JP2000328159A - Copper alloy foil - Google Patents

Copper alloy foil

Info

Publication number
JP2000328159A
JP2000328159A JP11139209A JP13920999A JP2000328159A JP 2000328159 A JP2000328159 A JP 2000328159A JP 11139209 A JP11139209 A JP 11139209A JP 13920999 A JP13920999 A JP 13920999A JP 2000328159 A JP2000328159 A JP 2000328159A
Authority
JP
Japan
Prior art keywords
foil
copper alloy
copper
alloy foil
heat resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11139209A
Other languages
Japanese (ja)
Inventor
Hiroshi Arai
浩史 荒井
Motohisa Miyato
元久 宮藤
Riichi Tsuno
理一 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11139209A priority Critical patent/JP2000328159A/en
Publication of JP2000328159A publication Critical patent/JP2000328159A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain copper foil having strength higher than that of tough pitch copper and excellent in flexibility and heat resistance by allowing it to have a compsn. contg. a specified weight ratio of P and moreover contg. one or two kinds of specified weight ratios of Fe and Ag by a specified weight ratio in total, and the balance Cu with inevitable impurities. SOLUTION: This copper foil has a compsn. contg., by weight, 0.001 to 0.05% P and moreover contg. one or two kinds of 0.005 to 0.3% Fe and 0.001 to 0.3% Ag by 0.001 to 0.6% in total, and the balance Cu with inevitable impurities. Preferably, the integrated intensity ratio: I(200)/I(220) lies in the range of 0.01 to 0.40. Its proof stress is the important characteristics for executing rolling working and heat resistance for executing heating and drying for adhering an active material to the copper foil. The proof stress is controlled to >=460 N/mm2, and heat resistance to >=300 deg.C, and, so for the copper alloy foil satisfying this conditions, foil cutting does not occur at the time of rolling and winding working, and the generation of burrs at the time of slittering can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はLiイオン二次電池
の電極に使用される銅合金箔に関する。
The present invention relates to a copper alloy foil used for an electrode of a Li-ion secondary battery.

【0002】[0002]

【従来の技術】近年、携帯電話、ビデオカメラ等の電子
機器の小型化に伴い、従来の電池、例えばニッカド電池
等の2次電池に代わってより高いエネルギー密度を実現
するLiイオン電池等が使用されはじめている。Liイ
オン電池はその陰極に炭素などを表面にコーティングし
たタフピッチ銅箔が使用され、銅箔はセパレート材、ア
ルミ箔(正極側)とともに巻回加工が施される。Liイ
オン二次電池電極の製造工程を図1に示す。
2. Description of the Related Art In recent years, with the miniaturization of electronic devices such as mobile phones and video cameras, conventional batteries, for example, Li-ion batteries realizing higher energy density have been used in place of secondary batteries such as NiCd batteries. It is starting to be done. The Li-ion battery uses a tough pitch copper foil whose surface is coated with carbon or the like on the cathode, and the copper foil is wound with a separate material and an aluminum foil (positive electrode side). FIG. 1 shows a manufacturing process of a Li-ion secondary battery electrode.

【0003】[0003]

【発明が解決しようとする課題】電池の寿命は巻回しの
多いほど長くなり、長寿命化のためには薄箔化が必要と
なる。しかしながら、従来のタフピッチ銅箔を薄箔化し
た材料を用いて図1に示す工程で電極を製造した場合、
次のような問題があった。 ・強度(耐力)が低いため巻回加工時に銅箔が切れてし
まい、電池として成り立たなくなる。 ・活物質(カーボン等)を銅箔に塗装後、密着させるた
めに熱処理・乾燥を行ったとき、耐熱性が低いため銅箔
が鈍り、伸びやすくなるためスリッター時にバリが大き
く発生する。バリが大きいと巻回加工時にショートの原
因となる。なお、銅箔の異方性が大きい場合もバリは大
きくなる。 ・電池として使用中に温度変化による繰り返し応力が巻
回された銅箔に作用するが、銅箔の可撓性が劣るため疲
労破壊し、電池の寿命が短くなる。
The life of a battery becomes longer as the number of windings increases, and a thinner foil is required for a longer life. However, when an electrode is manufactured by the process shown in FIG. 1 using a material obtained by thinning a conventional tough pitch copper foil,
There were the following problems. -Since the strength (proof stress) is low, the copper foil is broken during the winding process, and the battery cannot be formed. -When the active material (such as carbon) is coated on the copper foil and then heat-treated and dried for adhesion, the copper foil becomes dull due to low heat resistance, and becomes easily stretched, so that large burrs are generated during slitting. If the burr is large, it causes a short circuit during the winding process. The burr also increases when the anisotropy of the copper foil is large. -While being used as a battery, a repetitive stress due to a temperature change acts on the wound copper foil. However, the flexibility of the copper foil is inferior, resulting in fatigue failure and shortening the life of the battery.

【0004】本発明は、従来のタフピッチ銅のこのよう
な問題点に鑑みてなされたもので、タフピッチ銅よりも
高強度でかつ可燒性及び耐熱性に優れる銅箔材料を得る
ことを目的とする。
[0004] The present invention has been made in view of the above-mentioned problems of conventional tough pitch copper, and has as its object to obtain a copper foil material having higher strength and superior flammability and heat resistance than tough pitch copper. I do.

【0005】[0005]

【課題を解決するための手段】本発明に係る銅合金箔
は、Liイオン二次電池用の電極に用いる銅合金箔であ
って、P:0.001〜0.05重量%を含有し、さら
にFe:0.005〜0.3重量%、Ag:0.001
〜0.3重量%のうちいずれか1種又は2種を総量で
0.001〜0.6重量%、残部が不可避不純物及びC
uからなることを特徴とする。
Means for Solving the Problems The copper alloy foil according to the present invention is a copper alloy foil used for an electrode for a Li-ion secondary battery and contains P: 0.001 to 0.05% by weight, Fe: 0.005 to 0.3% by weight, Ag: 0.001
0.001 to 0.6% by weight of the total amount of one or two of the following, and the balance is unavoidable impurities and C
u.

【0006】[0006]

【発明の実施の形態】Liイオン二次電池用の電極に用
いる銅合金箔には、次のような特性が要求される。 [耐力、耐熱性]耐力は巻回加工するために、耐熱性は
活物質と銅箔を密着させるための加熱・乾燥を行うため
に重要となる特性である。耐力が460N/mm未満
の場合は巻回加工時に箔切れが起こり、電池として成り
立たたなくなる。耐熱性(耐熱温度:初期硬さの80%
を有する温度、詳しくは後述)が300℃に満たない場
合、銅箔と活物質を密着させる加熱・乾燥により鈍って
しまい、スリッター時にバリが大きく発生するようにな
る。従って、耐力は460N/mm以上、耐熱性は3
00℃以上とする。この条件を満たす銅合金箔であれ
ば、図1の工程に適用したとき巻回加工時に箔切れが起
こらず、スリッター時のバリの発生も抑制できる。
BEST MODE FOR CARRYING OUT THE INVENTION The following characteristics are required for a copper alloy foil used for an electrode for a Li-ion secondary battery. [Proof Strength, Heat Resistance] The proof strength is an important property for performing the winding process, and the heat resistance is important for performing heating and drying for bringing the active material into close contact with the copper foil. If the proof stress is less than 460 N / mm 2 , the foil will break during the winding process, and the battery will not work. Heat resistance (heat resistance: 80% of initial hardness)
When the temperature (which will be described later in detail) is less than 300 ° C., the copper foil and the active material are brought into close contact with each other by heating and drying, so that burrs are generated largely during slitting. Therefore, the proof stress is 460 N / mm 2 or more, and the heat resistance is 3
It should be at least 00 ° C. If the copper alloy foil satisfies this condition, when applied to the process of FIG. 1, the foil does not break during the winding process, and the generation of burrs during slitting can be suppressed.

【0007】[可撓性]可撓性は巻回加工後の耐振動疲
労性を評価するための特性項目である。電池使用時又は
充電時の温度変化により巻回された陰極、陽極が膨張、
収縮し、これにより陰極、陽極に応力が作用する。この
繰り返し応力によって銅箔が疲労破壊することがあり、
これを防止するために優れた可撓性が要求される。可撓
性の指標として後述する可撓性試験による可撓性破断ま
での回数を用いると、これが100回未満の場合は巻回
加工後の振動疲労による箔切れを起こし、電池として成
り立たなくなる。従って、可撓性破断までの回数は10
0回以上が必要で、この条件を満たす銅合金箔であれ
ば、巻回加工後(電池としての使用中)の振動疲労によ
る箔切れを起こさずに済む。
[Flexibility] Flexibility is a characteristic item for evaluating vibration fatigue resistance after winding. When the battery is used or the temperature changes during charging, the wound cathode and anode expand,
It contracts, and thereby stress acts on the cathode and the anode. This repeated stress may cause the copper foil to break down due to fatigue,
To prevent this, excellent flexibility is required. When the number of times until the breakage of the flexibility by the flexibility test described later is used as an index of the flexibility, if the number is less than 100 times, the foil may break due to vibration fatigue after the winding process, and the battery cannot be formed. Therefore, the number of times until the flexible breakage is 10
Zero or more times are required, and if the copper alloy foil satisfies this condition, the foil breakage due to vibration fatigue after winding (during use as a battery) can be avoided.

【0008】[導電率]Liイオン二次電池に使用され
る銅合金箔はアルミニウム箔と巻回されるため、少なく
ともアルミニウムと同程度以上の導電率が必要である。
そのため、銅合金箔の導電率は60%IACS以上とす
る。 [異方性]銅合金箔の異方性はスリッター時のバリ発生
に影響する特性である。圧延方向に対し平行方向と直角
方向の耐力差(異方性)が50N/mmを超える場合
はスリッター時のバリが大きく発生するようになり、巻
回加工時に電池をショートさせる。この耐力差(異方
性)が50N/mm以下の銅合金箔であれば、スリッ
ター時のバリの発生を抑制できる。
[Conductivity] A copper alloy foil used in a Li-ion secondary battery is wound around an aluminum foil, and therefore needs to have at least the same conductivity as aluminum.
Therefore, the conductivity of the copper alloy foil is set to 60% IACS or more. [Anisotropy] Anisotropy of a copper alloy foil is a characteristic that affects the generation of burrs during slitting. If the difference in proof stress (anisotropic) between the direction parallel to the rolling direction and the direction perpendicular to the rolling direction exceeds 50 N / mm 2 , burrs will be generated significantly during slitting, and the battery will be short-circuited during the winding process. If the copper alloy foil has a proof stress difference (anisotropic) of 50 N / mm 2 or less, it is possible to suppress the occurrence of burrs during slitting.

【0009】[積分強度比]銅合金箔における積分強度
比{I(200)/I(220)}は箔の異方性(圧延
方向に対し平行方向と直角方向の耐力差)を表すもの
で、箔製造工程中の圧延率及び焼鈍条件により決定され
る。一般に焼鈍時の熱容量が大きく(焼鈍温度が高く又
は/及び焼鈍時間が長い)、焼鈍回数が多い方が異方性
は小さくなる。この積分強度比が0.01未満の場合は
異方性が大きくなり、反対に0.40を超えた場合でも
異方性は大きくなり、さらに材料強度も低下するため、
Li電池用銅合金箔として使用できなくなる。従って、
銅合金箔の積分強度比は0.01〜0.40の範囲と
し、さらに望ましくは0.05〜0.20とする。
[Integral strength ratio] The integral strength ratio {I (200) / I (220)} in the copper alloy foil represents the anisotropy of the foil (difference in proof stress in the direction parallel to and perpendicular to the rolling direction). And the rolling rate and annealing conditions during the foil manufacturing process. Generally, the larger the heat capacity during annealing (higher annealing temperature and / or longer annealing time) and the greater the number of times of annealing, the smaller the anisotropy. When the integrated intensity ratio is less than 0.01, the anisotropy increases. On the contrary, when the integrated intensity ratio exceeds 0.40, the anisotropy increases, and the material strength also decreases.
It cannot be used as a copper alloy foil for Li batteries. Therefore,
The integrated strength ratio of the copper alloy foil is in the range of 0.01 to 0.40, and more preferably 0.05 to 0.20.

【0010】[耐応力腐食割れ性]巻回加工により銅箔
には引張応力が加わっているため、耐応力腐食割れ性感
受性が強いと、電解液中において銅箔の最も弱い粒界に
亀裂が入り、それが次々と伝播して瞬時に箔切れを起こ
し、電池として成り立たなくなる。Pが0.05重量%
を越えて含有されると、耐応力腐食割れ感受性が強くな
る。
[Stress corrosion cracking resistance] Since tensile stress is applied to the copper foil by the winding process, if the stress corrosion cracking resistance susceptibility is strong, a crack is formed in the weakest grain boundary of the copper foil in the electrolytic solution. It enters and propagates one after another, causing instantaneous foil breakage, making the battery impractical. P is 0.05% by weight
If the content exceeds the above range, the susceptibility to stress corrosion cracking is increased.

【0011】次に、この銅合金箔の組成について詳細に
説明する。
Next, the composition of the copper alloy foil will be described in detail.

【0012】[P]Pは主として鋳塊の健全性向上(脱
酸・湯流れ等)に寄与する元素である。含有量が0.0
01重量%未満では溶湯中の脱酸効果が得られない。一
方、0.05重量%以上添加されると製品中に固溶され
るようになり、導電率の低下や耐応力腐食割れ性の劣化
を招く。従って、P添加量は0.05重量%以下が望ま
しく、より望ましい範囲は0.001〜0.03重量%
である。
[P] P is an element mainly contributing to the improvement of the soundness of the ingot (deoxidation, molten metal flow, etc.). Content 0.0
If it is less than 01% by weight, the deoxidizing effect in the molten metal cannot be obtained. On the other hand, if it is added in an amount of 0.05% by weight or more, it becomes a solid solution in the product, which causes a decrease in conductivity and a deterioration in stress corrosion cracking resistance. Therefore, the addition amount of P is desirably 0.05% by weight or less, and a more desirable range is 0.001 to 0.03% by weight.
It is.

【0013】[Fe、Ag]これらの元素は微量添加に
より、材料強度及び耐熱性を著しく向上させる効果を有
するが、Fe:0.005重量%未満、Ag:0.00
1重量%未満では効果がなく、一方、Fe:0.5重量
%、Ag:0.3重量%を越えると導電率が低下し、異
方性が大きくなりやすい。また、総量で0.6重量%を
超えて含有されると導電率の低下を招くだけでなく、箔
圧延時のパス回数が増大するため加工費がアップしコス
ト面で不利である。従って、これらの元素はFe:0.
005〜0.5重量%、Ag:0.001〜0.3重量
%のいずれか1種又は2種を総量で0.001〜0.6
重量%とする。 [不可避不純物]不可避不純物としては、Ni、Sn、
Si、Zn、Mg、Ca、Mn、Al、Cr、Co、P
d、S、Be、V、Zr、Nb、Mo、In、Ti、H
f、Ta、B等が挙げられるが、これらの元素の1種又
は2種以上が総量で0.05重量%以下であれば、導電
率低下の度合いは少なく、特に電池性能に悪影響を及ぼ
さない。従って、これらの元素は総量で0.05重量%
以下であれば許容できる。
[Fe, Ag] These elements have an effect of remarkably improving the material strength and heat resistance when added in a small amount. However, Fe: less than 0.005% by weight, Ag: 0.00
If it is less than 1% by weight, there is no effect, while if it exceeds 0.5% by weight of Fe and 0.3% by weight of Ag, the electrical conductivity decreases and the anisotropy tends to increase. On the other hand, if the total content exceeds 0.6% by weight, not only does the conductivity drop, but also the number of passes during foil rolling increases, which increases processing costs and is disadvantageous in terms of cost. Therefore, these elements are Fe: 0.
005 to 0.5% by weight, Ag: 0.001 to 0.3% by weight.
% By weight. [Inevitable impurities] Ni, Sn,
Si, Zn, Mg, Ca, Mn, Al, Cr, Co, P
d, S, Be, V, Zr, Nb, Mo, In, Ti, H
f, Ta, B, etc., and if one or more of these elements is 0.05% by weight or less in total, the degree of decrease in conductivity is small and does not particularly adversely affect battery performance. . Therefore, these elements have a total amount of 0.05% by weight.
Below is acceptable.

【0014】前記特性を満たす銅合金箔は、常法に従
い、上記組成の銅合金鋳塊を熱間圧延した後水冷し、さ
らに冷間圧延と中間焼鈍を繰り返して製造することがで
きる。なお、銅合金箔の厚さは特に限定されないが、L
iイオン電池の電極用として一般に5〜20μm厚の箔
が要求されることが多く、本発明の銅合金箔はそれに十
分対応できる。
A copper alloy foil satisfying the above-mentioned properties can be produced by subjecting a copper alloy ingot having the above composition to hot rolling, cooling with water, and further repeating cold rolling and intermediate annealing according to a conventional method. The thickness of the copper alloy foil is not particularly limited.
Generally, a foil having a thickness of 5 to 20 μm is often required for an electrode of an i-ion battery, and the copper alloy foil of the present invention can sufficiently cope with such a requirement.

【0015】[0015]

【実施例】以下、本発明に係る銅合金箔の実施例につい
て比較例として比較してその特性を説明する。表1に示
す組成の銅合金を電気炉により大気中で木炭被覆下で溶
解し、50mm×80mm×180mmの鋳塊を溶製
し、これを熱間圧延して厚さ15mmのスラブとし、さ
らに820℃で熱間圧延して厚さ3.3mmに仕上げた
後水冷した。これらの板材について、厚さ1.2mmに
冷間圧延した後炉温750℃×20Sの中間焼鈍→厚さ
0.4mmに冷間圧延した後炉温700℃×20Sの中
間焼鈍→厚さ0.2mmに冷間圧延した後炉温650℃
×20Sの中間焼鈍を行い、さらに冷間圧延して厚さ1
0μmの銅合金箔を製造した。なお、表1の不純物元素
はその作用を調べるためにあえて添加したものである。
これらについて材料特性を下記要領で評価し、比較例と
差異を確認した。ただし、耐応力腐食割れ性試験につい
ては、割れ感受性の差異を明確にするため0.125m
mにて供試した。その結果を表2に示す。
EXAMPLES The characteristics of the copper alloy foil according to the present invention will be described below as a comparative example. A copper alloy having the composition shown in Table 1 was melted under a charcoal coating in the air using an electric furnace, a 50 mm × 80 mm × 180 mm ingot was melted, and hot-rolled to form a slab having a thickness of 15 mm. After hot rolling at 820 ° C. to finish to a thickness of 3.3 mm, it was water-cooled. These sheets were cold-rolled to a thickness of 1.2 mm, and then subjected to intermediate annealing at a furnace temperature of 750 ° C. × 20 S → cold-rolled to a thickness of 0.4 mm, and then subjected to an intermediate annealing at a furnace temperature of 700 ° C. × 20 S → thickness of 0 After cold rolling to 0.2 mm, the furnace temperature was 650 ° C
× 20S intermediate annealing, and further cold-rolled to a thickness of 1
A 0 μm copper alloy foil was produced. The impurity elements shown in Table 1 were added to investigate their effects.
The material properties of these materials were evaluated in the following manner, and the differences from the comparative examples were confirmed. However, for the stress corrosion cracking resistance test, 0.125 m
m. Table 2 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】耐力;長手方向を圧延方向に対し平行
(L.D.)及び直角(T.D.)としたJIS5号試
験片を各2個ずつ切り出し、引張試験を行って耐力を測
定した。平行方向と直角方向の耐力差を異方性とし、全
ての平均を銅合金箔の耐力とした。 導電率;導電率はJISH0505に基づいて測定し
た。 耐熱性;試料を所定温度に5分間保持後、水冷した後の
硬さを測定し、初期硬さの8割を有する温度(=耐熱温
度)を測定した。 耐応力腐食割れ性;0.125mmt×12.7mmw
×150mmlの試験片を4個切り出し、応力腐食割れ
試験をトンプソンの方法(Materials Research& Standa
rds(1961)1081)に準じて行った。すなわち、試験片を
図2に示すループ状にした後、14wt%のアンモニア
水を入れ、40℃の温度で飽和蒸気を充満させたデシケ
ータ中に暴露し、試験片が破断するまでの時間を測定し
た。
Strength: Two pieces of JIS No. 5 test pieces each having a longitudinal direction parallel to the rolling direction (LD) and a right angle (TD) were cut out, and tensile strength was measured by performing a tensile test. The proof stress difference between the parallel direction and the perpendicular direction was defined as anisotropic, and the average of all was defined as the proof stress of the copper alloy foil. Conductivity; Conductivity was measured based on JIS H0505. Heat resistance: After holding the sample at a predetermined temperature for 5 minutes, the hardness after water cooling was measured, and the temperature having 80% of the initial hardness (= heat resistant temperature) was measured. Stress corrosion cracking resistance; 0.125mmt x 12.7mmw
4 x 150mm test pieces were cut out and stress corrosion cracking test was performed by Thompson's method (Materials Research & Standa
rds (1961) 1081). That is, the test piece was formed into a loop shape as shown in FIG. 2, then 14 wt% ammonia water was added, and the test piece was exposed to a desiccator filled with saturated steam at a temperature of 40 ° C., and the time until the test piece was broken was measured. did.

【0018】可燒性;JIS P 8115に準拠し、曲
げ角度135゜、曲げ半径0.8mm、荷重1.5kg
の条件でMIT耐揉疲労試験機を使用して破断までの回
数を測定した。 積分強度比;最終製品状態(10μm)の銅合金箔の表
面にX線を入射させ、各回折面からの強度を測定した。
その中から(200)、(220)面の回折強度の比
{I(200)/I(220)}を求めた。 バリ高さ;金型クリアランスを15%とし、250sp
mの打抜き速度で、長さ30mm、幅0.5mmのリー
ドを打抜き、バリ高さをSEM観察にて測定した。
Sinterability: According to JIS P 8115, bending angle 135 °, bending radius 0.8 mm, load 1.5 kg
The number of times until breakage was measured using an MIT massaging fatigue tester under the conditions described above. Integrated intensity ratio: X-rays were incident on the surface of the copper alloy foil in the final product state (10 μm), and the intensity from each diffraction surface was measured.
The ratio {I (200) / I (220)} of the diffraction intensities of the (200) and (220) planes was determined. Burr height; 250% with mold clearance of 15%
At a punching speed of m, a lead having a length of 30 mm and a width of 0.5 mm was punched, and the burr height was measured by SEM observation.

【0019】[0019]

【表2】 [Table 2]

【0020】表2から明らかなように本発明の規定範囲
内の組成を有するNo.1〜9の銅合金箔は、耐力、耐
熱温度、可撓性等において従来のタフピッチ銅(No.
19)に比べて優れ、さらに所定範囲内の積分強度比と
なって異方性が小さく、Liイオン二次電池の電極とし
ての必要特性をすべて兼ね備えている。これに対し、N
o.10はFe含有量が規定範囲を下回っているため耐
力が低く、可燒性も劣る。No.11はFe含有量が規
定範囲を越えているため強度面では向上しているが導電
率が低下し、積分強度比も規定範囲外となって異方性が
大きくバリ高さが高い。さらに圧延時のパス回数が増加
するためコスト的にも不利である。No.12はAg含
有量が規定範囲を下回っているため耐力が劣り、可燒性
も劣る。No.13はAg含有量が規定範囲を超えてい
るため、強度面では向上しているが導電率が低下し、積
分強度比も規定範囲外となって異方性が大きくバリ高さ
が高い。No.14はP含有量が規定範囲を下回ってい
るため溶解鋳造時に脱酸不足となり、鋳塊割れが発生し
たため後の試験を断念した。
As is clear from Table 2, No. 1 having a composition within the specified range of the present invention. The copper alloy foils Nos. 1 to 9 are conventional tough pitch copper (No.
It is superior to that of (19), has a small integrated anisotropy within a predetermined range, has small anisotropy, and has all the necessary characteristics as an electrode of a Li-ion secondary battery. In contrast, N
o. Sample No. 10 has a low yield strength and poor sinterability because the Fe content is below the specified range. No. In No. 11, although the Fe content exceeds the specified range, the strength is improved, but the electrical conductivity is reduced, and the integrated intensity ratio is also out of the specified range, the anisotropy is large and the burr height is high. Further, the number of passes during rolling increases, which is disadvantageous in cost. No. In No. 12, since the Ag content was below the specified range, the yield strength was poor, and the sinterability was also poor. No. In No. 13, since the Ag content exceeds the specified range, the strength is improved, but the conductivity is reduced, and the integrated intensity ratio is also out of the specified range, and the anisotropy is large and the burr height is high. No. In No. 14, the deoxidation was insufficient during melting and casting because the P content was below the specified range, and ingot cracking occurred, so that the subsequent test was abandoned.

【0021】No.15はP含有量が規定範囲を超えて
いるため導電率が低下し、耐応力腐食割れ性も劣る。N
o.16はFe及びAgの総量が規定範囲を超えている
ため導電率が低く、積分強度比も規定範囲外となって異
方性が大きくバリ高さが高い。No.17は不可避不純
物の総量が0.05%を超えて含有されているため、導
電率が低く、積分強度比も規定範囲外となって異方性が
大きくバリ高さが高い。No.18はりん脱酸銅である
が、耐力及び可燒性が低いため、長寿命化を目指すLi
イオン二次電池電極としては不足である。No.19は
従来のタフピッチ銅であるが、耐力、耐熱性及び可燒性
が低いため、No.18と同様に長寿命化を目指すLi
イオン二次電池電極としては不足である。
No. In No. 15, since the P content exceeds the specified range, the electrical conductivity decreases and the stress corrosion cracking resistance is poor. N
o. In No. 16, since the total amount of Fe and Ag exceeds the specified range, the conductivity is low, and the integrated intensity ratio is out of the specified range, so that the anisotropy is large and the burr height is high. No. No. 17 has a low conductivity, an integral intensity ratio outside the specified range, a large anisotropy and a high burr height since the total amount of unavoidable impurities exceeds 0.05%. No. 18 is phosphorus deoxidized copper, but because of its low proof stress and sinterability, Li
It is insufficient as an electrode for an ion secondary battery. No. No. 19 is a conventional tough pitch copper, but has a low proof stress, heat resistance and sinterability. Li aiming at extending the life as in 18
It is insufficient as an electrode for an ion secondary battery.

【0022】[0022]

【発明の効果】本発明に係わる銅合金箔は、従来のLi
イオン二次電池の電極として用いられているタフピッチ
銅箔に比べて強度、耐熱温度、可燒性等に優れ、また異
方性等はLiイオン二次電池の使用範囲内に抑えられて
いる。従って、本発明は長寿命化を計るLiイオン二次
電池等に使用される銅合金箔として極めて有望である。
The copper alloy foil according to the present invention is made of a conventional Li
Compared with tough pitch copper foil used as an electrode of an ion secondary battery, it has excellent strength, heat resistance, sinterability and the like, and its anisotropy and the like are suppressed within the range of use of a Li ion secondary battery. Therefore, the present invention is extremely promising as a copper alloy foil used for a Li-ion secondary battery or the like for extending the life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Liイオン二次電池電極の製造工程を示す図
である。
FIG. 1 is a view showing a manufacturing process of a Li-ion secondary battery electrode.

【図2】 耐応力腐食割れ性試験に用いたループ状試験
片を示す図である。
FIG. 2 is a view showing a loop-shaped test piece used for a stress corrosion cracking resistance test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 津野 理一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 Fターム(参考) 5H017 AA03 CC01 EE01 EE08 HH01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Riichi Tsuno 14-1 Nagafu Minatomachi, Shimonoseki City, Yamaguchi Prefecture F-term in Kobe Steel, Ltd. Chofu Works (reference) 5H017 AA03 CC01 EE01 EE08 HH01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Liイオン二次電池用電極に用いる銅合
金箔であって、P:0.001〜0.05重量%を含有
し、さらにFe:0.005〜0.3重量%、Ag:
0.001〜0.3重量%のうちいずれか1種又は2種
を総量で0.001〜0.6重量%、残部が不可避不純
物及びCuからなることを特徴とする銅合金箔。
1. A copper alloy foil used for an electrode for a Li-ion secondary battery, comprising 0.001 to 0.05% by weight of P, 0.005 to 0.3% by weight of Fe, and Ag. :
A copper alloy foil comprising 0.001 to 0.6% by weight of any one or two of 0.001 to 0.3% by weight, and the remainder consisting of unavoidable impurities and Cu.
【請求項2】 積分強度比:I(200)/I(22
0)が、0.01〜0.40の範囲であることを特徴と
する請求項1に記載された銅合金箔。
2. Integral intensity ratio: I (200) / I (22
The copper alloy foil according to claim 1, wherein 0) is in the range of 0.01 to 0.40.
JP11139209A 1999-05-19 1999-05-19 Copper alloy foil Pending JP2000328159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11139209A JP2000328159A (en) 1999-05-19 1999-05-19 Copper alloy foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11139209A JP2000328159A (en) 1999-05-19 1999-05-19 Copper alloy foil

Publications (1)

Publication Number Publication Date
JP2000328159A true JP2000328159A (en) 2000-11-28

Family

ID=15240084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11139209A Pending JP2000328159A (en) 1999-05-19 1999-05-19 Copper alloy foil

Country Status (1)

Country Link
JP (1) JP2000328159A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266041A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Rolled copper alloy foil and production method therefor
WO2003041194A1 (en) * 2001-11-07 2003-05-15 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and nonaqueous electrolytic secondary cell
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
WO2008010378A1 (en) * 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
WO2009074226A1 (en) * 2007-12-10 2009-06-18 Li-Tec Battery Gmbh Electrode for energy storage means
JP2009185364A (en) * 2008-02-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member
JP4495251B1 (en) * 2009-03-12 2010-06-30 三井金属鉱業株式会社 Copper alloy containing phosphorus and iron and power distribution member using the copper alloy
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
CN102683713A (en) * 2011-03-17 2012-09-19 日立电线株式会社 Rolled copper foil for lithium ion secondary battery current collector
US8322532B2 (en) 2008-10-23 2012-12-04 Tim Schafer Packaging device and packaging system for essentially flat objects, for example lithium-ion cells
US8394527B2 (en) 2008-10-23 2013-03-12 Li-Tec Battery Gmbh Galvanic cell for an accumulator
US8603655B2 (en) 2008-10-24 2013-12-10 Li-Tec Battery Gmbh Accumulator comprising a plurality of galvanic cells
FR2995383A1 (en) * 2012-09-12 2014-03-14 Kme France Sas COPPER ALLOYS FOR HEAT EXCHANGERS
JP2014127462A (en) * 2012-12-27 2014-07-07 Uacj Foil Corp Anode collector for secondary battery and manufacturing method thereof
JP2014143008A (en) * 2013-01-22 2014-08-07 Sh Copper Products Corp Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery
WO2015041348A1 (en) * 2013-09-20 2015-03-26 Jx日鉱日石金属株式会社 Copper alloy foil

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266041A (en) * 2001-03-07 2002-09-18 Kobe Steel Ltd Rolled copper alloy foil and production method therefor
WO2003041194A1 (en) * 2001-11-07 2003-05-15 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and nonaqueous electrolytic secondary cell
US7150942B2 (en) 2001-11-07 2006-12-19 Matsushita Electric Industrial Co., Ltd. Negative electrode current collector, negative electrode using the same, and non-aqueous electrolytic secondary cell
US7563408B2 (en) 2004-08-30 2009-07-21 Dowa Metaltech Co., Ltd. Copper alloy and method of manufacturing the same
EP1630239A1 (en) 2004-08-30 2006-03-01 Dowa Mining Co., Ltd. Copper alloy and method of manufacturing the same
US9644250B2 (en) 2006-07-21 2017-05-09 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic part
WO2008010378A1 (en) * 2006-07-21 2008-01-24 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheets for electrical/electronic part
US9631260B2 (en) 2006-07-21 2017-04-25 Kobe Steel, Ltd. Copper alloy sheets for electrical/electronic part
US8063471B2 (en) 2006-10-02 2011-11-22 Kobe Steel, Ltd. Copper alloy sheet for electric and electronic parts
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
WO2009074226A1 (en) * 2007-12-10 2009-06-18 Li-Tec Battery Gmbh Electrode for energy storage means
KR101287959B1 (en) * 2007-12-10 2013-07-18 리-텍 배터리 게엠베하 Electrode for an energy storage unit
JP2009185364A (en) * 2008-02-08 2009-08-20 Hitachi Cable Ltd Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member
US8322532B2 (en) 2008-10-23 2012-12-04 Tim Schafer Packaging device and packaging system for essentially flat objects, for example lithium-ion cells
US8394527B2 (en) 2008-10-23 2013-03-12 Li-Tec Battery Gmbh Galvanic cell for an accumulator
US8617739B2 (en) 2008-10-23 2013-12-31 Li-Tec Battery Gmbh Galvanic cell for an accumulator
US8603655B2 (en) 2008-10-24 2013-12-10 Li-Tec Battery Gmbh Accumulator comprising a plurality of galvanic cells
WO2010103646A1 (en) * 2009-03-12 2010-09-16 三井金属鉱業株式会社 Copper alloy containing phosphorus and iron and electrical member using the copper alloy
JP4495251B1 (en) * 2009-03-12 2010-06-30 三井金属鉱業株式会社 Copper alloy containing phosphorus and iron and power distribution member using the copper alloy
CN102683713A (en) * 2011-03-17 2012-09-19 日立电线株式会社 Rolled copper foil for lithium ion secondary battery current collector
JP2012195192A (en) * 2011-03-17 2012-10-11 Hitachi Cable Ltd Rolled copper foil for lithium ion secondary battery collector
EP2716403A1 (en) * 2012-09-12 2014-04-09 KME France SAS Copper alloys for heat exchangers
FR2995383A1 (en) * 2012-09-12 2014-03-14 Kme France Sas COPPER ALLOYS FOR HEAT EXCHANGERS
JP2014127462A (en) * 2012-12-27 2014-07-07 Uacj Foil Corp Anode collector for secondary battery and manufacturing method thereof
JP2014143008A (en) * 2013-01-22 2014-08-07 Sh Copper Products Corp Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery
WO2015041348A1 (en) * 2013-09-20 2015-03-26 Jx日鉱日石金属株式会社 Copper alloy foil
JP2015059266A (en) * 2013-09-20 2015-03-30 Jx日鉱日石金属株式会社 Copper alloy foil
CN105637106A (en) * 2013-09-20 2016-06-01 Jx金属株式会社 Copper alloy foil
CN107828984A (en) * 2013-09-20 2018-03-23 Jx金属株式会社 Copper alloy foil

Similar Documents

Publication Publication Date Title
JP2000328159A (en) Copper alloy foil
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP5189715B1 (en) Cu-Mg-P based copper alloy sheet having excellent fatigue resistance and method for producing the same
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
KR101414882B1 (en) Cu-zn alloy strip for tab material for connecting cells
JP5575632B2 (en) Method for producing copper foil for lithium ion secondary battery
JP5567210B2 (en) Rolled copper foil for secondary battery negative electrode current collector and method for producing the same
CN102822362A (en) High-strength copper titanium plate and production method therefor
KR101924250B1 (en) Rolled copper foil for secondary battery collector and production method therefor
KR102453494B1 (en) Aluminum alloy material and cables, wires and spring members using the same
US10056166B2 (en) Copper-cobalt-silicon alloy for electrode material
JP5495649B2 (en) Aluminum alloy foil for lithium ion secondary battery and method for producing the same
JP7143900B2 (en) Non-oriented electrical steel sheet
JP7143901B2 (en) Non-oriented electrical steel sheet
JP5448929B2 (en) Aluminum alloy hard foil having excellent bending resistance and method for producing the same
JP5534610B2 (en) Cu-Co-Si alloy strip
JP7195054B2 (en) Copper alloy sheet material and manufacturing method thereof
JP4743977B2 (en) Rolled copper alloy foil and manufacturing method thereof
JP2001011550A (en) Copper alloy rolled foil
JP7263953B2 (en) Copper alloy contact wire
JP5892974B2 (en) Copper alloy sheet with excellent conductivity and stress relaxation properties
JP2012241232A (en) Rolled copper alloy foil and current collector for secondary battery using the same
US10358697B2 (en) Cu—Co—Ni—Si alloy for electronic components
JP5130406B1 (en) Cu-Zn-Sn copper alloy strip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060322