling of the rolled copper alloy foil was less than 85%, the work hardening index after annealing at 350 ° C. for 0.5 hour was less than 0.3. Thus, the number of times until the fracture in the repeated bending test for connector FPC with a bending displacement of 2.0 mm was less than 10, and the bending workability deteriorated.
In the case of Comparative Example 8 in which the Sn addition amount in the rolled copper alloy foil exceeds 500 ppm by mass, the semi-softening temperature of the rolled copper alloy foil exceeds 150 ° C., and the work hardening index after annealing at 350 ° C. for 0.5 hour is Less than 0.3, the number of times to break in the repeated bending test for connector FPC with a bending displacement of 2.0 mm was less than 10, and bending workability deteriorated.

60 FPC(銅貼積層板)
61 圧延銅合金箔
63 樹脂層
61aa Ni層
61ab Au層
200 雄コネクタ
60 FPC (copper-laminated laminate)
61 Rolled copper alloy foil 63 Resin layer 61aa Ni layer 61ab Au layer 200 Male connector

Claims (2)

無酸素銅又はタフピッチ銅に対し、Ag,Sn,Ti及びZrの群から選ばれる1種以上を合計500質量ppm以下添加した組成からなる厚み5〜50μmの圧延銅合金箔であって、
該圧延銅合金箔の片面に化学処理を行ってエポキシ系接着剤を10μm塗布した後、厚み12.5μmのポリイミド樹脂層からなるベースフィルムを積層し、該圧延銅合金箔の反対面に厚み6μmのNi層を形成した銅張積層板を形成し、この銅張積層板の前記圧延銅合金箔に電気回路を形成し幅3.2mm、長さ30mmで長さ方向が圧延方向と平行になるように切り出した試験片を用意し、
前記試験片の長手方向に沿って前記ベースフィルムの他端部を除く下面には、アクリル系熱硬化接着剤からなる粘着剤を介してポリイミドからなる第1補強板が接着され、前記試験片の前記他端部側にて前記Ni層が形成されずに前記圧延銅合金箔が表出した上面には、エポキシ系熱硬化接着剤を介してポリイミドからなるカバーフィルムが接着され、前記試験片、前記粘着剤、及び前記第1補強板の合計厚みtは、0.3mmであり、
該試験片の長手方向に沿って一端側をバイスにてその締付け力(締め付けトルク)を、2〜6cN・mとして緩く保持し、かつ該試験片の前記他端側の前記カバーフィルムが形成されている位置を厚み方向に隙間を0.5mm開けつつ保持し、前記試験片の前記一端側と前記他端側の保持部分との曲げ長を5mm以上とし、負荷のかからない状態を中心として該厚み方向に変位量2.0mmで上下方向の変位速度を5mm/分として振幅させて繰返し曲げを行ったとき、前記電気回路が断線するまでの曲げ回数が10回以上となるコネクタ付FPC用圧延銅合金箔。
A rolled copper alloy foil having a thickness of 5 to 50 μm having a composition in which one or more selected from the group of Ag, Sn, Ti and Zr is added to oxygen-free copper or tough pitch copper in a total of 500 ppm by mass or less,
After applying a chemical treatment to one side of the rolled copper alloy foil and applying an epoxy adhesive to 10 μm, a base film made of a polyimide resin layer having a thickness of 12.5 μm is laminated, and a thickness of 6 μm is formed on the opposite surface of the rolled copper alloy foil. A copper clad laminate having a Ni layer is formed, and an electric circuit is formed on the rolled copper alloy foil of the copper clad laminate so that the width direction is 3.2 mm, the length is 30 mm, and the length direction is parallel to the rolling direction. Prepare a specimen cut out in
A first reinforcing plate made of polyimide is bonded to the lower surface excluding the other end of the base film along the longitudinal direction of the test piece through a pressure-sensitive adhesive made of an acrylic thermosetting adhesive. On the upper surface where the rolled copper alloy foil is exposed without forming the Ni layer on the other end side, a cover film made of polyimide is bonded via an epoxy thermosetting adhesive, and the test piece, The total thickness t of the adhesive and the first reinforcing plate is 0.3 mm,
One end of the test piece along the longitudinal direction of the test piece is held loosely by a vice with a tightening force (tightening torque) of 2 to 6 cN · m, and the cover film on the other end side of the test piece is formed. Is held with a gap of 0.5 mm in the thickness direction, the bending length between the holding portion on the one end side and the other end side of the test piece is 5 mm or more, and the thickness is centered on a state where no load is applied. Rolled copper alloy for FPC with connector, when the bending is repeated with the displacement amount of 2.0mm in the direction and the vertical displacement speed of 5mm / min, and repeated bending until the electric circuit is disconnected Foil.
一方の面にNi層が形成されている請求項1記載のコネクタ付FPC用圧延銅合金箔。  The rolled copper alloy foil for FPC with a connector according to claim 1, wherein a Ni layer is formed on one surface.
JP2012034762A 2011-03-24 2012-02-21 Rolled copper alloy foil Active JP5189683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034762A JP5189683B2 (en) 2011-03-24 2012-02-21 Rolled copper alloy foil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011065201 2011-03-24
JP2011065201 2011-03-24
JP2012034762A JP5189683B2 (en) 2011-03-24 2012-02-21 Rolled copper alloy foil

Publications (2)

Publication Number Publication Date
JP2012211388A JP2012211388A (en) 2012-11-01
JP5189683B2 true JP5189683B2 (en) 2013-04-24

Family

ID=47265570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034762A Active JP5189683B2 (en) 2011-03-24 2012-02-21 Rolled copper alloy foil

Country Status (1)

Country Link
JP (1) JP5189683B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014850A (en) * 2013-07-30 2015-02-09 가부시키가이샤 에스에이치 카퍼프로덕츠 Roughening copper foil, copper-clad laminate and printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546571B2 (en) * 2012-03-29 2014-07-09 Jx日鉱日石金属株式会社 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
JP7085394B2 (en) * 2018-04-13 2022-06-16 東洋鋼鈑株式会社 Laminated electrolytic foil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401998B2 (en) * 2005-03-31 2010-01-20 日鉱金属株式会社 High-gloss rolled copper foil for copper-clad laminate and method for producing the same
JP4522972B2 (en) * 2005-04-28 2010-08-11 日鉱金属株式会社 High gloss rolled copper foil for copper-clad laminates
JP5320638B2 (en) * 2008-01-08 2013-10-23 株式会社Shカッパープロダクツ Rolled copper foil and method for producing the same
JP2009280855A (en) * 2008-05-21 2009-12-03 Hitachi Cable Ltd Rolled copper foil and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150014850A (en) * 2013-07-30 2015-02-09 가부시키가이샤 에스에이치 카퍼프로덕츠 Roughening copper foil, copper-clad laminate and printed wiring board
KR102275187B1 (en) 2013-07-30 2021-07-07 제이엑스금속주식회사 Roughening copper foil, copper-clad laminate and printed wiring board

Also Published As

Publication number Publication date
JP2012211388A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP5467930B2 (en) Copper clad laminate
KR101528995B1 (en) Metal foil composite, flexible printed circuit, formed product, and method of producing the same
JP5826160B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
TWI221161B (en) Rolled copper foil for flexible printed circuit and method of manufacturing the same
KR101935129B1 (en) Copper foil for flexible printed wiring board, and copper-clad laminate, flexible printed wiring board and electronic device using the same
KR101628590B1 (en) Copper foil composite, molded body, and method for producing same
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
KR20170093706A (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP2007107036A (en) Rolled copper alloy foil to be bent
US10159142B2 (en) Printed wiring board with a reinforcing member having a diffusion-bonded nickel layer
WO2013105266A1 (en) Copper foil composite, molded body, and method for producing same
JP5189683B2 (en) Rolled copper alloy foil
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
WO2013105520A1 (en) Copper-foil composite, formed body, and manufacturing method therefor
JP6104200B2 (en) Rolled copper foil, copper clad laminate, flexible printed circuit board, and electronic device
KR101525368B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate, flexible printed wiring board and electronic device
KR100441185B1 (en) Flexible Circuit Copper Alloy Foil
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
KR101539839B1 (en) Copper foil, copper-clad laminate, flexible printed circuits and three-dimensional molded article
JP5788225B2 (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
JP2012001786A (en) Flexible copper-clad laminate, and method of manufacturing the same
JP5562217B2 (en) Rolled copper foil
CN111526674A (en) Rolled copper foil, copper-clad laminate, flexible printed board, and electronic device
JP2013067853A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board and electronic device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250