JP2011023129A - Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor - Google Patents

Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor Download PDF

Info

Publication number
JP2011023129A
JP2011023129A JP2009164754A JP2009164754A JP2011023129A JP 2011023129 A JP2011023129 A JP 2011023129A JP 2009164754 A JP2009164754 A JP 2009164754A JP 2009164754 A JP2009164754 A JP 2009164754A JP 2011023129 A JP2011023129 A JP 2011023129A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
temperature
secondary battery
aqueous secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164754A
Other languages
Japanese (ja)
Inventor
Tsutomu Nishioka
努 西岡
Masakazu Yamada
雅一 山田
Takuya Hirobe
卓也 廣部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009164754A priority Critical patent/JP2011023129A/en
Publication of JP2011023129A publication Critical patent/JP2011023129A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem, wherein breaking or buckling of a positive electrode plate that causes internal short circuiting of a battery is generated due to the difference in the degree of expansion and contraction, between the positive electrode plate and a negative electrode plate, by repeated charge and discharge, due to the stress caused by expansion and contraction of the electrode plate applied to the electrode plate, when a nonaqueous secondary battery is repeatedly charged-discharged. <P>SOLUTION: A positive electrode plate 4 for a nonaqueous secondary battery having high reliability is manufactured by increasing the degree of expansion and contraction of the positive electrode plate 4 through a first step, in which positive mix coating is applied to a positive current collector, dried, and then they are pressed into a prescribed thickness; and then a second step in which the pressed current collector is heated to a temperature or higher, at which crystal grains of the positive current collector grow with heating rolls 1, 2, 3, releasing stress applied to the positive electrode plate 4 in which the degree of expansion and contraction is low, caused by the difference of the degree of expansion and contraction between the positive electrode plate 4 and the negative electrode plate in the expansion and contraction of the electrode plate in charging/discharging, and suppressing the generation of breaking or buckling of the positive electrode plate 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に代表される非水系二次電池用正極板の製造方法およびその製造装置に関するものである。   The present invention relates to a method for manufacturing a positive electrode plate for a non-aqueous secondary battery represented by a lithium ion secondary battery and a manufacturing apparatus therefor.

近年、携帯用電子機器の電源として利用が広がっている非水系二次電池としてのリチウム二次電池は、負極にリチウムイオンの吸蔵・放出が可能な炭素質材料等を用い、正極にLiCoO2等の遷移金属とリチウムとの複合酸化物を活物質として用いることにより、高電位で高放電容量の非水系二次電池を実現しているが、更なる高放電容量化への期待が高まっている。高放電容量化のためには、より多くの正極活物質、負極炭素材料および非水電解液を電池ケース内に封入する必要があり、そのためには非水系二次電池内の空間体積を確保する必要がある。体積確保の手段としては、金属ケースの薄肉化、活物質密度の向上、また集電体の薄膜化が挙げられる。   In recent years, lithium secondary batteries as non-aqueous secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium ions for the negative electrode, and LiCoO 2 for the positive electrode. By using a composite oxide of transition metal and lithium as an active material, a non-aqueous secondary battery having a high potential and a high discharge capacity has been realized, but expectations for further higher discharge capacity are increasing. In order to increase the discharge capacity, it is necessary to enclose more positive electrode active material, negative electrode carbon material, and non-aqueous electrolyte in the battery case. To that end, a space volume in the non-aqueous secondary battery is secured. There is a need. Examples of means for securing the volume include thinning the metal case, improving the active material density, and reducing the thickness of the current collector.

その中で、非水系二次電池用正極板(以下正極板と略す)における正極集電体の薄膜化に関しては、空間体積を簡単に確保できることに反して、正極板の製造過程における正極板のシワや破れ、非水系二次電池の充放電特性、特に正極集電体が充放電サイクル時に伴う膨張収縮に耐えられず強度が低下し、正極合剤層の脱落が発生するなどの課題が発生している。このことより、正極板の正極集電体は薄膜での生産性に対応させた正極集電体が必要であり、且つ、充放電サイクル時における膨張収縮に耐えうる正極集電体であることも重要な要素となる。一般的に、非水系二次電池用電極板を作製する方法としては、正極活物質または負極活物質、結着材、導電材を分散媒に混練分散した電極合剤塗料を集電体の片面もしくは両面に塗布、乾燥、プレスすることで、正極板または負極板を形成する方法が用いられている。   Among them, regarding the thinning of the positive electrode current collector in the positive electrode plate for a non-aqueous secondary battery (hereinafter abbreviated as the positive electrode plate), contrary to the fact that the space volume can be easily secured, There are problems such as wrinkles, tears, charge / discharge characteristics of non-aqueous secondary batteries, especially the positive electrode current collector cannot withstand expansion and contraction during the charge / discharge cycle, the strength decreases, and the positive electrode mixture layer falls off is doing. From this, the positive electrode current collector of the positive electrode plate needs to be a positive electrode current collector corresponding to the productivity of the thin film, and can be a positive electrode current collector that can withstand expansion and contraction during the charge / discharge cycle. It becomes an important factor. In general, as a method for producing an electrode plate for a non-aqueous secondary battery, an electrode mixture paint obtained by kneading and dispersing a positive electrode active material or a negative electrode active material, a binder, and a conductive material in a dispersion medium is used on one side of the current collector. Or the method of forming a positive electrode plate or a negative electrode plate by apply | coating, drying, and pressing on both surfaces is used.

ここで、負極板の集電体として加熱処理により結晶粒を成長させた銅箔を用いることにより、充放電サイクル特性を劣化させることなく、銅箔上の亀裂を防止し負極合剤塗料の脱落を発生させない方法が提案されている(例えば、特許文献1参照)。   Here, by using a copper foil having crystal grains grown by heat treatment as a current collector for the negative electrode plate, cracks on the copper foil are prevented and the negative electrode mixture paint is removed without deteriorating charge / discharge cycle characteristics. There has been proposed a method that does not generate (see, for example, Patent Document 1).

また、充放電サイクル特性や保存特性に優れた非水系二次電池を得るために、正極板と負極板に250℃以上で熱処理し、柔軟性を高め引張破断伸びを大きくした集電体を用いる方法が提案されている(例えば、特許文献2参照)。   In addition, in order to obtain a non-aqueous secondary battery excellent in charge / discharge cycle characteristics and storage characteristics, a current collector that is heat-treated at 250 ° C. or higher on the positive electrode plate and the negative electrode plate to increase flexibility and increase tensile elongation at break is used. A method has been proposed (see, for example, Patent Document 2).

さらに、プレス後の正極板をTm−30以上(Tmはプレス後における正極合剤層中のポリフッ化ビニリデンの融点)Tm+20以下の温度範囲で熱処理し、ポリフッ化ビニリデンで正極活物質の活性な部分を覆うことで活性の高い部分での反応を抑制し、放電特性を改善する方法が提案されている(例えば、特許文献3参照)。   Further, the positive electrode plate after pressing is heat-treated at a temperature range of Tm-30 or higher (Tm is the melting point of polyvinylidene fluoride in the positive electrode mixture layer after pressing) Tm + 20 or lower, and the active portion of the positive electrode active material is polyvinylidene fluoride. There has been proposed a method for improving the discharge characteristics by suppressing the reaction in the highly active portion by covering the surface (for example, see Patent Document 3).

特開2007−164996号公報JP 2007-164996 A 特開平09−129241号公報JP 09-129241 A 特開2007−273259号公報JP 2007-273259 A

しかしながら、上述した従来技術においては、非水系二次電池を充放電すると電極板の
膨張収縮による応力が電極板に加わり、充放電を繰り返すことによる繰り返し応力により正極板、負極板もしくはセパレータの伸縮度が最も低いものから優先的に破断してしまい、正極板もしくは負極板がセパレータよりも先に破断した場合には、いずれかの電極板の破断部がセパレータを突き破り正極板と負極板が短絡することになる。この短絡により大電流が流れ、その結果、非水系二次電池の温度が急激に上昇し、非水系二次電池が熱暴走する可能性があるという課題を有していた。
However, in the above-described prior art, when the non-aqueous secondary battery is charged / discharged, stress due to the expansion / contraction of the electrode plate is applied to the electrode plate, and the expansion / contraction degree of the positive electrode plate, the negative electrode plate or the separator due to repeated stress due to repeated charge / discharge. If the positive electrode plate or negative electrode plate breaks prior to the separator, the fracture portion of one of the electrode plates breaks through the separator and the positive electrode plate and the negative electrode plate are short-circuited. It will be. Due to this short circuit, a large current flows, and as a result, the temperature of the non-aqueous secondary battery suddenly rises and the non-aqueous secondary battery may have a problem of thermal runaway.

上述した特許文献1の従来技術では、負極板の銅箔に限定した内容となっており、正極板も同様に伸縮度を高めた集電体を用いなければ充放電サイクルが改善できない場合があり、正極板の伸縮度が負極板より小さく、正極板の破断または挫屈が発生するという課題を有していた。また、特許文献2の従来技術では、柔軟性の高い集電体を用いてもプレスの際に集電体が加工硬化を起こして伸縮度が低下し、充放電サイクル特性を劣化させ、正極板の伸縮度が負極板より小さくなるために正極板の破断または挫屈が発生する課題を有していた。さらに、特許文献3の従来技術では、正極板に対してプレス後に熱処理を行っているが、処理温度がポリフッ化ビニリデンの融点で規定されており、集電体の結晶粒を成長させるという着目点とは異なっており、正極板の伸縮度が負極板より小さく正極板の破断または挫屈が発生するという課題を有していた。   In the prior art of Patent Document 1 described above, the content is limited to the copper foil of the negative electrode plate, and the positive electrode plate may not be able to improve the charge / discharge cycle without using a current collector with a similarly high degree of expansion / contraction. The expansion and contraction of the positive electrode plate is smaller than that of the negative electrode plate, and there is a problem that the positive electrode plate is broken or buckled. Further, in the prior art of Patent Document 2, even when a highly flexible current collector is used, the current collector undergoes work hardening during pressing, the degree of expansion and contraction is reduced, and charge / discharge cycle characteristics are deteriorated. Since the degree of expansion and contraction of the positive electrode plate is smaller than that of the negative electrode plate, there is a problem that the positive electrode plate is broken or bent. Furthermore, in the prior art of Patent Document 3, the positive electrode plate is heat-treated after pressing, but the processing temperature is defined by the melting point of polyvinylidene fluoride, and the crystal grains of the current collector are grown. In other words, the degree of expansion and contraction of the positive electrode plate is smaller than that of the negative electrode plate, and the positive electrode plate is broken or buckled.

本発明は上記従来の課題を鑑みてなされたもので、正極集電体の結晶粒が成長する温度以上で熱処理することにより、正極板の伸縮度を向上させて、充放電における電極板の膨張収縮時に正極板と負極板の伸縮度の差から発生する伸縮度の小さい正極板に加わる応力を緩和し、正極板の破断または挫屈を抑制することで信頼性の高い非水系二次電池用正極板を提供することを目的としている。   The present invention has been made in view of the above-described conventional problems, and heat treatment is performed at a temperature higher than the temperature at which the crystal grains of the positive electrode current collector grow, thereby improving the degree of expansion and contraction of the positive electrode plate and expanding the electrode plate during charge and discharge. For non-aqueous secondary batteries with high reliability by relaxing the stress applied to the positive electrode plate with a small degree of expansion and contraction caused by the difference in expansion between the positive electrode plate and the negative electrode plate during shrinkage, and suppressing the breakage or buckling of the positive electrode plate The object is to provide a positive electrode plate.

上記従来の課題を解決するために本発明の非水系二次電池用正極板の製造方法は、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成する非水系二次電池用正極板の製造方法であって、正極合剤塗料を正極集電体の上に塗布し乾燥した後に所定の厚みにプレスする第1の工程と、プレスした後に加熱手段により正極集電体の結晶粒が成長する温度以上で熱処理する第2の工程を経て形成することを特徴としたものである。   In order to solve the above-described conventional problems, the method for producing a positive electrode plate for a non-aqueous secondary battery according to the present invention comprises kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder. A method for producing a positive electrode plate for a non-aqueous secondary battery in which a positive electrode mixture paint is applied on a positive electrode current collector to form a positive electrode mixture layer, wherein the positive electrode mixture paint is applied on the positive electrode current collector. Formed through a first step of pressing to a predetermined thickness after drying and a second step of heat-treating at or above the temperature at which the crystal grains of the positive electrode current collector grow by heating means after pressing It is.

本発明の非水系二次電池用正極板の製造方法は、正極合剤塗料を正極集電体の上に塗布し乾燥した後に所定の厚みにプレスする第1の工程、次いで、プレスした後に加熱手段により正極集電体の結晶粒が成長する温度以上で熱処理する第2の工程を経ることで、正極集電体の伸縮度を向上させて、充放電時における負極板の伸びに追従させることができ、伸縮度の差による破断または挫屈を抑制する効果があり、これらの要因で非水系二次電池が内部短絡し発熱により熱暴走を引き起こす事態を回避することが可能となる。   The method for producing a positive electrode plate for a non-aqueous secondary battery according to the present invention includes a first step of applying a positive electrode mixture paint onto a positive electrode current collector and drying it, followed by pressing to a predetermined thickness, and then heating after pressing. The degree of expansion and contraction of the positive electrode current collector is improved by following the second step of heat treatment at a temperature higher than the temperature at which the crystal grains of the positive electrode current collector grow by means, and the elongation of the negative electrode plate during charging and discharging is followed. It has the effect of suppressing breakage or buckling due to the difference in expansion and contraction, and it is possible to avoid a situation in which the non-aqueous secondary battery is short-circuited internally and causes thermal runaway due to heat generation.

本発明の一実施例に係る非水系二次電池用正極板の製造装置の概略図Schematic of the manufacturing apparatus of the positive electrode plate for non-aqueous secondary batteries which concerns on one Example of this invention. 本発明の別の実施例に係る非水系二次電池用正極板の製造装置の概略図Schematic of the manufacturing apparatus of the positive electrode plate for non-aqueous secondary batteries which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池用正極板の製造装置の概略図Schematic of the manufacturing apparatus of the positive electrode plate for non-aqueous secondary batteries which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池用正極板の製造装置の概略図Schematic of the manufacturing apparatus of the positive electrode plate for non-aqueous secondary batteries which concerns on another Example of this invention. 本発明の別の実施例に係る非水系二次電池用正極板の製造装置の概略図Schematic of the manufacturing apparatus of the positive electrode plate for non-aqueous secondary batteries which concerns on another Example of this invention.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正
極合剤層を形成する非水系二次電池用正極板の製造方法であって、正極合剤塗料を正極集電体の上に塗布し乾燥した後に所定の厚みにプレスする第1の工程と、プレスした後に加熱手段により正極集電体の結晶粒が成長する温度以上で熱処理する第2の工程を経て形成することにより、正極集電体の伸縮度を向上させて、充放電時における負極板の伸びに追従させ伸縮度の差による破断または挫屈を抑制し、これらの要因で非水系二次電池が内部短絡し発熱により熱暴走を引き起こす事態を回避することが可能となる。
In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder with a dispersion medium is applied onto a positive electrode current collector. A method for producing a positive electrode plate for a non-aqueous secondary battery that forms a mixture layer, the first step of applying a positive electrode mixture paint onto a positive electrode current collector and drying it, followed by pressing to a predetermined thickness; By forming through a second step of heat treatment at a temperature higher than the temperature at which the crystal grains of the positive electrode current collector are grown by the heating means after pressing, the degree of expansion and contraction of the positive electrode current collector is improved, and the negative electrode plate during charging and discharging Therefore, it is possible to prevent breakage or buckling due to the difference in the degree of expansion and contraction, and to avoid a situation in which the non-aqueous secondary battery is internally short-circuited and causes thermal runaway due to heat generation.

本発明の第2の発明においては、熱処理を複数の熱源を用いて順次昇温することにより徐々に温度上昇させて行うことにより、正極板を急加熱することにより発生する熱によるシワを抑制することで、熱により発生するシワによる正極板の厚み増を原因とする巻回後の群径の増大を防ぐことが可能となる。   In the second invention of the present invention, the heat treatment is performed by sequentially raising the temperature by using a plurality of heat sources to gradually increase the temperature, thereby suppressing wrinkles due to heat generated by rapidly heating the positive electrode plate. This makes it possible to prevent an increase in the group diameter after winding due to an increase in the thickness of the positive electrode plate due to wrinkles generated by heat.

本発明の第3の発明においては、熱処理を複数の熱源を用いて徐々に温度上昇させるとともに冷却機構を用いて多段階に温度下降させて行うことにより、正極板を急加熱することにより発生する熱によるシワを抑制することで、熱により発生するシワによる正極板の厚みの増加による巻回時における電極群の直径の増大を防ぐことが可能となる。また、順次降温することにより正極板の空冷が不要となり高速生産が可能となる。   In the third invention of the present invention, the heat treatment is caused by rapidly heating the positive electrode plate by gradually raising the temperature using a plurality of heat sources and lowering the temperature in multiple stages using a cooling mechanism. By suppressing wrinkles due to heat, it is possible to prevent an increase in the diameter of the electrode group during winding due to an increase in the thickness of the positive electrode plate due to wrinkles generated by heat. Moreover, by cooling the temperature sequentially, it is not necessary to air-cool the positive electrode plate, and high-speed production is possible.

本発明の第4の発明においては、正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成し所定の厚みにプレスする非水系二次電池用正極板の製造装置であって、プレス後の正極板を徐々に温度上昇させて正極集電体の結晶粒が成長する温度以上で熱処理する加熱機構を具備したことにより、正極板への加熱を段階的に行うことにより、正極板への急加熱により発生する熱によるシワを抑制することが可能となる。   According to a fourth aspect of the present invention, there is provided an apparatus for producing a positive electrode plate for a non-aqueous secondary battery in which a positive electrode mixture paint is applied on a positive electrode current collector to form a positive electrode mixture layer and pressed to a predetermined thickness. By gradually heating the positive electrode plate after the press and having a heating mechanism for heat treatment at a temperature higher than the temperature at which the crystal grains of the positive electrode current collector grow, by heating the positive electrode plate stepwise, Wrinkles due to heat generated by rapid heating of the positive electrode plate can be suppressed.

本発明の第5の発明においては、加熱機構を順次昇温する複数個の加熱ロールにより構成したことにより、正極板への加熱を複数の熱ロールにより多段階的に行うことで、正極板への加熱を段階的に行うことにより、正極板への急加熱により発生する熱によるシワを抑制することが可能となる。   In the fifth aspect of the present invention, the heating mechanism is configured by a plurality of heating rolls that sequentially raise the temperature, so that the heating to the positive electrode plate is performed in a multistage manner by the plurality of heating rolls. By performing this heating stepwise, it becomes possible to suppress wrinkles due to heat generated by rapid heating of the positive electrode plate.

本発明の第6の発明においては、加熱機構の後段に複数個の冷却ロールによる冷却機構を付加した構成としたことにより、正極板への加熱を段階的に行うことにより正極板への急加熱により発生する熱によるシワを抑制することが可能となる。また、順次降温する複数個の冷却ロールにより降温を段階的に行うことにより、急な温度変化により発生する熱によるシワを抑制することが可能となり、正極板の空冷が不要となるので高速生産が可能となる。   In the sixth aspect of the present invention, the cooling mechanism using a plurality of cooling rolls is added to the subsequent stage of the heating mechanism, so that the positive electrode plate is heated rapidly by performing heating to the positive electrode stepwise. It becomes possible to suppress wrinkles due to the heat generated by. In addition, by performing the temperature decrease step by step with a plurality of cooling rolls that gradually decrease the temperature, it becomes possible to suppress wrinkles due to heat generated by a sudden temperature change, and it is not necessary to air-cool the positive electrode plate. It becomes possible.

本発明の第7の発明においては、加熱機構を加熱ロールの手前に正極板を予熱する加熱炉を設けて構成したことにより、正極板へ予熱を加えることで正極板への急加熱を防止し、急な温度変化により正極板に発生する熱によるシワを抑制することが可能となる。   In the seventh invention of the present invention, the heating mechanism is provided with a heating furnace for preheating the positive electrode plate in front of the heating roll, thereby preventing the rapid heating of the positive electrode plate by preheating the positive electrode plate. It is possible to suppress wrinkles due to heat generated in the positive electrode plate due to a sudden temperature change.

本発明の第8の発明においては、冷却機構を降温する冷却ロールの後に冷却炉を設けて構成したことを特徴としたことにより、正極板の降温を段階的に行うことにより急な温度変化により発生する熱によるシワを抑制することが可能となり、正極板の空冷が不要となるので高速生産が可能となる。   According to an eighth aspect of the present invention, the cooling mechanism is provided after the cooling roll for lowering the temperature of the cooling mechanism, so that the temperature of the positive electrode plate is lowered stepwise to cause a sudden temperature change. It is possible to suppress wrinkles due to the generated heat and eliminate the need for air cooling of the positive electrode plate, thereby enabling high-speed production.

以下、本発明の一実施の形態について図面を参照しながら説明する。図1は本発明の一実施の形態に係る非水系二次電池用正極板の製造装置の概略図である。図1に示す製造装置は非水系二次電池用正極板4(以下、正極板4と略す)を送り出す、巻き出し部10と正極板4に段階的に熱処理を加えるための低温加熱ロール1、中温加熱ロール2、高温加熱ロール3、さらに正極板4を巻き取るための巻き取り部11から構成されている。ここ
で正極板4は、集電体となる金属箔にペースト状の活物質である正極合剤塗料を塗布し、乾燥、圧延することにより形成されている。この正極板4を巻き出し部10より送り出し、低温加熱ロール1を通過させることにより低温域に加熱する。次いで中温加熱ロール2を通過させることで中温域に加熱し、さらに高温加熱ロール3を通過させることにより高温域に加熱する。このことにより段階的に正極板4に熱処理を加えた後に、巻き取り部11で巻き取る正極集電体の結晶粒が成長する温度まで段階的に熱処理を行うことができる。さらに急な加熱により発生する正極板4の熱によるシワを抑制し、正極集電体の伸縮度を向上させることが可能である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of an apparatus for manufacturing a positive electrode plate for a non-aqueous secondary battery according to an embodiment of the present invention. The manufacturing apparatus shown in FIG. 1 sends out a positive electrode plate 4 for non-aqueous secondary batteries (hereinafter abbreviated as positive electrode plate 4), a low temperature heating roll 1 for applying heat treatment stepwise to the unwinding unit 10 and the positive electrode plate 4, The intermediate temperature heating roll 2, the high temperature heating roll 3, and the winding unit 11 for winding the positive electrode plate 4 are configured. Here, the positive electrode plate 4 is formed by applying a positive electrode mixture paint, which is a pasty active material, to a metal foil serving as a current collector, and drying and rolling. The positive electrode plate 4 is fed out from the unwinding unit 10 and passed through the low temperature heating roll 1 to be heated to a low temperature region. Next, the medium temperature heating roll 2 is passed to heat to the middle temperature range, and the high temperature heating roll 3 is further passed to heat to the high temperature range. Thus, after the heat treatment is applied to the positive electrode plate 4 stepwise, the heat treatment can be performed stepwise to a temperature at which the crystal grains of the positive electrode current collector wound up by the winding unit 11 grow. Furthermore, it is possible to suppress wrinkles due to heat of the positive electrode plate 4 generated by sudden heating, and to improve the degree of expansion and contraction of the positive electrode current collector.

また、本発明の別の製造方法としては、図2に示した構成の製造装置を用いることができ、具体的には非水系二次電池用正極板4を送り出す巻き出し部10と、正極板4に段階的に熱処理を加えるための低温加熱ロール1、中温加熱ロール2、高温加熱ロール3、次いで、正極板4を段階的に冷却するための冷却ロール5,6,7,さらに正極板4を巻き取るための巻き取り部11から構成されている。ここで、正極板4を巻き出し部10より送り出し、低温加熱ロール1を通過させることにより低温域に加熱し、次いで中温加熱ロール2を通過させることで中温域に加熱する。さらに高温加熱ロール3を通過させることにより高温域に加熱する。このように段階的に正極板4に熱処理を加えて正極集電体の結晶粒が成長する温度まで段階的に熱処理を行い、次いで段階的に温度が降下している冷却ロール5から冷却ロール6、冷却ロール7を通過させて巻き取り部11で巻き取ることにより、正極板4の温度を段階的に降下させて急な温度変化により発生する正極板の熱によるシワを抑制し、正極集電体の伸縮度を向上させることが可能である。また、空冷が不要となるので高速生産が可能となる。   Moreover, as another manufacturing method of the present invention, a manufacturing apparatus having the configuration shown in FIG. 2 can be used. Specifically, the unwinding unit 10 for feeding out the positive electrode plate 4 for a non-aqueous secondary battery, and the positive electrode plate 4, a low temperature heating roll 1 for applying heat treatment in stages, a medium temperature heating roll 2, a high temperature heating roll 3, then cooling rolls 5, 6, 7 for cooling the positive electrode plate 4 in stages, and a positive electrode plate 4 It is comprised from the winding-up part 11 for winding up. Here, the positive electrode plate 4 is sent out from the unwinding unit 10 and heated to a low temperature range by passing through the low temperature heating roll 1, and then heated to a middle temperature range by passing through the intermediate temperature heating roll 2. Furthermore, it heats to a high temperature range by letting the high temperature heating roll 3 pass. In this way, heat treatment is applied to the positive electrode plate 4 stepwise to perform heat treatment step by step to a temperature at which the crystal grains of the positive electrode current collector grow, and then the cooling roll 5 to the cooling roll 6 are gradually lowered in temperature. The temperature of the positive electrode plate 4 is lowered stepwise by passing the cooling roll 7 and wound up by the winding unit 11 to suppress wrinkles caused by the heat of the positive electrode plate caused by a sudden temperature change. It is possible to improve the elasticity of the body. Further, since air cooling is not required, high speed production is possible.

また、本発明の別の製造方法としては、図3に示した構成の製造装置を用いることができる。具体的には非水系二次電池用正極板4を送り出す巻き出し部10と正極板4に予熱を加えるための加熱炉8、熱処理を加えるための高温加熱ロール3、さらに正極板4を巻き取るための巻き取り部11から構成されている。ここで、正極板4を巻き出し部10より送り出し、加熱炉8を通過させて予熱を加えた後に高温加熱ロール3を通過させる。このように高温域に加熱した後に巻き取り部11で巻き取ることにより、正極集電体の結晶粒が成長する温度まで段階的に熱処理を行うことができる。さらに正極板4へ予熱を加えることで急な加熱により、発生する正極板4の熱によるシワを抑制し正極集電体の伸縮度を向上させることが可能である。   Further, as another manufacturing method of the present invention, a manufacturing apparatus having the configuration shown in FIG. 3 can be used. Specifically, the unwinding unit 10 for feeding out the positive electrode plate 4 for a non-aqueous secondary battery, the heating furnace 8 for preheating the positive electrode plate 4, the high-temperature heating roll 3 for applying heat treatment, and the positive electrode plate 4 are wound up. It is comprised from the winding-up part 11 for. Here, the positive electrode plate 4 is sent out from the unwinding unit 10, passed through the heating furnace 8, preheated, and then passed through the high-temperature heating roll 3. Thus, after heating to a high temperature range, it can wind in the winding part 11, and can heat-process in steps to the temperature which the crystal grain of a positive electrode electrical power collector grows. Furthermore, by applying preheating to the positive electrode plate 4, it is possible to suppress wrinkles due to the heat generated in the positive electrode plate 4 by rapid heating and to improve the degree of expansion and contraction of the positive electrode current collector.

また、本発明の別の製造方法としては、図4に示した構成の製造装置を用いることができ、具体的には非水系二次電池用正極板4を送り出す巻き出し部10と、正極板4に予熱を加えるための加熱炉8、熱処理を加えるための高温加熱ロール3、次いで、正極板4を段階的に冷却するための冷却ロール5,6,7,さらに正極板4を巻き取るための巻き取り部11から構成されている。ここで、正極板4を巻き出し部10より送り出し、加熱炉8を通過させて予熱を加えた後に高温加熱ロール3を通過させて正極板4を高温域に加熱し、正極集電体の結晶粒が成長する温度まで段階的に熱処理を行う。次いで段階的に温度が降下している冷却ロール5から冷却ロール6、冷却ロール7を通過させて巻き取り部11で巻き取ることにより、正極板4の温度を段階的に降下させて急な温度変化により発生する正極板の熱によるシワを抑制し、正極集電体の伸縮度を向上させることが可能である。また、空冷が不要となるので高速生産が可能となる。   Further, as another manufacturing method of the present invention, a manufacturing apparatus having the configuration shown in FIG. 4 can be used. Specifically, the unwinding unit 10 for feeding out the positive electrode plate 4 for a non-aqueous secondary battery, and the positive electrode plate A heating furnace 8 for preheating 4, a high-temperature heating roll 3 for applying heat treatment, then cooling rolls 5, 6, 7 for cooling the positive electrode plate 4 in stages, and further for winding up the positive electrode plate 4. The winding part 11 is comprised. Here, the positive electrode plate 4 is sent out from the unwinding unit 10, passed through the heating furnace 8, preheated, then passed through the high-temperature heating roll 3, and the positive electrode plate 4 is heated to a high temperature region, so that the crystal of the positive electrode current collector Heat treatment is performed step by step up to the temperature at which the grains grow. Next, the temperature of the positive electrode plate 4 is lowered stepwise by passing the cooling roll 6 and the cooling roll 7 from the cooling roll 5 whose temperature has been lowered stepwise and winding the winding roll 11 at a steep temperature. It is possible to suppress wrinkles due to the heat of the positive electrode plate generated by the change and improve the degree of expansion and contraction of the positive electrode current collector. Further, since air cooling is not required, high speed production is possible.

さらに、本発明の別の製造方法は、図5に示した構成の製造装置を用いることができ、具体的には正極板4を送り出す巻き出し部10と、正極板4に段階的に熱処理を加えるための低温加熱ロール1、中温加熱ロール2、高温加熱ロール3、次いで、正極板4を段階的に冷却するための冷却炉9と冷却ロール7、さらに正極板4を巻き取るための巻き取り部11から構成されている。ここで、正極板4を巻き出し部10より送り出し、低温加熱
ロール1を通過させることにより低温域に加熱し、次いで中温加熱ロール2を通過させることで中温域に加熱する。さらに高温加熱ロール3を通過させて高温域に加熱することで、段階的に正極板4に熱処理を加えて正極集電体の結晶粒が成長する温度まで段階的に熱処理を行う。次いで冷却炉9を通過させた後に冷却ロール7を通過させ、巻き取り部11で巻き取ることにより、正極板4の温度を段階的に上昇させ、急な加熱により発生する正極板の熱によるシワを抑制するとともに、正極板4を段階的に冷却することで急な温度変化により発生する正極板4の熱によるシワを抑制し、正極集電体の伸縮度を向上させることが可能である。また、空冷が不要となるので高速生産が可能となる。
Furthermore, another manufacturing method of the present invention can use the manufacturing apparatus having the configuration shown in FIG. 5. Specifically, the unwinding unit 10 that feeds out the positive electrode plate 4 and the heat treatment stepwise on the positive electrode plate 4. Low temperature heating roll 1 for adding, medium temperature heating roll 2, high temperature heating roll 3, then cooling furnace 9 and cooling roll 7 for cooling positive electrode plate 4 stepwise, and winding for winding positive electrode plate 4 The unit 11 is configured. Here, the positive electrode plate 4 is sent out from the unwinding unit 10 and heated to a low temperature range by passing through the low temperature heating roll 1, and then heated to a middle temperature range by passing through the intermediate temperature heating roll 2. Further, by passing through the high temperature heating roll 3 and heating to a high temperature region, the positive electrode plate 4 is subjected to heat treatment step by step, and the heat treatment is performed step by step to a temperature at which the crystal grains of the positive electrode current collector grow. Next, after passing through the cooling furnace 9, the cooling roll 7 is passed through and taken up by the take-up unit 11, whereby the temperature of the positive electrode plate 4 is increased stepwise, and wrinkles due to the heat of the positive electrode plate generated by sudden heating are caused. It is possible to suppress wrinkles due to heat of the positive electrode plate 4 caused by a sudden temperature change by cooling the positive electrode plate 4 in stages, and to improve the degree of expansion and contraction of the positive electrode current collector. Further, since air cooling is not required, high speed production is possible.

以下、具体的な実施例1について、さらに詳しく説明する。正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に図1に示す製造装置により熱処理を加えることで非水系二次電池用正極板を作製した。熱処理方法としては、プレス後の正極板4を巻き出し部10より送り出し、低温加熱ロール1の温度を80℃、中温加熱ロール2の温度を140℃、高温加熱ロール3の温度を200℃に設定した状態で正極板4を通過させ巻き取り部11で巻き取った。このようにして正極板4に多段階的に熱処理を加えて作成した正極板4を実施例1とした。   Hereinafter, specific Example 1 will be described in more detail. An electrode mixture paint using composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then subjected to heat treatment by the manufacturing apparatus shown in FIG. Thus, a positive electrode plate for a non-aqueous secondary battery was produced. As a heat treatment method, the pressed positive electrode plate 4 is sent out from the unwinding unit 10, the temperature of the low temperature heating roll 1 is set to 80 ° C., the temperature of the medium temperature heating roll 2 is set to 140 ° C., and the temperature of the high temperature heating roll 3 is set to 200 ° C. In this state, the positive electrode plate 4 was passed and wound up by the winding unit 11. The positive electrode plate 4 prepared by applying heat treatment to the positive electrode plate 4 in a multistage manner in this manner was used as Example 1.

正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に図2に示す製造装置により熱処理を加えることで正極板4を作製した。熱処理方法としては、プレス後の正極板4を巻き出し部10より送り出し、低温加熱ロール1の温度を80℃、中温加熱ロール2の温度を140℃、高温加熱ロール3の温度を200℃に設定した状態で正極板4を通過させて正極板4に多段階的に熱処理を加えた後に、冷却ロール5の温度を140℃、冷却ロール6の温度を80℃、冷却ロール7の温度を30℃に設定した状態で正極板4を通過させて、巻き取り部11で巻き取った。このようにして正極板4に多段階的に熱処理を加えた後に、多段階に温度下降を加えて作成した正極板4を実施例2とした。   An electrode mixture paint containing composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then subjected to heat treatment by the manufacturing apparatus shown in FIG. Thus, the positive electrode plate 4 was produced. As a heat treatment method, the pressed positive electrode plate 4 is sent out from the unwinding unit 10, the temperature of the low temperature heating roll 1 is set to 80 ° C., the temperature of the medium temperature heating roll 2 is set to 140 ° C., and the temperature of the high temperature heating roll 3 is set to 200 ° C. In this state, the positive electrode plate 4 is allowed to pass through and heat treatment is applied to the positive electrode plate 4 in a multistage manner, and then the temperature of the cooling roll 5 is 140 ° C., the temperature of the cooling roll 6 is 80 ° C., and the temperature of the cooling roll 7 is 30 ° C. The positive electrode plate 4 was allowed to pass through in the state set to, and was wound up by the winding unit 11. The positive electrode plate 4 prepared by applying heat treatment to the positive electrode plate 4 in multiple stages and then lowering the temperature in multiple stages was taken as Example 2.

正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に図3に示す製造装置により熱処理を加えることで正極板4を作製した。熱処理方法としては、プレス後の正極板4を巻き出し部10より送り出し、加熱炉8の温度を120℃、高温加熱ロール3の温度を200℃に設定した状態で正極板4を通過させて巻き取り部11で巻き取った。このようにして正極板4に多段階的に熱処理を加えて作成した正極板4を実施例3とした。   An electrode mixture paint containing composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then subjected to heat treatment by the manufacturing apparatus shown in FIG. Thus, the positive electrode plate 4 was produced. As a heat treatment method, the positive electrode plate 4 after pressing is sent out from the unwinding unit 10 and passed through the positive electrode plate 4 with the temperature of the heating furnace 8 set to 120 ° C. and the temperature of the high-temperature heating roll 3 set to 200 ° C. The take-up part 11 was wound up. The positive electrode plate 4 thus prepared by applying heat treatment to the positive electrode plate 4 in a multistage manner was taken as Example 3.

正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に図4に示す製造装置により熱処理を加えることで正極板4を作製した。熱処理方法としては、プレス後の正極板4を巻き出し部10より送り出し、加熱炉8の温度を120℃、高温加熱ロール3の温度を200℃に設定した状態で正極板4を通過させて正極板4に多段階的に熱処理を加えた後に、冷却ロール5の温度を140℃、冷却ロール6の温度を80℃、冷却ロール7の温度を30℃に設定した状態で正極板4を通過させて巻き取り部11で巻き取った。このようにして正極板4に多段階的に熱処理を加えた後に、多段階に温度下降を加えて作成した正極板4を実施例4とした。   An electrode mixture paint using composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then subjected to heat treatment by the manufacturing apparatus shown in FIG. Thus, the positive electrode plate 4 was produced. As a heat treatment method, the positive electrode plate 4 after pressing is sent out from the unwinding unit 10, and the positive electrode plate 4 is passed through the positive electrode plate 4 with the temperature of the heating furnace 8 set to 120 ° C. and the temperature of the high-temperature heating roll 3 set to 200 ° C. After heat-treating the plate 4 in a multi-step manner, the positive electrode plate 4 is passed with the temperature of the cooling roll 5 set to 140 ° C., the temperature of the cooling roll 6 set to 80 ° C., and the temperature of the cooling roll 7 set to 30 ° C. And wound up by the winding unit 11. The positive electrode plate 4 prepared by applying the heat treatment to the positive electrode plate 4 in multiple stages and then decreasing the temperature in multiple stages was taken as Example 4.

正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に図5に示す製造装置により熱処理を加えることで正極板4を作製した。熱処理方法としては、プレス後の正極板4を巻き出し部10より送り出し、低温加熱ロール1の温度を80℃、中温加熱ロール2の温度を140℃、高温加熱ロール3の温度を200℃に設定した状態で正極板4を通過させて正極板4に多段階的に熱処理を加えた後に、冷却炉9の温度を120℃、低温冷却ロール7の温度を40℃に設定した状態で正極板4を通過させて巻き取り部11で巻き取った。このようにして正極板4に多段階的に熱処理を加えた後に多段階に温度下降を加えて作成した正極板4を実施例5とした。   An electrode mixture paint containing composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then subjected to heat treatment by the manufacturing apparatus shown in FIG. Thus, the positive electrode plate 4 was produced. As a heat treatment method, the pressed positive electrode plate 4 is sent out from the unwinding unit 10, the temperature of the low temperature heating roll 1 is set to 80 ° C., the temperature of the medium temperature heating roll 2 is set to 140 ° C., and the temperature of the high temperature heating roll 3 is set to 200 ° C. After passing through the positive electrode plate 4 in such a state and applying heat treatment to the positive electrode plate 4 in a multi-step manner, the positive electrode plate 4 is set with the temperature of the cooling furnace 9 set to 120 ° C. and the temperature of the low-temperature cooling roll 7 set to 40 ° C. Was taken up by the take-up unit 11. The positive electrode plate 4 prepared by applying heat treatment to the positive electrode plate 4 in multiple steps and then lowering the temperature in multiple steps was taken as Example 5.

(比較例1)
正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスした後に200℃に設定した加熱ロールにより熱処理を加えることにより作成した正極板を比較例1とした。
(Comparative Example 1)
An electrode mixture paint having composite lithium oxide as a positive electrode active material is applied to an aluminum foil as a positive electrode current collector, dried and pressed to a thickness of 165 μm, and then heat treated by a heating roll set at 200 ° C. The positive electrode plate prepared by adding was used as Comparative Example 1.

(比較例2)
正極集電体としてのアルミニウム箔に複合リチウム酸化物を正極活物質とする電極合剤塗料を塗布し、乾燥した後に厚みが165μmとなるようにプレスを加えることにより作成した正極板を比較例2とした。
(Comparative Example 2)
Comparative Example 2 is a positive electrode plate prepared by applying an electrode mixture paint using composite lithium oxide as a positive electrode active material to an aluminum foil as a positive electrode current collector and drying it to make a thickness of 165 μm. It was.

上記の条件で作成した正極板の熱シワの評価として実施例1〜5および比較例1〜2における正極板の厚みバラツキの測定を行った。さらに、正極板を負極板、セパレータと共に巻回を行い、電極板における切れなどの不良率の評価を行った結果を(表1)に示した。   As an evaluation of the thermal wrinkle of the positive electrode plate prepared under the above conditions, the thickness variation of the positive electrode plate in Examples 1 to 5 and Comparative Examples 1 and 2 was measured. Furthermore, the positive electrode plate was wound together with the negative electrode plate and the separator, and the results of evaluation of the defect rate such as breakage in the electrode plate are shown in (Table 1).

Figure 2011023129
Figure 2011023129

(表1)の結果から明らかなように、多段階的に熱処理を行う実施例1と実施例2は熱処理により発生する熱によるシワが抑えられ、正極板の伸縮度が向上しているために極板切れ等による不良の発生が防止されているのに対して、比較例1では単一の加熱ロールにより急速加熱を行っているために熱によるシワが大きくなり、熱処理を加えていない比較例2では極板切れ等の不良が発生している。以上の結果により、正極板に多段階的に熱処理を加えることにより急な加熱により発生する正極板の熱によるシワを抑制し、正極集電体の伸縮度を向上させることにより極板切れや挫屈等による不良を抑制することが可能となる。   As is apparent from the results of (Table 1), in Examples 1 and 2 in which heat treatment is performed in multiple steps, wrinkles due to heat generated by the heat treatment are suppressed, and the degree of expansion and contraction of the positive electrode plate is improved. While the occurrence of defects due to electrode plate breakage is prevented, in Comparative Example 1, since rapid heating is performed by a single heating roll, the wrinkles due to heat increase, and no comparative heat treatment is applied. In No. 2, defects such as electrode plate breakage have occurred. Based on the above results, it is possible to suppress wrinkles due to the heat of the positive electrode plate that is generated by rapid heating by applying heat treatment to the positive electrode plate in multiple stages, and to improve the degree of expansion and contraction of the positive electrode current collector. It is possible to suppress defects due to bending or the like.

本発明に係る非水系二次電池用正極板の製造方法は、非水系二次電池用正極板の伸縮度を向上し、負極板の伸縮度に追従させることで電極板の膨張収縮時に伸縮度の差により発
生する応力を緩和することを可能とし、熱処理により発生する熱によるシワの抑制が可能であるために、非水系二次電池用正極板の製造方法として有用である。
The method for manufacturing a positive electrode plate for a non-aqueous secondary battery according to the present invention improves the elasticity of the positive electrode plate for a non-aqueous secondary battery, and allows the elasticity of the electrode plate to expand and contract by following the elasticity of the negative electrode plate. It is possible to relieve the stress generated due to the difference between them and to suppress wrinkles due to heat generated by heat treatment, which is useful as a method for producing a positive plate for a non-aqueous secondary battery.

1 低温加熱ロール
2 中温加熱ロール
3 高温加熱ロール
4 非水系二次電池用正極板
5,6,7 冷却ロール
8 加熱炉
9 冷却炉
10 巻き出し部
11 巻き取り部
DESCRIPTION OF SYMBOLS 1 Low temperature heating roll 2 Medium temperature heating roll 3 High temperature heating roll 4 Positive electrode plate for non-aqueous secondary batteries 5, 6, 7 Cooling roll 8 Heating furnace 9 Cooling furnace 10 Unwinding part 11 Winding part

Claims (8)

少なくともリチウム含有複合酸化物よりなる活物質と導電材および結着材を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成する非水系二次電池用正極板の製造方法であって、前記正極合剤塗料を正極集電体の上に塗布し乾燥した後に所定の厚みにプレスする第1の工程と、プレスした後に加熱手段により前記正極集電体の結晶粒が成長する温度以上で熱処理する第2の工程を経て形成することを特徴とする非水系二次電池用正極板の製造方法。   A non-aqueous secondary that forms a positive electrode mixture layer by applying a positive electrode mixture paint obtained by kneading and dispersing an active material comprising at least a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium onto a positive electrode current collector A method for producing a positive electrode plate for a battery, comprising: a first step of applying the positive electrode mixture paint onto a positive electrode current collector and drying the pressed plate to a predetermined thickness; and pressing the positive electrode collector by a heating means after pressing. A method for producing a positive electrode plate for a non-aqueous secondary battery, characterized in that the positive electrode plate is formed through a second step in which heat treatment is performed at a temperature higher than a temperature at which crystal grains of an electric conductor grow. 前記熱処理を複数の熱源を用いて徐々に温度上昇させて熱処理を行うことを特徴とする請求項1に記載の非水系二次電池用正極板の製造方法。   The method for producing a positive electrode plate for a non-aqueous secondary battery according to claim 1, wherein the heat treatment is performed by gradually increasing the temperature using a plurality of heat sources. 前記熱処理を複数の熱源を用いて徐々に温度上昇させるとともに冷却機構を用いて多段階に温度下降させて行うことを特徴とする請求項1に記載の非水系二次電池用正極板の製造方法。   2. The method of manufacturing a positive electrode plate for a non-aqueous secondary battery according to claim 1, wherein the heat treatment is performed by gradually raising the temperature using a plurality of heat sources and lowering the temperature in multiple stages using a cooling mechanism. . 正極合剤塗料を正極集電体の上に塗布し正極合剤層を形成し所定の厚みにプレスする非水系二次電池用正極板の製造装置であって、前記プレス後の非水系二次電池用正極板を徐々に温度上昇させて正極集電体の結晶粒が成長する温度以上で熱処理する加熱機構を具備したことを特徴とする非水系二次電池用正極板の製造装置。   An apparatus for manufacturing a positive electrode plate for a non-aqueous secondary battery, in which a positive electrode mixture paint is applied on a positive electrode current collector to form a positive electrode mixture layer and pressed to a predetermined thickness, wherein the non-aqueous secondary battery after the pressing An apparatus for producing a positive electrode plate for a non-aqueous secondary battery, comprising a heating mechanism that heat-treats the positive electrode plate for a battery gradually at a temperature higher than a temperature at which crystal grains of the positive electrode current collector grow. 前記加熱機構として順次昇温する複数個の加熱ロールにより構成したことを特徴とする請求項4に記載の非水系二次電池用正極板の製造装置。   The apparatus for manufacturing a positive electrode plate for a non-aqueous secondary battery according to claim 4, wherein the heating mechanism is configured by a plurality of heating rolls that are sequentially heated. 前記加熱機構の後段に複数個の冷却ロールによる冷却機構を付加した構成としたことを特徴とする請求項4に記載の非水系二次電池用正極板の製造装置。   The apparatus for producing a positive electrode plate for a non-aqueous secondary battery according to claim 4, wherein a cooling mechanism using a plurality of cooling rolls is added to the subsequent stage of the heating mechanism. 前記加熱機構を加熱ロールの前段に予熱する加熱炉を設けて構成したことを特徴とする請求項4に記載の非水系二次電池用正極板の製造装置。   The apparatus for producing a positive electrode plate for a non-aqueous secondary battery according to claim 4, wherein a heating furnace for preheating the heating mechanism is provided in front of the heating roll. 前記冷却機構を降温する冷却ロールの前段に冷却炉を設けて構成したことを特徴とする請求項6に記載の非水系二次電池用正極板の製造装置。   The apparatus for producing a positive electrode plate for a non-aqueous secondary battery according to claim 6, wherein a cooling furnace is provided in a preceding stage of a cooling roll for lowering the temperature of the cooling mechanism.
JP2009164754A 2009-07-13 2009-07-13 Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor Pending JP2011023129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164754A JP2011023129A (en) 2009-07-13 2009-07-13 Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164754A JP2011023129A (en) 2009-07-13 2009-07-13 Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor

Publications (1)

Publication Number Publication Date
JP2011023129A true JP2011023129A (en) 2011-02-03

Family

ID=43633039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164754A Pending JP2011023129A (en) 2009-07-13 2009-07-13 Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor

Country Status (1)

Country Link
JP (1) JP2011023129A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139896A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Apparatus and method for manufacturing electric storage device
WO2014164005A1 (en) * 2013-03-11 2014-10-09 Applied Materials, Inc. Electrode surface roughness control for spray coating process for lithium ion battery
JP2018010854A (en) * 2016-06-29 2018-01-18 トヨタ自動車株式会社 Method and device for manufacturing electrode
CN108232119A (en) * 2016-12-10 2018-06-29 深圳格林德能源有限公司 A kind of technique for improving based lithium-ion battery positive plate edge wave-like
JP2020042991A (en) * 2018-09-11 2020-03-19 トヨタ自動車株式会社 Manufacturing method of strip electrode plate, manufacturing method of cell and electrode plate manufacturing apparatus
WO2020080229A1 (en) * 2018-10-16 2020-04-23 株式会社村田製作所 Hot-press apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139896A (en) * 2013-01-21 2014-07-31 Toyota Industries Corp Apparatus and method for manufacturing electric storage device
WO2014164005A1 (en) * 2013-03-11 2014-10-09 Applied Materials, Inc. Electrode surface roughness control for spray coating process for lithium ion battery
CN105103339A (en) * 2013-03-11 2015-11-25 应用材料公司 Electrode surface roughness control for spray coating process for lithium ion battery
JP2016510939A (en) * 2013-03-11 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Electrode surface roughness control for spray coating process of lithium ion battery
JP2018010854A (en) * 2016-06-29 2018-01-18 トヨタ自動車株式会社 Method and device for manufacturing electrode
CN108232119A (en) * 2016-12-10 2018-06-29 深圳格林德能源有限公司 A kind of technique for improving based lithium-ion battery positive plate edge wave-like
JP2020042991A (en) * 2018-09-11 2020-03-19 トヨタ自動車株式会社 Manufacturing method of strip electrode plate, manufacturing method of cell and electrode plate manufacturing apparatus
US11233227B2 (en) 2018-09-11 2022-01-25 Toyota Jidosha Kabushiki Kaisha Manufacturing method of belt-shaped electrode plate, manufacturing method of cell, and electrode plate manufacturing apparatus
JP7010183B2 (en) 2018-09-11 2022-01-26 トヨタ自動車株式会社 Band-shaped electrode plate manufacturing method, battery manufacturing method, and electrode plate manufacturing equipment
WO2020080229A1 (en) * 2018-10-16 2020-04-23 株式会社村田製作所 Hot-press apparatus

Similar Documents

Publication Publication Date Title
JP5791718B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery, power storage component
TWI460283B (en) Aluminum alloy foil for electrode current collector and method of manufacturing the same
JP2011023129A (en) Method of manufacturing positive electrode plate for nonaqueous secondary battery, and manufacturing device therefor
JPWO2015060300A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
WO2013161726A1 (en) Aluminum alloy foil for electrode current collector, method for producing same, and lithium ion secondary battery
WO2011010421A1 (en) Rectangular nonaqueous electrolyte secondary battery and method for manufacturing same
TWI683013B (en) Rolled copper foil for secondary battery negative electrode current collector, secondary battery negative electrode and secondary battery using the copper foil, and method for producing rolled copper foil for secondary battery negative electrode current collector
JP2008235251A (en) Electrode for battery and fabricating method thereof
JP2014205886A (en) Aluminum alloy foil for electrode collector and manufacturing method therefor
WO2013146369A1 (en) Aluminum alloy foil for electrode current collector and method for manufacturing same
JP2011074433A (en) Aluminum alloy foil for lithium ion secondary battery, and method for producing the same
JP5496139B2 (en) Copper foil and secondary battery using the same
JP2013001982A (en) Rolled copper foil
JP5530865B2 (en) Aluminum alloy foil for lithium ion battery electrode material and electrode material using the same
JP4357825B2 (en) Positive electrode plate for battery, manufacturing method thereof and secondary battery
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP2014143008A (en) Anode collector copper foil for lithium ion secondary battery, manufacturing method of anode for lithium ion secondary battery and evaluation method of anode collector copper foil for lithium ion secondary battery
JP4889935B2 (en) Aluminum hard foil electrode material and lithium ion secondary battery using the same
WO2010082229A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
JP5097184B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2013247017A (en) Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery
JP4971277B2 (en) Aluminum hard foil electrode material and manufacturing method thereof
JP5232813B2 (en) Charging method of lithium ion secondary battery
JP2010165565A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same
WO2010084526A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same