JP2013189702A - Rolled copper foil and method of manufacturing the same - Google Patents

Rolled copper foil and method of manufacturing the same Download PDF

Info

Publication number
JP2013189702A
JP2013189702A JP2012174591A JP2012174591A JP2013189702A JP 2013189702 A JP2013189702 A JP 2013189702A JP 2012174591 A JP2012174591 A JP 2012174591A JP 2012174591 A JP2012174591 A JP 2012174591A JP 2013189702 A JP2013189702 A JP 2013189702A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
concentration
mass
tough pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012174591A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ito
保之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2012174591A priority Critical patent/JP2013189702A/en
Priority to CN2012104354519A priority patent/CN103255310A/en
Publication of JP2013189702A publication Critical patent/JP2013189702A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent softening at normal temperature and withstand long-term storage while keeping such a state where high flexural property due to recrystallization can be given.SOLUTION: A rolled copper foil is used for a flexible printed wiring board and contains oxygen (O), sulfur (S), silver (Ag), and iron (Fe) with predetermined concentrations. The rolled copper foil is subjected to hot rolling step at predetermined temperature, and a specified value Tdefined by formula, T=-98[O]+1840[S]+2005[Ag]-824[Fe]+0.012Tr, is 9.8 or more (where [E] is the concentrations (mass%) of elements E included in the rolled copper foil, and Tr is temperature (°C) in the hot rolling step).

Description

本発明は、圧延銅箔及び圧延銅箔の製造方法に関し、特に、フレキシブルプリント配線板に用いられる圧延銅箔及び圧延銅箔の製造方法に関する。   The present invention relates to a rolled copper foil and a rolled copper foil manufacturing method, and more particularly to a rolled copper foil used for a flexible printed wiring board and a rolled copper foil manufacturing method.

フレキシブルプリント配線板(FPC:Flexible Printed Circuit)の分野では、銅箔を、ポリイミド樹脂フィルム等からなる絶縁性の樹脂基材にラミネートしたり、ポリイミド前駆体を別の銅箔上に塗布して乾燥硬化させた絶縁性の樹脂基材の表面に貼り合わせたりして、導体層として用いてきた。このような銅箔を有する樹脂基材は銅張板と呼ばれ、導体層となる銅箔が、例えばフォトリソグラフィ法やエッチング法などを用いて所定の配線パターンに加工されることで、フレキシブルプリント配線板が製造される。   In the field of flexible printed circuit (FPC), copper foil is laminated to an insulating resin substrate made of polyimide resin film, etc., or polyimide precursor is applied onto another copper foil and dried. It has been used as a conductor layer by bonding to the surface of a cured insulating resin substrate. A resin base material having such a copper foil is called a copper-clad board, and the copper foil serving as a conductor layer is processed into a predetermined wiring pattern by using, for example, a photolithography method or an etching method, thereby enabling flexible printing. A wiring board is manufactured.

フレキシブルプリント配線板に使用する銅箔には、屈曲特性に優れる圧延銅箔が用いられることが多い。これは、フレキシブルプリント配線板が、プリンタのヘッド部や、ハードディスク内の駆動部、クラムシェルタイプの携帯電話のヒンジ部といった曲げが繰り返される部材に多く使われるためである。   In many cases, a rolled copper foil having excellent bending characteristics is used as the copper foil used for the flexible printed wiring board. This is because the flexible printed wiring board is often used for a member that is repeatedly bent, such as a printer head, a drive in a hard disk, or a hinge of a clamshell type mobile phone.

圧延銅箔は、鋳造により製造した鋳塊(インゴット)を熱間圧延した後、冷間圧延工程とひずみ除去の焼鈍工程とを繰り返し、最終焼鈍工程後に所定の厚さまで薄くすることで製造される。その後、樹脂基材等との密着性を確保するため、圧延銅箔の表面に例えば粗化処理および防錆処理が施される。   A rolled copper foil is produced by hot rolling an ingot produced by casting, then repeating a cold rolling process and an annealing process for removing strain, and reducing the thickness to a predetermined thickness after the final annealing process. . Then, in order to ensure adhesiveness with a resin base material etc., a roughening process and a rust prevention process are given to the surface of rolled copper foil, for example.

圧延銅箔の特徴である高い屈曲特性を得るには、例えば上記のように製造された圧延銅箔を樹脂基材に貼り合わせる際に加熱し、結晶組織を再結晶させて軟化させる。圧延銅箔の製造時に軟化を行わないのは、樹脂基材との貼り合わせ時に圧延銅箔が変形したり、シワが生じたりする可能性があるからである。よって、樹脂基材との貼り合わせ時の加熱で容易に軟化が起こるよう、圧延銅箔の中でも比較的軟化温度の低いタフピッチ銅を原材料とする圧延銅箔(以下、タフピッチ銅箔ともいう)が多く用いられる。   In order to obtain the high bending characteristic that is a feature of the rolled copper foil, for example, when the rolled copper foil manufactured as described above is bonded to a resin substrate, it is heated to recrystallize and soften the crystal structure. The reason why softening is not performed during the production of the rolled copper foil is that the rolled copper foil may be deformed or wrinkled when bonded to the resin base material. Therefore, rolled copper foil (hereinafter also referred to as tough pitch copper foil) made of tough pitch copper having a relatively low softening temperature among the rolled copper foils so that softening easily occurs by heating at the time of bonding with the resin base material. Often used.

一方で、圧延銅箔の原材料としては、タフピッチ銅のほかに無酸素銅や各種合金が存在する。これらはタフピッチ銅と比較して軟化温度が高く、樹脂基材との貼り合わせ時の加熱によっても軟化しないおそれがある。そこで、例えば無酸素銅の軟化温度を調整するため、製造工程の条件変更をしたり(例えば、特許文献1)、特殊な金属を添加したり(例えば、特許文献2)、微量な不純物の濃度を調整したり(例えば、特許文献3)といった対策が提案されている。   On the other hand, as raw materials for rolled copper foil, oxygen-free copper and various alloys exist in addition to tough pitch copper. These have a higher softening temperature than tough pitch copper and may not be softened even by heating during bonding to the resin base material. Therefore, for example, in order to adjust the softening temperature of oxygen-free copper, the conditions of the manufacturing process are changed (for example, Patent Document 1), a special metal is added (for example, Patent Document 2), or the concentration of a trace amount of impurities Countermeasures have been proposed (for example, Patent Document 3).

特開平01−212739号公報JP-A-01-212739 特開昭59−159954号公報JP 59-159954 A 特開2000−212660号公報JP 2000-212660 A

上記タフピッチ銅箔等の圧延銅箔の屈曲特性は、再結晶組織中に立方体組織が多く存在するほど向上する。立方体組織を多く存在させるためには、例えば圧延銅箔の製造工程において、最終焼鈍工程後における加工度を高くする方法がある。   The bending characteristics of the rolled copper foil such as the tough pitch copper foil are improved as the cubic structure is more present in the recrystallized structure. In order to make many cube structures exist, for example, in the manufacturing process of rolled copper foil, there is a method of increasing the degree of processing after the final annealing process.

しかしながら、上記のような手法で製造されたタフピッチ銅箔は、圧延により蓄積される塑性ひずみの増大により軟化温度が著しく低下し、長期の間には、室温で保管していても軟化が発生してしまう場合があった。この現象は、常温軟化と呼ばれる。タフピッチ銅箔においては、例えば30分間の加熱による半軟化温度が120℃〜150℃と比較的低く、このような常温軟化が頻繁に発生し、品質を悪化させてしまう場合があった。   However, the tough pitch copper foil manufactured by the method as described above has a markedly lowered softening temperature due to an increase in plastic strain accumulated by rolling, and softening occurs for a long time even when stored at room temperature. There was a case. This phenomenon is called room temperature softening. In the tough pitch copper foil, for example, the semi-softening temperature by heating for 30 minutes is relatively low at 120 ° C. to 150 ° C., and such normal temperature softening frequently occurs and the quality may be deteriorated.

具体的には、常温軟化が発生したタフピッチ銅箔の結晶組織には、圧延組織中に部分的に粗大な再結晶粒が存在し、いわゆる混粒の状態にある。すなわち、タフピッチ銅箔の面内に、強度の高い部分と低い部分とが混在している状態である。このような状態では、樹脂基材との貼り合わせにおいてシワが生じ易くなったり、その後の裁断(スリット加工)においてバリが生じ易くなったりする。また、常温軟化によって発生した再結晶粒は立方体組織ではないことも多く、屈曲特性にも悪影響を及ぼす場合があった。   Specifically, in the crystal structure of the tough pitch copper foil that has been softened at room temperature, there are partially coarse recrystallized grains in the rolled structure, which is a so-called mixed grain state. That is, a high strength portion and a low strength portion are mixed in the surface of the tough pitch copper foil. In such a state, wrinkles are likely to occur during bonding with the resin base material, and burrs are likely to occur during subsequent cutting (slit processing). In addition, the recrystallized grains generated by softening at room temperature are often not a cubic structure, and the bending characteristics may be adversely affected.

製造後の輸送やユーザでの保管期間を考えると、常温軟化の影響の定量的な目安として例えば30℃で1年間保管しても300N/mm2以上の引張強度を保っていることが好ましい。これは、加速試験における100℃で4時間加熱した後の引張強度に相当する。 Considering transportation after manufacture and storage period for users, it is preferable to maintain a tensile strength of 300 N / mm 2 or more even when stored for one year at 30 ° C. as a quantitative guideline for the influence of softening at room temperature. This corresponds to the tensile strength after heating at 100 ° C. for 4 hours in the accelerated test.

なお、上述の特許文献1〜3のように、タフピッチ銅よりも軟化温度が高い無酸素銅等を用い、樹脂基材との貼り合わせ時の加熱で軟化するよう種々の調整を図る手法については、主にコスト面の弊害からいずれも採用には至っていない。   In addition, as described in Patent Documents 1 to 3 above, with respect to a technique for using oxygen-free copper or the like having a softening temperature higher than that of tough pitch copper and performing various adjustments so as to be softened by heating at the time of bonding with a resin base material. However, none of them has been adopted mainly because of cost problems.

本発明の目的は、常温軟化を抑制し、再結晶による高い屈曲特性の付与が可能な状態を保ちつつ長期間の保管に耐える圧延銅箔及び圧延銅箔の製造方法を提供することである。   An object of the present invention is to provide a rolled copper foil that can withstand long-term storage while suppressing softening at room temperature and maintaining high bending characteristics by recrystallization, and a method for producing the rolled copper foil.

本発明の第1の態様によれば、
フレキシブルプリント配線板に用いられる圧延銅箔であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)が含有され、所定温度で熱間圧延工程が施されており、次式で定義される規定値TNが9.8以上であり、(200)面の面積比が20以上であり、かつ、厚さが5μm以上50μm以下である圧延銅箔が提供される。
N=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Tr
(ここで、[E]は前記圧延銅箔に含有される元素Eの濃度(質量%)であり、Trは前記熱間圧延工程での温度(℃)である。)
According to a first aspect of the invention,
It is a rolled copper foil used for flexible printed wiring boards,
A predetermined concentration of oxygen (O), sulfur (S), silver (Ag), iron (Fe) is contained, a hot rolling process is performed at a predetermined temperature, and a specified value T N defined by the following formula is A rolled copper foil having a surface area ratio of 9.8 or more, a (200) plane area ratio of 20 or more, and a thickness of 5 μm or more and 50 μm or less is provided.
T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr
(Here, [E] is the concentration (mass%) of element E contained in the rolled copper foil, and Tr is the temperature (° C.) in the hot rolling step.)

本発明の第2の態様によれば、
前記酸素の濃度[O]が0.0001質量%以上0.1質量%以下であり、
前記イオウの濃度[S]が0.0001質量%以上0.01質量%以下であり、
前記銀の濃度[Ag]が0.0001質量%以上0.01質量%以下であり、
前記鉄の濃度[Fe]が0.0001質量%以上0.003質量%以下であり、
前記熱間圧延工程での温度Trが700℃以上1000℃以下である
第1の態様に記載の圧延銅箔が提供される。
According to a second aspect of the invention,
The oxygen concentration [O] is 0.0001% by mass or more and 0.1% by mass or less,
The sulfur concentration [S] is 0.0001 mass% or more and 0.01 mass% or less,
The silver concentration [Ag] is 0.0001 mass% or more and 0.01 mass% or less,
The iron concentration [Fe] is 0.0001 mass% or more and 0.003 mass% or less,
The rolled copper foil as described in the 1st aspect whose temperature Tr in the said hot rolling process is 700 degreeC or more and 1000 degrees C or less is provided.

本発明の第3の態様によれば、
含有されるヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スズ(Sn)、ニッケル(Ni)、鉛(Pb)、シリコン(Si)の合計の濃度が0.02質量%以下となっている
第1又は第2の態様に記載の圧延銅箔が提供される。
According to a third aspect of the invention,
The total concentration of arsenic (As), antimony (Sb), bismuth (Bi), tin (Sn), nickel (Ni), lead (Pb), and silicon (Si) contained is 0.02% by mass or less. The rolled copper foil as described in the 1st or 2nd aspect is provided.

本発明の第4の態様によれば、
最終焼鈍工程が施されており、
前記最終焼鈍工程後の加工度が80%以上97%未満である
第1〜第3の態様のいずれかに記載の圧延銅箔が提供される。
According to a fourth aspect of the invention,
The final annealing process has been applied,
The rolled copper foil in any one of the 1st-3rd aspect whose workability after the said last annealing process is 80% or more and less than 97% is provided.

本発明の第5の態様によれば、
フレキシブルプリント配線板に用いられる圧延銅箔の製造方法であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)を含有する銅の鋳塊に所定温度で熱間圧延を施す熱間圧延工程と、最終焼鈍工程と、を有し、
前記各元素の濃度と前記熱間圧延工程での温度とを制御して次式で定義される規定値T
Nを9.8以上とし、かつ、
前記最終焼鈍工程後の加工度が80%以上97%未満となる加工により該圧延銅箔の厚さを5μm以上50μm以下とする
圧延銅箔の製造方法が提供される。
N=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Tr
(ここで、[E]は前記圧延銅箔に含有される元素Eの濃度(質量%)であり、Trは前記熱間圧延工程での温度(℃)である。)
According to a fifth aspect of the present invention,
A method for producing a rolled copper foil used in a flexible printed wiring board,
A hot rolling process in which hot rolling is performed at a predetermined temperature on a copper ingot containing oxygen (O), sulfur (S), silver (Ag), and iron (Fe) at a predetermined concentration; and a final annealing process. Have
A prescribed value T defined by the following equation by controlling the concentration of each element and the temperature in the hot rolling step
N is not less than 9.8, and
A process for producing a rolled copper foil in which the thickness of the rolled copper foil is 5 μm or more and 50 μm or less is provided by a process in which the degree of work after the final annealing step is 80% or more and less than 97%.
T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr
(Here, [E] is the concentration (mass%) of element E contained in the rolled copper foil, and Tr is the temperature (° C.) in the hot rolling step.)

本発明の第6の態様によれば、
フレキシブルプリント配線板に用いられる圧延銅箔であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)が含有され、
(200)面の面積比が20以上であり、
引張強さが、300N/mm2以上であり、かつ、
厚さが5μm以上50μm以下である
ことを特徴とする圧延銅箔が提供される。
According to a sixth aspect of the present invention,
It is a rolled copper foil used for flexible printed wiring boards,
Contains oxygen (O), sulfur (S), silver (Ag), iron (Fe) at a predetermined concentration,
The (200) plane area ratio is 20 or more,
The tensile strength is 300 N / mm 2 or more, and
A rolled copper foil having a thickness of 5 μm to 50 μm is provided.

本発明によれば、常温軟化を抑制し、再結晶による高い屈曲特性の付与が可能な状態を保ちつつ長期間の保管に耐える圧延銅箔及び圧延銅箔の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the rolled copper foil which suppresses normal temperature softening and withstands a long-term storage, and the state which can provide the high bending characteristic by recrystallization is provided.

本発明の一実施形態に係る圧延銅箔の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the rolled copper foil which concerns on one Embodiment of this invention. 本発明の実施例に係る圧延銅箔の引張試験の概要を示す図である。It is a figure which shows the outline | summary of the tension test of the rolled copper foil which concerns on the Example of this invention. 本発明の実施例に係る圧延銅箔の屈曲特性を測定する摺動屈曲試験装置の模式図である。It is a schematic diagram of the sliding bending test apparatus which measures the bending characteristic of the rolled copper foil which concerns on the Example of this invention.

<本発明者等が得た知見>
上記のようなタフピッチ銅を原材料とする圧延銅箔には、種々の不純物元素が複数含有されている。このような不純物元素のうち、例えば酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)の濃度は、常温軟化の起こり易さに多大な影響を与える。一方で、これら各元素は、原材料となるタフピッチ銅の製造工程で主に混入するものであり、比較的容易に濃度を制御することができる。よって、これら各元素の濃度を制御することで、常温軟化の抑制について所定の効果が得られる。
<Knowledge obtained by the present inventors>
A rolled copper foil made of such tough pitch copper as a raw material contains a plurality of various impurity elements. Among such impurity elements, for example, the concentration of oxygen (O), sulfur (S), silver (Ag), and iron (Fe) greatly affects the likelihood of softening at room temperature. On the other hand, these elements are mainly mixed in the manufacturing process of tough pitch copper as a raw material, and the concentration can be controlled relatively easily. Therefore, by controlling the concentration of each of these elements, a predetermined effect can be obtained with respect to suppression of softening at room temperature.

しかしながら、上記以外にも、例えばヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スズ(Sn)、ニッケル(Ni)、鉛(Pb)、シリコン(Si)等のように、圧延銅箔中に含まれ、かつ、常温軟化に影響を来し得る不純物元素は多数存在する。このため、上記各元素の濃度を制御するのみでは、それ以外の不純物元素による突発的な常温軟化が引き起こされかねない。とはいえ、これら微量な不純物元素の濃度を全て個別に管理することはコスト面等から困難である。   However, other than the above, rolled copper foil such as arsenic (As), antimony (Sb), bismuth (Bi), tin (Sn), nickel (Ni), lead (Pb), silicon (Si), etc. There are many impurity elements that are contained therein and can affect the softening at room temperature. For this reason, only controlling the concentration of each element may cause sudden room temperature softening due to other impurity elements. Nevertheless, it is difficult to individually manage all the concentrations of these minute impurity elements from the standpoint of cost.

そこで、本発明者等は、常温軟化に影響を及ぼし得る他の要因を種々検討した。このような鋭意研究の結果、本発明者等は、O,S,Ag,Feの濃度を制御するとともに、同じく常温軟化への影響度が大きい熱間圧延工程での温度を制御することとすれば、上記以外の微量な不純物元素による影響は無視し得ることを見いだした。   Therefore, the present inventors have examined various other factors that can affect the softening at room temperature. As a result of such diligent research, the inventors of the present invention control the concentration of O, S, Ag, and Fe, and also control the temperature in the hot rolling process that has a great influence on softening at room temperature. For example, the inventors have found that the effects of trace impurity elements other than the above can be ignored.

加えて、本発明者等は、上記各元素の濃度や熱間圧延工程での温度による常温軟化に対する影響度の大小を調査した。具体的には、タフピッチ銅の鋳塊(インゴット)の組成と熱間圧延工程での温度とを種々に組み合わせ、常温軟化の起こり易さを評価した。これにより、本発明者等は、上記元素の濃度や熱間圧延工程での温度等の各要因と、これら各要因が常温軟化に与える影響度との相関関係を特定するに至った。   In addition, the present inventors investigated the degree of influence on normal temperature softening due to the concentration of each element and the temperature in the hot rolling process. Specifically, the composition of the tough pitch copper ingot (ingot) and the temperature in the hot rolling process were variously combined to evaluate the ease of softening at room temperature. As a result, the present inventors have identified the correlation between each factor such as the concentration of the element and the temperature in the hot rolling process and the degree of influence of each factor on normal temperature softening.

本発明は、発明者等が見いだした上記知見に基づくものである。   The present invention is based on the above findings found by the inventors.

<本発明の一実施形態>
(1)圧延銅箔の構成
まずは、本発明の一実施形態に係る圧延銅箔としてのタフピッチ銅箔の組成等の構成について説明する。
<One Embodiment of the Present Invention>
(1) Configuration of Rolled Copper Foil First, the configuration of the tough pitch copper foil as a rolled copper foil according to an embodiment of the present invention will be described.

本実施形態に係るタフピッチ銅箔は、例えばタフピッチ銅を原材料とし、所定温度で熱間圧延工程が施された圧延銅箔であり、フレキシブルプリント配線板の導体層等として用いられる。原材料となるタフピッチ銅は、例えばJIS C1100,H3100等に規定の純度が99.9%以上の銅材である。   The tough pitch copper foil according to the present embodiment is a rolled copper foil using, for example, tough pitch copper as a raw material and subjected to a hot rolling process at a predetermined temperature, and is used as a conductor layer of a flexible printed wiring board. The tough pitch copper used as a raw material is a copper material having a purity specified in JIS C1100, H3100, etc. of 99.9% or more.

また、このタフピッチ銅箔は、例えば所定濃度の不純物元素を複数含んでいる。このような不純物元素のうちの酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)の各濃度については、タフピッチ銅箔に施した熱間圧延工程での温度と共に、以下の式(1)で定義される規定値TNが9.8以上となるよう制御されている。 The tough pitch copper foil includes a plurality of impurity elements having a predetermined concentration, for example. Regarding the concentrations of oxygen (O), sulfur (S), silver (Ag), and iron (Fe) among such impurity elements, along with the temperature in the hot rolling process applied to the tough pitch copper foil, Control is performed so that the prescribed value T N defined by the equation (1) is 9.8 or more.

N=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Tr ・・・(1) T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr (1)

ここで、[E]はタフピッチ銅箔に含有される元素Eの濃度(質量%)であり、Trは熱間圧延工程での温度(℃)である。   Here, [E] is the concentration (mass%) of the element E contained in the tough pitch copper foil, and Tr is the temperature (° C.) in the hot rolling process.

上記の式(1)は、上記元素の濃度や熱間圧延工程での温度等の各要因と、これら各要因が常温軟化に与える影響度との相関関係を比例関係として求め、各要因の影響度を重み付けする係数を付して規定値TNの定義付けを行ったものである。 The above equation (1) calculates the correlation between each factor such as the concentration of the element and the temperature in the hot rolling process and the degree of influence of each factor on normal temperature softening as a proportional relationship, and the influence of each factor. The specified value T N is defined by adding a coefficient for weighting the degree.

つまり、式(1)において、負の係数が付された酸素の濃度[O]及びFeの濃度[Fe]が低いと、常温軟化が抑制される。具体的には、タフピッチ銅箔中の酸素は、タフピッチ銅箔を構成する銅(Cu)やタフピッチ銅箔中の他の不純物と結びついて酸化物を形成し易い。タフピッチ銅箔中の酸素の濃度[O]やFeの濃度[Fe]が低いと、酸素とFeとが結びつき難くなるため、軟化の起点となるFeO4の形成が抑えられ、常温軟化が抑制される。 That is, in Equation (1), when the oxygen concentration [O] and the Fe concentration [Fe] to which negative coefficients are added are low, softening at room temperature is suppressed. Specifically, oxygen in the tough pitch copper foil is easily combined with copper (Cu) and other impurities in the tough pitch copper foil to form an oxide. When the oxygen concentration [O] or Fe concentration [Fe] in the tough pitch copper foil is low, it is difficult to combine oxygen and Fe, so formation of FeO 4 as a starting point of softening is suppressed, and normal temperature softening is suppressed. The

また、正の係数が付されたSの濃度[S]、Agの濃度[Ag]および熱間圧延工程での温度Trが高いと、常温軟化が抑制される。一般的に、共晶型の合金は高い耐熱性を示す。タフピッチ銅箔中のSの濃度[S]やAgの濃度[Ag]が高いと、Cu−Cu2S共晶やCu−Ag共晶が形成され易くなり、常温軟化が抑制される。 Further, when the S concentration [S], the Ag concentration [Ag], and the temperature Tr in the hot rolling process to which a positive coefficient is applied are high, softening at room temperature is suppressed. In general, eutectic type alloys exhibit high heat resistance. When the S concentration [S] and the Ag concentration [Ag] in the tough pitch copper foil are high, Cu—Cu 2 S eutectic and Cu—Ag eutectic are likely to be formed, and softening at room temperature is suppressed.

さらに、原材料のタフピッチ銅が含有し得る各元素の濃度や、熱間圧延工程に適用され得る温度には、自ずと妥当な範囲があることに鑑みると、各元素の濃度及び熱間圧延工程での温度は例えば以下の範囲内となっていることが好ましい。   Furthermore, considering the concentration of each element that can be contained in the raw material tough pitch copper and the temperature that can be applied to the hot rolling process naturally have a reasonable range, the concentration of each element and the hot rolling process The temperature is preferably in the following range, for example.

すなわち、例えば、タフピッチ銅箔に含有される酸素の濃度[O]が0.0001質量%以上0.1質量%以下であり、Sの濃度[S]が0.0001質量%以上0.01質量%以下であり、Agの濃度[Ag]が0.0001質量%以上0.01質量%以下であり、Feの濃度[Fe]が0.0001質量%以上0.003質量%以下である。また、例えば、熱間圧延工程での温度Trが700℃以上1000℃以下である。   That is, for example, the oxygen concentration [O] contained in the tough pitch copper foil is 0.0001 mass% or more and 0.1 mass% or less, and the S concentration [S] is 0.0001 mass% or more and 0.01 mass%. %, The Ag concentration [Ag] is 0.0001 mass% or more and 0.01 mass% or less, and the Fe concentration [Fe] is 0.0001 mass% or more and 0.003 mass% or less. For example, the temperature Tr in the hot rolling process is 700 ° C. or higher and 1000 ° C. or lower.

好ましくは上記範囲内で、各元素の濃度又は熱間圧延での温度のいずれか、或いは両方を制御することで、規定値TNを9.8以上とすることができる。 Preferably, the prescribed value T N can be set to 9.8 or more by controlling either the concentration of each element or the temperature in hot rolling, or both within the above range.

また、上記以外の不純物元素として含有され得るものとしては、例えばヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スズ(Sn)、ニッケル(Ni)、鉛(Pb)、シリコン(Si)が挙げられる。これら上記以外の不純物元素の合計の濃度は、例えば0.02質量%以下となっている。   Examples of impurities other than those described above include arsenic (As), antimony (Sb), bismuth (Bi), tin (Sn), nickel (Ni), lead (Pb), and silicon (Si). Is mentioned. The total concentration of these impurity elements other than the above is, for example, 0.02% by mass or less.

また、上記タフピッチ銅箔の厚さは、例えば5μm以上50μm以下である。タフピッチ銅箔には、上記熱間圧延工程の他に最終焼鈍工程が施されており、係る最終焼鈍工程後の加工度が80%以上97%未満となる加工により、上記所定の厚さとなっている。ここで、加工度は、加工対象物の加工前の厚さをTBとし、加工後の厚さをTAとすると、加工度(%)=[(TB−TA)/TB]×100で表わされる。 Moreover, the thickness of the said tough pitch copper foil is 5 micrometers or more and 50 micrometers or less, for example. The tough pitch copper foil is subjected to a final annealing step in addition to the hot rolling step, and the predetermined thickness is obtained by processing such that the degree of processing after the final annealing step is 80% or more and less than 97%. Yes. Here, the processing degree is defined as T ( B) , where T B is the thickness of the workpiece before processing, and T A is the thickness after processing, and the processing degree (%) = [(T B −T A ) / T B ]. It is represented by x100.

以上のように、本実施形態では、フレキシブルプリント配線板に用いる導体層として圧延銅箔を採用している。これにより、後述する再結晶焼鈍工程を経ることで、圧延銅箔に高い屈曲特性を具備させることができる。   As described above, in the present embodiment, rolled copper foil is employed as the conductor layer used for the flexible printed wiring board. Thereby, a high bending characteristic can be provided to rolled copper foil by passing through the recrystallization annealing process mentioned later.

また、本実施形態では、原材料をタフピッチ銅とするタフピッチ銅箔を適用することで、比較的低い温度で軟化させることができる。よって、例えばフレキシブルプリント配線板の導体層として用いられる際に、樹脂基材との貼り合わせ時の加熱により再結晶させることができる。   Moreover, in this embodiment, it can be softened at a relatively low temperature by applying a tough pitch copper foil whose raw material is tough pitch copper. Therefore, for example, when used as a conductor layer of a flexible printed wiring board, it can be recrystallized by heating at the time of bonding with a resin substrate.

また、本実施形態では、タフピッチ銅箔中に含有されるO,S,Ag,Feの濃度と、熱間圧延工程での温度とを、式(1)で定義される規定値TNにしたがって制御している。これにより、常温軟化を抑制し、再結晶による高い屈曲特性の付与が可能な状態を保ちつつ長期間の保管に耐えるタフピッチ銅箔とすることができる。 In this embodiment, the concentration of O, S, Ag, and Fe contained in the tough pitch copper foil and the temperature in the hot rolling process are determined according to the specified value T N defined by the equation (1). I have control. Thereby, it can be set as the tough pitch copper foil which suppresses softening at normal temperature and withstands long-term storage while maintaining a state in which high bending characteristics can be imparted by recrystallization.

すなわち、上述のように、As,Sb,Bi,Sn,Ni,Pb,Si等の不純物元素による不確定要素があっても、O,S,Ag,Feの濃度と熱間圧延工程での温度とを制御することで、タフピッチ銅箔の常温軟化を抑制することができる。よって、常温軟化による結晶組織の変化を抑制でき、再結晶によって高い屈曲特性が付与される製造当初のタフピッチ銅箔の状態を略維持したまま、長期間の保管に耐えることができる。   That is, as described above, even if there are uncertainties due to impurity elements such as As, Sb, Bi, Sn, Ni, Pb, and Si, the concentration of O, S, Ag, and Fe and the temperature in the hot rolling process By controlling the above, it is possible to suppress room temperature softening of the tough pitch copper foil. Therefore, the change in the crystal structure due to softening at room temperature can be suppressed, and it is possible to withstand long-term storage while substantially maintaining the state of the initial tough pitch copper foil to which high bending characteristics are imparted by recrystallization.

また、本実施形態では、As,Sb,Bi,Sn,Ni,Pb,Si等の合計の濃度が所定値以下となっている。これにより、常温軟化の抑制効果をいっそう高めることができる。具体的には、例えば100℃で4時間加熱した後の引張強度が300N/mm2以上となる。 In the present embodiment, the total concentration of As, Sb, Bi, Sn, Ni, Pb, Si, and the like is not more than a predetermined value. Thereby, the inhibitory effect of normal temperature softening can be further enhanced. Specifically, for example, the tensile strength after heating at 100 ° C. for 4 hours is 300 N / mm 2 or more.

また、本実施形態では、最終焼鈍工程後の加工度が80%以上97%未満となる加工により、タフピッチ銅箔の厚さが5μm以上50μm以下となっている。これにより、再結晶によって立方体組織である(200)面が多く得られ、タフピッチ銅箔に付与される屈曲特性をいっそう高めることができる。具体的には、例えば180℃で1時間加熱し再結晶させた後の単位面積あたりに占める(200)面の面積比が20%以上、好ましくは40%以上となる。   Moreover, in this embodiment, the thickness of the tough pitch copper foil is 5 μm or more and 50 μm or less by processing that the processing degree after the final annealing step is 80% or more and less than 97%. Thereby, many (200) planes which are cubic structures are obtained by recrystallization, and the bending characteristic provided to tough pitch copper foil can be improved further. Specifically, for example, the area ratio of the (200) plane per unit area after recrystallization by heating at 180 ° C. for 1 hour is 20% or more, preferably 40% or more.

(2)圧延銅箔の製造方法
次に、本発明の一実施形態に係る圧延銅箔としてのタフピッチ銅箔の製造方法について、図1を用いて説明する。図1は、本実施形態に係るタフピッチ銅箔の製造工程を示すフロー図である。
(2) Manufacturing method of rolled copper foil Next, the manufacturing method of the tough pitch copper foil as rolled copper foil which concerns on one Embodiment of this invention is demonstrated using FIG. FIG. 1 is a flowchart showing a manufacturing process of a tough pitch copper foil according to the present embodiment.

(鋳塊の準備工程S10)
図1に示すように、まずは、タフピッチ銅を原材料として鋳造を行って鋳塊(インゴット)を準備する。鋳塊は、例えば所定厚さ、所定幅を備える板状に形成されている。
(Ingot preparation step S10)
As shown in FIG. 1, first, casting is performed using tough pitch copper as a raw material to prepare an ingot. The ingot is formed in a plate shape having a predetermined thickness and a predetermined width, for example.

原材料となるタフピッチ銅は、例えば電解精錬により製造された純度99.9%の電気銅であり、例えば上記所定濃度のO,S,Ag,Feを含有している。また、タフピッチ銅に含有されるAs,Sb,Bi,Sn,Ni,Pb,Si等の合計の濃度は、上記所定値以下となっている。   The tough pitch copper used as a raw material is, for example, electrolytic copper manufactured by electrolytic refining and having a purity of 99.9%, and contains, for example, the above-mentioned predetermined concentrations of O, S, Ag, and Fe. The total concentration of As, Sb, Bi, Sn, Ni, Pb, Si, etc. contained in the tough pitch copper is not more than the predetermined value.

上記タフピッチ銅の酸素の濃度[O]は、例えば溶解した電気銅に脱酸工程を施すことで調整される。S及びAgは当初から電気銅に不純物元素として含まれており、種々の組成を有する電気銅の中から、所定のSの濃度[S]及びAgの濃度[Ag]を有する電気銅を選別することができる。Feは当初から電気銅に不純物元素として含まれるほか、脱酸工程で混入する。よって、電気銅の選別や脱酸工程の管理等により、所定のFeの濃度[Fe]とすることができる。   The oxygen concentration [O] of the tough pitch copper is adjusted, for example, by subjecting dissolved electrolytic copper to a deoxidation step. S and Ag are contained as impurity elements in electrolytic copper from the beginning, and electrolytic copper having a predetermined S concentration [S] and Ag concentration [Ag] is selected from electrolytic copper having various compositions. be able to. Fe is included as an impurity element in electrolytic copper from the beginning, and is mixed in the deoxidation step. Therefore, a predetermined Fe concentration [Fe] can be obtained by selection of electrolytic copper, management of a deoxidation process, or the like.

(熱間圧延工程S20)
熱間圧延工程では、上記所定濃度のO,S,Ag,Feを含有するタフピッチ銅の鋳塊を、例えば上記所定温度で所定時間、加熱保持した後に圧延する熱間圧延を行う。このように、上記鋳塊に熱間圧延工程を施して鋳造後の所定厚さよりも薄い板厚の板材とする。
(Hot rolling process S20)
In the hot rolling step, hot rolling is performed in which a tough pitch copper ingot containing the above-mentioned predetermined concentrations of O, S, Ag, and Fe is heated and held at the predetermined temperature for a predetermined time, for example, and then rolled. In this way, the ingot is subjected to a hot rolling step to obtain a plate material having a thickness smaller than a predetermined thickness after casting.

以上のように、各元素の濃度と熱間圧延工程での温度とを制御して上記の式(1)で定義される規定値TNを9.8以上とする。ここで、9.8以上の規定値TNが得られるよう、上記原材料となるタフピッチ銅に含有される各元素の濃度に合わせて、熱間圧延工程での温度を制御する。或いは、熱間圧延工程での温度が予め決定している場合には、9.8以上の規定値TNが得られるよう所定の組成を有するタフピッチ銅を選別したり、タフピッチ銅に意図的に所定の元素を添加したりしてもよい。 As described above, the specified value T N defined by the above formula (1) is set to 9.8 or more by controlling the concentration of each element and the temperature in the hot rolling process. Here, the temperature in the hot rolling process is controlled in accordance with the concentration of each element contained in the tough pitch copper as the raw material so that a specified value TN of 9.8 or more is obtained. Alternatively, when the temperature in the hot rolling process is determined in advance, tough pitch copper having a predetermined composition is selected so that a specified value T N of 9.8 or more is obtained, or the tough pitch copper is intentionally used. A predetermined element may be added.

この後、熱間圧延工程での加熱により生じた板材表面の酸化スケール(黒皮)を削り取る。   Then, the oxide scale (black skin) on the surface of the plate material generated by heating in the hot rolling process is scraped off.

(繰り返し工程S30)
続いて、冷間圧延工程S31と焼鈍工程S32とを所定回数繰り返し実施する繰り返し工程S30を行う。すなわち、冷間圧延を施して加工硬化させた上記板材に焼鈍処理を施して板材を焼き鈍すことにより、ひずみを除去して加工硬化を緩和する。これを、加工度が例えば50%〜90%となるよう所定回数繰り返し、所定厚さの銅条が得られる。
(Repetition step S30)
Subsequently, a repeating step S30 is performed in which the cold rolling step S31 and the annealing step S32 are repeatedly performed a predetermined number of times. That is, the plate material that has been cold-rolled and work hardened is subjected to an annealing treatment to anneal the plate material, thereby removing strain and relaxing work hardening. This is repeated a predetermined number of times so that the degree of processing becomes, for example, 50% to 90%, and a copper strip having a predetermined thickness is obtained.

なお、繰り返し工程S30中、最後に行われる焼鈍工程S32を「最終焼鈍工程」と呼ぶ。最終焼鈍工程後には、酸化スケール(黒皮)の除去を行う。   In addition, annealing process S32 performed at the last in repeating process S30 is called "final annealing process." After the final annealing step, the oxide scale (black skin) is removed.

(最終冷間圧延工程S40)
次に、最終冷間圧延工程S40を実施して、最終焼鈍工程後の加工度が80%以上97%未満となる加工を銅条に施す。このとき、銅条の厚さを例えば5μm以上50μm以下として、製造後に得られるタフピッチ銅箔の厚さがこれと略同等の5μm以上50μm以下となるよう調整する。
(Final cold rolling process S40)
Next, the final cold rolling step S40 is performed, and the copper strip is processed so that the degree of processing after the final annealing step is 80% or more and less than 97%. At this time, the thickness of the copper strip is adjusted to, for example, 5 μm or more and 50 μm or less, and the thickness of the tough pitch copper foil obtained after manufacture is adjusted to be approximately 5 μm or more and 50 μm or less.

上記にて、加工度を上記範囲内としたのは以下の理由による。80%未満の加工度では、後述する再結晶焼鈍工程を施しても、立方体組織である(200)面の面積比が例えば20%以上とならず、充分な屈曲特性が得られない。また、97%以上の加工度では、銅条に多大な塑性ひずみが蓄積され、軟化温度が極端に低下してしまう。このため、例えば最終冷間圧延工程における加工熱程度の熱で再結晶が起こってしまい、蓄積した塑性ひずみが開放されてしまう。結果、再結晶焼鈍工程を施しても充分な屈曲特性を具備させることができない。   The reason why the processing degree is set within the above range is as follows. When the degree of work is less than 80%, even if a recrystallization annealing process described later is performed, the area ratio of the (200) plane which is a cubic structure does not become 20% or more, for example, and sufficient bending characteristics cannot be obtained. On the other hand, at a workability of 97% or more, a great amount of plastic strain is accumulated in the copper strip, and the softening temperature is extremely lowered. For this reason, for example, recrystallization occurs due to heat of about the processing heat in the final cold rolling step, and the accumulated plastic strain is released. As a result, even if a recrystallization annealing process is performed, sufficient bending characteristics cannot be provided.

(表面処理工程S50)
以上の工程を経た銅条に、例えば粗化処理および防錆処理等の所定の表面処理を施し、厚さが5μm以上50μm以下のタフピッチ銅箔とする。
(Surface treatment step S50)
The copper strip that has undergone the above steps is subjected to predetermined surface treatments such as roughening treatment and rust prevention treatment to obtain a tough pitch copper foil having a thickness of 5 μm or more and 50 μm or less.

上記の最終冷間圧延工程S40での調整により、タフピッチ銅箔の厚さを5μm以上とすることで充分な強度が得られ、タフピッチ銅箔の取扱いが容易となる。また、タフピッチ銅箔が厚すぎる場合、たとえ立方体組織が充分に発達しても高い屈曲特性を得ることはできないため、タフピッチ銅箔の厚さを50μm以下とする。   By the adjustment in the final cold rolling step S40, sufficient strength can be obtained by setting the thickness of the tough pitch copper foil to 5 μm or more, and handling of the tough pitch copper foil becomes easy. In addition, when the tough pitch copper foil is too thick, even if the cubic structure is sufficiently developed, high bending characteristics cannot be obtained. Therefore, the thickness of the tough pitch copper foil is set to 50 μm or less.

以上により、常温軟化を抑制し、再結晶による高い屈曲特性の付与が可能な状態を保ちつつ長期間の保管に耐える本実施形態に係るタフピッチ銅箔が製造される。   As described above, the tough pitch copper foil according to the present embodiment, which suppresses softening at room temperature and can withstand long-term storage while maintaining a state where high bending characteristics can be imparted by recrystallization, is manufactured.

(3)フレキシブルプリント配線板の製造方法
次に、本発明の一実施形態に係るタフピッチ銅箔を導体層として用いたフレキシブルプリント配線板の製造方法について説明する。
(3) Manufacturing method of flexible printed wiring board Next, the manufacturing method of the flexible printed wiring board using the tough pitch copper foil which concerns on one Embodiment of this invention as a conductor layer is demonstrated.

(再結晶焼鈍工程(CCL工程))
まずは、本実施形態に係るタフピッチ銅箔を所定のサイズに裁断し、例えばポリイミド等の樹脂からなる樹脂基材と貼り合わせて銅張板(CCL:Copper Clad Laminate)を形成する。このとき、接着剤を介して貼り合わせを行う3層材CCLを形成する方法と、接着剤を介さず直接貼り合わせを行う2層材CCLを形成する方法とのいずれを用いてもよい。接着剤を用いる場合には、加熱処理により接着剤を硬化させてタフピッチ銅箔と基材とを密着させ一体化する。接着剤を用いない場合には、加熱・加圧により密着させる。加熱温度や時間は、接着剤や基材の硬化温度等に合わせて適宜選択することができる。
(Recrystallization annealing process (CCL process))
First, the tough pitch copper foil according to the present embodiment is cut into a predetermined size and bonded to a resin base material made of a resin such as polyimide to form a copper clad plate (CCL: Copper Clad Laminate). At this time, any of a method of forming a three-layer material CCL that is bonded through an adhesive and a method of forming a two-layer material CCL that is directly bonded without using an adhesive may be used. When an adhesive is used, the adhesive is cured by heat treatment, and the tough pitch copper foil and the base material are brought into close contact with each other to be integrated. When no adhesive is used, it is brought into close contact by heating and pressing. The heating temperature and time can be appropriately selected according to the curing temperature of the adhesive and the substrate.

また、本実施形態では、樹脂基材にタフピッチ銅箔を貼り合わせる上記CCL工程は、タフピッチ銅箔に対する再結晶焼鈍工程を兼ねる。つまり、本実施形態に係るタフピッチ銅箔は、例えば比較的低い軟化温度を有するタフピッチ銅を原材料としている。したがって、上記加熱によりタフピッチ銅箔が再結晶し軟化して、タフピッチ銅箔の屈曲特性を著しく向上させることができる。一方で、タフピッチ銅箔を樹脂基材に貼り合わせるまでの工程では、軟化前の状態でタフピッチ銅箔を取り扱うことができ、タフピッチ銅箔を樹脂基材に貼り合わせる際のシワや変形を抑制できる。   Moreover, in this embodiment, the said CCL process which bonds a tough pitch copper foil to a resin base material serves as the recrystallization annealing process with respect to a tough pitch copper foil. That is, the tough pitch copper foil according to the present embodiment uses, for example, tough pitch copper having a relatively low softening temperature as a raw material. Therefore, the tough pitch copper foil is recrystallized and softened by the heating, and the bending characteristics of the tough pitch copper foil can be remarkably improved. On the other hand, in the process until the tough pitch copper foil is bonded to the resin base material, the tough pitch copper foil can be handled in a state before softening, and wrinkles and deformation when the tough pitch copper foil is bonded to the resin base material can be suppressed. .

(表面加工工程)
次に、樹脂基材に貼り合わせた導体層としてのタフピッチ銅箔に表面加工工程を施す。表面加工工程では、例えばエッチング等の手法を用いてタフピッチ銅箔に銅配線等を形成する配線形成工程と、銅配線と他の電子部材との接続信頼性を向上させるためメッキ処理等を施すメッキ処理工程と、銅配線等を保護するため銅配線上の一部を覆うようにソルダレジスト等の保護膜を形成する保護膜形成工程とを行う。
(Surface machining process)
Next, a surface processing step is performed on the tough pitch copper foil as the conductor layer bonded to the resin base material. In the surface processing process, for example, a wiring forming process for forming copper wiring or the like on a tough pitch copper foil using a technique such as etching, and plating for improving the connection reliability between the copper wiring and another electronic member. A processing step and a protective film forming step of forming a protective film such as a solder resist so as to cover a part of the copper wiring to protect the copper wiring and the like are performed.

以上により、本実施形態に係るタフピッチ銅箔を用いたフレキシブルプリント配線板が製造される。   As described above, the flexible printed wiring board using the tough pitch copper foil according to the present embodiment is manufactured.

<本発明の他の実施形態>
以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.

例えば、上述の実施形態においては、最終冷間圧延工程S40での加工度を80%以上などとし優れた屈曲特性を得ることとしたが、上記の式(1)に基づき常温軟化を抑制する上述の実施形態の手法は、これとは独立して用いることができる。常温軟化を抑制することで、少なくとも製造当初にタフピッチ銅箔が備えていた状態を保つことができ、屈曲特性の悪化を抑制することができる。   For example, in the above-described embodiment, the degree of work in the final cold rolling step S40 is set to 80% or more to obtain excellent bending characteristics. However, the above-described embodiment suppresses normal temperature softening based on the above formula (1). The method of the embodiment can be used independently of this. By suppressing normal temperature softening, at least the state that the tough pitch copper foil was provided at the beginning of manufacture can be maintained, and deterioration of bending characteristics can be suppressed.

また、上述の実施形態においては、フレキシブルプリント配線板の製造工程におけるCCL工程がタフピッチ銅箔に対する再結晶焼鈍工程を兼ねることとしたが、再結晶焼鈍工程をCCL工程とは別工程として行ってもよい。   Moreover, in the above-mentioned embodiment, although the CCL process in the manufacturing process of a flexible printed wiring board also served as the recrystallization annealing process with respect to a tough pitch copper foil, even if it performs a recrystallization annealing process as a separate process from a CCL process. Good.

また、上述の実施形態においては、タフピッチ銅箔はフレキシブルプリント配線板に用いることとしたが、タフピッチ銅箔の用途はこれに限られず、例えばリチウムイオン二次電池の電極用銅箔等として用いてもよい。タフピッチ銅箔の厚さについても、フレキシブルプリント配線板用途をはじめとする各種用途に応じて適宜変更することができる。   In the above-described embodiment, the tough pitch copper foil is used for the flexible printed wiring board. However, the use of the tough pitch copper foil is not limited to this. For example, the tough pitch copper foil is used as an electrode copper foil for a lithium ion secondary battery. Also good. Also about the thickness of a tough pitch copper foil, it can change suitably according to various uses including a flexible printed wiring board use.

次に、本発明に係る実施例について比較例とともに説明する。   Next, examples according to the present invention will be described together with comparative examples.

(1)圧延銅箔の製作
まずは、上述の実施形態と同様の手順及び手法で、実施例1〜24、比較例A〜C及び比較例1〜7に係るタフピッチ銅箔を製作した。但し、比較例A〜C及び比較例1〜7には、意図的に上記所定値を外れる処理や数値が含まれるようにした。
(1) Manufacture of rolled copper foil First, the tough pitch copper foil which concerns on Examples 1-24, Comparative Examples AC, and Comparative Examples 1-7 was manufactured with the procedure and method similar to the above-mentioned embodiment. However, Comparative Examples A to C and Comparative Examples 1 to 7 intentionally include processing and numerical values that deviate from the predetermined value.

各タフピッチ銅箔の製作にあたっては、組成の異なるタフピッチ銅の鋳塊を複数準備して、所定温度で200分以上加熱保持し、熱間圧延にて厚さ10mmの板材とした。このとき、異なる温度で熱間圧延工程を施した板材を複数製作した。次に、上述と同様の繰り返し工程、最終冷間圧延工程を複数の板材にそれぞれ施して、厚さや加工度の異なる実施例1〜24、比較例A〜C及び比較例1〜7に係るタフピッチ銅箔とした。   In manufacturing each tough pitch copper foil, a plurality of ingots of tough pitch copper having different compositions were prepared, heated and held at a predetermined temperature for 200 minutes or more, and hot rolled to obtain a plate material having a thickness of 10 mm. At this time, a plurality of plate materials subjected to the hot rolling process at different temperatures were manufactured. Next, the tough pitches according to Examples 1 to 24, Comparative Examples A to C, and Comparative Examples 1 to 7 having different thicknesses and workability by performing the same repeating process and the final cold rolling process as described above on the respective plate materials. Copper foil was used.

(2)圧延銅箔の測定
次に、実施例1〜24、比較例A〜C及び比較例1〜7に係るタフピッチ銅箔に対し、以下の測定を行った。
(2) Measurement of rolled copper foil Next, the following measurements were performed on the tough pitch copper foils according to Examples 1 to 24, Comparative Examples A to C, and Comparative Examples 1 to 7.

(引張強度の測定)
まずは、各タフピッチ銅箔の引張強度を測定し、常温軟化の発生具合を定量的に評価した。具体的には、幅15mm、長さ200mmで圧延方向と平行に切り出した各タフピッチ銅箔を、30℃で1年間保管した場合と同様の状態に曝す加速試験として、大気中にて100℃で4時間加熱した。
(Measurement of tensile strength)
First, the tensile strength of each tough pitch copper foil was measured, and the degree of occurrence of softening at room temperature was quantitatively evaluated. Specifically, as an accelerated test in which each tough pitch copper foil having a width of 15 mm and a length of 200 mm cut out parallel to the rolling direction is exposed to the same state as stored at 30 ° C. for 1 year, at 100 ° C. in the atmosphere. Heated for 4 hours.

続いて、島津製作所製オートグラフAGS−5kNXを用い、各タフピッチ銅箔に対して引張試験を行った。すなわち、図2に模式的に示すように、上部固定治具11tと下部固定治具11bとで、試料F(タフピッチ銅箔)の両端を固定し、上部固定治具11tに接続され上部固定治具11tの上方に位置する図示しないクロスヘッドを上方(図中、引張方向Dの方向)に駆動させてタフピッチ銅箔に引張力を加えた。このとき、クロスヘッド速度を2mm/分とし、上部固定治具11tの直下から下部固定治具11bの直上までの距離、つまり、有効ゲージ長さGを100mmとした。   Then, the tension test was done with respect to each tough pitch copper foil using Shimadzu Corporation autograph AGS-5kNX. That is, as schematically shown in FIG. 2, the upper fixing jig 11t and the lower fixing jig 11b fix both ends of the sample F (tough pitch copper foil) and are connected to the upper fixing jig 11t and connected to the upper fixing jig. A cross head (not shown) located above the tool 11t was driven upward (in the drawing direction D) to apply a tensile force to the tough pitch copper foil. At this time, the crosshead speed was set to 2 mm / min, and the distance from directly below the upper fixing jig 11t to just above the lower fixing jig 11b, that is, the effective gauge length G was set to 100 mm.

以上のように測定した引張強度が300N/mm2以上のタフピッチ銅の常温軟化に対する特性を「良」判定とし、300N/mm2未満を「否」判定とした。 The characteristics of the tough pitch copper having a tensile strength measured as described above of 300 N / mm 2 or more at normal temperature softening were determined as “good”, and less than 300 N / mm 2 was determined as “no”.

(結晶方位の測定)
次に、各タフピッチ銅箔の屈曲特性を向上させる結晶方位、つまり、立方体組織である(200)面の面積比の測定を行った。具体的には、再結晶焼鈍工程を模して、大気中にて180℃で1時間、各タフピッチ銅箔を加熱した。続いて、電子後方散乱回折像(EBSP:Electron Back-Scattering Diffraction Pattern)法により、各タフピッチ銅箔の表面の結晶方位を表わす電子後方散乱回折像を取得した。これを分析して、各タフピッチ銅箔の表面の単位面積あたりに占める(200)面の面積比を求めた。
(Measurement of crystal orientation)
Next, the crystal orientation for improving the bending characteristics of each tough pitch copper foil, that is, the area ratio of the (200) plane which is a cubic structure was measured. Specifically, each tough pitch copper foil was heated in the atmosphere at 180 ° C. for 1 hour, imitating a recrystallization annealing process. Then, the electron backscattering diffraction image showing the crystal orientation of the surface of each tough pitch copper foil was acquired by the electron backscattering diffraction image (EBSP: Electron Back-Scattering Diffraction Pattern) method. This was analyzed and the area ratio of the (200) plane occupied per unit area of the surface of each tough pitch copper foil was calculated | required.

以上のように測定した(200)面の面積比の許容値を20%以上とした。   The allowable value of the area ratio of the (200) plane measured as described above was set to 20% or more.

(屈曲回数の測定)
引き続き、各タフピッチ銅箔が破断するまでの繰り返し曲げ回数(屈曲回数)を測定し、屈曲特性を定量的に評価した。具体的には、幅12.5mm、長さ250mmで圧延方向と平行に切り出した各タフピッチ銅箔を、再結晶焼鈍工程を模して、大気中にて180℃で1時間加熱した。
(Measurement of the number of bendings)
Subsequently, the number of repeated bendings (number of bendings) until each tough pitch copper foil broke was measured, and the bending characteristics were quantitatively evaluated. Specifically, each tough pitch copper foil having a width of 12.5 mm and a length of 250 mm cut out in parallel with the rolling direction was heated at 180 ° C. for 1 hour in the atmosphere, imitating a recrystallization annealing process.

続いて、信越エンジニアリング株式会社製のFPC高速屈曲試験機(型式:SEK−31C)を用い、屈曲試験を行った。図3に、上記FPC高速屈曲試験機等を模した一般的な摺動屈曲試験装置20の模式図を示す。   Subsequently, a bending test was performed using an FPC high-speed bending tester (model: SEK-31C) manufactured by Shin-Etsu Engineering Co., Ltd. FIG. 3 shows a schematic diagram of a general sliding bending test apparatus 20 simulating the FPC high-speed bending tester and the like.

図3に示すように、摺動屈曲試験装置20の試料固定板21に、試料F(タフピッチ銅箔)をネジ22で固定した。次に、試料Fを振動伝達部23に接触させ、発振駆動体24により振動伝達部23を上下方向に振動させて試料Fに振動を伝達し、破断までの屈曲回数を測定した。測定条件としては、屈曲半径Rを1.5mmとし、振動ストロークSを10mmとし、振動速度を1500回/分とした。   As shown in FIG. 3, the sample F (tough pitch copper foil) was fixed to the sample fixing plate 21 of the sliding bending test apparatus 20 with screws 22. Next, the sample F was brought into contact with the vibration transmitting unit 23, and the vibration transmitting unit 23 was vibrated in the vertical direction by the oscillation driver 24 to transmit the vibration to the sample F, and the number of bendings until breakage was measured. The measurement conditions were a bending radius R of 1.5 mm, a vibration stroke S of 10 mm, and a vibration speed of 1500 times / minute.

以上のように測定した屈曲回数の許容値を5万回以上とした。また、上記の屈曲回数が5万回以上を満たすタフピッチ銅箔の屈曲特性を「良」判定とし、いずれか一方でも満たさない場合は「否」判定とした。   The allowable value of the number of bendings measured as described above was set to 50,000 times or more. Moreover, the bending characteristic of the tough pitch copper foil that satisfies the above bending number of 50,000 times or more was determined as “good”, and when any one of them was not satisfied, it was determined as “no”.

(3)圧延銅箔の評価結果
以下の表1に、実施例1〜24、比較例A〜C及び比較例1〜7に係るタフピッチ銅箔の組成等の構成をそれぞれ示すとともに、上記の各測定結果を示す。表中、所定値を外れる数値を太字の下線付きで示す。
(3) Evaluation Results of Rolled Copper Foil In Table 1 below, the composition of the tough pitch copper foil according to Examples 1 to 24, Comparative Examples A to C and Comparative Examples 1 to 7 is shown, respectively, and each of the above The measurement results are shown. In the table, numerical values that deviate from the predetermined value are indicated by bold underlining.

Figure 2013189702
Figure 2013189702

表1に示すように、実施例1〜24に係るタフピッチ銅箔は、含有される各元素の濃度及び熱間圧延工程での温度に基づき算出された規定値TN、最終冷間圧延工程後の厚さ、最終冷間圧延工程における加工度が、全て所定値を満たす。したがって、常温軟化に対する特性、屈曲特性ともに、全て「良」判定であった。 As shown in Table 1, the tough pitch copper foils according to Examples 1 to 24 have a specified value T N calculated based on the concentration of each element contained and the temperature in the hot rolling process, after the final cold rolling process. The thickness and the degree of work in the final cold rolling process all satisfy a predetermined value. Therefore, both the characteristics for softening at room temperature and the bending characteristics were all “good”.

また、比較例A及びBに係るタフピッチ銅箔は、最終冷間圧延工程後の厚さ、最終冷間圧延工程における加工度のいずれかが所定値を満たさず、屈曲特性については全て「否」判定であった。(200)面の面積比(%)が、20%を下回っており屈曲性を発揮できなかったためと考えられる。しかし、規定値TNは全て所定値を満たしており、常温軟化に対する特性は全て「良」判定であった。このように、常温軟化に対する特性と屈曲特性とは、独立して制御することが可能である。 In addition, the tough pitch copper foil according to Comparative Examples A and B does not satisfy a predetermined value in either the thickness after the final cold rolling process or the degree of work in the final cold rolling process, and all the bending characteristics are “No”. It was a judgment. This is probably because the area ratio (%) of the (200) plane was less than 20% and the flexibility could not be exhibited. However, the specified values T N all satisfy the predetermined value, and all the characteristics against softening at room temperature were “good”. As described above, the property against softening at room temperature and the bending property can be controlled independently.

なお、厚さが所定値を超える比較例Cでは、(200)面の面積比が所定値を満たすにも関わらず屈曲特性が「否」判定となっている。高い屈曲特性を得るには、厚さの制御も重要であることがわかる。   In Comparative Example C in which the thickness exceeds the predetermined value, the bending characteristic is “No” even though the area ratio of the (200) plane satisfies the predetermined value. It can be seen that the thickness control is also important for obtaining high bending properties.

また、比較例1〜6に係るタフピッチ銅箔は、規定値TNが全て所定値を満たしておらず、また、比較例4〜6については、最終冷間圧延工程における加工度も全て所定値を満たしていない。よって、比較例1〜6の常温軟化に対する特性は全て「否」判定であり、比較例4〜6については屈曲特性も全て「否」判定であった。 Moreover, as for the tough pitch copper foil which concerns on Comparative Examples 1-6, all prescribed value TN does not satisfy | fill predetermined value, Moreover, about Comparative Examples 4-6, all the work degrees in the last cold rolling process are also predetermined values. Does not meet. Therefore, all the characteristics of Comparative Examples 1 to 6 with respect to softening at room temperature were “No” determinations, and for Comparative Examples 4 to 6, all the bending characteristics were also “No” determinations.

また、比較例7に係るタフピッチ銅箔では、その他の元素の合計濃度が0.031質量%であり、所定値を超えている。このため、常温軟化に対する特性が「否」判定となってしまった。   Moreover, in the tough pitch copper foil which concerns on the comparative example 7, the total density | concentration of another element is 0.031 mass%, and exceeds the predetermined value. For this reason, the characteristic with respect to softening at normal temperature has been judged as “No”.

以上の結果から、所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)が含有され、屈曲回数が5万回以上である銅箔を得るためには、(200)面の面積比が20以上であり、かつ、厚さが5μm以上50μm以下であればよいことが分かる。製造方法としては、所定温度で熱間圧延工程が施す過程において、[E]を圧延銅箔に含有される元素Eの濃度(質量%)、Trを熱間圧延工程での温度(℃)としたとき、TN=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Trで定義される規定値TNを9.8以上とすればよい。 From the above results, in order to obtain a copper foil containing a predetermined concentration of oxygen (O), sulfur (S), silver (Ag), iron (Fe) and having a flexion number of 50,000 times or more, (200 It is understood that the surface area ratio is 20 or more and the thickness is 5 μm or more and 50 μm or less. As a manufacturing method, in the process in which a hot rolling process is performed at a predetermined temperature, [E] is the concentration (mass%) of the element E contained in the rolled copper foil, and Tr is the temperature (° C.) in the hot rolling process. Then, the specified value T N defined by T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr may be set to 9.8 or more.

11b 下部固定治具
11t 上部固定治具
20 摺動屈曲試験装置
21 試料固定板
22 ネジ
23 振動伝達部
24 発振駆動体
D 引張方向
F 試料
G 有効ゲージ長さ
R 屈曲半径
S 振動ストローク
11b Lower Fixing Jig 11t Upper Fixing Jig 20 Sliding Bending Test Device 21 Sample Fixing Plate 22 Screw 23 Vibration Transmitting Unit 24 Oscillation Driver D Pulling Direction F Sample G Effective Gauge Length R Bending Radius S Vibration Stroke

Claims (6)

フレキシブルプリント配線板に用いられる圧延銅箔であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)が含有され、
所定温度で熱間圧延工程が施されており、
次式で定義される規定値TNが9.8以上であり、
(200)面の面積比が20以上であり、かつ、
厚さが5μm以上50μm以下である
ことを特徴とする圧延銅箔。
N=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Tr
(ここで、[E]は前記圧延銅箔に含有される元素Eの濃度(質量%)であり、Trは前記熱間圧延工程での温度(℃)である。)
It is a rolled copper foil used for flexible printed wiring boards,
Contains oxygen (O), sulfur (S), silver (Ag), iron (Fe) at a predetermined concentration,
A hot rolling process is performed at a predetermined temperature,
The specified value T N defined by the following formula is 9.8 or more,
(200) The area ratio of the surface is 20 or more, and
A rolled copper foil having a thickness of 5 μm or more and 50 μm or less.
T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr
(Here, [E] is the concentration (mass%) of element E contained in the rolled copper foil, and Tr is the temperature (° C.) in the hot rolling step.)
前記酸素の濃度[O]が0.0001質量%以上0.1質量%以下であり、
前記イオウの濃度[S]が0.0001質量%以上0.01質量%以下であり、
前記銀の濃度[Ag]が0.0001質量%以上0.01質量%以下であり、
前記鉄の濃度[Fe]が0.0001質量%以上0.003質量%以下であり、
前記熱間圧延工程での温度Trが700℃以上1000℃以下である
ことを特徴とする請求項1に記載の圧延銅箔。
The oxygen concentration [O] is 0.0001% by mass or more and 0.1% by mass or less,
The sulfur concentration [S] is 0.0001 mass% or more and 0.01 mass% or less,
The silver concentration [Ag] is 0.0001 mass% or more and 0.01 mass% or less,
The iron concentration [Fe] is 0.0001 mass% or more and 0.003 mass% or less,
The rolled copper foil according to claim 1, wherein a temperature Tr in the hot rolling step is 700 ° C or higher and 1000 ° C or lower.
含有されるヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、スズ(Sn)、ニッケル(Ni)、鉛(Pb)、シリコン(Si)の合計の濃度が0.02質量%以下となっている
ことを特徴とする請求項1又は2に記載の圧延銅箔。
The total concentration of arsenic (As), antimony (Sb), bismuth (Bi), tin (Sn), nickel (Ni), lead (Pb), and silicon (Si) contained is 0.02% by mass or less. The rolled copper foil according to claim 1, wherein the rolled copper foil is provided.
最終焼鈍工程が施されており、
前記最終焼鈍工程後の加工度が80%以上97%未満である
ことを特徴とする請求項1〜3のいずれかに記載の圧延銅箔。
The final annealing process has been applied,
4. The rolled copper foil according to any one of claims 1 to 3, wherein a workability after the final annealing step is 80% or more and less than 97%.
フレキシブルプリント配線板に用いられる圧延銅箔の製造方法であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)を含有する銅の鋳塊に所定温度で熱間圧延を施す熱間圧延工程と、最終焼鈍工程と、を有し、
前記各元素の濃度と前記熱間圧延工程での温度とを制御して次式で定義される規定値TNを9.8以上とし、かつ、
前記最終焼鈍工程後の加工度が80%以上97%未満となる加工により該圧延銅箔の厚さを5μm以上50μm以下とする
ことを特徴とする圧延銅箔の製造方法。
N=−98[O]+1840[S]+2005[Ag]−824[Fe]+0.012Tr
(ここで、[E]は前記圧延銅箔に含有される元素Eの濃度(質量%)であり、Trは前
記熱間圧延工程での温度(℃)である。)
A method for producing a rolled copper foil used in a flexible printed wiring board,
A hot rolling process in which hot rolling is performed at a predetermined temperature on a copper ingot containing oxygen (O), sulfur (S), silver (Ag), and iron (Fe) at a predetermined concentration; and a final annealing process. Have
Controlling the concentration of each element and the temperature in the hot rolling step, the specified value T N defined by the following formula is 9.8 or more, and
A method for producing a rolled copper foil, characterized in that the thickness of the rolled copper foil is set to 5 μm or more and 50 μm or less by processing such that the degree of processing after the final annealing step is 80% or more and less than 97%.
T N = −98 [O] +1840 [S] +2005 [Ag] −824 [Fe] +0.012 Tr
(Here, [E] is the concentration (mass%) of element E contained in the rolled copper foil, and Tr is the temperature (° C.) in the hot rolling step.)
フレキシブルプリント配線板に用いられる圧延銅箔であって、
所定濃度の酸素(O)、イオウ(S)、銀(Ag)、鉄(Fe)が含有され、
(200)面の面積比が20以上であり、
引張強さが、300N/mm2以上であり、かつ、
厚さが5μm以上50μm以下である
ことを特徴とする圧延銅箔。
It is a rolled copper foil used for flexible printed wiring boards,
Contains oxygen (O), sulfur (S), silver (Ag), iron (Fe) at a predetermined concentration,
The (200) plane area ratio is 20 or more,
The tensile strength is 300 N / mm 2 or more, and
A rolled copper foil having a thickness of 5 μm or more and 50 μm or less.
JP2012174591A 2012-02-15 2012-08-07 Rolled copper foil and method of manufacturing the same Pending JP2013189702A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012174591A JP2013189702A (en) 2012-02-15 2012-08-07 Rolled copper foil and method of manufacturing the same
CN2012104354519A CN103255310A (en) 2012-02-15 2012-11-05 Rolled copper foil and preparation thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012030205 2012-02-15
JP2012030205 2012-02-15
JP2012174591A JP2013189702A (en) 2012-02-15 2012-08-07 Rolled copper foil and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013189702A true JP2013189702A (en) 2013-09-26

Family

ID=49390249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174591A Pending JP2013189702A (en) 2012-02-15 2012-08-07 Rolled copper foil and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013189702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177183A (en) * 2016-03-30 2017-10-05 日本鋳銅株式会社 Method for continuous casting of iron-containing copper alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355720A (en) * 1999-06-11 2000-12-26 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, and its manufacture
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355720A (en) * 1999-06-11 2000-12-26 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, and its manufacture
JP2003193211A (en) * 2001-12-27 2003-07-09 Nippon Mining & Metals Co Ltd Rolled copper foil for copper-clad laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177183A (en) * 2016-03-30 2017-10-05 日本鋳銅株式会社 Method for continuous casting of iron-containing copper alloy

Similar Documents

Publication Publication Date Title
TWI221161B (en) Rolled copper foil for flexible printed circuit and method of manufacturing the same
JP3856581B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
US7563408B2 (en) Copper alloy and method of manufacturing the same
JP5752536B2 (en) Rolled copper foil
JP4466688B2 (en) Rolled copper foil
JP4672515B2 (en) Rolled copper alloy foil for bending
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP4716520B2 (en) Rolled copper foil
JP5245813B2 (en) Rolled copper foil
WO2008041584A1 (en) Copper alloy plate for electrical and electronic components
KR101540508B1 (en) Rolled copper foil
JP3824593B2 (en) Rolled copper foil with high elongation
JP5479002B2 (en) Copper alloy foil
JP6663712B2 (en) Rolled copper foil, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2010150578A (en) Rolled copper foil
JP5339995B2 (en) Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP5679580B2 (en) Rolled copper foil
JP2013189702A (en) Rolled copper foil and method of manufacturing the same
JP5562218B2 (en) Rolled copper foil
JP3830680B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP2012001784A (en) Rolled copper foil
JP3986707B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same
JP5562217B2 (en) Rolled copper foil

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151208