JP2014143008A - Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery - Google Patents

Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery Download PDF

Info

Publication number
JP2014143008A
JP2014143008A JP2013009354A JP2013009354A JP2014143008A JP 2014143008 A JP2014143008 A JP 2014143008A JP 2013009354 A JP2013009354 A JP 2013009354A JP 2013009354 A JP2013009354 A JP 2013009354A JP 2014143008 A JP2014143008 A JP 2014143008A
Authority
JP
Japan
Prior art keywords
copper foil
negative electrode
current collector
electrode current
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013009354A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Koichi Furutoku
浩一 古徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2013009354A priority Critical patent/JP2014143008A/en
Publication of JP2014143008A publication Critical patent/JP2014143008A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an anode collector copper foil for a lithium ion secondary battery of which the workability is improved by making cracking unlikely to occur when manufacturing an anode, in particular, during a roll press step, a manufacturing method of an anode for the lithium ion secondary battery and an evaluation method of the anode collector copper foil for the lithium ion secondary battery.SOLUTION: An anode collector copper foil is characterized in that, when the anode collector copper foil which is segmented for a fixed length in a length direction and of which the thickness is shorter than 26 μm is cut in a short strip shape to form a plurality of copper foil pieces, an extension percentage which is a ratio of "a difference between a length of a longest copper foil piece and a length of a shortest copper foil piece" with respect to "the length of the shortest copper foil piece" is less than 220 ppm and when at least three copper foils which are positioned in a central portion and both end portions in a width direction of the anode collector copper foil are heated to a predetermined temperature of 120°C or higher and then cooled to a room temperature again, a difference between a maximum value and a minimum value of length variations before and after heating each of the copper foil pieces is equal to or less than 593 ppm.

Description

本発明は、リチウムイオン二次電池の負極集電体用銅箔、及びリチウムイオン二次電池の負極の製造方法、並びにリチウムイオン二次電池の負極集電体用銅箔の評価方法に関するものである。   The present invention relates to a copper foil for a negative electrode current collector of a lithium ion secondary battery, a method for producing a negative electrode of a lithium ion secondary battery, and a method for evaluating a copper foil for a negative electrode current collector of a lithium ion secondary battery. is there.

携帯電話等の通信機器、ノート型パソコン、電動工具、ハイブリッドカー、若しくは電気自動車等のバッテリ等には、リチウムイオン二次電池(LIB;Lithium-Ion rechargeable Battery)が用いられている。   Lithium-ion rechargeable batteries (LIBs) are used for communication devices such as mobile phones, notebook computers, electric tools, hybrid cars, batteries for electric vehicles, and the like.

リチウムイオン二次電池は、負極と、正極と、負極と正極との間に介在されたセパレータと、これらを収容する外装缶やAlラミネートフィルムと、を備えている。   The lithium ion secondary battery includes a negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an outer can and an Al laminate film that accommodate these.

このうち、負極は、負極集電体と、負極集電体の表面に形成された活物質層と、を備えている。負極集電体は、一般的に厚さが8μm以上26μm未満の負極集電体用銅箔からなる。活物質層は、カーボンやグラファイト等の活物質と、アセチレンブラック等の導電助剤と、ポリビニリデンフロライド(PVDF)やスチレンブタジエンゴム(SBR)等の結着剤(バインダ)と、を有する。   Among these, the negative electrode includes a negative electrode current collector and an active material layer formed on the surface of the negative electrode current collector. The negative electrode current collector is generally composed of a copper foil for a negative electrode current collector having a thickness of 8 μm or more and less than 26 μm. The active material layer includes an active material such as carbon or graphite, a conductive aid such as acetylene black, and a binder (binder) such as polyvinylidene fluoride (PVDF) or styrene butadiene rubber (SBR).

負極を製造する際には、活物質、導電助剤、結着剤、水、及びN−メチルピロリドン(NMP)等の溶媒を混練してスラリー状物質を形成しておき、塗工工程にて、このスラリー状物質を負極集電体用銅箔の表面にコイルtoコイルで塗工する。   When manufacturing the negative electrode, an active material, a conductive additive, a binder, water, and a solvent such as N-methylpyrrolidone (NMP) are kneaded to form a slurry-like material. Then, this slurry-like substance is coated on the surface of the copper foil for the negative electrode current collector in a coil-to-coil manner.

このとき、後工程で集電タブと溶接される負極集電体用銅箔の表面の一部を無塗工にする必要があるため、負極集電体用銅箔の表面に塗工部分と無塗工部分とが混在するような間欠的な塗工を行うことが多い。   At this time, since it is necessary to make a part of the surface of the copper foil for the negative electrode current collector to be welded to the current collecting tab in a later process, the coating portion and the surface of the copper foil for the negative electrode current collector In many cases, intermittent coating is performed in such a way that uncoated portions are mixed.

その後、乾燥工程にて、負極集電体用銅箔の表面に塗工されたスラリー状物質に含まれる溶媒を除去したのち、乾燥後の負極集電体用銅箔を巻き取る。この乾燥工程は、一般的に120℃以上200℃以下の乾燥温度で行う。   Then, after removing the solvent contained in the slurry-like material coated on the surface of the copper foil for negative electrode current collector in the drying step, the copper foil for negative electrode current collector after drying is wound up. This drying step is generally performed at a drying temperature of 120 ° C. or higher and 200 ° C. or lower.

また、負極集電体用銅箔の裏面にも同様にしてスラリー状物質を塗工・乾燥させる。なお、最近の塗工・乾燥装置には、ワンパスで負極集電体用銅箔の両面を塗工できるものがある。   Similarly, the slurry-like substance is coated and dried on the back surface of the copper foil for the negative electrode current collector. Some recent coating / drying apparatuses can coat both sides of a copper foil for a negative electrode current collector in one pass.

乾燥工程の後は、巻き取られた負極集電体用銅箔を解した後、ロールプレス工程にて、活物質層の密度を高めて単位体積当たりの充放電容量を増加させるべくロールプレスを行うと負極が得られる。このロールプレスの条件は、設備や電極構成・サイズ等により異なるが、一般的には線圧を1000N/cm以上5000N/cm以下、巻取張力を10MPa以上50MPa以下として行うことが多い。   After the drying process, after unwinding the wound copper foil for the negative electrode current collector, in the roll press process, roll press is performed to increase the density of the active material layer and increase the charge / discharge capacity per unit volume. When performed, a negative electrode is obtained. The conditions of this roll press vary depending on the equipment, electrode configuration and size, etc., but generally the linear pressure is often 1000 N / cm to 5000 N / cm and the winding tension is 10 MPa to 50 MPa in many cases.

ロールプレス工程の後、脱水等を目的とした熱処理工程を施すこともある。   After the roll press process, a heat treatment process for dehydration or the like may be performed.

同様に、コバルト酸リチウム等を活物質とした正極を製造し、集電タブを溶接した負極及び正極を、セパレータを介して巻回又は積層し、これらを外装缶に挿入したり、Alラミネートフィルムでパウチングしたりすることで、リチウムイオン二次電池を製造することができる。   Similarly, a positive electrode using lithium cobaltate or the like as an active material is manufactured, and a negative electrode and a positive electrode welded with a current collecting tab are wound or laminated via a separator, and these are inserted into an outer can, or an Al laminate film A lithium ion secondary battery can be manufactured by pouching.

国際公開第2008/132987号International Publication No. 2008/132987 特開2009−245788号公報JP 2009-245788 A

ところで、負極の製造時においては、特にロールプレス工程で負極集電体用銅箔に亀裂が発生して作業性が悪化することがある。亀裂が発生する原因としては、装置のアライメントが不適切であったり、負極集電体用銅箔のハンドリング中に傷が付いていたりといったことが挙げられる。   By the way, at the time of manufacture of a negative electrode, a crack may generate | occur | produce in the copper foil for negative electrode collectors especially at a roll press process, and workability | operativity may deteriorate. Causes of the occurrence of cracks include improper alignment of the apparatus and scratches during handling of the negative electrode current collector copper foil.

負極集電体用銅箔を装置にセットして張力を掛けた時点で、負極集電体用銅箔の一部が大きく撓んだり、ピンと張ったりする現象が見られると、負極集電体用銅箔の幅方向の一部に引張応力が集中して、その部分から亀裂が発生し易くなる。このとき、負極集電体用銅箔の端部に傷があると、その部分に引張応力が集中して、更に亀裂が発生し易くなる。   When the negative electrode current collector copper foil is set in the apparatus and tension is applied, when a phenomenon occurs in which a part of the negative electrode current collector copper foil is greatly bent or pinched, the negative electrode current collector Tensile stress concentrates on a part of the copper foil in the width direction, and cracks are easily generated from the part. At this time, if there is a scratch on the end of the copper foil for the negative electrode current collector, tensile stress concentrates on that portion, and cracks are more likely to occur.

圧延銅箔からなる負極集電体用銅箔の場合には、圧延速度、ロールクラウン形状、圧下力、クーラントの当たり具合等によってその形状が変化してしまうことから、これらを適切に制御して平坦な形状を得るためにAFC(Auto Flatness Control)等の高度な技術が導入されている。   In the case of a copper foil for a negative electrode current collector made of rolled copper foil, the shape changes depending on the rolling speed, roll crown shape, rolling force, contact condition of the coolant, etc. In order to obtain a flat shape, advanced techniques such as AFC (Auto Flatness Control) have been introduced.

一方、電解銅箔からなる負極集電体用銅箔の場合には、その形状は、電流密度分布、電解液への添加剤の配合、温度分布等の影響を受ける。   On the other hand, in the case of a copper foil for a negative electrode current collector made of an electrolytic copper foil, its shape is affected by the current density distribution, the blending of the additive into the electrolytic solution, the temperature distribution, and the like.

これら因子を制御して得られた適切な形状の負極集電体用銅箔を用い、且つ、装置のアライメント等を最適化した状態であっても、負極の製造時に亀裂が発生し易い負極集電体用銅箔と亀裂が発生し難い負極集電体用銅箔とが存在する。   Even if the copper foil for the negative electrode current collector having an appropriate shape obtained by controlling these factors is used and the alignment of the device is optimized, the negative electrode current collector is prone to cracking during the production of the negative electrode. There are copper foils for electric conductors and copper foils for negative electrode current collectors that are less prone to crack.

そこで、本発明の目的は、負極の製造時、特にロールプレス工程において亀裂が発生し難く作業性に優れたリチウムイオン二次電池の負極集電体用銅箔、及びリチウムイオン二次電池の負極の製造方法、並びにリチウムイオン二次電池の負極集電体用銅箔の評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a copper foil for a negative electrode current collector of a lithium ion secondary battery, which is excellent in workability and hardly causes cracks during the production of the negative electrode, particularly in a roll press process, and a negative electrode of a lithium ion secondary battery And a method for evaluating a copper foil for a negative electrode current collector of a lithium ion secondary battery.

この目的を達成するために創案された本発明は、長さ方向に一定の長さだけ切り出した厚さが26μm未満の負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成したとき、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率が220ppm未満であり、前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻したとき、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差が593ppm以下であるリチウムイオン二次電池の負極集電体用銅箔である。   The present invention, which has been created to achieve this object, is a method of cutting a copper foil for a negative electrode current collector having a thickness of less than 26 μm cut into a certain length in the length direction into strips in the width direction. When the copper foil piece is formed, the elongation, which is the ratio of “the difference between the length of the longest copper foil piece and the length of the shortest copper foil piece” to “the length of the shortest copper foil piece”, is less than 220 ppm. When the copper foil for negative electrode current collector is heated to a predetermined temperature of 120 ° C. or higher and returned to room temperature after at least three copper foil pieces located at the center and both ends in the width direction of the copper foil for individual current collector, This is a copper foil for a negative electrode current collector of a lithium ion secondary battery in which the difference between the maximum value and the minimum value of the length change rate before and after heating the piece is 593 ppm or less.

前記負極集電体用銅箔の幅方向の中央部に位置する銅箔片の加熱前後の長さ変化率が前記負極集電体用銅箔の幅方向の両端部に位置する銅箔片の加熱前後の長さ変化率以上であると良い。   The length change rate before and after the heating of the copper foil piece located in the center part in the width direction of the copper foil for the negative electrode current collector is a copper foil piece located at both ends in the width direction of the copper foil for the negative electrode current collector It is good that it is more than the rate of change in length before and after heating.

120℃以上200℃以下の温度で30分以上加熱した後の1%耐力が250MPa以上であると良い。   The 1% yield strength after heating for 30 minutes or more at a temperature of 120 ° C. or more and 200 ° C. or less is preferably 250 MPa or more.

120℃以上400℃以下の温度で30分以上加熱した後の1%耐力が250MPa以上であると良い。   The 1% yield strength after heating for 30 minutes or more at a temperature of 120 ° C. or higher and 400 ° C. or lower is preferably 250 MPa or higher.

Zrが0.01mass%以上0.2mass%以下含有されると良い。   Zr is preferably contained in an amount of 0.01 mass% to 0.2 mass%.

また、本発明は、これらのリチウムイオン二次電池の負極集電体用銅箔に活物質を塗工・乾燥させた後、ロールプレスを行うリチウムイオン二次電池の負極の製造方法である。   Moreover, this invention is a manufacturing method of the negative electrode of the lithium ion secondary battery which roll-presses, after coating and drying an active material to the copper foil for negative electrode collectors of these lithium ion secondary batteries.

また、本発明は、長さ方向に一定の長さだけ切り出した負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成し、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率を求め、前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、これらの値により負極の製造時における前記負極集電体用銅箔の耐亀裂性能を評価するリチウムイオン二次電池の負極集電体用銅箔の評価方法である。   Further, the present invention provides a negative electrode current collector copper foil cut out by a certain length in the length direction and cut into strips in the width direction to form a plurality of copper foil pieces. The elongation ratio, which is a ratio of “the difference between the length of the longest copper foil piece and the length of the shortest copper foil piece” with respect to the “length”, is determined, and the center portion and both end portions in the width direction of the copper foil for the negative electrode current collector After heating at least three copper foil pieces located at a predetermined temperature of 120 ° C. or more and returning to room temperature, the difference between the maximum value and the minimum value of the length change rate before and after heating of each copper foil piece is obtained. The evaluation method of the copper foil for a negative electrode current collector of a lithium ion secondary battery for evaluating the crack resistance performance of the copper foil for a negative electrode current collector at the time of production of the negative electrode based on these values.

また、本発明は、長さ方向に一定の長さだけ切り出した負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成し、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率を求め、前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、且つ、前記負極集電体用銅箔の幅方向の中央部に位置する銅箔片の加熱前後の長さ変化率と前記負極集電体用銅箔の幅方向の両端部に位置する銅箔片の加熱前後の長さ変化率とを求め、これらの値により負極の製造時における前記負極集電体用銅箔の耐亀裂性能を評価するリチウムイオン二次電池の負極集電体用銅箔の評価方法である。   Further, the present invention provides a negative electrode current collector copper foil cut out by a certain length in the length direction and cut into strips in the width direction to form a plurality of copper foil pieces. The elongation ratio, which is a ratio of “the difference between the length of the longest copper foil piece and the length of the shortest copper foil piece” with respect to the “length”, is determined, and the center portion and both end portions in the width direction of the copper foil for the negative electrode current collector After heating at least three copper foil pieces located at a predetermined temperature of 120 ° C. or more and returning to room temperature, the difference between the maximum value and the minimum value of the length change rate before and after heating of each copper foil piece is obtained. And the length change rate before and after the heating of the copper foil piece located in the center part in the width direction of the copper foil for the negative electrode current collector and the copper located at both ends in the width direction of the copper foil for the negative electrode current collector The length change rate before and after heating of the foil piece is obtained, and the crack resistance performance of the copper foil for the negative electrode current collector during the production of the negative electrode is evaluated based on these values. Ion is an evaluation method of the negative electrode current collector copper foil of the secondary battery.

前記所定の温度は、リチウムイオン二次電池の製造工程において曝される熱負荷に応じて決定された温度であると良い。   The predetermined temperature may be a temperature determined according to a heat load exposed in a manufacturing process of the lithium ion secondary battery.

本発明によれば、負極の製造時、特にロールプレス工程において亀裂が発生し難く作業性に優れたリチウムイオン二次電池の負極集電体用銅箔、及びリチウムイオン二次電池の負極の製造方法、並びにリチウムイオン二次電池の負極集電体用銅箔の評価方法を提供することができる。   According to the present invention, a copper foil for a negative electrode current collector of a lithium ion secondary battery, which is less prone to cracking and particularly excellent in workability during the production of a negative electrode, particularly in a roll press process, and the negative electrode of a lithium ion secondary battery are produced. The method and the evaluation method of the copper foil for negative electrode collectors of a lithium ion secondary battery can be provided.

本発明の実施の形態に係るリチウムイオン二次電池の負極集電体用銅箔を説明する図である。It is a figure explaining the copper foil for negative electrode collectors of the lithium ion secondary battery which concerns on embodiment of this invention. 実施例におけるサンプル番号1の負極集電体用銅箔について熱膨張を測定した結果を示す図であり、(a)は一端部における温度と伸びの関係を示す図、(b)は中央部における温度と伸びの関係を示す図、(c)は他端部における温度と伸びの関係を示す図である。It is a figure which shows the result of having measured thermal expansion about the copper foil for negative electrode collectors of the sample number 1 in an Example, (a) is a figure which shows the relationship between the temperature in one end part, and (b) is in the center part. The figure which shows the relationship between temperature and elongation, (c) is a figure which shows the relationship between the temperature and elongation in the other end part. 比較例におけるサンプル番号2の負極集電体用銅箔について熱膨張を測定した結果を示す図であり、(a)は一端部における温度と伸びの関係を示す図、(b)は中央部における温度と伸びの関係を示す図、(c)は他端部における温度と伸びの関係を示す図である。It is a figure which shows the result of having measured thermal expansion about the copper foil for negative electrode collectors of the sample number 2 in a comparative example, (a) is a figure which shows the relationship between the temperature in one end part, and (b) is in a center part. The figure which shows the relationship between temperature and elongation, (c) is a figure which shows the relationship between the temperature and elongation in the other end part. 実施例におけるサンプル番号5の負極集電体用銅箔について熱膨張を測定した結果を示す図であり、(a)は一端部における温度と伸びの関係を示す図、(b)は中央部における温度と伸びの関係を示す図、(c)は他端部における温度と伸びの関係を示す図である。It is a figure which shows the result of having measured thermal expansion about the copper foil for negative electrode collectors of the sample number 5 in an Example, (a) is a figure which shows the relationship between the temperature in one end part, and (b) is in a center part. The figure which shows the relationship between temperature and elongation, (c) is a figure which shows the relationship between the temperature and elongation in the other end part. 実施例におけるサンプル番号3の負極集電体用銅箔について熱膨張を測定した結果を示す図であり、(a)は一端部における温度と伸びの関係を示す図、(b)は中央部における温度と伸びの関係を示す図、(c)は他端部における温度と伸びの関係を示す図である。It is a figure which shows the result of having measured thermal expansion about the copper foil for negative electrode collectors of the sample number 3 in an Example, (a) is a figure which shows the relationship between the temperature in one end part, and (b) is in a center part. The figure which shows the relationship between temperature and elongation, (c) is a figure which shows the relationship between the temperature and elongation in the other end part.

以下、本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明を創作するに際し、鋭意検討を重ねた結果、乾燥工程で加熱された後の負極集電体用銅箔の形状が、必ずしも加熱前と同等ではないことを見出した。   Upon creating the present invention, as a result of intensive studies, it has been found that the shape of the copper foil for negative electrode current collector after being heated in the drying step is not necessarily equivalent to that before heating.

圧延銅箔からなる負極集電体用銅箔の場合には、圧延時の加工ひずみが残留しているので、乾燥工程における加熱によって回復・再結晶化する過程で、残留した加工ひずみ(残留ひずみ)が開放され、負極集電体用銅箔の寸法が変化してしまう。特に、圧延銅箔からなる負極集電体用銅箔は、一般的に80%以上の高加工度で圧延されており、残留ひずみも大きくなっていることから、乾燥工程における加熱によって残留ひずみが開放された後の負極集電体用銅箔の寸法の変化も大きい。   In the case of a copper foil for a negative electrode current collector made of a rolled copper foil, since the processing strain at the time of rolling remains, the remaining processing strain (residual strain) during the process of recovery and recrystallization by heating in the drying process ) Is opened, and the dimensions of the negative electrode current collector copper foil change. In particular, a copper foil for a negative electrode current collector made of a rolled copper foil is generally rolled at a high workability of 80% or more and has a large residual strain. The change in dimensions of the copper foil for negative electrode current collector after being opened is also large.

これら残留ひずみは、負極集電体用銅箔の幅方向に均一に分布する限りにおいては、乾燥工程における加熱によって開放されても負極集電体用銅箔の全体が一様に伸びたり縮んだりするだけなので問題になることはない。   As long as these residual strains are uniformly distributed in the width direction of the copper foil for the negative electrode current collector, the entire copper foil for the negative electrode current collector may stretch or shrink evenly even if it is released by heating in the drying process. It will not be a problem because it only does.

しかしながら、残留ひずみの分布が負極集電体用銅箔の幅方向で偏っていると、残留ひずみの大きさに応じて伸び量が変わるため、乾燥工程で加熱された後の負極集電体用銅箔の長さが幅方向でばらつくことになる。   However, if the distribution of residual strain is biased in the width direction of the copper foil for the negative electrode current collector, the amount of elongation changes depending on the size of the residual strain, so for the negative electrode current collector after being heated in the drying process The length of the copper foil varies in the width direction.

即ち、乾燥工程で加熱される前には適切であった負極集電体用銅箔の形状が、乾燥工程における加熱で残留ひずみが開放されることによって不適切な形状となるのである。   That is, the shape of the copper foil for a negative electrode current collector, which was appropriate before being heated in the drying process, becomes an inappropriate shape by releasing the residual strain by heating in the drying process.

換言すれば、それまで内包されていた残留ひずみの偏りが、乾燥工程における加熱によって負極集電体用銅箔の長さの変化となって顕在化するのである。   In other words, the bias of the residual strain that has been included until then becomes apparent as a change in the length of the copper foil for the negative electrode current collector due to heating in the drying process.

不適切な形状となった負極集電体用銅箔をロールプレス等の装置にセットして張力を加えると、撓んだり、ピンと張ったりする部分が現れ、この部分がロールに巻き付けたときに亀裂が発生し易くなる。   When the copper foil for the negative electrode current collector that is in an inappropriate shape is set in a roll press or other device and tension is applied, a part that bends or pinches appears, and this part is wound around the roll. Cracks are likely to occur.

そのため、ロールプレス時に、スラリー状物質の塗工部分と無塗工部分との境界領域等でプレス圧の変動が生じ、張力の急激な変化が誘発されると、ピンと張った部分を起点として負極集電体用銅箔が亀裂に至る。   Therefore, during roll press, when a change in press pressure occurs in the boundary region between the coated part and the non-coated part of the slurry-like substance, and a sudden change in tension is induced, the negative electrode starts from the tensioned part. The current collector copper foil cracks.

つまり、圧延上がりの負極集電体用銅箔の形状も重要であるが、それ以上に120℃以上の熱を加えた後の負極集電体用銅箔の形状が亀裂の発生の防止に大きな影響を与える。   In other words, the shape of the copper foil for the negative electrode current collector after rolling is also important, but the shape of the copper foil for the negative electrode current collector after heating at 120 ° C. or higher is great for preventing cracks. Influence.

そこで、本実施の形態に係るリチウムイオン二次電池の負極集電体用銅箔は、図1に示すように、長さ方向に一定の長さLstだけ切り出した厚さが26μm未満の負極集電体用銅箔11を幅方向(図1のWの方向)に短冊状に切断して複数(m(個)、m:3以上の整数、図1ではm=10)の銅箔片(図1では、12a〜12j)を形成したとき、「最も短い銅箔片(図1では12j)の長さL0」に対する「最も長い銅箔片(図1では12f)の長さLmaxと最も短い銅箔片(図1では12j)の長さL0との差ΔL=Lmax−L0」の割合として定義される、伸び率ε(=ΔL/L0=(Lmax−L0)/L0)が220ppm未満であり、負極集電体用銅箔11の幅方向の中央部及び両端部に位置する少なくとも3つ(図1では4つ)の銅箔片(図1では12a、12e、12f、及び12j)を120℃以上の所定の温度に加熱した後再び室温に戻したとき、個々の銅箔片(12a、12e、12f、及び12j)の加熱前後の長さ変化率(すなわち、(加熱後の長さlm−短冊状に切り出す前の長さLst)/短冊状に切り出す前の長さLst)をda、de、df、djとしたとき、これらの最大値dmax(図1においては、銅箔片12eに係る長さの変化率)と最小値dmin(図1においては、銅箔片12jに係る長さの変化率)との差(以下、最大変化率差Δdという)が593ppm以下、望ましくは430ppm以下であることを特徴とする。 Therefore, the copper foil for a negative electrode current collector of the lithium ion secondary battery according to the present embodiment is a negative electrode having a thickness of less than 26 μm cut out by a certain length L st in the length direction, as shown in FIG. The current collector copper foil 11 was cut into strips in the width direction (direction W in FIG. 1), and a plurality of pieces (m (pieces), m: integer of 3 or more, m = 10 in FIG. 1) of copper foil pieces. (in FIG. 1, 12a-12j) when forming the length L max of the "longest copper foil piece to the" shortest copper foil piece length L 0 of (in FIG. 1 12j) "(in FIG. 1 12f) And elongation ratio ε (= ΔL / L 0 = (L max −L) defined as a ratio of difference ΔL = L max −L 0 ”between the length L 0 of the copper foil piece and the shortest copper foil piece (12j in FIG. 1) 0) / L 0) is less than 220 ppm, copper least three located in the central portion and both end portions in the width direction of the negative electrode current collector foil 11 (in FIG. 1, four) When the pieces (12a, 12e, 12f, and 12j in FIG. 1) are heated to a predetermined temperature of 120 ° C. or higher and then returned to room temperature, the individual copper foil pieces (12a, 12e, 12f, and 12j) are heated. length variation rate before and after (i.e., (length after heating l m - before cutting into strips the length L st) / strip into cut length before L st) a d a, d e, d f , D j , these maximum values d max (in FIG. 1, the rate of change of the length related to the copper foil piece 12e) and minimum values d min (in FIG. 1, the length related to the copper foil piece 12j) Change rate) (hereinafter referred to as the maximum change rate difference Δd) is 593 ppm or less, preferably 430 ppm or less.

また、負極集電体用銅箔11の幅方向の中央部に位置する銅箔片12e(又は12f)の加熱前後の長さ変化率de(又はdf)が負極集電体用銅箔11の幅方向の両端部に位置する銅箔片12a、12jの加熱前後の長さ変化率da、dj以上であると良い。 Further, Dohakuhen 12e (or 12f) length before and after heating changing rate d e (or d f) of the negative electrode current collector foil located at the center in the width direction of the negative electrode current collector foil 11 The length change rates d a and d j before and after the heating of the copper foil pieces 12a and 12j located at both ends in the width direction of 11 are good.

厚さが26μm未満の負極集電体用銅箔11を対象とするのは、厚さが26μm以上の負極集電体用銅箔11では亀裂の発生の可能性が低く、その形状に特段の注意を払う必要がないためである。   The negative electrode current collector copper foil 11 having a thickness of less than 26 μm is targeted because the possibility of cracking is low in the negative electrode current collector copper foil 11 having a thickness of 26 μm or more. This is because it is not necessary to pay attention.

伸び率εを220ppm未満とするのは、加熱前における平坦性が優れた負極集電体用銅箔11を用いることを意味する。加熱前において既に平坦性が悪い負極集電体用銅箔11は、加熱後においても当然に平坦性が悪いからである。   When the elongation ε is less than 220 ppm, it means that the copper foil 11 for negative electrode current collector having excellent flatness before heating is used. This is because the copper foil 11 for negative electrode current collector, which already has poor flatness before heating, naturally has poor flatness even after heating.

最大変化率差Δdを593ppm以下、望ましくは430ppm以下とするのは、加熱後の負極集電体用銅箔11の長さの幅方向でのばらつきを小さく抑え、平坦性に優れた負極集電体用銅箔11を得るためである。   The maximum change rate difference Δd is set to 593 ppm or less, preferably 430 ppm or less. The negative electrode current collector is excellent in flatness by suppressing variations in the width direction of the length of the copper foil 11 for a negative electrode current collector after heating. This is to obtain the body copper foil 11.

加熱前後における負極集電体用銅箔11の寸法の変化を小さく抑えるためには、最終焼鈍後の圧延の各パスにおいて、ワークロールの両端に掛かる圧延荷重を均等にすることが重要である。即ち、ワークロールの両端に掛かる圧延荷重の和に対するワークロールの両端に掛かる圧延荷重の差を1%以下とすることで、前述したような所望の最大変化率差Δdの負極集電体用銅箔11を得ることができる。   In order to suppress a change in the size of the negative electrode current collector copper foil 11 before and after heating, it is important to equalize the rolling load applied to both ends of the work roll in each pass of rolling after the final annealing. That is, by making the difference in rolling load applied to both ends of the work roll relative to the sum of the rolling loads applied to both ends of the work roll to be 1% or less, the negative electrode current collector copper having the desired maximum change rate difference Δd as described above The foil 11 can be obtained.

なお、最大変化率差Δdを求める際に、120℃以上に加熱するのは、活物質塗工後の乾燥工程の代表的熱負荷が、120℃以上200℃以下の乾燥温度で行われるため、乾燥工程の最小熱負荷以上に加熱する必要があるからである。   In addition, when obtaining the maximum change rate difference Δd, heating to 120 ° C. or higher is performed at a drying temperature of 120 ° C. or higher and 200 ° C. or lower because a typical heat load in the drying step after active material coating is performed. It is because it is necessary to heat more than the minimum heat load of a drying process.

この熱処理に係る温度は、活物質塗工後の乾燥工程等の熱処理条件が判明していれば、その温度で行うことが望ましい。実際に負極集電体用銅箔11が受ける熱負荷を模擬するためである。   As for the temperature for this heat treatment, it is desirable to carry out at the temperature if the heat treatment conditions such as the drying step after the application of the active material are known. This is to simulate the thermal load that the copper foil 11 for the negative electrode current collector actually receives.

また、120℃以上200℃以下又は120℃以上400℃以下の温度で30分以上加熱した後の1%耐力が250MPa以上であることが好ましい。120℃以上の温度にするのは、最大変化率差Δdを求めるときと同様の理由からであり、200℃以下の温度にするのは、乾燥工程の最大熱負荷が200℃以下であるからである。また、400℃以下の温度にするのは、活物質層を形成するバインダとしてポリイミド(PI)を用いた場合に乾燥工程の後若しくは脱水熱処理工程において、施される可能性のある温度が300℃以上400℃以下と考えられるためである。なお、1%耐力は、JISZ2241「全伸び法」に準拠して測定する。1%耐力を前記の値にすることにより、電池の充放電の際に、電池容量の増大等を目的として膨張収縮の大きい活物質層を形成したとしても、負極集電体用銅箔の亀裂を起こしにくくすることができる。   Moreover, it is preferable that 1% yield strength after heating for 30 minutes or more at the temperature of 120 to 200 degreeC or 120 to 400 degreeC is 250 Mpa or more. The reason why the temperature is set to 120 ° C. or higher is for the same reason as that for obtaining the maximum change rate difference Δd, and the temperature is set to 200 ° C. or lower because the maximum heat load in the drying process is 200 ° C. or lower. is there. The temperature of 400 ° C. or lower is set to 300 ° C. which may be applied after the drying step or in the dehydration heat treatment step when polyimide (PI) is used as the binder for forming the active material layer. This is because it is considered to be 400 ° C. or lower. The 1% yield strength is measured in accordance with JISZ2241 “Total elongation method”. By setting the 1% proof stress to the above value, even when an active material layer having a large expansion and contraction is formed for the purpose of increasing the battery capacity, etc., when the battery is charged / discharged, the copper foil for the negative electrode current collector is cracked. Can be made difficult.

但し、実際に施される熱処理に係る温度が不明な場合や工程の簡略化を目的として、後述するように、120℃又は400℃で行っても良い。   However, when the temperature related to the heat treatment actually performed is unknown or for the purpose of simplifying the process, it may be performed at 120 ° C. or 400 ° C. as described later.

更に、Zrが0.01mass%以上0.2mass%以下含有されることが好ましい。これにより、負極集電体用銅箔11の耐熱性を高め、乾燥工程の加熱では残留ひずみの開放を生じさせず、負極集電体用銅箔11の寸法の変化を著しく小さく抑えることが可能になる。   Furthermore, it is preferable that Zr is contained in an amount of 0.01 mass% to 0.2 mass%. As a result, the heat resistance of the copper foil 11 for the negative electrode current collector can be increased, the residual strain can be prevented from being released by heating in the drying process, and the change in the dimensions of the copper foil 11 for the negative electrode current collector can be suppressed to be extremely small. become.

これまで説明してきた条件を満たす負極集電体用銅箔11は、負極の製造時、特にロールプレス工程において亀裂が発生し難く作業性に優れる。   The copper foil 11 for a negative electrode current collector that satisfies the conditions described so far is not easily cracked during the production of the negative electrode, particularly in the roll press process, and has excellent workability.

なお、本発明は、前述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前述の実施の形態では、長さ方向に一定の長さだけ切り出した厚さが26μm未満の負極集電体用銅箔11を幅方向に短冊状に切断して複数の銅箔片12a〜12jを形成し、この複数の銅箔片12a〜12jを用いて各種条件を求めるものとしたが、長さ方向に一定の長さだけ切り出した厚さが26μm未満の負極集電体用銅箔11の表面に沿って幅方向の複数の箇所で長さを測定したとき、「最も短い箇所の長さL0」に対する「最も長い箇所の長さと最も短い箇所の長さとの差ΔL」の割合である伸び率εが220ppm未満であり、負極集電体用銅箔11を120℃以上の所定の温度に加熱した後再び室温に戻したとき、負極集電体用銅箔11の幅方向の中央部及び両端部における加熱前後の最大変化率差Δdが593ppm以下である負極集電体用銅箔11でも同様の効果を得ることができる。 For example, in the above-described embodiment, the negative electrode current collector copper foil 11 having a thickness of less than 26 μm cut out by a certain length in the length direction is cut into strips in the width direction to form a plurality of copper foil pieces 12a. -12j was formed, and various conditions were obtained using the plurality of copper foil pieces 12a-12j, but the negative electrode collector copper having a thickness of less than 26 μm cut out by a certain length in the length direction When the length is measured at a plurality of locations in the width direction along the surface of the foil 11, the “difference ΔL between the length of the longest location and the length of the shortest location ” with respect to “the length L 0 of the shortest location” When the elongation ε as a ratio is less than 220 ppm and the negative electrode current collector copper foil 11 is heated to a predetermined temperature of 120 ° C. or higher and then returned to room temperature, the width direction of the negative electrode current collector copper foil 11 is increased. The maximum change rate difference Δd before and after heating at the center and both ends of the steel is 593 ppm or more It is possible to obtain the same effect even negative electrode current collector foil 11 is.

更に、前述の加熱を施した際、負極集電体用銅箔11の幅方向の中央部における加熱前後の長さ変化率が負極集電体用銅箔11の幅方向の両端部における加熱前後の長さ変化率以上である負極集電体用銅箔11である。   Furthermore, when the above-described heating is performed, the rate of change in length before and after heating in the central portion in the width direction of the copper foil 11 for negative electrode current collector is before and after heating at both ends in the width direction of the copper foil 11 for negative electrode current collector It is the copper foil 11 for negative electrode electrical power collectors which is more than the length change rate of this.

このとき、負極集電体用銅箔11を平板上に静置し、その負極集電体用銅箔11の表面の凹凸状態をレーザ変位センサや渦電流式変位センサで長さ方向及び幅方向に連続して測定し、その凹凸のトレース長から負極集電体用銅箔11の長さを測定すると良い。   At this time, the copper foil 11 for the negative electrode current collector is left on a flat plate, and the uneven state of the surface of the copper foil 11 for the negative electrode current collector is measured in the length direction and the width direction using a laser displacement sensor or an eddy current displacement sensor. And measuring the length of the copper foil 11 for the negative electrode current collector from the trace length of the unevenness.

これらいずれかの負極集電体用銅箔11に活物質を塗工・乾燥させた後、ロールプレスを行うとリチウムイオン二次電池の負極を製造することができる。   The negative electrode of a lithium ion secondary battery can be manufactured by performing roll press after applying and drying an active material on any one of these copper foils 11 for negative electrode current collectors.

このとき、前述した条件を満たす負極集電体用銅箔11を用いることで、負極の製造時における負極集電体用銅箔11の亀裂確率を大幅に低減することができ、負極の製造歩留を改善することが可能になる。   At this time, by using the copper foil 11 for the negative electrode current collector that satisfies the above-described conditions, the cracking probability of the copper foil 11 for the negative electrode current collector during the production of the negative electrode can be greatly reduced, and the production process of the negative electrode can be reduced. It is possible to improve the retention.

なお、ロールプレス時に再び120℃程度で加熱する場合もあるが、この時点では既に残留ひずみが開放されており、負極集電体用銅箔11の形状は殆ど変化しないので、ロールプレス時の加熱が負極集電体用銅箔11に与える影響は少ない。   In addition, although it may heat again at about 120 degreeC at the time of roll press, since the residual distortion has already been open | released at this time and the shape of the copper foil 11 for negative electrode collectors hardly changes, the heating at the time of roll press Has a small influence on the negative electrode current collector copper foil 11.

また、本発明によれば、負極集電体用銅箔11を評価し、負極の製造時、特にロールプレス工程において亀裂が発生し難く作業性に優れる負極集電体用銅箔11を選別することが可能になる。   In addition, according to the present invention, the negative electrode current collector copper foil 11 is evaluated, and the negative electrode current collector copper foil 11 which is not easily cracked and particularly excellent in workability during the production of the negative electrode, particularly in the roll press process, is selected. It becomes possible.

即ち、本発明の実施の形態に係るリチウムイオン二次電池の負極集電体用銅箔の評価方法は、長さ方向に一定の長さだけ切り出した負極集電体用銅箔11を幅方向に短冊状に切断して複数の銅箔片を形成し、「最も短い銅箔片の長さL0」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差ΔL」の割合である伸び率εを求め、負極集電体用銅箔11の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、これらの値により負極の製造時における負極集電体用銅箔11の耐亀裂性能を評価するものである。 That is, in the evaluation method of the copper foil for negative electrode current collector of the lithium ion secondary battery according to the embodiment of the present invention, the copper foil 11 for negative electrode current collector cut out by a certain length in the length direction is used in the width direction. A plurality of copper foil pieces are cut into strips, and “the difference ΔL between the length of the longest copper foil piece and the length of the shortest copper foil piece relative to the length L 0 of the shortest copper foil piece” is formed. Is obtained, and at least three copper foil pieces located at the center and both ends in the width direction of the copper foil 11 for the negative electrode current collector are heated to a predetermined temperature of 120 ° C. or higher and then returned to room temperature. Then, the difference between the maximum value and the minimum value of the length change rate before and after heating of each copper foil piece is obtained, and the crack resistance performance of the copper foil 11 for the negative electrode current collector during the production of the negative electrode is determined based on these values. It is something to evaluate.

これらの値が前述した条件を満たす場合には、負極の製造時、特にロールプレス工程において亀裂が発生し難く作業性に優れる負極集電体用銅箔11であることを意味する。   When these values satisfy the above-mentioned conditions, it means that the copper foil 11 for the negative electrode current collector is excellent in workability because cracks are hardly generated during the production of the negative electrode, particularly in the roll press process.

また、同様に、長さ方向に一定の長さだけ切り出した負極集電体用銅箔11の表面に沿って幅方向の複数の箇所で長さを測定し、「最も短い箇所の長さL0」に対する「最も長い箇所の長さと最も短い箇所の長さとの差ΔL」の割合である伸び率εを求め、負極集電体用銅箔11を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、これらの値により負極の製造時における負極集電体用銅箔11の耐亀裂性能を評価することも可能である。 Similarly, the length is measured at a plurality of locations in the width direction along the surface of the copper foil 11 for the negative electrode current collector cut out by a certain length in the length direction, and “the length L of the shortest location is measured. After obtaining the elongation ε, which is the ratio of “the difference ΔL between the length of the longest part and the shortest part to “ 0”, and heating the copper foil 11 for negative electrode current collector to a predetermined temperature of 120 ° C. or higher The temperature is returned again to room temperature, and the difference between the maximum value and the minimum value of the length change rate before and after heating of each copper foil piece is determined, and crack resistance of the copper foil 11 for the negative electrode current collector during the production of the negative electrode is determined based on these values. It is also possible to evaluate the performance.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実験1)
負極集電体用銅箔として、日立電線(株)社製の幅が600mm、厚さが10μmのTPC−H箔、TPC−O箔(焼鈍箔)、及びHCL02Z箔を用い、最終焼鈍後の圧延の各パスにおいてワークロールの両端に掛かる圧延荷重の和に対するワークロールの両端に掛かる圧延荷重の差を1%以下として、圧延条件を変化させ、サンプル番号1(実施例1)、サンプル番号3(実施例2)、サンプル番号4(実施例3)、サンプル番号5(実施例4)、サンプル番号6(実施例5)を作製した。サンプル番号2(比較例1)は、圧延荷重の差を1.5%として作製した。サンプル番号7(比較例2)は、TPC−H箔を用い、意図的に形状を悪く圧延して作製した。
(Experiment 1)
As the copper foil for the negative electrode current collector, a TPC-H foil having a width of 600 mm and a thickness of 10 μm, a TPC-O foil (annealing foil), and an HCL02Z foil manufactured by Hitachi Cable, Ltd. were used. Sample number 1 (Example 1) and sample number 3 were set such that the difference in rolling load applied to both ends of the work roll with respect to the sum of the rolling loads applied to both ends of the work roll in each pass of rolling was 1% or less, and the rolling conditions were changed. (Example 2), Sample No. 4 (Example 3), Sample No. 5 (Example 4), and Sample No. 6 (Example 5) were produced. Sample No. 2 (Comparative Example 1) was produced with a rolling load difference of 1.5%. Sample No. 7 (Comparative Example 2) was prepared by using a TPC-H foil and rolling it intentionally.

(伸び率の測定)
これら負極集電体用銅箔の圧延後の伸び率εは、TPC−H箔が70ppm以上220ppm以下、TPC−O箔が100ppm、HCL02Z箔が50ppmであり、平坦性は良好であった。
(Measurement of elongation)
The elongation percentage ε after rolling of these copper foils for negative electrode current collector was 70 ppm to 220 ppm for TPC-H foil, 100 ppm for TPC-O foil, and 50 ppm for HCL02Z foil, and the flatness was good.

(熱処理後の最大変化率差Δdの測定)
これら負極集電体用銅箔の幅方向の中央部及び両端部から、幅が5mm、長さが20mmの試験片を切り出し、理学電機(株)社製の熱膨張計TMA8310を用いて熱膨張を測定した。測定条件は以下の通りである。なお、室温は、25℃とした。
測定有効長 :15mm
引張加重 :2MPa
最高温度 :200℃
昇温速度 :5℃/分(冷却は自然放冷)
温度サイクル:室温→200℃→室温→200℃→室温(冷却途中で測定停止)
(Measurement of maximum change rate difference Δd after heat treatment)
A test piece having a width of 5 mm and a length of 20 mm was cut out from the center and both ends in the width direction of the copper foil for the negative electrode current collector, and thermally expanded using a thermal dilatometer TMA8310 manufactured by Rigaku Corporation. Was measured. The measurement conditions are as follows. The room temperature was 25 ° C.
Effective measurement length: 15 mm
Tensile load: 2 MPa
Maximum temperature: 200 ° C
Temperature increase rate: 5 ° C / min (cooling is allowed to cool naturally)
Temperature cycle: room temperature → 200 ° C → room temperature → 200 ° C → room temperature (measurement stopped during cooling)

測定結果を図2〜4に示す。   The measurement results are shown in FIGS.

いずれのサンプルも1回目の昇温中に伸び量が増大する変曲点が存在し、この温度は負極集電体用銅箔の軟化温度に相当する。   Each sample has an inflection point where the amount of elongation increases during the first temperature increase, and this temperature corresponds to the softening temperature of the copper foil for the negative electrode current collector.

1回目の昇温で生じる伸び量は、サンプルによって、また幅方向の位置によって異なっていた。また、加工履歴や材質により、加熱後の伸びに相違が出ることが確認できた。   The amount of elongation generated by the first temperature increase varied depending on the sample and the position in the width direction. It was also confirmed that there was a difference in elongation after heating depending on the processing history and material.

2回目の昇温でも伸びが増加するが、この伸びは熱膨張であり、いずれのサンプルでも16ppm/K前後であり、銅の熱膨張係数16.2ppm/K(出典:理化学事典、岩波書店)に良く一致していた。   Elongation increases even at the second temperature rise, but this elongation is thermal expansion, which is around 16 ppm / K in all samples, and the thermal expansion coefficient of copper is 16.2 ppm / K (Source: RIKEN, Iwanami Shoten) Was in good agreement.

これにより、スラリー状物質の塗工・乾燥工程を経ることで、負極集電体用銅箔が内包していた残留ひずみが開放されることが確認できた。   Thereby, it has confirmed that the residual distortion which the copper foil for negative electrode collectors included was released by passing through the application | coating and drying process of a slurry-like substance.

また、負極集電体用銅箔の幅方向で測定した熱処理後の3点の長さ増加(μm)と、3点の最大変化率差Δd(最大差/有効長)を算出して表1に纏めた。   Further, the length increase (μm) at three points after the heat treatment measured in the width direction of the copper foil for the negative electrode current collector and the maximum change rate difference Δd (maximum difference / effective length) at the three points were calculated. I summarized it.

サンプル番号1〜4及び7のTPC−H箔は、それぞれ最大変化率差Δdが373ppm以上713ppm以下の範囲で変化した。これは圧延条件の違いに依存するものである。   In the TPC-H foils of sample numbers 1 to 4 and 7, the maximum change rate difference Δd changed in the range of 373 ppm to 713 ppm. This depends on the difference in rolling conditions.

サンプル番号5は、Zrを0.02mass%含有させることで耐熱性を高めたHCL02Z箔である。HCL02Z箔は、半軟化温度が約400℃であるので、本実験の200℃では軟化せず、残留ひずみの開放も起こらない。そのため、寸法変化も著しく小さかった。   Sample No. 5 is an HCL02Z foil having improved heat resistance by containing 0.02 mass% of Zr. Since the HCL02Z foil has a semi-softening temperature of about 400 ° C., it does not soften at 200 ° C. in this experiment and does not release residual strain. Therefore, the dimensional change was also extremely small.

サンプル番号6は、TPC箔を焼鈍したTPC−O箔である。TPC−O箔は、窒素雰囲気で150℃×4時間熱処理してある。焼鈍工程において残留ひずみが開放されているので、本実験において新たに残留ひずみが開放される量は少なかった。   Sample No. 6 is a TPC-O foil obtained by annealing the TPC foil. The TPC-O foil is heat-treated at 150 ° C. for 4 hours in a nitrogen atmosphere. Since the residual strain was released in the annealing process, the amount of newly released residual strain in this experiment was small.

(実験2)
そして、これら負極集電体用銅箔の両面に活物質層を形成した。活物質には日立化成工業(株)社製の人造黒鉛MAG(平均粒径21μm)、結着剤には日本ゼオン(株)社製のSBR水溶液、増粘材には第一工業製薬(株)社製のCMCを用いた。配合は不揮発成分比で、活物質:結着剤:増粘材=99:0.5:0.5とした。
(Experiment 2)
And the active material layer was formed on both surfaces of these copper foils for negative electrode collectors. The active material is artificial graphite MAG (average particle size 21 μm) manufactured by Hitachi Chemical Co., Ltd., the binder is SBR aqueous solution manufactured by Nippon Zeon Co., Ltd., and the thickener is Daiichi Kogyo Seiyaku Co., Ltd. ) CMC manufactured by the company was used. The composition was a non-volatile component ratio, and active material: binder: thickening material = 99: 0.5: 0.5.

これらを混練した後、塗工機で600mm塗工、30mm無塗工の間欠塗工を実施し、続けて最高温度180℃で乾燥させた。乾燥後の活物質層厚さはおよそ150μmであった。   After kneading these, intermittent coating with 600 mm coating and 30 mm non-coating was carried out with a coating machine, followed by drying at a maximum temperature of 180 ° C. The active material layer thickness after drying was approximately 150 μm.

次に、負極集電体用銅箔の反対面にも同様に活物質層を設けた。このとき、塗工部/無塗工部の位置は両面で一致するようにした。   Next, an active material layer was similarly provided on the opposite surface of the copper foil for the negative electrode current collector. At this time, the positions of the coated part / non-coated part were matched on both sides.

負極集電体用銅箔の両面に活物質層を間欠塗工した負極をロールプレス機に掛けた。ロールプレスは定圧加圧で、圧下力を4×103N/cmとした。 The negative electrode in which the active material layer was intermittently coated on both surfaces of the copper foil for the negative electrode current collector was placed on a roll press. The roll press was a constant pressure and the rolling force was 4 × 10 3 N / cm.

この条件で、前述の負極を1000mずつ圧延し、この作業中に亀裂が発生した回数(亀裂回数)を求め、表1に纏めた。   Under this condition, the above-mentioned negative electrode was rolled 1000 m at a time, and the number of cracks generated during this operation (number of cracks) was determined and summarized in Table 1.

(実験2の結果)
最大変化率差Δdが713ppmと最も大きいサンプル番号2は2回亀裂が発生したのに対し、593ppm以下のサンプル番号1、3、4、5、及び6は1度も亀裂が発生しなかった。
(Result of Experiment 2)
Sample No. 2 having the largest maximum change rate difference Δd of 713 ppm cracked twice, whereas Sample Nos. 1, 3, 4, 5, and 6 having a maximum change rate of 593 ppm or less never cracked.

この結果より、負極集電体用銅箔の亀裂の発生を防ぐためには、負極集電体用銅箔の幅方向の中央部及び両端部の位置で少なくとも3点サンプリングし、それぞれを120℃以上まで加熱した際の加熱前後の長さ方向の長さ変化率を求めた際の、3点の最大変化率差Δdが593ppm以下であることが重要であることが分かった。   From this result, in order to prevent the occurrence of cracks in the copper foil for the negative electrode current collector, at least three points were sampled at the positions in the center and both ends in the width direction of the copper foil for the negative electrode current collector. It was found that it is important that the maximum change rate difference Δd at the three points when the length change rate in the length direction before and after heating is 593 ppm or less.

また、サンプル番号7が搬送困難になっており、亀裂が生じているという結果が得られた。熱処理前の伸び率εが220ppm以上になると負極集電体用銅箔が搬送ラインを真っ直ぐ通らず片側に寄り、搬送困難になる現象が見られるとともに、亀裂が発生し易くなることが分かった。   Moreover, it was difficult to carry the sample number 7, and the result that the crack had arisen was obtained. It has been found that when the elongation ε before heat treatment is 220 ppm or more, the copper foil for the negative electrode current collector does not pass straight through the transfer line but is shifted to one side, making it difficult to transfer and causing cracks to occur easily.

実験2の結果から、伸び率εを220ppm未満に抑える必要があることが分かった。   From the results of Experiment 2, it was found that the elongation ε needs to be suppressed to less than 220 ppm.

なお、前述の通り、熱処理に係る温度は、活物質塗工後の乾燥工程が判明していれば、その温度で行うことが望ましい。実際に負極集電体用銅箔が受ける熱負荷を模擬するためである。しかし、実際に施される熱処理に係る温度が不明な場合や工程の簡略化を目的として、120℃又は400℃で行っても良い。この理由を以下に述べる。   In addition, as above-mentioned, when the drying process after active material coating has become clear, it is desirable to perform the temperature which concerns on heat processing at that temperature. This is to simulate the thermal load that the copper foil for the negative electrode current collector actually receives. However, it may be performed at 120 ° C. or 400 ° C. when the temperature related to the heat treatment actually performed is unknown or for the purpose of simplifying the process. The reason for this will be described below.

実施例等に用いられている半軟化温度の低い(100℃以上120℃以下程度)の負極集電体用銅箔11は、120℃以上の熱処理を施すと歪が解放される。このため、熱処理温度を120℃、400℃と変えて行った場合の理論上の最大変化率差Δdは、ゼロである。発明者らが、実施例等に係る低半軟化温度の負極集電体用銅箔11を調査したところ、120℃と400℃とで実験を行った場合の差は、無視できる程度であった。このため、このような半軟化温度の低い負極集電体用銅箔11に関しては、120℃で熱処理を施しても良いと考えられる。   When the copper foil 11 for a negative electrode current collector having a low semi-softening temperature (about 100 ° C. or more and about 120 ° C. or less) used in Examples and the like is subjected to a heat treatment of 120 ° C. or more, the strain is released. For this reason, the theoretical maximum change rate difference Δd when the heat treatment temperature is changed to 120 ° C. and 400 ° C. is zero. When the inventors investigated the copper foil 11 for a negative current collector having a low semi-softening temperature according to Examples and the like, the difference when the experiment was performed at 120 ° C. and 400 ° C. was negligible. . For this reason, regarding the copper foil 11 for negative electrode collectors with such a low semi-softening temperature, it is thought that heat processing may be performed at 120 degreeC.

次に、実施例等に用いられている半軟化温度の高い負極集電体用銅箔11(一例として、02Zベースとした負極集電体用銅箔等)に関しては、120℃、180℃、350℃、400℃で熱処理を施しても、最大変化率差Δdは、圧延上がりの状態(熱処理を施す前の状態)とほぼ変化がなかった。このため、このような耐熱性の高い負極集電体用銅箔11に関しては、120℃で熱処理を施しても良いと考えられる。   Next, regarding the copper foil 11 for negative electrode current collector having a high semi-softening temperature used in Examples etc. (for example, copper foil for negative electrode current collector based on 02Z, etc.), 120 ° C., 180 ° C., Even when heat treatment was performed at 350 ° C. and 400 ° C., the maximum change rate difference Δd was almost unchanged from the state after rolling (the state before heat treatment). For this reason, regarding the copper foil 11 for negative electrode collectors with such high heat resistance, it is thought that heat processing may be performed at 120 degreeC.

これらの特性を利用して本願発明に係る負極集電体用銅箔11であるかを確認する方法として、例えば、原料から銅箔までの製造条件を確立した際に、所望の活物質塗工後の熱処理の条件で本願発明の範囲に入ることを確認し、その後定期的に、サンプリングし、120℃若しくは400℃で同様の確認を行う等することが考えられる。   As a method for confirming whether the copper foil 11 for a negative electrode current collector according to the present invention is used by utilizing these characteristics, for example, when manufacturing conditions from a raw material to a copper foil are established, a desired active material coating is performed. It is conceivable to confirm that it falls within the scope of the present invention under the conditions of the subsequent heat treatment, and then periodically sample and perform the same confirmation at 120 ° C. or 400 ° C.

11 負極集電体用銅箔
12a〜12j 銅箔片
11 Copper foil 12a-12j for negative electrode collectors Copper foil piece

Claims (9)

長さ方向に一定の長さだけ切り出した厚さが26μm未満の負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成したとき、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率が220ppm未満であり、
前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻したとき、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差が593ppm以下であることを特徴とするリチウムイオン二次電池の負極集電体用銅箔。
When a copper foil for a negative electrode current collector having a thickness of less than 26 μm cut into a certain length in the length direction is cut into strips in the width direction to form a plurality of copper foil pieces, the “shortest copper foil piece The elongation, which is a ratio of “the difference between the length of the longest copper foil piece and the length of the shortest copper foil piece” to “the length of the length of,” is less than 220 ppm,
When at least three copper foil pieces positioned at the center and both ends in the width direction of the copper foil for negative electrode current collector are heated to a predetermined temperature of 120 ° C. or higher and then returned to room temperature, individual copper foil pieces A copper foil for a negative electrode current collector of a lithium ion secondary battery, wherein a difference between a maximum value and a minimum value of a length change rate before and after heating is 593 ppm or less.
前記負極集電体用銅箔の幅方向の中央部に位置する銅箔片の加熱前後の長さ変化率が前記負極集電体用銅箔の幅方向の両端部に位置する銅箔片の加熱前後の長さ変化率以上であることを特徴とする請求項1に記載のリチウムイオン二次電池の負極集電体用銅箔。   The length change rate before and after the heating of the copper foil piece located in the center part in the width direction of the copper foil for the negative electrode current collector is a copper foil piece located at both ends in the width direction of the copper foil for the negative electrode current collector The copper foil for a negative electrode current collector of a lithium ion secondary battery according to claim 1, wherein the copper foil for the negative electrode current collector of the lithium ion secondary battery is equal to or greater than a rate of change in length before and after heating. 120℃以上200℃以下の温度で30分以上加熱した後の1%耐力が250MPa以上である請求項1又は2に記載のリチウムイオン二次電池の負極集電体用銅箔。   3. The copper foil for a negative electrode current collector of a lithium ion secondary battery according to claim 1, wherein the 1% yield strength after heating at a temperature of 120 ° C. or more and 200 ° C. or less for 30 minutes or more is 250 MPa or more. 120℃以上400℃以下の温度で30分以上加熱した後の1%耐力が250MPa以上である請求項1〜3のいずれか1項に記載のリチウムイオン二次電池の負極集電体用銅箔。   4. The copper foil for a negative electrode current collector of a lithium ion secondary battery according to claim 1, wherein a 1% yield strength after heating at a temperature of 120 ° C. or more and 400 ° C. or less for 30 minutes or more is 250 MPa or more. . Zrが0.01mass%以上0.2mass%以下含有される請求項1〜4のいずれか1項に記載のリチウムイオン二次電池の負極集電体用銅箔。   The copper foil for a negative electrode current collector of a lithium ion secondary battery according to any one of claims 1 to 4, wherein Zr is contained in an amount of 0.01 mass% to 0.2 mass%. 請求項1〜5のいずれかに記載のリチウムイオン二次電池の負極集電体用銅箔に活物質を塗工・乾燥させた後、ロールプレスを行うことを特徴とするリチウムイオン二次電池の負極の製造方法。   A lithium ion secondary battery comprising: a roll press after applying and drying an active material on the copper foil for a negative electrode current collector of the lithium ion secondary battery according to any one of claims 1 to 5. Manufacturing method of negative electrode. 長さ方向に一定の長さだけ切り出した負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成し、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率を求め、
前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、
これらの値により負極の製造時における前記負極集電体用銅箔の耐亀裂性能を評価することを特徴とするリチウムイオン二次電池の負極集電体用銅箔の評価方法。
The negative electrode current collector copper foil cut out by a certain length in the length direction is cut into strips in the width direction to form a plurality of copper foil pieces. Find the elongation, which is the ratio of the difference between the length of the long copper foil piece and the length of the shortest copper foil piece,
At least three copper foil pieces positioned at the center and both ends in the width direction of the copper foil for negative electrode current collector are heated to a predetermined temperature of 120 ° C. or more and then returned to room temperature, and heating of each copper foil piece is performed. Find the difference between the maximum and minimum length change rate before and after,
The evaluation method of a copper foil for a negative electrode current collector of a lithium ion secondary battery, wherein the crack resistance performance of the copper foil for a negative electrode current collector at the time of production of the negative electrode is evaluated based on these values.
長さ方向に一定の長さだけ切り出した負極集電体用銅箔を幅方向に短冊状に切断して複数の銅箔片を形成し、「最も短い銅箔片の長さ」に対する「最も長い銅箔片の長さと最も短い銅箔片の長さとの差」の割合である伸び率を求め、
前記負極集電体用銅箔の幅方向の中央部及び両端部に位置する少なくとも3つの銅箔片を120℃以上の所定の温度に加熱した後再び室温に戻し、個々の銅箔片の加熱前後の長さ変化率の最大値と最小値との差を求め、且つ、
前記負極集電体用銅箔の幅方向の中央部に位置する銅箔片の加熱前後の長さ変化率と前記負極集電体用銅箔の幅方向の両端部に位置する銅箔片の加熱前後の長さ変化率とを求め、
これらの値により負極の製造時における前記負極集電体用銅箔の耐亀裂性能を評価することを特徴とするリチウムイオン二次電池の負極集電体用銅箔の評価方法。
The negative electrode current collector copper foil cut out by a certain length in the length direction is cut into strips in the width direction to form a plurality of copper foil pieces. Find the elongation, which is the ratio of the difference between the length of the long copper foil piece and the length of the shortest copper foil piece,
At least three copper foil pieces positioned at the center and both ends in the width direction of the copper foil for negative electrode current collector are heated to a predetermined temperature of 120 ° C. or more and then returned to room temperature, and heating of each copper foil piece is performed. Find the difference between the maximum and minimum length change rate before and after, and
The length change rate before and after heating of the copper foil piece located in the center part in the width direction of the copper foil for the negative electrode current collector and the copper foil piece located at both ends in the width direction of the copper foil for the negative electrode current collector Find the rate of change in length before and after heating,
The evaluation method of a copper foil for a negative electrode current collector of a lithium ion secondary battery, wherein the crack resistance performance of the copper foil for a negative electrode current collector at the time of production of the negative electrode is evaluated based on these values.
前記所定の温度は、リチウムイオン二次電池の製造工程において曝される熱負荷に応じて決定された温度であることを特徴とする請求項7又は8に記載のリチウムイオン二次電池の負極集電体用銅箔の評価方法。   The negative electrode collection of a lithium ion secondary battery according to claim 7 or 8, wherein the predetermined temperature is a temperature determined according to a thermal load exposed in a manufacturing process of the lithium ion secondary battery. Evaluation method of copper foil for electric conductors.
JP2013009354A 2013-01-22 2013-01-22 Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery Pending JP2014143008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009354A JP2014143008A (en) 2013-01-22 2013-01-22 Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009354A JP2014143008A (en) 2013-01-22 2013-01-22 Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2014143008A true JP2014143008A (en) 2014-08-07

Family

ID=51424160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009354A Pending JP2014143008A (en) 2013-01-22 2013-01-22 Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2014143008A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
KR20200115237A (en) * 2019-03-27 2020-10-07 제이엑스금속주식회사 Copper foil with titanium and method for producing copper foil with titanium
US10944128B2 (en) 2017-03-30 2021-03-09 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246918A (en) * 1988-08-04 1990-02-16 Showa Alum Corp Automatic control method for rolling foil or the like
JP2000208149A (en) * 1999-01-18 2000-07-28 Nippaku Sangyo Kk Negative electrode collector for secondary battery
JP2000328159A (en) * 1999-05-19 2000-11-28 Kobe Steel Ltd Copper alloy foil
WO2008132987A1 (en) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2011058029A (en) * 2009-09-08 2011-03-24 Mitsubishi Shindoh Co Ltd Copper alloy foil
JP2011192563A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2012151106A (en) * 2010-12-27 2012-08-09 Furukawa Electric Co Ltd:The Lithium ion secondary battery, negative electrode for the battery, and electrolytic copper foil for collector of the negative electrode for the battery
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246918A (en) * 1988-08-04 1990-02-16 Showa Alum Corp Automatic control method for rolling foil or the like
JP2000208149A (en) * 1999-01-18 2000-07-28 Nippaku Sangyo Kk Negative electrode collector for secondary battery
JP2000328159A (en) * 1999-05-19 2000-11-28 Kobe Steel Ltd Copper alloy foil
WO2008132987A1 (en) * 2007-04-20 2008-11-06 Nippon Mining & Metals Co., Ltd. Electrolytic copper foil for lithium rechargeable battery and process for producing the copper foil
WO2010050507A1 (en) * 2008-10-31 2010-05-06 日立マクセル株式会社 Nonaqueous secondary battery
JP2011058029A (en) * 2009-09-08 2011-03-24 Mitsubishi Shindoh Co Ltd Copper alloy foil
JP2011192563A (en) * 2010-03-16 2011-09-29 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2012151106A (en) * 2010-12-27 2012-08-09 Furukawa Electric Co Ltd:The Lithium ion secondary battery, negative electrode for the battery, and electrolytic copper foil for collector of the negative electrode for the battery
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944128B2 (en) 2017-03-30 2021-03-09 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
US10950887B2 (en) 2017-03-30 2021-03-16 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10629957B2 (en) 2017-04-06 2020-04-21 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644355B2 (en) 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644356B2 (en) 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10673097B2 (en) 2017-04-06 2020-06-02 International Business Machines Corporation High charge rate, large capacity, solid-state battery
KR20200115237A (en) * 2019-03-27 2020-10-07 제이엑스금속주식회사 Copper foil with titanium and method for producing copper foil with titanium
KR102340064B1 (en) 2019-03-27 2021-12-16 제이엑스금속주식회사 Copper foil with titanium and method for producing copper foil with titanium

Similar Documents

Publication Publication Date Title
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
JP5947593B2 (en) Method for producing aluminum foil for positive electrode current collector of lithium ion secondary battery
WO2011010421A1 (en) Rectangular nonaqueous electrolyte secondary battery and method for manufacturing same
US11108052B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
JP2010043333A (en) Aluminum foil for positive electrode collector
JP6055814B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP6581219B2 (en) Electrolytic copper foil for lithium secondary battery and lithium secondary battery including the same
JP2008159297A (en) Aluminum foil, method for degreasing the same, electrode plate for battery, core material therefor using the aluminum foil, and lithium-ion secondary battery using them
JP5496139B2 (en) Copper foil and secondary battery using the same
JP2011023129A (en) Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor
JP2014143008A (en) Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery
JP2010027304A (en) Aluminum foil for positive current collector
KR102643400B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2014007037A (en) Method for manufacturing nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery manufactured by the method
KR20240025712A (en) Rolled copper foil for secondary battery negative electrode current collectors, secondary battery negative electrode current collector and secondary battery each using same, and method for manufacturing rolled copper foil for secondary battery negative electrode current collectors
TWI677131B (en) Calendered copper foil and lithium ion battery for lithium ion battery current collector
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP5490761B2 (en) Rolled copper foil for secondary battery negative electrode current collector, negative electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
WO2010082229A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5097184B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2020170637A (en) Manufacturing method of electrode sheet
TWI686003B (en) Rolled copper foil for lithium ion battery collector and lithium ion battery
JP2013001983A (en) Rolled copper foil
JP2013256682A (en) Copper alloy foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method of manufacturing copper alloy foil, and method of manufacturing negative electrode for lithium ion secondary battery
JP2010165565A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115