JP5479002B2 - Copper alloy foil - Google Patents

Copper alloy foil Download PDF

Info

Publication number
JP5479002B2
JP5479002B2 JP2009206774A JP2009206774A JP5479002B2 JP 5479002 B2 JP5479002 B2 JP 5479002B2 JP 2009206774 A JP2009206774 A JP 2009206774A JP 2009206774 A JP2009206774 A JP 2009206774A JP 5479002 B2 JP5479002 B2 JP 5479002B2
Authority
JP
Japan
Prior art keywords
copper alloy
thickness
crystal grain
alloy foil
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009206774A
Other languages
Japanese (ja)
Other versions
JP2011058029A (en
Inventor
健 櫻井
雅彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2009206774A priority Critical patent/JP5479002B2/en
Publication of JP2011058029A publication Critical patent/JP2011058029A/en
Application granted granted Critical
Publication of JP5479002B2 publication Critical patent/JP5479002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)

Description

本発明は、プリント配線板用積層板、リチウムイオン電池用集電体等に使用する機械的強度、導電性、曲げ加工性に優れた銅合金箔に関する。   The present invention relates to a copper alloy foil excellent in mechanical strength, conductivity, and bending workability used for a laminated board for printed wiring boards, a current collector for lithium ion batteries, and the like.

電気接続用コネクタ、端子、リードフレーム、導線、箔等に用いられる銅合金として、Cu−Zr合金がよく知られている。
例えば特許文献1には、圧延法を用いて母材の強度を高めようとする際、圧延率を高くした場合に、銅合金からなる母材の強度を増大させると共に、その伸びも向上させることができ、ひいては良好な曲げ加工性を備え、耐熱クリープ特性にも優れた銅合金として、ジルコニウムを重量%で0.005以上0.5以下の範囲で含有し、微細な結晶粒と大きな結晶粒とを組み合わせた特定の結晶粒径の分布を有するものが記載されている。この銅合金においては、微細な結晶粒と大きな結晶粒とを組み合わせた形態が、結晶粒同士の界面において生じるクロスすべりを抑制するように働き、銅合金に強度と伸びのバランスをもたらすとともに、微細な結晶粒のみで構成された場合に見られる熱クリープ特性の劣化も防止することができ、強度と伸びをバランスよく備えるとともに、良好な曲げ加工性も併せ持つことができるものである。
A Cu—Zr alloy is well known as a copper alloy used for electrical connectors, terminals, lead frames, conducting wires, foils and the like.
For example, in Patent Document 1, when trying to increase the strength of a base material using a rolling method, when the rolling rate is increased, the strength of the base material made of a copper alloy is increased and the elongation is also improved. As a copper alloy with excellent bending workability and excellent heat-resistant creep characteristics, it contains zirconium in the range of 0.005 to 0.5 by weight%, and has fine and large crystal grains. And having a specific crystal grain size distribution in combination. In this copper alloy, the combination of fine crystal grains and large crystal grains works to suppress cross-slip that occurs at the interface between crystal grains, bringing the balance of strength and elongation to the copper alloy, Therefore, it is possible to prevent the deterioration of the thermal creep characteristics that are observed when the material is composed of only crystal grains, and to have a good balance between strength and elongation, as well as good bending workability.

また、特許文献2には、Cu−Zr二元系あるいはCu−Zr−B三元系からなる単純な合金組成において、電子部品の用途に応じて広い範囲で選択することができる強度と導電性を兼備した銅合金として、特定の組成式で表され、Cu母相と、Cu母相とCu−Zr間あるいはCu−Zr−B間のいずれかまたは双方の化合物との共晶相とが互いに層状となす組織で構成され、隣り合うCu母相結晶粒同士が断続的に接する2相組織を呈する銅合金が開示されている。   Patent Document 2 discloses strength and conductivity that can be selected in a wide range according to the use of electronic components in a simple alloy composition comprising a Cu-Zr binary system or a Cu-Zr-B ternary system. As a copper alloy having both, the Cu matrix phase and the eutectic phase of the Cu matrix phase and either the Cu matrix phase and the Cu-Zr or Cu-Zr-B or both compounds are mutually bonded. A copper alloy having a two-phase structure in which adjacent Cu matrix crystal grains are intermittently in contact with each other is disclosed.

銅合金箔として、特許文献3には、添加元素の成分を重量割合にて、Crが0.01〜2.0%、およびZrが0.01〜1.0%の各成分の内一種以上を含み、残部を銅及び不可避不純物とし、極表層の酸化層、防錆皮膜の厚さがいずれも表面から10nm以下であって、導電率が50%IACS以上であり、液晶ポリマーを熱融着したときに180゜ピール強度が5.0N/cm以上であることを特徴とする液晶ポリマーとの接着性に優れた積層板用の銅合金箔が開示されている。   As a copper alloy foil, Patent Document 3 discloses that at least one of the components in which Cr is 0.01 to 2.0% and Zr is 0.01 to 1.0% in terms of weight ratio of the additive element components. The balance is copper and inevitable impurities, and the thickness of the oxide layer on the extreme surface layer and the rust preventive film is 10 nm or less from the surface, the conductivity is 50% IACS or more, and the liquid crystal polymer is thermally fused. A copper alloy foil for a laminate having excellent adhesion to a liquid crystal polymer, characterized in that the 180 ° peel strength is 5.0 N / cm or more.

銅合金箔として、特許文献4には、特定の元素を含有した銅合金において、防錆皮膜の厚さを表面から3nm以下とすることでエポキシ樹脂を含む接着剤との接着性が良好で、表面粗さが十点平均表面粗さ(Rz)で2μm以下であり、粗化処理を施さずにエポキシ樹脂を含む接着剤で基板フィルムと接着したときの180゜ピール強度が8.0N/cm以上であり、かつ高い導電性と強度を有する積層板用の銅合金箔が開示されている。   As a copper alloy foil, in Patent Document 4, in a copper alloy containing a specific element, the adhesiveness with an adhesive containing an epoxy resin is good by setting the thickness of the anticorrosive film to 3 nm or less from the surface, The surface roughness is 2 μm or less in terms of 10-point average surface roughness (Rz), and the 180 ° peel strength when bonded to a substrate film with an adhesive containing an epoxy resin without being roughened is 8.0 N / cm. The copper alloy foil for laminated boards which is the above and has high electroconductivity and intensity | strength is disclosed.

特許第4118832号公報Japanese Patent No. 4118832 特開2005−281757号公報JP 2005-281757 A 特開2002−60866号公報Japanese Patent Laid-Open No. 2002-60866 特開2003−13156号公報JP 2003-13156 A

Cu−Zr合金板としては、特許文献1、2に開示され、Cu−Zr合金箔としては特許文献3、4に開示されている積層板用の銅合金箔があるが、電子機器の小型化による回路のファインピッチ化に伴い、銅合金箔の厚みも10μmにまで薄くなる傾向にあり、薄肉化による強度低下が少なく曲げ加工性に優れた銅合金箔に対する需要が最近増えて来ている。   The Cu—Zr alloy plate is disclosed in Patent Documents 1 and 2, and the Cu—Zr alloy foil is a copper alloy foil for laminated plates disclosed in Patent Documents 3 and 4. As the circuit pitch becomes finer, the thickness of the copper alloy foil tends to be as thin as 10 μm, and the demand for a copper alloy foil with less bending strength and excellent bending workability is increasing recently.

本出願人は、先に、特願2009−69923号を出願し、重量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有する銅合金であって、複数の扁平な結晶粒が面方向に連続してなる結晶粒層が板厚方向に積み重なって構成された層状組織を有し、結晶粒層の厚さが5nm〜550nmの範囲であり、層状組織中の結晶粒層の厚さのヒストグラムにおけるピーク値が50nm〜300nmの範囲内でかつ総度数の28%以上の頻度で存在し、その半値幅が180nm以下であることを特徴とする電子部品銅合金及びその製造方法を提供した。これにより、強度と伸びを高いレベルでバランスさせることができ、電子部品の小型化、薄肉化に好適に対応することができるが、さらなる薄肉の銅合金箔が求められている。   The present applicant has previously filed Japanese Patent Application No. 2009-69923, and contains copper containing 0.005% to 0.5% Zr and 0.001% to 0.3% Co in a weight ratio. An alloy having a lamellar structure in which a plurality of flat crystal grains are continuously stacked in a plane direction and stacked in a plate thickness direction, and the thickness of the crystal grain layer is in a range of 5 nm to 550 nm. And the peak value in the histogram of the thickness of the crystal grain layer in the layered structure exists within a range of 50 nm to 300 nm and with a frequency of 28% or more of the total frequency, and its half width is 180 nm or less. An electronic component copper alloy and a manufacturing method thereof are provided. Thereby, the strength and the elongation can be balanced at a high level, and it is possible to suitably cope with the downsizing and thinning of the electronic component, but there is a demand for a thinner copper alloy foil.

本発明はこのような事情に鑑みてなされたもので、銅箔回路基板用として樹脂やステンレスとの積層時やリチウムイオン電池用集電体としての使用時に、薄肉化に対応可能であり、強度低下を来たさず、曲げ加工性に優れた銅合金箔を提供する。   The present invention has been made in view of such circumstances, and can be used for thinning when laminated with a resin or stainless steel for a copper foil circuit board or when used as a current collector for a lithium ion battery. Provided is a copper alloy foil having excellent bending workability without causing a decrease.

一般に、銅合金の強度の向上には結晶粒をナノスケールまで微細化することが有効であるとされているが、単に微細化するだけでは伸びを向上させることはできない。本発明者らは、先に出願した特願2009−69923号に開示するように、圧延方向(R.D.方向)に沿う縦断面組織の構造に着目し、微細で扁平な結晶粒が層状に連なるとともに、その結晶粒層が積み重なった層状組織を有しており、しかも、その結晶粒層の厚さ(間隔)が各層で均一で層状組織として安定していると、強度と伸びが高いレベルでバランスすることを見出した。   In general, it is considered effective to refine crystal grains to the nanoscale in order to improve the strength of copper alloys, but it is not possible to improve the elongation simply by miniaturization. As disclosed in Japanese Patent Application No. 2009-69923 filed earlier, the present inventors pay attention to the structure of a longitudinal cross-sectional structure along the rolling direction (RD direction), and fine and flat crystal grains are layered. If the crystal grain layer has a layered structure in which the crystal grain layers are stacked, and the thickness (interval) of the crystal grain layer is uniform and stable as a layered structure in each layer, the strength and elongation are high. Found to balance by level.

そして、更なる研究の結果、発明者らは、先に出願した特願2009−69923号記載の銅合金薄板を焼鈍することなしに、冷間圧延にて100μm以下の銅合金箔に引き伸ばすことにより、層状組織化の均一化が更に進み、銅合金箔として、強度と曲げ加工性が高いレベルで確保されることを見出した。   As a result of further research, the inventors have stretched the copper alloy foil described in Japanese Patent Application No. 2009-69923, which has been previously filed, to a copper alloy foil of 100 μm or less by cold rolling. The present inventors have found that the uniformization of the layered structure has further progressed, and as a copper alloy foil, strength and bending workability are ensured at a high level.

すなわち、本発明の銅合金箔は、重量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金であって、複数の扁平な結晶粒が面方向に連続してなる結晶粒層が板厚方向に積み重なって構成された層状組織を有し、前記結晶粒層の厚さが5nm〜500nmの範囲であり、前記層状組織中の前記結晶粒層の厚さのヒストグラムにおけるピーク値が50nm〜250nmの範囲内でかつ総度数の30%以上の頻度で存在し、その半値幅が120nm以下であることを特徴とする。 That is, the copper alloy foil of the present invention contains Zr in the range of 0.005% to 0.5% and Co in the range of 0.001% to 0.3% by weight, with the balance being Cu and inevitable impurities. A copper alloy having a lamellar structure in which a plurality of flat crystal grains are continuously stacked in a plane direction, and the thickness of the crystal grain layer is 5 nm to The peak value in the histogram of the thickness of the crystal grain layer in the lamellar structure is in a range of 50 nm to 250 nm and at a frequency of 30% or more of the total frequency, and the half width is 120 nm or less. It is characterized by being.

この銅合金箔は、層状組織における各結晶粒層の個々の厚さは5nm〜500nmの範囲内とされ、その厚さのヒストグラムにおいて、ピーク値が30%以上の高い頻度で存在し、しかも半値幅が120nm以下と狭く、そのヒストグラム曲線は、幅が狭く鋭利な山形に突出した形状となっている。言い換えれば、層状組織における各結晶粒層の厚さが薄くかつ均一に揃っているのである。結晶粒層の厚さは、薄くかつ均一である方が強度は大きく、そのピーク値が250nmを超えると、銅合金箔としては十分な強度が得られない。一方、ピーク値を50nm未満とするのは製造技術的に困難であり、現実的でない。50nm〜100nmの範囲内にピーク値があるのがより好ましい。また、ピーク値の頻度が30%未満の場合も、ヒストグラム曲線がなだらかとなって、結晶粒層の厚さのばらつきが大きくなるため、強度向上を期待できない。半値幅についても同様であり、120nm以上であると強度向上に寄与出来ない。   In this copper alloy foil, the individual thickness of each crystal grain layer in the layered structure is in the range of 5 nm to 500 nm, and in the histogram of the thickness, the peak value exists at a high frequency of 30% or more, and half The value width is as narrow as 120 nm or less, and the histogram curve has a shape with a narrow width and a sharp mountain shape. In other words, the thickness of each crystal grain layer in the layered structure is thin and uniform. When the thickness of the crystal grain layer is thinner and more uniform, the strength is higher. When the peak value exceeds 250 nm, sufficient strength as a copper alloy foil cannot be obtained. On the other hand, it is difficult in terms of manufacturing technology to make the peak value less than 50 nm, which is not practical. More preferably, the peak value is within the range of 50 nm to 100 nm. Further, when the frequency of the peak value is less than 30%, the histogram curve becomes gentle and the variation in the thickness of the crystal grain layer becomes large, so that the strength improvement cannot be expected. The same applies to the half width, and if it is 120 nm or more, it cannot contribute to the strength improvement.

そして、このような層状組織の安定した銅合金箔とすることにより、強度と曲げ加工性のバランスが高いレベルで向上する。一般的には圧延にて銅合金箔を製造すると、曲げ加工性が低下する傾向にあるが、本発明の銅合金箔は特有の層状組織により、焼鈍を加えることなく冷間圧延のみにて製造可能であり、曲げ加工性を低下させることなく高いレベルで強度とのバランスを維持することが出来る。   And by using such a stable copper alloy foil with a layered structure, the balance between strength and bending workability is improved at a high level. In general, when copper alloy foil is produced by rolling, bending workability tends to be reduced. However, the copper alloy foil of the present invention is produced only by cold rolling without annealing due to a unique layered structure. It is possible to maintain a balance with strength at a high level without deteriorating bending workability.

ここで、Zrの添加は強度の向上に有効であるが、その添加量が重量比率で0.005%未満であると強度が十分に向上せず、また、0.5%を超えても、それ以上の強度の向上効果は期待できない。また、Zrを0.005%以上含有することで層状組織が発達して安定化する。逆に、0.5%を超えると、伸びが低下して好ましくない。したがって、Zrの含有率は重量比率で0.005%〜0.5%としている。   Here, the addition of Zr is effective in improving the strength, but if the added amount is less than 0.005% by weight, the strength is not sufficiently improved, and even if it exceeds 0.5%, No further improvement in strength can be expected. In addition, when the Zr content is 0.005% or more, the layered structure is developed and stabilized. On the other hand, if it exceeds 0.5%, the elongation decreases, which is not preferable. Therefore, the content ratio of Zr is set to 0.005% to 0.5% by weight.

Coを微量に添加することは層状組織が均一で緻密になって安定する効果があり、適切な伸び(延性)を付与するが、その添加量が重量比率で0.001%未満では、層状組織の各結晶粒層の厚さのばらつきを小さくする効果に乏しく、0.3%を超えても、それ以上の効果は期待できず、逆に、延性が著しく大きくなって引張強さを低下させ、また、導電率も低下する不具合がある。したがって、Coの含有率は重量比率で0.001%〜0.3%としている。   Addition of a small amount of Co has an effect of stabilizing the layered structure evenly and densely, and provides appropriate elongation (ductility). However, if the amount added is less than 0.001% by weight, the layered structure The effect of reducing the thickness variation of each crystal grain layer is poor, and even if it exceeds 0.3%, no further effect can be expected, and conversely, the ductility is remarkably increased and the tensile strength is reduced. Also, there is a problem that the conductivity is lowered. Therefore, the Co content is set to 0.001% to 0.3% by weight.

更に、本発明の銅合金箔は、厚みが5〜100μmであり、0.2%耐力が480N/mm以上であり、MIT屈曲性試験にて曲げ回数が150回を超える屈曲性を有することを特徴とする。
この様に、強度と曲げ加工性(屈曲性)のバランスが取れていることにより、回路基板用として樹脂やステンレスとの積層時やリチウムイオン電池用集電体として薄肉化された使用時に、強度を維持し曲げ加工性(屈曲性)の優れた銅合金箔となる。
Furthermore, the copper alloy foil of the present invention has a thickness of 5 to 100 μm, a 0.2% proof stress of 480 N / mm 2 or more, and has a flexibility that exceeds 150 times in the MIT flexibility test. It is characterized by.
In this way, strength and bending workability (flexibility) are balanced, so that strength is improved when laminated with resin or stainless steel for circuit boards or when thinned as a current collector for lithium ion batteries. Thus, a copper alloy foil having excellent bending workability (flexibility) is obtained.

本発明によれば、Zr、Coの添加と扁平な結晶粒層による均一な層状組織との複合効果により、強度と曲げ加工性が高いレベルでバランスした銅合金箔を得ることが可能であり、薄肉化された回路基板用として樹脂やステンレスとの積層時やリチウムイオン電池用集電体としての使用時に、強度を維持し曲げ加工性の優れた銅合金箔を提供することが出来る。   According to the present invention, it is possible to obtain a copper alloy foil that balances strength and bending workability at a high level by the combined effect of addition of Zr, Co and a uniform layered structure by a flat crystal grain layer, It is possible to provide a copper alloy foil that maintains strength and has excellent bending workability when laminated with a resin or stainless steel as a thin circuit board or when used as a current collector for a lithium ion battery.

本発明に係る銅合金をTEMにより観察した層状組織の模式図である。It is the schematic diagram of the layered structure which observed the copper alloy which concerns on this invention by TEM. 図1の層状組織における各結晶粒層の厚さの分布を示すヒストグラム曲線である。It is a histogram curve which shows distribution of the thickness of each crystal grain layer in the layered structure of FIG.

以下、本発明の実施形態を説明する。
この実施形態の銅合金箔(以下、単に銅合金箔という)は、重量比率でZrを0.005%〜0.5%の範囲で含有しているとともに、Coを重量比率で0.001%〜0.3%の範囲で含有しており、図1に示すように、複数の扁平な結晶粒1からなる結晶粒層2が板厚方向に積み重なって構成された層状組織3を有している。
Embodiments of the present invention will be described below.
The copper alloy foil of this embodiment (hereinafter simply referred to as a copper alloy foil) contains Zr in a weight ratio in the range of 0.005% to 0.5% and Co in a weight ratio of 0.001%. 1 to 0.3%, and as shown in FIG. 1, a crystal grain layer 2 composed of a plurality of flat crystal grains 1 has a layered structure 3 formed by stacking in the plate thickness direction. Yes.

Zrは、後述する溶体化処理後の時効処理によって結晶粒表面に析出して強度を向上させる効果がある。その含有量が重量比率で0.005%未満であると強度が十分に向上せず、また、0.5%を超えても、強度の向上効果は飽和して、それ以上は期待できない。むしろ、0.5%を超えると伸びの低下を招く。
また、Zrを0.005%以上含有することで層状組織が発達して安定化する。
Coを微量に添加することは層状組織が均一になって安定する効果があり、適切な伸びを付与するが、その添加量が重量比率で0.001%未満では、層状組織の各結晶粒層の厚さのばらつきを小さくする効果に乏しく、0.3%を超えても、効果が飽和し、逆に導電率が低下する不具合がある。
Zr has the effect of precipitating on the crystal grain surface and improving the strength by an aging treatment after the solution treatment described later. If the content is less than 0.005% by weight, the strength is not sufficiently improved, and if it exceeds 0.5%, the effect of improving the strength is saturated and cannot be expected any more. Rather, if it exceeds 0.5%, the elongation is reduced.
In addition, when the Zr content is 0.005% or more, the layered structure is developed and stabilized.
Addition of a small amount of Co has an effect of stabilizing the layered structure evenly and imparts an appropriate elongation. However, if the amount added is less than 0.001% by weight, each grain layer of the layered structure The effect of reducing the thickness variation is poor, and even if it exceeds 0.3%, the effect is saturated, and conversely, the conductivity is lowered.

また、この銅合金箔には、クロム、シリコン、マグネシウム、アルミニウム、鉄、チタニウム、ニッケル、リン、スズ、亜鉛、カルシウム、ボロンのいずれか1種又は2種以上の元素を選択して、重量%で、0.001以上3.0以下の範囲で含有してもよい。銅合金箔にこれらの元素を適宜含有させることにより、さらに強度の向上を図ることができるので好ましい。   In addition, for this copper alloy foil, one or more elements of chromium, silicon, magnesium, aluminum, iron, titanium, nickel, phosphorus, tin, zinc, calcium, and boron are selected, and the weight% Therefore, it may be contained in the range of 0.001 to 3.0. It is preferable to add these elements to the copper alloy foil as appropriate, since the strength can be further improved.

さらに、この銅合金箔には、炭素、酸素、および、クロム、シリコン、マグネシウム、アルミニウム、鉄、チタニウム、ニッケル、リン、スズ、亜鉛、カルシウム、ボロンのいずれか1種又は2種以上の元素の酸化物、のいずれか1つ又は2つ以上を選択して、重量%で、0.0005以上0.005以下の範囲で含有しても構わない。銅合金箔にこれらの元素を適宜含有させることにより、プレス打ち抜き加工時における破断起点として有効に作用し、プレス打ち抜き性を良好にし、ひいては金型摩耗が少なくなることから好ましい。   Furthermore, this copper alloy foil contains carbon, oxygen, and one or more elements of chromium, silicon, magnesium, aluminum, iron, titanium, nickel, phosphorus, tin, zinc, calcium, and boron. Any one or two or more of oxides may be selected and contained in the range of 0.0005 or more and 0.005 or less by weight%. It is preferable to appropriately contain these elements in the copper alloy foil because it effectively acts as a starting point of breakage during the press punching process, improves the press punchability, and consequently reduces mold wear.

図1に示すように、層状組織3は、扁平な結晶粒1が面方向に連続してなる結晶粒層2が積み重なって構成されたものである。この図1は、圧延方向(R.D.方向)に沿う縦断面(T.D.方向に見た面)の組織を模式的に表したものであり、図1の紙面上の横方向(左右方向)が圧延方向(R.D.方向)、縦方向(上下方向)が板厚方向(N.D.方向)となっている。そして、その一つの結晶粒1をハッチングして示したように、各結晶粒1はいずれも扁平で圧延方向(R.D.方向)に引き延ばされているとともに、隣の結晶粒1が圧延方向(R.D.方向)に連なるように配置されて、これら連続状態の複数の結晶粒1により層が構成されている。本発明では、結晶粒1が層状に連続してなるものを結晶粒層2と称しており、その結晶粒層2が板厚方向(N.D.方向)に複数積み重なった状態のものを層状組織3と称している。このような層状組織3は、圧延方向(R.D.方向)の縦断面(T.D.方向に見た面)を透過型電子顕微鏡(TEM;Transmission Electron Microscope)で観察することにより確認することができる。   As shown in FIG. 1, the layered structure 3 is formed by stacking crystal grain layers 2 in which flat crystal grains 1 are continuous in a plane direction. 1 schematically shows the structure of a longitudinal section (the surface viewed in the TD direction) along the rolling direction (RD direction). The horizontal direction is the rolling direction (RD direction), and the vertical direction (vertical direction) is the plate thickness direction (ND direction). Then, as shown by hatching one crystal grain 1, each crystal grain 1 is flat and elongated in the rolling direction (RD direction), and the adjacent crystal grain 1 is The layers are constituted by the plurality of crystal grains 1 in a continuous state, arranged so as to be continuous in the rolling direction (RD direction). In the present invention, a crystal grain layer 1 in which crystal grains 1 are continuously formed is referred to as a crystal grain layer 2, and a plurality of crystal grain layers 2 stacked in the plate thickness direction (ND direction) are layered. It is called organization 3. Such a layered structure 3 is confirmed by observing a longitudinal section (surface viewed in the TD direction) in the rolling direction (RD direction) with a transmission electron microscope (TEM). be able to.

この層状組織3において、各結晶粒層2の厚さは5nm〜500nmの範囲内とされている。この結晶粒層の厚さの分布をヒストグラム曲線で表すと、図2に示すようになる。このヒストグラムは、TEMで観察した層状組織において、図1に一点鎖線で示したように、圧延方向(R.D.方向)に垂直な板厚方向(N.D.方向)に任意の直線Xを引き、この直線Xと各結晶粒層2間の界面との交点の間の距離(間隔)Tを測定し、その距離Tを結晶粒層2の厚さとして、これを200個測定して分布にしたものである。その測定値をヒストグラムにするときの階級の間隔は、例えば50nmとされる。
この図2のヒストグラム曲線において、ピーク値をP、その半値幅をLとすると、ピーク値Pは50nm〜250nmの範囲内にあり、そのピーク値Pの頻度が総度数の30%以上とされ、また、半値幅Lが120nm以下とされる。つまり、ヒストグラム曲線の幅が狭く、上方に突出した鋭利な山形形状となっている。
In this layered structure 3, the thickness of each crystal grain layer 2 is in the range of 5 nm to 500 nm. The thickness distribution of the crystal grain layer is represented by a histogram curve as shown in FIG. This histogram shows an arbitrary straight line X in the plate thickness direction (ND direction) perpendicular to the rolling direction (RD direction) in the layered structure observed by TEM, as shown by the one-dot chain line in FIG. , And measure the distance (interval) T between the intersections of the straight line X and the interface between the crystal grain layers 2, and measure the distance T as the thickness of the crystal grain layer 2 to measure 200 pieces. It is a distribution. The class interval when the measurement value is used as a histogram is, for example, 50 nm.
In the histogram curve of FIG. 2, when the peak value is P and the half width is L, the peak value P is in the range of 50 nm to 250 nm, and the frequency of the peak value P is 30% or more of the total frequency, Further, the half width L is set to 120 nm or less. In other words, the histogram curve has a narrow width and a sharp mountain shape protruding upward.

これを言い換えると、層状組織3における各結晶粒層2の厚さが均一で揃っていることを意味している。結晶粒層2としては薄くて均一な方が強度向上に有利であり、50nm〜200nmの範囲にピーク値Pが存在しているのがより好ましい。半値幅も100nm以下であると、層状組織3がさらに均一になってより好ましい。   In other words, it means that the thickness of each crystal grain layer 2 in the layered structure 3 is uniform and uniform. The thin and uniform crystal grain layer 2 is advantageous in improving the strength, and it is more preferable that the peak value P exists in the range of 50 nm to 200 nm. It is more preferable that the half width is 100 nm or less because the layered structure 3 becomes more uniform.

また、本発明の銅合金箔は、厚みが5〜100μmであり、引張り強度が480N/mm以上であり、MIT屈曲性試験にて曲げ回数が150回を超える屈曲性を有することを特徴とする。
一般的には、厚み100μm以下が銅合金箔と言われており、通常の圧延による銅箔製造では厚み5μmまでが限度である。
この様に強度と曲げ加工性(屈曲性)のバランスが取れていることにより、回路基板用として樹脂やステンレスとの積層時やリチウムイオン電池用集電体として薄肉化された使用時に、強度低下を来たさず曲げ加工性(屈曲性)の優れた銅箔となる。
In addition, the copper alloy foil of the present invention has a thickness of 5 to 100 μm, a tensile strength of 480 N / mm 2 or more, and a flexibility that exceeds 150 times in the MIT flexibility test. To do.
Generally, a thickness of 100 μm or less is said to be a copper alloy foil, and in the production of copper foil by normal rolling, the thickness is limited to 5 μm.
This balance of strength and bending workability (flexibility) reduces strength when laminated with resin or stainless steel for circuit boards or when thinned as a current collector for lithium ion batteries. The copper foil has excellent bending workability (flexibility).

次に、このような銅合金箔を製造する方法について説明する。
この製造方法は、耐火物炉で銅原料を溶解し、その溶銅に少なくとも重量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で添加して銅合金母材を鋳造した。そして、その鋳造した母材に対して溶体化処理を含む熱間圧延を施す第1工程、その後冷間圧延する第2工程、冷間圧延後の母材を時効又は焼鈍のための熱処理を施す第3工程、第3工程により製造された銅合金薄板を冷間圧延にて銅合金箔とする第4工程の各処理を順次行う。
但し、第3工程は必要に応じて実施すればよく、第1、第2工程にて、既に強度と伸びが高いレベルでバランスしている銅合金薄板が作製されていると推察される場合は、第3工程を省略して第4工程に直接進んでも良い。
以下、この工程順に説明する。
Next, a method for producing such a copper alloy foil will be described.
In this manufacturing method, a copper raw material is melted in a refractory furnace, and at least Zr is added to the molten copper in a range of 0.005% to 0.5% and Co in a range of 0.001% to 0.3%. Then, a copper alloy base material was cast. Then, a first step of performing hot rolling including solution treatment on the cast base material, a second step of performing cold rolling thereafter, and subjecting the base material after cold rolling to heat treatment for aging or annealing. Each process of the 4th process which makes the copper alloy foil by cold rolling the copper alloy thin plate manufactured by the 3rd process and the 3rd process is performed one by one.
However, the third step may be carried out as necessary, and in the first and second steps, it is presumed that a copper alloy thin plate that has already been balanced at a high level of strength and elongation has been produced. The third step may be omitted and the process may proceed directly to the fourth step.
Hereinafter, it demonstrates in order of this process.

<第1工程>
第1工程は母材を高温で熱間圧延した後急冷する処理となる。
熱間圧延は、母材を930℃〜1030℃の温度に加熱して赤熱状態とし、これを複数回(5回〜10回)圧延ロールの間に通しながら徐々に圧延ロール間のギャップを小さくして、所定の厚さまで母材を圧延する。このときの圧延率は、最終パスの前までは、16%以上、例えば19%程度とされる。この段階での圧延率を16%以上とすることにより、結晶粒の均一化を図ることができる。この圧延率は、圧延ロールを通す前の母材の板厚に対する圧延ロール通過後の母材の板厚の減少率(又は前回パス時の圧延ロール間のギャップに対する今回パスの圧延ロール間のギャップの減少率)であり、この段階での圧延率は毎回の圧延率の平均である。
<First step>
The first step is a process in which the base material is hot-rolled at a high temperature and then rapidly cooled.
In hot rolling, the base material is heated to a temperature of 930 ° C. to 1030 ° C. to a red hot state, and the gap between the rolling rolls is gradually reduced while passing between the rolling rolls a plurality of times (5 to 10 times). Then, the base material is rolled to a predetermined thickness. The rolling rate at this time is 16% or more, for example, about 19% before the final pass. By making the rolling rate at this stage 16% or more, the crystal grains can be made uniform. This rolling rate is the reduction rate of the thickness of the base material after passing the rolling roll relative to the thickness of the base material before passing the rolling roll (or the gap between the rolling rolls of the current pass with respect to the gap between the rolling rolls in the previous pass) The reduction rate at this stage is an average of the rolling rates at each time.

そして、この熱間圧延の最終パスにおいて、20%以上の圧延率で加工する。この最終パスの圧延率を20%以上に大きくするのは、加熱による結晶粒の成長を強圧下によって抑制するとともに、その大きな変形力による歪みを付与して結晶粒を微細化させつつ圧延方向に扁平な形状とするためであり、後の冷間圧延後の層状組織における結晶粒層を均一化することができる。より好ましくは、この最終パスを24%以上の圧延率、例えば40%の圧延率とするのが良い。
また、この熱間圧延によって、Zrが母材に十分に固溶される。この熱間圧延終了後の母材は、10mm〜20mm程度の板厚の板材となる。
And in the final pass of this hot rolling, it processes with a rolling rate of 20% or more. Increasing the rolling rate of this final pass to 20% or more suppresses the growth of crystal grains by heating under high pressure, and imparts strain due to the large deformation force in the rolling direction while refining the crystal grains. This is to make the shape flat, and the crystal grain layer in the layered structure after the subsequent cold rolling can be made uniform. More preferably, the final pass should have a rolling rate of 24% or more, for example, a rolling rate of 40%.
Further, Zr is sufficiently dissolved in the base material by this hot rolling. The base material after the hot rolling is finished is a plate having a thickness of about 10 mm to 20 mm.

そして、この熱間圧延後の母材を水冷することにより急冷する。急冷の速度としては10℃/秒以上、好ましくは30℃/秒〜50℃/秒とされる。この急冷により、Zrが過飽和状態に固溶した母材が得られる。
また、この母材に対して面削、粗圧延、研磨等の加工がされ、最終的に板厚が1.2mm〜6.0mm程度となる。
And it cools rapidly by water-cooling the base material after this hot rolling. The rapid cooling rate is 10 ° C./second or more, preferably 30 ° C./second to 50 ° C./second. By this rapid cooling, a base material in which Zr is dissolved in a supersaturated state is obtained.
Further, the base material is subjected to processing such as chamfering, rough rolling, and polishing, and finally the plate thickness becomes about 1.2 mm to 6.0 mm.

<第2工程>
次に、90%以上の圧延率で第一冷間圧延する。この冷間圧延でも母材を圧延ロール間に複数回(5回〜20回)通過させるが、そのときの毎回の圧延率は15%〜30%とされる。そして、その複数回の圧延で圧延率が90%以上、例えば92%〜99.5%の圧延率となり、母材を0.12mm〜0.75mmの板厚にまで減少させる。
この冷間圧延処理を経ることにより、層状組織における各結晶粒層の厚さが均一化し、その厚さの分布をヒストグラムにしたときピーク値が大きくなってくる。
<Second step>
Next, the first cold rolling is performed at a rolling rate of 90% or more. Even in this cold rolling, the base material is passed between the rolling rolls a plurality of times (5 to 20 times), and the rolling rate at each time is set to 15% to 30%. And the rolling rate becomes 90% or more, for example, a rolling rate of 92%-99.5%, and the base material is reduced to a plate thickness of 0.12 mm-0.75 mm.
By passing through this cold rolling treatment, the thickness of each crystal grain layer in the layered structure becomes uniform, and the peak value becomes large when the distribution of the thickness is made a histogram.

<第3工程>
次に、第2工程を経た母材に対して300℃〜380℃で1時間〜8時間の熱処理を施す。この熱処理は時効処理又は歪み取り焼鈍のための処理である。この熱処理により、過飽和状態で固溶していたZrが時効により徐々に析出するのであるが、その熱処理が比較的低温であることにより、析出しきれずに結晶粒内に残っているZrがCoと反応して化合物を形成する。このZrとCoとの化合物は母材の伸びをより向上させるものと想定され、この第3工程を経た銅合金は、さらに強度と伸びが高いレベルでバランスしている。
この第3工程の熱処理を施す場合、温度が300℃未満では強度向上効果に乏しく、一方、380℃を超えると、強度は大きくなるが伸びは十分でない。また、この熱処理時間が8時間を超えるほどに長過ぎると、再結晶化するため好ましくない。
<Third step>
Next, the base material that has undergone the second step is subjected to heat treatment at 300 ° C. to 380 ° C. for 1 hour to 8 hours. This heat treatment is a treatment for aging treatment or strain relief annealing. By this heat treatment, Zr that has been dissolved in the supersaturated state gradually precipitates due to aging, but due to the relatively low temperature of the heat treatment, Zr remaining in the crystal grains without being completely precipitated can be converted into Co. Reacts to form a compound. This compound of Zr and Co is assumed to further improve the elongation of the base material, and the copper alloy that has undergone this third step balances the strength and elongation at a higher level.
When the heat treatment of the third step is performed, the effect of improving the strength is poor when the temperature is less than 300 ° C., whereas when the temperature exceeds 380 ° C., the strength increases but the elongation is not sufficient. Further, if the heat treatment time is too long to exceed 8 hours, recrystallization occurs, which is not preferable.

<第4工程>
次に、第2或いは第3工程を経た銅合金薄板に対して複数回の冷間圧延を施し厚みが100μm以下の銅箔に仕上げる。総圧延率は91%〜99%が好ましい。本発明の銅合金薄板は層状組織が均一で緻密であるため、圧延により加工硬化することがないので各冷間圧延の間に焼鈍を施す必要がない。この複数回の冷間圧延処理を経ることにより、層状組織における各結晶粒層の厚さが小さくなって均一化され、その厚さの分布をヒストグラムにしたときのピーク値が鋭くなる。
<4th process>
Next, the copper alloy thin plate having undergone the second or third step is subjected to cold rolling a plurality of times to finish a copper foil having a thickness of 100 μm or less. The total rolling rate is preferably 91% to 99%. Since the copper alloy thin plate of the present invention has a uniform and dense layered structure, it is not work hardened by rolling, so that it is not necessary to perform annealing during each cold rolling. By going through this cold rolling process a plurality of times, the thickness of each crystal grain layer in the layered structure becomes small and uniform, and the peak value when the thickness distribution is made a histogram becomes sharp.

次に、本発明の実施例を説明する。
ZrとCoを表1に示す比率で添加した銅合金を鋳造し、第1工程から第4工程までの処理を経て製造した。第1工程における熱間圧延条件、第2工程の冷間圧延時の圧延率、第3工程の熱処理条件、第4工程の冷間圧延時の圧延率を表1のように組み合わせた。
試料1〜試料14が本実施例、試料15〜試料28が比較例としてZrやCoの添加量、熱間圧延、冷間圧延、熱処理の条件が本発明の範囲から外れるものも製作した。最終の銅合金箔の厚みは10μmである。
Next, examples of the present invention will be described.
A copper alloy to which Zr and Co were added at a ratio shown in Table 1 was cast and manufactured through the processes from the first step to the fourth step. The hot rolling conditions in the first step, the rolling rate during the cold rolling in the second step, the heat treatment conditions in the third step, and the rolling rate during the cold rolling in the fourth step were combined as shown in Table 1.
Samples 1 to 14 were produced in this example, and samples 15 to 28 were produced as comparative examples, in which the addition amount of Zr and Co, hot rolling, cold rolling, and heat treatment were not within the scope of the present invention. The final copper alloy foil has a thickness of 10 μm.

Figure 0005479002
Figure 0005479002

得られた銅合金箔を圧延方向に切断して、その断面組織をTEMで観察し、前述したように、圧延方向(R.D.方向)に垂直な板厚方向(N.D.方向)に沿って各結晶粒層の界面間の距離(間隔)を測定し、その距離を結晶粒層の厚さとして、これを200個測定した。その結晶粒層の厚さの測定値のうち、最小値、最大値、ヒストグラムにしたときのピーク値、その頻度、半値幅をそれぞれ求めた。ヒストグラムは、50nmの幅で階級を決め、その階級毎に各結晶粒層の厚さの測定値の度数(頻度)を求めた。その結果を表2に示す。   The obtained copper alloy foil was cut in the rolling direction, and the cross-sectional structure was observed with a TEM. As described above, the thickness direction (ND direction) perpendicular to the rolling direction (RD direction). The distance (interval) between the interfaces of each crystal grain layer was measured along the line, and the distance was defined as the thickness of the crystal grain layer, and 200 pieces were measured. Among the measured values of the thickness of the crystal grain layer, a minimum value, a maximum value, a peak value in the case of a histogram, a frequency thereof, and a half width were obtained. In the histogram, the class was determined with a width of 50 nm, and the frequency (frequency) of the measured value of the thickness of each crystal grain layer was determined for each class. The results are shown in Table 2.

Figure 0005479002
Figure 0005479002

この表2の結果より、本実施例は、層状組織の結晶粒層の厚さが均一で、ヒストグラムのピーク値が小さくかつ高い頻度で半値幅も小さく、そのヒストグラム曲線が鋭利な山形に形成されることがわかる。   From the results shown in Table 2, in this example, the thickness of the crystal grain layer of the layered structure is uniform, the peak value of the histogram is small, the half value width is small frequently, and the histogram curve is formed in a sharp mountain shape. I understand that

次に、これら実施例及び比較例の銅合金箔について、0.2%耐力(YS)、曲げ加工性(屈曲性)、導電率をそれぞれ測定した。その結果を表3に示す。
0.2%耐力(N/mm)は、JIS Z2241に従って試料の圧延平行方向について引張試験を行い、0.2%歪みとなったときの応力を測定した。試料は上記JISに従って作製した。
導電率は、ダブルブリッジを用いた直流四端子法で20℃における電気抵抗を求めた。測定試料は厚さ10μmの銅箔を幅12.7mmに切断した。 これを測定間長さ50mmの電気抵抗を測定して導電率を求めた。
曲げ加工性、即ち、屈曲性は、MIT屈曲性試験により屈曲性の評価を行った。試験条件は、破断に至るまでの往復曲げ回数を数え、以下の基準で評価した。
○:曲げ回数が150回を超えるもの
×:曲げ回数が150回を超えないもの
Next, 0.2% yield strength (YS), bending workability (flexibility), and electrical conductivity were measured for the copper alloy foils of these examples and comparative examples. The results are shown in Table 3.
As for 0.2% proof stress (N / mm 2 ), a tensile test was performed in the rolling parallel direction of the sample in accordance with JIS Z2241, and the stress when the strain was 0.2% was measured. The sample was produced according to the above JIS.
For electrical conductivity, the electrical resistance at 20 ° C. was determined by a direct current four-terminal method using a double bridge. The measurement sample was a copper foil having a thickness of 10 μm cut to a width of 12.7 mm. The electrical resistance was determined by measuring the electrical resistance of 50 mm in length between measurements.
Bending workability, that is, bendability, was evaluated by a MIT bendability test. The test conditions were evaluated according to the following criteria by counting the number of reciprocating bending until the fracture.
○: The number of times of bending exceeds 150 times ×: The number of times of bending does not exceed 150 times

Figure 0005479002
Figure 0005479002

この表3より、実施例の試料は、0.2%耐力が大きく曲げ加工性も良好であり、バランスが良くとれていることがわかる。
この様に、本発明によれば、Zr、Coの添加と扁平な結晶粒層による均一な層状組織との複合効果により、強度と曲げ加工性が高いレベルでバランスした銅合金箔を得ることが可能であり、薄肉化された回路基板用として樹脂やステンレスとの積層時やリチウムイオン電池用集電体としての使用時に、強度低下せず曲げ加工性の優れた銅合金箔を提供することが出来る。
From Table 3, it can be seen that the samples of the examples have a 0.2% proof stress and good bending workability, and are well balanced.
Thus, according to the present invention, it is possible to obtain a copper alloy foil that balances strength and bending workability at a high level by the combined effect of addition of Zr and Co and a uniform layered structure by a flat crystal grain layer. It is possible to provide a copper alloy foil that is excellent in bending workability without reducing strength when laminated with resin or stainless steel for thin circuit boards or when used as a current collector for lithium ion batteries. I can do it.

1 結晶粒
2 結晶粒層
3 層状組織
1 Crystal grain 2 Crystal grain layer 3 Layered structure

Claims (2)

重量比率でZrを0.005%〜0.5%、Coを0.001%〜0.3%の範囲で含有し、残部がCu及び不可避不純物からなる銅合金であって、複数の扁平な結晶粒が面方向に連続してなる結晶粒層が板厚方向に積み重なって構成された層状組織を有し、前記結晶粒層の厚さが5nm〜500nmの範囲であり、前記層状組織中の前記結晶粒層の厚さのヒストグラムにおけるピーク値が50nm〜250nmの範囲内でかつ総度数の30%以上の頻度で存在し、その半値幅が120nm以下であることを特徴とする銅合金箔。 0.005% to 0.5% of Zr in weight ratio, of Co contained in the range of 0.001% to 0.3%, the balance being a copper alloy ing of Cu and unavoidable impurities, a plurality of flat A crystal grain layer composed of continuous crystal grains in the plane direction has a layered structure formed by stacking in the plate thickness direction, and the thickness of the crystal grain layer is in the range of 5 nm to 500 nm. The copper alloy foil characterized in that the peak value in the histogram of the thickness of the crystal grain layer is present in a frequency range of 50 nm to 250 nm and at a frequency of 30% or more of the total frequency, and the half width is 120 nm or less. . 厚みが5〜100μmであり、0.2%耐力が480N/mm以上であり、MIT屈曲性試験にて曲げ回数が150回を超える屈曲性を有することを特徴とする請求項1に記載の銅合金箔。 2. The thickness according to claim 1, wherein the thickness is 5 to 100 μm, the 0.2% proof stress is 480 N / mm 2 or more, and the MIT bendability test has bendability exceeding 150 times. Copper alloy foil.
JP2009206774A 2009-09-08 2009-09-08 Copper alloy foil Active JP5479002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206774A JP5479002B2 (en) 2009-09-08 2009-09-08 Copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206774A JP5479002B2 (en) 2009-09-08 2009-09-08 Copper alloy foil

Publications (2)

Publication Number Publication Date
JP2011058029A JP2011058029A (en) 2011-03-24
JP5479002B2 true JP5479002B2 (en) 2014-04-23

Family

ID=43945984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206774A Active JP5479002B2 (en) 2009-09-08 2009-09-08 Copper alloy foil

Country Status (1)

Country Link
JP (1) JP5479002B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021969A1 (en) * 2011-08-05 2013-02-14 古河電気工業株式会社 Rolled copper foil for secondary battery collector and production method therefor
WO2013047276A1 (en) 2011-09-29 2013-04-04 日本碍子株式会社 Copper alloy wire rod and method for producing same
JP2013089910A (en) * 2011-10-21 2013-05-13 Fujikura Ltd Flexible printed board and manufacturing method of the same
JP5839950B2 (en) * 2011-11-11 2016-01-06 古河電気工業株式会社 Rolled copper foil
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP5560475B2 (en) * 2013-01-09 2014-07-30 三菱マテリアル株式会社 Copper alloys for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2014143008A (en) * 2013-01-22 2014-08-07 Sh Copper Products Corp Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270739A (en) * 1986-05-16 1987-11-25 Mitsubishi Electric Corp Copper alloy for lead frame
JPS63130737A (en) * 1986-11-19 1988-06-02 Nippon Mining Co Ltd Copper alloy for semiconductor device
JP3334172B2 (en) * 1992-07-13 2002-10-15 三菱伸銅株式会社 Copper alloy strip with less wear on stamping mold
JP3760089B2 (en) * 2000-07-27 2006-03-29 日鉱金属加工株式会社 Copper alloy foil for high frequency circuits
JP4642119B2 (en) * 2009-03-23 2011-03-02 三菱伸銅株式会社 Copper alloy and method for producing the same

Also Published As

Publication number Publication date
JP2011058029A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
KR101136265B1 (en) Copper alloy sheets for electrical/electronic part
JP5479002B2 (en) Copper alloy foil
US9373425B2 (en) Copper alloy sheet with excellent heat dissipation and workability in repetitive bending
US7563408B2 (en) Copper alloy and method of manufacturing the same
US20100000637A1 (en) Cu-ni-si system alloy
JP4168077B2 (en) Copper alloy sheet for electrical and electronic parts with excellent oxide film adhesion
JPWO2011068124A1 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
WO2015099097A1 (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP4642119B2 (en) Copper alloy and method for producing the same
KR20110084297A (en) Ni-si-co copper alloy and manufacturing method therefor
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP2009007625A (en) Method for producing high strength copper alloy for electric/electronic component
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
TW201827613A (en) Copper alloy sheet for heat radiation component
WO2011152104A1 (en) Cu-co-si-based alloy sheet, and process for production thereof
CN101784684B (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP4550148B1 (en) Copper alloy and manufacturing method thereof
JP2017066532A (en) Copper alloy sheet having excellent conductivity and stress relaxation properties
KR20190119619A (en) Copper alloy bath with improved dimensional accuracy after press working
JP2022042515A (en) Copper alloy for electronic material, manufacturing method of copper alloy for electronic material and electronic component
JP6310004B2 (en) Cu-Co-Ni-Si alloy for electronic parts
JP5565262B2 (en) Clad material with excellent workability and manufacturing method thereof
JP2014198891A (en) Copper alloy sheet and electronic component for heat release having the same
JP2019077889A (en) Copper alloy for electronic material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250